# Path Configuration from tools.preprocess import * # Processing context trait = "Cystic_Fibrosis" cohort = "GSE107846" # Input paths in_trait_dir = "../DATA/GEO/Cystic_Fibrosis" in_cohort_dir = "../DATA/GEO/Cystic_Fibrosis/GSE107846" # Output paths out_data_file = "./output/preprocess/1/Cystic_Fibrosis/GSE107846.csv" out_gene_data_file = "./output/preprocess/1/Cystic_Fibrosis/gene_data/GSE107846.csv" out_clinical_data_file = "./output/preprocess/1/Cystic_Fibrosis/clinical_data/GSE107846.csv" json_path = "./output/preprocess/1/Cystic_Fibrosis/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("Sample Characteristics Dictionary:") print(sample_characteristics_dict) # 1. Gene Expression Data Availability is_gene_available = True # Based on the GEO entry, we assume it's a gene expression dataset. # 2. Variable Availability trait_row = 5 # "state: CF" or "state: Healthy" age_row = 1 # "age: ..." gender_row = 2 # "Sex: F" / "Sex: M" # 2.2 Data Type Conversions def convert_trait(value: str): # Extract the text after the first colon val = value.split(":", 1)[1].strip() if ":" in value else value.strip() # Convert to binary: CF -> 1, Healthy -> 0 if val.upper() == "CF": return 1 elif val.upper() == "HEALTHY": return 0 return None def convert_age(value: str): # Extract the text after the first colon val = value.split(":", 1)[1].strip() if ":" in value else value.strip() # Convert to float if possible try: return float(val) except ValueError: return None def convert_gender(value: str): # Extract the text after the first colon val = value.split(":", 1)[1].strip() if ":" in value else value.strip() # Convert to binary: F -> 0, M -> 1 if val.upper() == "F": return 0 elif val.upper() == "M": return 1 return None # 3. Save Metadata (initial filtering) is_trait_available = (trait_row is not None) validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction if trait data is available if trait_row is not None: selected_clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) preview = preview_df(selected_clinical_df) print("Preview of selected clinical features:", preview) selected_clinical_df.to_csv(out_clinical_data_file, index=False) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # Based on the gene identifiers (ILMN_XXXXXX), these appear to be Illumina probe IDs. # Therefore, they require mapping to standard gene symbols. requires_gene_mapping = True # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1. Decide which key in the gene annotation corresponds to the same identifier type as in the gene expression data # and which key corresponds to the gene symbols. # From observation, 'ID' matches ILMN probe identifiers (e.g., "ILMN_1245321") and 'SYMBOL' stores gene symbols. # 2. Get a gene mapping dataframe. mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="SYMBOL") # 3. Convert probe-level measurements to gene expression data by applying the gene mapping. gene_data = apply_gene_mapping(gene_data, mapping_df) # (gene_data now contains gene expression values indexed by gene symbols) print("Mapped gene_data shape:", gene_data.shape) print("First few rows of mapped gene expression data:\n", gene_data.head()) import pandas as pd # STEP7 # 1. Normalize the obtained gene data with the 'normalize_gene_symbols_in_index' function from the library. normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) # Based on Step 2, we concluded trait_row=5 (thus trait data is available). is_trait_available = True if not is_trait_available: # 2-4: Skip linking, missing value handling, and bias checks because trait is unavailable. empty_df = pd.DataFrame() validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=True, df=empty_df, note="Trait data not available; skipping further steps." ) else: # 2. Load the clinical data. Since the CSV was saved with index=False, we first read the file, # then manually set the row index to ["Cystic_Fibrosis","Age","Gender"]. selected_clinical_data = pd.read_csv(out_clinical_data_file, header=0) selected_clinical_data.index = [trait, "Age", "Gender"] # 3. Link the clinical and genetic data linked_data = geo_link_clinical_genetic_data(selected_clinical_data, normalized_gene_data) # 4. Handle missing values in the linked data linked_data = handle_missing_values(linked_data, trait) # 5. Determine whether the trait and demographic features are severely biased is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data, trait) # 6. Conduct final quality validation and save the cohort information is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_trait_biased, df=unbiased_linked_data, note="Final check after linking and missing-value handling." ) # 7. If the dataset is usable, save it as CSV if is_usable: unbiased_linked_data.to_csv(out_data_file)