# Path Configuration from tools.preprocess import * # Processing context trait = "Cystic_Fibrosis" # Input paths tcga_root_dir = "../DATA/TCGA" # Output paths out_data_file = "./output/preprocess/1/Cystic_Fibrosis/TCGA.csv" out_gene_data_file = "./output/preprocess/1/Cystic_Fibrosis/gene_data/TCGA.csv" out_clinical_data_file = "./output/preprocess/1/Cystic_Fibrosis/clinical_data/TCGA.csv" json_path = "./output/preprocess/1/Cystic_Fibrosis/cohort_info.json" import os import pandas as pd # 1. Identify subdirectories under tcga_root_dir subdirectories = os.listdir(tcga_root_dir) # Attempt to locate a subdirectory related to "Cystic_Fibrosis" # (Looking for any name containing "cystic" or "fibrosis") trait_subdir = None for d in subdirectories: lower_d = d.lower().replace('_', ' ') if "cystic" in lower_d and "fibrosis" in lower_d: trait_subdir = d break # If none found, skip this trait if not trait_subdir: print("No suitable subdirectory found for trait 'Cystic_Fibrosis'. Skipping...") is_gene_available = False is_trait_available = False validate_and_save_cohort_info( is_final=False, cohort="TCGA", info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) else: # 2. Identify paths to the clinical and genetic data files full_subdir_path = os.path.join(tcga_root_dir, trait_subdir) clinical_path, genetic_path = tcga_get_relevant_filepaths(full_subdir_path) # 3. Load data into DataFrames clinical_df = pd.read_csv(clinical_path, index_col=0, sep='\t') genetic_df = pd.read_csv(genetic_path, index_col=0, sep='\t') # 4. Print the column names of the clinical data for inspection print("Clinical Data Columns:") print(clinical_df.columns.tolist())