# Path Configuration from tools.preprocess import * # Processing context trait = "Celiac_Disease" cohort = "GSE164883" # Input paths in_trait_dir = "../DATA/GEO/Celiac_Disease" in_cohort_dir = "../DATA/GEO/Celiac_Disease/GSE164883" # Output paths out_data_file = "./output/preprocess/3/Celiac_Disease/GSE164883.csv" out_gene_data_file = "./output/preprocess/3/Celiac_Disease/gene_data/GSE164883.csv" out_clinical_data_file = "./output/preprocess/3/Celiac_Disease/clinical_data/GSE164883.csv" json_path = "./output/preprocess/3/Celiac_Disease/cohort_info.json" # Get paths to the SOFT and matrix files soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values for each feature (row) in clinical data unique_values_dict = get_unique_values_by_row(clinical_data) # Print background info print("=== Dataset Background Information ===") print(background_info) print("\n=== Sample Characteristics ===") print(json.dumps(unique_values_dict, indent=2)) # 1. Gene Expression Data Availability # Yes, it contains gene expression data as it mentions "transcriptomes" and total RNA isolation is_gene_available = True # 2. Variable Availability and Data Type Conversion # 2.1 Data Availability trait_row = 0 # Disease status in row 0 age_row = 2 # Age in row 2 gender_row = None # Gender not available # 2.2 Data Type Conversion Functions def convert_trait(value: str) -> int: """Convert trait values to binary: control=0, celiac disease=1""" if not value or ':' not in value: return None value = value.split(':')[1].strip().lower() if value == 'control': return 0 elif value == 'celiac disease': return 1 return None def convert_age(value: str) -> float: """Convert age values to continuous numbers""" if not value or ':' not in value: return None value = value.split(':')[1].strip() try: return float(value) except: return None # Gender conversion function not needed since gender data unavailable # 3. Save Metadata is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None ) # 4. Clinical Feature Extraction if trait_row is not None: # Extract clinical features clinical_features = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=None, convert_gender=None ) # Preview the extracted features print("Preview of clinical features:") print(preview_df(clinical_features)) # Save to CSV clinical_features.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file genetic_df = get_genetic_data(matrix_file) # Print DataFrame shape and first 20 row IDs print("DataFrame shape:", genetic_df.shape) print("\nFirst 20 row IDs:") print(genetic_df.index[:20]) print("\nPreview of first few rows and columns:") print(genetic_df.head().iloc[:, :5]) # ILMN_* identifier prefixes indicate Illumina BeadArray probes # These are not standard human gene symbols and require mapping requires_gene_mapping = True # Read SOFT file first to inspect content with gzip.open(soft_file, 'rt') as f: soft_content = f.readlines() # Look for probe annotation section probe_lines = [] started = False for line in soft_content: if line.startswith('!platform_table_begin'): started = True continue elif line.startswith('!platform_table_end'): break elif started: probe_lines.append(line) # Convert probe annotation lines to dataframe probe_df = pd.read_csv(io.StringIO(''.join(probe_lines)), sep='\t') # Check column names and non-null values non_null_columns = probe_df.columns[probe_df.notnull().any()] probe_df = probe_df[non_null_columns].dropna(how='all') print("Column names with non-null values:") print(non_null_columns) print("\nPreview of probe annotation data:") print(preview_df(probe_df)) # 1. Identify mapping columns: # 'ID' in probe_df matches ILMN_* identifiers in genetic_df # 'Symbol' contains gene symbols mapping_columns = ['ID', 'Symbol'] # 2. Get gene mapping dataframe mapping_df = probe_df[mapping_columns] mapping_df = mapping_df.rename(columns={'Symbol': 'Gene'}) # 3. Convert probe-level data to gene-level data using the mapping gene_data = apply_gene_mapping(genetic_df, mapping_df) # Preview results print("Gene data shape:", gene_data.shape) print("\nPreview of gene expression data:") print(gene_data.head().iloc[:, :5]) # 1. Normalize gene symbols and save gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Check for biased features trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and metadata saving is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Dataset contains gene expression data from duodenal biopsies of children with celiac disease and controls" ) # 6. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)