# Path Configuration from tools.preprocess import * # Processing context trait = "Celiac_Disease" cohort = "GSE72625" # Input paths in_trait_dir = "../DATA/GEO/Celiac_Disease" in_cohort_dir = "../DATA/GEO/Celiac_Disease/GSE72625" # Output paths out_data_file = "./output/preprocess/3/Celiac_Disease/GSE72625.csv" out_gene_data_file = "./output/preprocess/3/Celiac_Disease/gene_data/GSE72625.csv" out_clinical_data_file = "./output/preprocess/3/Celiac_Disease/clinical_data/GSE72625.csv" json_path = "./output/preprocess/3/Celiac_Disease/cohort_info.json" # Get paths to the SOFT and matrix files soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values for each feature (row) in clinical data unique_values_dict = get_unique_values_by_row(clinical_data) # Print background info print("=== Dataset Background Information ===") print(background_info) print("\n=== Sample Characteristics ===") print(json.dumps(unique_values_dict, indent=2)) # 1. Gene expression data availability # Background info mentions "gene expression microarray", so gene data is available is_gene_available = True # 2. Variable availability and data type conversion # 2.1 Data availability trait_row = 0 # Disease state contains celiac vs control info age_row = None # Age not available gender_row = None # Gender not available # 2.2 Data type conversion def convert_trait(value): if not isinstance(value, str): return None value = value.lower().split(': ')[-1] # Return 1 for celiac disease, 0 for controls if 'celiac disease' in value: return 1 elif 'healthy controls' in value: return 0 return None # CVID patients are not relevant for our analysis convert_age = None # No age data convert_gender = None # No gender data # 3. Save metadata validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None) # 4. Clinical feature extraction # Since trait_row is not None, we need to extract clinical features selected_clinical_df = geo_select_clinical_features(clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait) # Preview the extracted features preview_dict = preview_df(selected_clinical_df) print("Preview of selected clinical features:") print(preview_dict) # Save clinical data selected_clinical_df.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file genetic_df = get_genetic_data(matrix_file) # Print DataFrame shape and first 20 row IDs print("DataFrame shape:", genetic_df.shape) print("\nFirst 20 row IDs:") print(genetic_df.index[:20]) print("\nPreview of first few rows and columns:") print(genetic_df.head().iloc[:, :5]) # Gene identifiers start with 'ILMN_' which indicates these are Illumina probe IDs # These need to be mapped to standard human gene symbols for downstream analysis requires_gene_mapping = True # Extract gene annotation data, excluding control probe lines gene_metadata = get_gene_annotation(soft_file) # Additional filtering to exclude control probes gene_metadata = gene_metadata[gene_metadata['Species'] != 'ILMN Controls'] # Preview filtered annotation data print("Column names and preview of gene annotation data:") print(preview_df(gene_metadata)) # 1. Identify relevant columns # Gene expression data uses probe IDs in 'ID' column # Gene symbols are in 'Symbol' column of annotation data # 2. Get gene mapping dataframe mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='Symbol') # 3. Apply gene mapping to convert probe-level data to gene expression gene_data = apply_gene_mapping(genetic_df, mapping_df) # Preview converted gene expression data print("Shape of gene expression data:", gene_data.shape) print("\nFirst few rows and columns:") print(gene_data.head().iloc[:, :5]) # 1. Normalize gene symbols gene_data = normalize_gene_symbols_in_index(gene_data) gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Check and handle biased features trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and save cohort info note = "Gene expression data from duodenal biopsies of celiac disease patients and healthy controls. Contains binary trait data (celiac disease vs control), but no age or gender information." is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note=note ) # 6. Save linked data if usable and preview if is_usable: print("\nFinal linked data shape:", linked_data.shape) print("\nPreview of linked data:") print(preview_df(linked_data)) os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)