# Path Configuration from tools.preprocess import * # Processing context trait = "Cystic_Fibrosis" cohort = "GSE139038" # Input paths in_trait_dir = "../DATA/GEO/Cystic_Fibrosis" in_cohort_dir = "../DATA/GEO/Cystic_Fibrosis/GSE139038" # Output paths out_data_file = "./output/preprocess/1/Cystic_Fibrosis/GSE139038.csv" out_gene_data_file = "./output/preprocess/1/Cystic_Fibrosis/gene_data/GSE139038.csv" out_clinical_data_file = "./output/preprocess/1/Cystic_Fibrosis/clinical_data/GSE139038.csv" json_path = "./output/preprocess/1/Cystic_Fibrosis/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("Sample Characteristics Dictionary:") print(sample_characteristics_dict) # 1. Gene Expression Data Availability is_gene_available = True # Based on the series info indicating a gene expression study # 2. Variable Availability and Data Type Conversion # Looking at the sample characteristics dictionary, # - For "trait" (Cystic_Fibrosis), no matching or inferable data was found. So trait_row = None. # - For "age", it appears in row 0 and has multiple unique values. So age_row = 0. # - For "gender", row 1 has only "Female" (constant). Hence, it's not useful for association. gender_row = None. trait_row = None age_row = 0 gender_row = None # Define the data conversion functions. def convert_trait(val: str): """ Convert trait data to binary (1/0). Return None if unknown. """ parts = val.split(':', 1) if len(parts) < 2: return None raw = parts[1].strip().lower() # Example placeholder logic: # If the variable explicitly indicated "cystic fibrosis," return 1; # if it indicated "normal"/"control," return 0; else None. if raw == "cystic fibrosis": return 1 elif raw in ["normal", "control", "no"]: return 0 return None def convert_age(val: str): """ Convert age data to continuous (float). Return None if unknown. """ parts = val.split(':', 1) if len(parts) < 2: return None raw = parts[1].strip() try: return float(raw) except ValueError: return None def convert_gender(val: str): """ Convert gender data to binary (female=0, male=1). Return None if unknown. """ parts = val.split(':', 1) if len(parts) < 2: return None raw = parts[1].strip().lower() if raw == "female": return 0 elif raw == "male": return 1 return None # 3. Save Metadata - Initial Filtering # Trait data availability depends on whether trait_row is None. is_trait_available = (trait_row is not None) is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction # Since trait_row is None, we skip extracting clinical features. # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # These identifiers (e.g., "10_10_1", "10_10_10") are not standard human gene symbols. # They appear to be platform-specific probe references, so a mapping to human gene symbols is needed. requires_gene_mapping = True # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1. We have determined that the gene annotation column "ID" matches the identifier in the gene expression data index, # and "Gene_Symbol" provides the corresponding gene symbols. # 2. Create a gene mapping dataframe from the annotation dataframe using the appropriate columns. mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene_Symbol') # 3. Apply the mapping to convert probe-level data to gene-level data. gene_data = apply_gene_mapping(gene_data, mapping_df) # Optionally print shape or a small preview to verify results print("Mapped gene_data shape:", gene_data.shape) print(gene_data.head()) import pandas as pd # STEP7 # 1. Normalize the obtained gene data with the 'normalize_gene_symbols_in_index' function from the library. normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) # Check if trait data was actually available from previous steps # (In previous steps, we set is_trait_available = (trait_row is not None).) # We'll assume here it's accessible in the environment, or re-derive it: is_trait_available = False # Reflecting the outcome from prior steps if not is_trait_available: # 2-4: Skip linking, missing value handling, and bias checks because trait is unavailable. # 5. Conduct final validation with an empty DataFrame, forcing the dataset to be marked not usable. empty_df = pd.DataFrame() validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, # The expression data exists is_trait_available=False, # Trait data is not available is_biased=True, # Force as biased so the dataset is not usable df=empty_df, note="Trait data not available; skipping further steps." ) else: # 2. Define a placeholder for selected_clinical_data (if we actually had trait data). # In this dataset, trait_row was None, so this part won't run. selected_clinical_data = pd.DataFrame() # Placeholder if trait were available linked_data = geo_link_clinical_genetic_data(selected_clinical_data, normalized_gene_data) # 3. Handle missing values in the linked data linked_data = handle_missing_values(linked_data, trait) # 4. Determine whether the trait and demographic features are severely biased is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Conduct final quality validation and save the cohort information is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_trait_biased, df=unbiased_linked_data ) # 6. If the dataset is usable, save it as CSV if is_usable: unbiased_linked_data.to_csv(out_data_file)