# Path Configuration from tools.preprocess import * # Processing context trait = "Cystic_Fibrosis" cohort = "GSE67698" # Input paths in_trait_dir = "../DATA/GEO/Cystic_Fibrosis" in_cohort_dir = "../DATA/GEO/Cystic_Fibrosis/GSE67698" # Output paths out_data_file = "./output/preprocess/1/Cystic_Fibrosis/GSE67698.csv" out_gene_data_file = "./output/preprocess/1/Cystic_Fibrosis/gene_data/GSE67698.csv" out_clinical_data_file = "./output/preprocess/1/Cystic_Fibrosis/clinical_data/GSE67698.csv" json_path = "./output/preprocess/1/Cystic_Fibrosis/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("Sample Characteristics Dictionary:") print(sample_characteristics_dict) # 1. Gene Expression Data Availability is_gene_available = True # "Transcriptional profiling" implies likely RNA gene expression # 2. Variable Availability and Data Type Conversion # Based on the sample characteristics dictionary, row=1 has two unique values indicating # deltaF508 CFTR or wildtype CFTR, which can be mapped to the trait (Cystic_Fibrosis vs. not). # Age and gender do not appear to be present. trait_row = 1 age_row = None gender_row = None def convert_trait(value: str) -> Optional[int]: """ Convert the trait (CF vs. non-CF) to a binary integer. Values containing 'deltaF508' -> 1 (CF) Values containing 'wildtype' -> 0 (non-CF) Otherwise -> None """ # Attempt to split by colon, keep the part after it parts = value.split(':', 1) if len(parts) == 2: val = parts[1].strip().lower() else: val = value.strip().lower() if 'deltaf508' in val: return 1 elif 'wildtype' in val: return 0 return None def convert_age(value: str) -> Optional[float]: # Age data not available, return None return None def convert_gender(value: str) -> Optional[int]: # Gender data not available, return None return None # 3. Save Metadata (initial filtering) is_trait_available = (trait_row is not None) is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction if trait_row is not None: selected_clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the extracted clinical features preview = preview_df(selected_clinical_df) print("Preview of selected clinical features:", preview) # Save the clinical dataframe to CSV selected_clinical_df.to_csv(out_clinical_data_file) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # Based on observation, the identifiers (e.g., "A_23_P100001") are not standard human gene symbols. # They appear to be array probe IDs that need to be mapped to gene symbols. print("requires_gene_mapping = True") # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP6: Gene Identifier Mapping # 1. Identify the columns in the annotation that match the expression data's probe IDs and human gene symbols. # From inspection, 'ID' matches the "A_23_P..." probe IDs, and 'GENE_SYMBOL' holds the human gene symbols. # 2. Build a gene mapping dataframe using these columns. mapping_df = get_gene_mapping( annotation=gene_annotation, prob_col="ID", gene_col="GENE_SYMBOL" ) # 3. Convert probe-level measurements to gene-level expression data by applying the gene mapping. gene_data = apply_gene_mapping( expression_df=gene_data, mapping_df=mapping_df ) # (Optional) Display some basic information about the newly mapped gene_data. print("Mapped gene_data shape:", gene_data.shape) print("First 5 rows of mapped gene_data:") print(gene_data.head()) import os import pandas as pd # STEP 7 (Corrected) # 1) Normalize gene symbols in the obtained gene expression data normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) # 2) Instead of reloading the clinical data from CSV (which was saved without index), # we directly use the in-memory DataFrame "selected_clinical_df" from earlier steps. # That DataFrame already has the trait as a row label, which is required downstream. # 3) Link the clinical and genetic data on sample IDs linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data) # 4) Handle missing values in the linked data linked_data = handle_missing_values(linked_data, trait) # 5) Check for biased features (including the trait) trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 6) Final validation and saving metadata is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Data from GSE123086, trait is Crohn's disease." ) # 7) If the dataset is usable, save the linked data if is_usable: linked_data.to_csv(out_data_file)