# Path Configuration from tools.preprocess import * # Processing context trait = "Amyotrophic_Lateral_Sclerosis" cohort = "GSE212134" # Input paths in_trait_dir = "../DATA/GEO/Amyotrophic_Lateral_Sclerosis" in_cohort_dir = "../DATA/GEO/Amyotrophic_Lateral_Sclerosis/GSE212134" # Output paths out_data_file = "./output/preprocess/3/Amyotrophic_Lateral_Sclerosis/GSE212134.csv" out_gene_data_file = "./output/preprocess/3/Amyotrophic_Lateral_Sclerosis/gene_data/GSE212134.csv" out_clinical_data_file = "./output/preprocess/3/Amyotrophic_Lateral_Sclerosis/clinical_data/GSE212134.csv" json_path = "./output/preprocess/3/Amyotrophic_Lateral_Sclerosis/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # 1. Gene Expression Data Availability is_gene_available = True # Dataset mentions mRNA, indicating gene expression data # 2.1 Variable Keys trait_row = None # Cannot find any disease status indication in sample characteristics age_row = None # Age data not available in sample characteristics gender_row = 0 # Gender data is in first row (index 0) # 2.2 Data Type Conversion Functions def convert_trait(value): return None # No trait data available def convert_age(value): return None # No age data available def convert_gender(value): if not isinstance(value, str): return None value = value.lower().split(': ')[-1] if 'female' in value: return 0 elif 'male' in value: return 1 return None # 3. Save Metadata is_trait_available = trait_row is not None validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # 4. Skip clinical feature extraction since trait_row is None # Extract gene expression data from matrix file gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs and shape of data to help debug print("Shape of gene expression data:", gene_data.shape) print("\nFirst few rows of data:") print(gene_data.head()) print("\nFirst 20 gene/probe identifiers:") print(gene_data.index[:20]) # Inspect a snippet of raw file to verify identifier format import gzip with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: lines = [] for i, line in enumerate(f): if "!series_matrix_table_begin" in line: # Get the next 5 lines after the marker for _ in range(5): lines.append(next(f).strip()) break print("\nFirst few lines after matrix marker in raw file:") for line in lines: print(line) # These IDs are numeric probe IDs from a microarray platform, not gene symbols # They need to be mapped to human gene symbols for meaningful analysis requires_gene_mapping = True # Extract gene annotation from SOFT file and get meaningful data gene_annotation = get_gene_annotation(soft_file) # Preview gene annotation data print("Gene annotation shape:", gene_annotation.shape) print("\nGene annotation preview:") print(preview_df(gene_annotation)) print("\nNumber of non-null values in each column:") print(gene_annotation.count()) print("\nNote: Gene mapping will use:") print("'ID' column: Probe identifiers") print("'Symbol' column: Gene name mapping") # Step 1: 'ID' column in annotation matches numeric probe IDs in expression data # For gene symbols, need to extract from 'gene_assignment' which has format: # "NR_024005 // DDX11L2 // description // location // ID" # Extract gene symbols from gene_assignment column def extract_gene_symbol(assignment): if pd.isna(assignment) or assignment == '---': return None # Split by // and take the second item which is the gene symbol parts = assignment.split('//') if len(parts) >= 2: return parts[1].strip() return None # Add Symbol column with extracted gene symbols gene_annotation['Symbol'] = gene_annotation['gene_assignment'].apply(extract_gene_symbol) # Step 2: Create mapping dataframe with probe IDs and gene symbols mapping_data = get_gene_mapping(gene_annotation, 'ID', 'Symbol') # Step 3: Apply gene mapping to convert probe-level data to gene expression data gene_data = apply_gene_mapping(gene_data, mapping_data) # Preview the mapped gene data print("Gene expression data after mapping:") print("Shape:", gene_data.shape) print("\nFirst few rows:") print(gene_data.head()) # 1. Normalize gene symbols gene_data = normalize_gene_symbols_in_index(gene_data) # Save normalized gene data os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) # 2. Since no trait data is available (trait_row was None), validate and mark dataset as unusable is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=True, # Dataset without trait data is biased/unusable df=gene_data, note="Gene expression data successfully processed but no trait information available for analysis" )