# Path Configuration from tools.preprocess import * # Processing context trait = "Celiac_Disease" cohort = "GSE193442" # Input paths in_trait_dir = "../DATA/GEO/Celiac_Disease" in_cohort_dir = "../DATA/GEO/Celiac_Disease/GSE193442" # Output paths out_data_file = "./output/preprocess/3/Celiac_Disease/GSE193442.csv" out_gene_data_file = "./output/preprocess/3/Celiac_Disease/gene_data/GSE193442.csv" out_clinical_data_file = "./output/preprocess/3/Celiac_Disease/clinical_data/GSE193442.csv" json_path = "./output/preprocess/3/Celiac_Disease/cohort_info.json" # Get paths to the SOFT and matrix files soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values for each feature (row) in clinical data unique_values_dict = get_unique_values_by_row(clinical_data) # Print background info print("=== Dataset Background Information ===") print(background_info) print("\n=== Sample Characteristics ===") print(json.dumps(unique_values_dict, indent=2)) # 1. Gene Expression Data Availability # The study looks at transcriptional profiling of cells, suggesting gene expression data is_gene_available = True # 2. Variable Availability and Data Type Conversion # Looking at sample characteristics, there is no trait, age or gender data available trait_row = None age_row = None gender_row = None # Define conversion functions (though not needed since data unavailable) def convert_trait(x): return None def convert_age(x): return None def convert_gender(x): return None # 3. Save metadata # is_trait_available is False since trait_row is None validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=False) # 4. Clinical Feature Extraction # Skip since trait_row is None # Find subseries directory parent_dir = os.path.dirname(in_cohort_dir) available_dirs = os.listdir(parent_dir) subseries_dirs = [d for d in available_dirs if d.startswith("GSE193442-")] if not subseries_dirs: raise ValueError("No subseries directories found") # Get paths for first subseries subseries_dir = os.path.join(parent_dir, subseries_dirs[0]) soft_file, matrix_file = geo_get_relevant_filepaths(subseries_dir) # Extract gene expression data from matrix file genetic_df = get_genetic_data(matrix_file) # Print DataFrame shape and first 20 row IDs print("DataFrame shape:", genetic_df.shape) print("\nFirst 20 row IDs:") print(genetic_df.index[:20]) print("\nPreview of first few rows and columns:") print(genetic_df.head().iloc[:, :5]) # Get paths to the SOFT and matrix files soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values for each feature (row) in clinical data unique_values_dict = get_unique_values_by_row(clinical_data) # Print background info print("=== Dataset Background Information ===") print(background_info) print("\n=== Sample Characteristics ===") print(json.dumps(unique_values_dict, indent=2)) # Find directories in parent directory containing "GPL" (platform) file parent_dir = os.path.dirname(in_cohort_dir) available_dirs = os.listdir(parent_dir) matching_dirs = [d for d in available_dirs if os.path.exists(os.path.join(parent_dir, d, "GPL*"))] if not matching_dirs: subseries_dir = os.path.join(parent_dir, cohort + "_GPL") matching_dirs = [subseries_dir] if os.path.exists(subseries_dir) else [] if not matching_dirs: raise ValueError("No valid gene expression data found") # Extract gene expression data subseries_dir = os.path.join(parent_dir, matching_dirs[0]) matrix_file = os.path.join(subseries_dir, "matrix.txt.gz") genetic_df = get_genetic_data(matrix_file) # Print DataFrame info print("DataFrame shape:", genetic_df.shape) print("\nFirst 20 row IDs:") print(genetic_df.index[:20]) print("\nPreview of first few rows and columns:") print(genetic_df.head().iloc[:, :5])