# Path Configuration from tools.preprocess import * # Processing context trait = "Cystic_Fibrosis" cohort = "GSE71799" # Input paths in_trait_dir = "../DATA/GEO/Cystic_Fibrosis" in_cohort_dir = "../DATA/GEO/Cystic_Fibrosis/GSE71799" # Output paths out_data_file = "./output/preprocess/1/Cystic_Fibrosis/GSE71799.csv" out_gene_data_file = "./output/preprocess/1/Cystic_Fibrosis/gene_data/GSE71799.csv" out_clinical_data_file = "./output/preprocess/1/Cystic_Fibrosis/clinical_data/GSE71799.csv" json_path = "./output/preprocess/1/Cystic_Fibrosis/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("Sample Characteristics Dictionary:") print(sample_characteristics_dict) # 1. Gene Expression Data Availability # According to the background summary, gene expression analysis was performed, so: is_gene_available = True # 2. Variable Availability and Data Type Conversion # Based on the sample characteristics dictionary: # {0: ['responder cells: UPN727 cells']} # There's a single key (0) with the same value for all samples, which does not provide trait, # age, or gender variability. Therefore, all three are considered not available. trait_row = None age_row = None gender_row = None # Define conversion functions (though they won't be used due to None rows). def convert_trait(value: str): # No actual data keys to parse, return None return None def convert_age(value: str): # No actual data keys to parse, return None return None def convert_gender(value: str): # No actual data keys to parse, return None return None # 3. Save metadata with initial filtering # Trait availability depends on whether trait_row is None. is_trait_available = (trait_row is not None) is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction # Since trait_row is None, we skip this step. # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) print("requires_gene_mapping = True") # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1. Identify columns in the annotation dataframe: 'ID' for probe identifiers and 'Gene Symbol' for gene symbols mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="Gene Symbol") # 2. Convert probe-level expression data to gene-level expression data gene_data = apply_gene_mapping(gene_data, mapping_df) import os import pandas as pd # STEP 7 (Revised with dummy DataFrame for final validation) # 1) Normalize gene symbols in the obtained gene expression data normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) # Because trait_row is None, there's no clinical data to link, so we skip trait-related steps. # 2) Provide a dummy DataFrame and is_biased flag for final validation dummy_df = pd.DataFrame() dummy_is_biased = False # 3) Final validation is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=dummy_is_biased, df=dummy_df, note="No trait data in GSE71799, only gene expression data." ) # 4) Since the dataset is not usable due to no trait data, do not save any linked data.