# Path Configuration from tools.preprocess import * # Processing context trait = "Celiac_Disease" cohort = "GSE20332" # Input paths in_trait_dir = "../DATA/GEO/Celiac_Disease" in_cohort_dir = "../DATA/GEO/Celiac_Disease/GSE20332" # Output paths out_data_file = "./output/preprocess/3/Celiac_Disease/GSE20332.csv" out_gene_data_file = "./output/preprocess/3/Celiac_Disease/gene_data/GSE20332.csv" out_clinical_data_file = "./output/preprocess/3/Celiac_Disease/clinical_data/GSE20332.csv" json_path = "./output/preprocess/3/Celiac_Disease/cohort_info.json" # Get paths to the SOFT and matrix files soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values for each feature (row) in clinical data unique_values_dict = get_unique_values_by_row(clinical_data) # Print background info print("=== Dataset Background Information ===") print(background_info) print("\n=== Sample Characteristics ===") print(json.dumps(unique_values_dict, indent=2)) # 1. Gene Expression Data Availability # Based on background info, this is human leukocyte RNA expression data is_gene_available = True # 2. Variable Availability and Row Identification # No trait, age or gender info in characteristics trait_row = None age_row = None gender_row = None # Define conversion functions (though not used in this case) def convert_trait(x): if x is None: return None value = x.split(": ")[-1].strip().lower() # Binary: celiac (1) vs control (0) if "celiac" in value or "case" in value: return 1 elif "control" in value or "healthy" in value: return 0 return None def convert_age(x): if x is None: return None try: # Extract numeric age after colon value = x.split(": ")[-1].strip() return float(value) except: return None def convert_gender(x): if x is None: return None value = x.split(": ")[-1].strip().lower() # Convert to binary: female (0) vs male (1) if "female" in value or "f" == value: return 0 elif "male" in value or "m" == value: return 1 return None # 3. Save metadata about dataset usability is_trait_available = trait_row is not None validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # 4. Skip clinical feature extraction since trait_row is None # Extract gene expression data from matrix file genetic_df = get_genetic_data(matrix_file) # Print DataFrame shape and first 20 row IDs print("DataFrame shape:", genetic_df.shape) print("\nFirst 20 row IDs:") print(genetic_df.index[:20]) print("\nPreview of first few rows and columns:") print(genetic_df.head().iloc[:, :5]) # The gene IDs start with "ILMN_" which indicates they are Illumina probe IDs # These need to be mapped to standard human gene symbols for analysis requires_gene_mapping = True # Extract gene annotation data, excluding control probe lines gene_metadata = get_gene_annotation(soft_file) # Additional filtering to exclude control probes gene_metadata = gene_metadata[gene_metadata['Species'] != 'ILMN Controls'] # Preview filtered annotation data print("Column names and preview of gene annotation data:") print(preview_df(gene_metadata)) # Get mapping from annotation data # ID column matches the probe IDs in expression data # Symbol column contains the gene symbols mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='Symbol') # Convert probe-level measurements to gene expression data gene_data = apply_gene_mapping(genetic_df, mapping_df) # Preview the results print("\nGene expression data shape after mapping:", gene_data.shape) print("\nPreview of first few rows and columns of gene expression data:") print(gene_data.head().iloc[:, :5]) # 1. Normalize gene symbols and save - this is all we can do since no clinical data available gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file)