# Path Configuration from tools.preprocess import * # Processing context trait = "Cystic_Fibrosis" cohort = "GSE100521" # Input paths in_trait_dir = "../DATA/GEO/Cystic_Fibrosis" in_cohort_dir = "../DATA/GEO/Cystic_Fibrosis/GSE100521" # Output paths out_data_file = "./output/preprocess/1/Cystic_Fibrosis/GSE100521.csv" out_gene_data_file = "./output/preprocess/1/Cystic_Fibrosis/gene_data/GSE100521.csv" out_clinical_data_file = "./output/preprocess/1/Cystic_Fibrosis/clinical_data/GSE100521.csv" json_path = "./output/preprocess/1/Cystic_Fibrosis/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("Sample Characteristics Dictionary:") print(sample_characteristics_dict) import re import pandas as pd # 1. Gene Expression Data Availability is_gene_available = True # Based on the background info, this dataset has Illumina HumanHT-12 v4 microarray data # 2. Variable Availability and Data Type Conversion # 2.1 Find rows for trait, age, and gender trait_row = 0 # row 0 contains CF vs Non CF info age_row = 1 # row 1 contains age info gender_row = 2 # row 2 contains gender info # 2.2 Define data conversion functions def convert_trait(value: str): """ Convert a string describing the subject's CF status to a binary value: 0 for Non-CF subject, 1 for CF patient. Unknown values => None """ # Extract the part after the colon parts = value.split(':') if len(parts) < 2: return None val = parts[1].strip().lower() if 'non cf subject' in val: return 0 elif 'cf patient' in val: return 1 else: return None def convert_age(value: str): """ Convert a string describing the age to a continuous (float) value. Unknown values => None """ parts = value.split(':') if len(parts) < 2: return None val = parts[1].strip() # Attempt to convert to float try: return float(val) except ValueError: return None def convert_gender(value: str): """ Convert a string describing gender to a binary value: female => 0, male => 1 Unknown values => None """ parts = value.split(':') if len(parts) < 2: return None val = parts[1].strip().lower() if val == 'female': return 0 elif val == 'male': return 1 else: return None # We assume the variable "clinical_data" is available in this environment, # containing the sample characteristics as a DataFrame. # 3. Save Metadata (initial filtering) is_trait_available = (trait_row is not None) is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction (only if trait_row is not None) if trait_row is not None: selected_clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview preview_output = preview_df(selected_clinical_df) print("Preview of selected clinical features:", preview_output) # Save to CSV selected_clinical_df.to_csv(out_clinical_data_file, index=True) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # Based on biomedical expertise, 'ILMN_xxxxx' identifiers are Illumina probe IDs and not human gene symbols. # Therefore, they require mapping to gene symbols. print("requires_gene_mapping = True") # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1. Identify the columns in the gene_annotation dataframe that match the probe identifiers in gene_data (ILMN_xxx) # and those that represent gene symbols. From the annotation preview, 'ID' matches 'ILMN_xxx' and 'Symbol' is the gene symbol. # 2. Create a gene mapping dataframe using the identified columns mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol') # 3. Convert probe-level measurements to gene-level expression data by applying the mapping gene_data = apply_gene_mapping(gene_data, mapping_df) # (Optional) Quick check - display the shape or a small preview print("Mapped gene_data shape:", gene_data.shape) print("Mapped gene_data head:\n", gene_data.head(5)) import pandas as pd # STEP7 # 1. Normalize the obtained gene data with the 'normalize_gene_symbols_in_index' function from the library. normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) # 2. Check trait availability is_trait_available = True if not is_trait_available: # If trait is unavailable, skip further processing empty_df = pd.DataFrame() validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=True, df=empty_df, note="Trait data not available; skipping further steps." ) else: # Read the previously saved clinical data with index_col=0 selected_clinical_data = pd.read_csv(out_clinical_data_file, index_col=0) # 3. Link the clinical and genetic data linked_data = geo_link_clinical_genetic_data(selected_clinical_data, normalized_gene_data) # 4. Handle missing values in the linked data linked_data = handle_missing_values(linked_data, trait) # 5. Determine whether the trait and demographic features are severely biased is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data, trait) # 6. Final quality check and record the dataset info is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_trait_biased, df=unbiased_linked_data, note="Final check after linking and missing-value handling." ) # 7. If usable, save the final linked data if is_usable: unbiased_linked_data.to_csv(out_data_file)