# Path Configuration from tools.preprocess import * # Processing context trait = "Amyotrophic_Lateral_Sclerosis" cohort = "GSE139384" # Input paths in_trait_dir = "../DATA/GEO/Amyotrophic_Lateral_Sclerosis" in_cohort_dir = "../DATA/GEO/Amyotrophic_Lateral_Sclerosis/GSE139384" # Output paths out_data_file = "./output/preprocess/3/Amyotrophic_Lateral_Sclerosis/GSE139384.csv" out_gene_data_file = "./output/preprocess/3/Amyotrophic_Lateral_Sclerosis/gene_data/GSE139384.csv" out_clinical_data_file = "./output/preprocess/3/Amyotrophic_Lateral_Sclerosis/clinical_data/GSE139384.csv" json_path = "./output/preprocess/3/Amyotrophic_Lateral_Sclerosis/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # Gene expression data availability check - Yes, it uses Illumina HumanHT-12 v4 Expression BeadChip is_gene_available = True # Variable Data Mapping and Conversion Functions # Trait data is in Feature 0 and 1, need to map clinical phenotypes trait_row = 0 # Using Feature 0 as primary source def convert_trait(value): if 'clinical phenotypes:' not in str(value): return None value = str(value).split('clinical phenotypes:')[1].strip().lower() # ALS vs non-ALS binary classification if 'als' in value or 'als+d' in value or 'pdc+a' in value: return 1 # ALS or ALS-related elif value in ['healthy control', 'alzheimer`s disease', 'pdc']: return 0 # Non-ALS return None # Age data is in Feature 2 and 3 age_row = 2 # Using Feature 2 as primary source def convert_age(value): if 'age:' not in str(value): return None try: return float(str(value).split('age:')[1].strip()) except: return None # Gender data is in Feature 1 and 2 gender_row = 1 # Using Feature 1 as primary source def convert_gender(value): if 'gender:' not in str(value): return None value = str(value).split('gender:')[1].strip().lower() if value == 'female': return 0 elif value == 'male': return 1 return None # Initial filtering and metadata saving is_trait_available = trait_row is not None _ = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # Clinical feature extraction since trait_row is not None if trait_row is not None: clinical_features = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the processed clinical features preview = preview_df(clinical_features) print("Preview of clinical features:") print(preview) # Save clinical features to CSV clinical_features.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs and shape of data to help debug print("Shape of gene expression data:", gene_data.shape) print("\nFirst few rows of data:") print(gene_data.head()) print("\nFirst 20 gene/probe identifiers:") print(gene_data.index[:20]) # Inspect a snippet of raw file to verify identifier format import gzip with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: lines = [] for i, line in enumerate(f): if "!series_matrix_table_begin" in line: # Get the next 5 lines after the marker for _ in range(5): lines.append(next(f).strip()) break print("\nFirst few lines after matrix marker in raw file:") for line in lines: print(line) # The gene identifiers start with "ILMN_", which stands for Illumina array probe IDs # These are not human gene symbols and need to be mapped to official gene symbols requires_gene_mapping = True # Extract gene annotation from SOFT file and get meaningful data gene_annotation = get_gene_annotation(soft_file) # Preview gene annotation data print("Gene annotation shape:", gene_annotation.shape) print("\nGene annotation preview:") print(preview_df(gene_annotation)) print("\nNumber of non-null values in each column:") print(gene_annotation.count()) print("\nNote: Gene mapping will use:") print("'ID' column: Probe identifiers") print("'Symbol' column: Contains gene symbols") print("\nExample Symbol value:") print(gene_annotation['Symbol'].iloc[0]) # Get gene mapping dataframe from annotation mapping_df = get_gene_mapping(gene_annotation, 'ID', 'Symbol') # Apply gene mapping to convert probe-level data to gene-level data gene_data = apply_gene_mapping(gene_data, mapping_df) # Print output to verify results print("Shape of gene-level data:", gene_data.shape) print("\nFirst few rows of mapped gene data:") print(gene_data.head()) print("\nFirst 20 gene symbols:") print(gene_data.index[:20]) # 1. Normalize gene symbols gene_data = normalize_gene_symbols_in_index(gene_data) # Save normalized gene data gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data try: clinical_data = pd.read_csv(out_clinical_data_file, index_col=0) linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Determine if features are biased is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Validate and save cohort info is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_trait_biased, df=linked_data, note="Gene expression data successfully mapped and linked with clinical features" ) # 6. Save linked data only if usable AND trait is not biased if is_usable and not is_trait_biased: linked_data.to_csv(out_data_file) except Exception as e: print(f"Error in data linking and processing: {str(e)}") is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=True, df=pd.DataFrame(), note=f"Data processing failed: {str(e)}" )