# Path Configuration from tools.preprocess import * # Processing context trait = "Celiac_Disease" cohort = "GSE113469" # Input paths in_trait_dir = "../DATA/GEO/Celiac_Disease" in_cohort_dir = "../DATA/GEO/Celiac_Disease/GSE113469" # Output paths out_data_file = "./output/preprocess/3/Celiac_Disease/GSE113469.csv" out_gene_data_file = "./output/preprocess/3/Celiac_Disease/gene_data/GSE113469.csv" out_clinical_data_file = "./output/preprocess/3/Celiac_Disease/clinical_data/GSE113469.csv" json_path = "./output/preprocess/3/Celiac_Disease/cohort_info.json" # Get paths to the SOFT and matrix files soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values for each feature (row) in clinical data unique_values_dict = get_unique_values_by_row(clinical_data) # Print background info print("=== Dataset Background Information ===") print(background_info) print("\n=== Sample Characteristics ===") print(json.dumps(unique_values_dict, indent=2)) # 1. Gene Expression Data Availability # According to the background info, this is PBMC gene expression data is_gene_available = True # 2.1 Data Availability # Trait data in row 0 distinguishes Healthy Control vs Celiac Disease trait_row = 0 # Age data in row 1 age_row = 1 # Gender not available gender_row = None # 2.2 Data Type Conversion Functions def convert_trait(value: str) -> int: # Extract value after colon and convert to binary value = value.split(': ')[1].strip() if 'Healthy Control' in value: return 0 elif 'Celiac Disease' in value: return 1 return None def convert_age(value: str) -> float: # Extract age value after colon and convert to float try: age = float(value.split(': ')[1].strip()) return age except: return None def convert_gender(value: str) -> int: # Not used since gender data unavailable pass # 3. Save Metadata is_trait_available = trait_row is not None validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # 4. Clinical Feature Extraction if trait_row is not None: clinical_df = geo_select_clinical_features(clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender) # Preview the processed clinical data print("Preview of processed clinical data:") print(preview_df(clinical_df)) # Save to CSV clinical_df.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file genetic_df = get_genetic_data(matrix_file) # Print DataFrame shape and first 20 row IDs print("DataFrame shape:", genetic_df.shape) print("\nFirst 20 row IDs:") print(genetic_df.index[:20]) print("\nPreview of first few rows and columns:") print(genetic_df.head().iloc[:, :5]) # These are ILMN identifiers from Illumina BeadArray, not gene symbols # Need to be mapped to human gene symbols requires_gene_mapping = True # Extract gene annotation data, excluding control probe lines gene_metadata = get_gene_annotation(soft_file) # Preview filtered annotation data print("Column names:") print(gene_metadata.columns) print("\nPreview of gene annotation data:") print(preview_df(gene_metadata)) # 1. Choose mapping columns # The gene expression data uses ILMN_* identifiers which match the 'ID' column # Gene symbols are stored in the 'Symbol' column prob_col = 'ID' gene_col = 'Symbol' # 2. Get gene mapping dataframe mapping_df = get_gene_mapping(gene_metadata, prob_col, gene_col) # 3. Apply gene mapping to convert probe-level data to gene expression data gene_data = apply_gene_mapping(genetic_df, mapping_df) # Print shape and preview gene expression data print("Gene expression data shape:", gene_data.shape) print("\nPreview of first few rows and columns:") print(gene_data.head().iloc[:, :5]) # 1. Normalize gene symbols and save gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Check for biased features trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and metadata saving is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Dataset contains gene expression data from peripheral blood mononuclear cells of celiac patients and controls" ) # 6. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)