# Path Configuration from tools.preprocess import * # Processing context trait = "Amyotrophic_Lateral_Sclerosis" cohort = "GSE52937" # Input paths in_trait_dir = "../DATA/GEO/Amyotrophic_Lateral_Sclerosis" in_cohort_dir = "../DATA/GEO/Amyotrophic_Lateral_Sclerosis/GSE52937" # Output paths out_data_file = "./output/preprocess/3/Amyotrophic_Lateral_Sclerosis/GSE52937.csv" out_gene_data_file = "./output/preprocess/3/Amyotrophic_Lateral_Sclerosis/gene_data/GSE52937.csv" out_clinical_data_file = "./output/preprocess/3/Amyotrophic_Lateral_Sclerosis/clinical_data/GSE52937.csv" json_path = "./output/preprocess/3/Amyotrophic_Lateral_Sclerosis/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # 1. Gene Expression Data Availability # This is likely a gene expression dataset based on series title and design # investigating genetic factors in ALS, not miRNA or methylation is_gene_available = True # 2. Variable Availability and Data Type Conversion # No trait data comparing ALS vs controls - just cell lines with SETX knockdown trait_row = None # No ALS trait data age_row = None # Age not available gender_row = None # Gender not available def convert_trait(x): return None def convert_age(x): return None def convert_gender(x): return None # 3. Save Metadata # Initial filtering - trait_row is None so trait data not available is_trait_available = trait_row is not None validate_and_save_cohort_info(False, cohort, json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # 4. Clinical Feature Extraction # Skip since trait_row is None and clinical data not available # Extract gene expression data from matrix file gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs and shape of data to help debug print("Shape of gene expression data:", gene_data.shape) print("\nFirst few rows of data:") print(gene_data.head()) print("\nFirst 20 gene/probe identifiers:") print(gene_data.index[:20]) # Inspect a snippet of raw file to verify identifier format import gzip with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: lines = [] for i, line in enumerate(f): if "!series_matrix_table_begin" in line: # Get the next 5 lines after the marker for _ in range(5): lines.append(next(f).strip()) break print("\nFirst few lines after matrix marker in raw file:") for line in lines: print(line) # Observe gene identifiers starting with 'ILMN_', which indicates Illumina probe IDs # These are not human gene symbols and need to be mapped requires_gene_mapping = True # Extract gene annotation from SOFT file and get meaningful data gene_annotation = get_gene_annotation(soft_file) # Preview gene annotation data print("Gene annotation shape:", gene_annotation.shape) print("\nGene annotation preview:") print(preview_df(gene_annotation)) print("\nNumber of non-null values in each column:") print(gene_annotation.count()) print("\nNote: Gene mapping will use:") print("'ID' column: Probe identifiers") print("'Symbol' column: Gene name mapping") # 1. Extract mapping columns from gene annotation data prob_col = 'ID' # Column with Illumina probe IDs (ILMN_*) gene_col = 'Symbol' # Column with gene symbols mapping_df = get_gene_mapping(gene_annotation, prob_col, gene_col) # 2. Apply gene mapping to convert probe-level data to gene-level data gene_data = apply_gene_mapping(gene_data, mapping_df) # 3. Normalize gene symbols to ensure consistency gene_data = normalize_gene_symbols_in_index(gene_data) # Save gene data gene_data.to_csv(out_gene_data_file) # Since trait data is not available (trait_row=None from Step 2), skip data linking # Only need to save normalized gene data and validate cohort info # Save normalized gene data gene_data.to_csv(out_gene_data_file) # Validate and save cohort info, indicating trait data not available is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, # No trait data available is_biased=True, # Set to True since dataset lacks trait data df=gene_data, # Pass gene expression data note="Dataset contains gene expression data but lacks trait information" )