# Path Configuration from tools.preprocess import * # Processing context trait = "Canavan_Disease" cohort = "GSE41445" # Input paths in_trait_dir = "../DATA/GEO/Canavan_Disease" in_cohort_dir = "../DATA/GEO/Canavan_Disease/GSE41445" # Output paths out_data_file = "./output/preprocess/3/Canavan_Disease/GSE41445.csv" out_gene_data_file = "./output/preprocess/3/Canavan_Disease/gene_data/GSE41445.csv" out_clinical_data_file = "./output/preprocess/3/Canavan_Disease/clinical_data/GSE41445.csv" json_path = "./output/preprocess/3/Canavan_Disease/cohort_info.json" # Get paths to the SOFT and matrix files soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values for each feature (row) in clinical data unique_values_dict = get_unique_values_by_row(clinical_data) # Print background info print("=== Dataset Background Information ===") print(background_info) print("\n=== Sample Characteristics ===") print(json.dumps(unique_values_dict, indent=2)) # 1. Gene Expression Data Availability # Yes, the dataset contains gene expression data from Affymetrix HG-U133_plus2 GeneChips is_gene_available = True # 2.1 Row identifiers for variables # Disease status related to Canavan disease is in row 2 trait_row = 2 # Age is not available age_row = None # Gender is in row 0 gender_row = 0 # 2.2 Data type conversion functions def convert_trait(value: str) -> int: """Convert disease information to binary: 1 for Canavan disease, 0 for others""" if not value or ':' not in value: return None disease = value.split(':', 1)[1].strip().lower() if 'canavan disease' in disease: return 1 return 0 def convert_age(value: str) -> float: """Convert age to continuous value""" # Not used since age data is not available return None def convert_gender(value: str) -> int: """Convert gender to binary: 0 for female, 1 for male""" if not value or ':' not in value: return None gender = value.split(':', 1)[1].strip().lower() if gender == 'female': return 0 elif gender == 'male': return 1 return None # 3. Save metadata for initial filtering is_trait_available = trait_row is not None validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # 4. Extract clinical features clinical_df = geo_select_clinical_features(clinical_data, trait, trait_row, convert_trait, gender_row=gender_row, convert_gender=convert_gender) print("Preview of extracted clinical data:") print(preview_df(clinical_df)) # Save clinical data os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True) clinical_df.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file genetic_df = get_genetic_data(matrix_file) # Print first 20 row IDs print("First 20 gene/probe IDs:") print(list(genetic_df.index)[:20]) # These look like Affymetrix probe IDs (format: XXXXXX_at or XXXXXX_s_at etc) # rather than standard human gene symbols (e.g. BRCA1, TP53) # They will need to be mapped to proper gene symbols requires_gene_mapping = True # Extract gene annotation data gene_metadata = get_gene_annotation(soft_file) # Preview column names and first few values print("Column names and preview of gene annotation data:") print(preview_df(gene_metadata)) # Extract ID and Gene Symbol columns from annotation data mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='Gene Symbol') # Apply gene mapping to convert probe-level data to gene expression data gene_data = apply_gene_mapping(genetic_df, mapping_df) # Preview first few rows/columns print("Preview of gene expression data after mapping:") print(preview_df(gene_data)) # Save gene expression data os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) # 1. Normalize gene symbols gene_data = normalize_gene_symbols_in_index(gene_data) gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Check and handle biased features trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and save cohort info note = "Clinical data structure: binary disease status (Canavan disease) with gender information. Gender distribution is biased with a significant imbalance." is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note=note ) # 6. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)