# Path Configuration from tools.preprocess import * # Processing context trait = "Celiac_Disease" cohort = "GSE138297" # Input paths in_trait_dir = "../DATA/GEO/Celiac_Disease" in_cohort_dir = "../DATA/GEO/Celiac_Disease/GSE138297" # Output paths out_data_file = "./output/preprocess/3/Celiac_Disease/GSE138297.csv" out_gene_data_file = "./output/preprocess/3/Celiac_Disease/gene_data/GSE138297.csv" out_clinical_data_file = "./output/preprocess/3/Celiac_Disease/clinical_data/GSE138297.csv" json_path = "./output/preprocess/3/Celiac_Disease/cohort_info.json" # Get paths to the SOFT and matrix files soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values for each feature (row) in clinical data unique_values_dict = get_unique_values_by_row(clinical_data) # Print background info print("=== Dataset Background Information ===") print(background_info) print("\n=== Sample Characteristics ===") print(json.dumps(unique_values_dict, indent=2)) # 1. Gene Expression Data Availability # Based on the background info, microarray analysis was performed, so gene expression data is available is_gene_available = True # 2. Variable Availability and Data Type Conversion # 2.1 Data Availability trait_row = 6 # experimental condition shows disease/control age_row = 3 # age is available in years gender_row = 1 # sex is available with binary encoding # 2.2 Data Type Conversion Functions def convert_trait(value: str) -> int: """Convert trait value to binary (0 for control, 1 for case)""" if not value or ':' not in value: return None value = value.split(': ')[1].strip() if 'Allogenic' in value: return 1 # case group receiving donor FMT elif 'Autologous' in value: return 0 # control group receiving own FMT return None def convert_age(value: str) -> float: """Convert age value to continuous number""" if not value or ':' not in value: return None try: return float(value.split(': ')[1]) except: return None def convert_gender(value: str) -> int: """Convert gender to binary (0 for female, 1 for male)""" if not value or ':' not in value: return None try: # Note: In data female=1, male=0, but we need to flip it to match our convention return 1 - int(value.split(': ')[1]) # Flip 1->0 for female, 0->1 for male except: return None # 3. Save Metadata is_trait_available = trait_row is not None validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # 4. Clinical Feature Extraction # Since trait_row is not None, we proceed with clinical data extraction selected_clinical = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the extracted clinical data print("Preview of clinical data:") print(preview_df(selected_clinical)) # Save clinical data selected_clinical.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file genetic_df = get_genetic_data(matrix_file) # Print DataFrame shape and first 20 row IDs print("DataFrame shape:", genetic_df.shape) print("\nFirst 20 row IDs:") print(genetic_df.index[:20]) print("\nPreview of first few rows and columns:") print(genetic_df.head().iloc[:, :5]) # The row identifiers appear to be microarray probe IDs (16650001, etc.) # These are not standard human gene symbols and will need to be mapped requires_gene_mapping = True # Extract gene annotation data, excluding control probe lines gene_metadata = get_gene_annotation(soft_file) # Preview filtered annotation data print("Column names:") print(gene_metadata.columns) print("\nPreview of gene annotation data:") print(preview_df(gene_metadata)) # Extract gene mapping information between probe IDs and gene symbols mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='gene_assignment') # Apply mapping to convert probe measurements to gene expression data gene_data = apply_gene_mapping(genetic_df, mapping_df) # Preview output print("Gene expression data shape:", gene_data.shape) print("\nFirst few rows and columns:") print(preview_df(gene_data)) # 1. Normalize gene symbols and save gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(selected_clinical, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Check for biased features trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and metadata saving is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Dataset contains gene expression data from duodenal biopsies of children with celiac disease and controls" ) # 6. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)