# Path Configuration from tools.preprocess import * # Processing context trait = "Amyotrophic_Lateral_Sclerosis" cohort = "GSE212131" # Input paths in_trait_dir = "../DATA/GEO/Amyotrophic_Lateral_Sclerosis" in_cohort_dir = "../DATA/GEO/Amyotrophic_Lateral_Sclerosis/GSE212131" # Output paths out_data_file = "./output/preprocess/3/Amyotrophic_Lateral_Sclerosis/GSE212131.csv" out_gene_data_file = "./output/preprocess/3/Amyotrophic_Lateral_Sclerosis/gene_data/GSE212131.csv" out_clinical_data_file = "./output/preprocess/3/Amyotrophic_Lateral_Sclerosis/clinical_data/GSE212131.csv" json_path = "./output/preprocess/3/Amyotrophic_Lateral_Sclerosis/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # 1. Gene Expression Data Availability is_gene_available = True # Dataset contains mRNA gene expression data from microarray # 2. Variable Availability and Data Type Conversion # 2.1 Data Availability trait_row = None # Disease duration not explicitly available in characteristics age_row = None # Age not available in characteristics gender_row = 0 # Gender information available at row 0 # 2.2 Data Type Conversion Functions def convert_trait(x): return None # No trait data available def convert_age(x): return None # No age data available def convert_gender(x): if not isinstance(x, str): return None value = x.split(": ")[-1].strip().lower() if value == "female": return 0 elif value == "male": return 1 return None # 3. Save Metadata # Initial filtering based on gene and trait availability is_trait_available = trait_row is not None validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # 4. Clinical Feature Extraction skipped since trait_row is None # Extract gene expression data from matrix file gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs and shape of data to help debug print("Shape of gene expression data:", gene_data.shape) print("\nFirst few rows of data:") print(gene_data.head()) print("\nFirst 20 gene/probe identifiers:") print(gene_data.index[:20]) # Inspect a snippet of raw file to verify identifier format import gzip with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: lines = [] for i, line in enumerate(f): if "!series_matrix_table_begin" in line: # Get the next 5 lines after the marker for _ in range(5): lines.append(next(f).strip()) break print("\nFirst few lines after matrix marker in raw file:") for line in lines: print(line) # Examining the gene identifiers shows they are numeric probe IDs (starting with '23') # These are not human gene symbols and need to be mapped to gene symbols requires_gene_mapping = True # Extract gene annotation from SOFT file and get meaningful data gene_annotation = get_gene_annotation(soft_file) # Preview gene annotation data print("Gene annotation shape:", gene_annotation.shape) print("\nGene annotation preview:") print(preview_df(gene_annotation)) print("\nNumber of non-null values in each column:") print(gene_annotation.count()) print("\nNote: Gene mapping will use:") print("'ID' column: Probe identifiers") print("'gene_assignment' column: Contains gene symbol information in format:") # Print example of gene_assignment format print("\nExample gene_assignment value:") print(gene_annotation['gene_assignment'].iloc[0]) # Extract and process gene mapping from annotation mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='gene_assignment') # Map probe-level measurements to gene expression data gene_data = apply_gene_mapping(gene_data, mapping_df) # Normalize gene symbols to standardized forms gene_data = normalize_gene_symbols_in_index(gene_data) print("Gene expression data shape after mapping:", gene_data.shape) print("\nFirst few rows of gene expression data:") print(gene_data.head()) # 1. Save normalized gene data gene_data.to_csv(out_gene_data_file) # 2-5. Since we know trait data is unavailable, document this as a bias is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=True, # Consider lack of trait data as bias df=gene_data, # Provide the gene data as required note="Dataset contains gene expression data but lacks trait information for analysis" ) # 6. Skip saving linked data as it's not usable