# Path Configuration from tools.preprocess import * # Processing context trait = "Alopecia" cohort = "GSE18876" # Input paths in_trait_dir = "../DATA/GEO/Alopecia" in_cohort_dir = "../DATA/GEO/Alopecia/GSE18876" # Output paths out_data_file = "./output/preprocess/3/Alopecia/GSE18876.csv" out_gene_data_file = "./output/preprocess/3/Alopecia/gene_data/GSE18876.csv" out_clinical_data_file = "./output/preprocess/3/Alopecia/clinical_data/GSE18876.csv" json_path = "./output/preprocess/3/Alopecia/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # Gene expression data availability # Yes - the series title and summary mention transcriptional profiling using exon arrays is_gene_available = True # Variable rows and conversion functions trait_row = None # Cannot reliably determine alopecia status from characteristics age_row = 0 # Age is in feature 0 gender_row = None # Not needed since all samples are male based on background info def convert_age(value): if not value or ':' not in value: return None try: age = int(value.split(':')[1].strip()) return age except: return None # Note: trait and gender conversion functions not needed since data not available convert_trait = None convert_gender = None # Save metadata for initial filtering is_trait_available = trait_row is not None validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # Skip clinical feature extraction since trait data is not available # Extract gene expression data from matrix file gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs and shape of data to help debug print("Shape of gene expression data:", gene_data.shape) print("\nFirst few rows of data:") print(gene_data.head()) print("\nFirst 20 gene/probe identifiers:") print(gene_data.index[:20]) # Inspect a snippet of raw file to verify identifier format import gzip with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: lines = [] for i, line in enumerate(f): if "!series_matrix_table_begin" in line: # Get the next 5 lines after the marker for _ in range(5): lines.append(next(f).strip()) break print("\nFirst few lines after matrix marker in raw file:") for line in lines: print(line) requires_gene_mapping = True # Extract gene annotation from SOFT file and get meaningful data gene_annotation = get_gene_annotation(soft_file) # Preview gene annotation data print("Gene annotation shape:", gene_annotation.shape) print("\nGene annotation preview:") print(preview_df(gene_annotation)) print("\nNumber of non-null values in each column:") print(gene_annotation.count()) # Print example rows showing the mapping columns print("\nSample mapping columns ('ID' and gene_assignment):") print(gene_annotation[['ID', 'gene_assignment']].head().to_string()) print("\nNote: Gene mapping will use:") print("'ID' column: Probe identifiers") print("'gene_assignment' column: Gene information") # Get mapping dataframe mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='gene_assignment') # Apply gene mapping to convert probe IDs to gene symbols gene_data = apply_gene_mapping(gene_data, mapping_data) # Normalize gene symbols gene_data = normalize_gene_symbols_in_index(gene_data) # Print shape and preview to verify mapping print("Shape after mapping:", gene_data.shape) print("\nPreview of mapped gene expression data:") print(gene_data.head()) # Save normalized gene data gene_data.to_csv(out_gene_data_file) # Since trait data is not available, mark dataset as unusable is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=True, df=gene_data, note="Dataset lacks trait information required for analysis" )