# Path Configuration from tools.preprocess import * # Processing context trait = "Amyotrophic_Lateral_Sclerosis" cohort = "GSE95810" # Input paths in_trait_dir = "../DATA/GEO/Amyotrophic_Lateral_Sclerosis" in_cohort_dir = "../DATA/GEO/Amyotrophic_Lateral_Sclerosis/GSE95810" # Output paths out_data_file = "./output/preprocess/3/Amyotrophic_Lateral_Sclerosis/GSE95810.csv" out_gene_data_file = "./output/preprocess/3/Amyotrophic_Lateral_Sclerosis/gene_data/GSE95810.csv" out_clinical_data_file = "./output/preprocess/3/Amyotrophic_Lateral_Sclerosis/clinical_data/GSE95810.csv" json_path = "./output/preprocess/3/Amyotrophic_Lateral_Sclerosis/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # 1. Gene Expression Data Availability # Based on the background information, this is an assay using iPS derived neurons as biosensors # to measure gene expression in response to plasma exposure, so gene expression data is available is_gene_available = True # 2.1 Data Availability # trait_row: None since this dataset is about Alzheimer's Disease, not ALS # age_row: Not available in sample characteristics # gender_row: Not available in sample characteristics trait_row = None age_row = None gender_row = None # 2.2 Data Type Conversion Functions def convert_trait(x): return None # Not used since trait_row is None def convert_age(x): return None # Not used since age_row is None def convert_gender(x): return None # Not used since gender_row is None # 3. Save Metadata # Validate and save cohort info (initial filtering) validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) # 4. Clinical Feature Extraction # Skip since trait_row is None, indicating clinical data is not available for our trait of interest # Extract gene expression data from matrix file gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs and shape of data to help debug print("Shape of gene expression data:", gene_data.shape) print("\nFirst few rows of data:") print(gene_data.head()) print("\nFirst 20 gene/probe identifiers:") print(gene_data.index[:20]) # Inspect a snippet of raw file to verify identifier format import gzip with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: lines = [] for i, line in enumerate(f): if "!series_matrix_table_begin" in line: # Get the next 5 lines after the marker for _ in range(5): lines.append(next(f).strip()) break print("\nFirst few lines after matrix marker in raw file:") for line in lines: print(line) requires_gene_mapping = False # 1. Normalize gene symbols gene_data = normalize_gene_symbols_in_index(gene_data) # Save normalized gene data os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) # 2-6. Since clinical data is not available for our trait, we skip data linking # and mark the dataset as not usable for our study is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=True, df=gene_data, note="Dataset contains gene expression data but is about Alzheimer's Disease, not ALS" )