# Path Configuration from tools.preprocess import * # Processing context trait = "Celiac_Disease" cohort = "GSE87629" # Input paths in_trait_dir = "../DATA/GEO/Celiac_Disease" in_cohort_dir = "../DATA/GEO/Celiac_Disease/GSE87629" # Output paths out_data_file = "./output/preprocess/3/Celiac_Disease/GSE87629.csv" out_gene_data_file = "./output/preprocess/3/Celiac_Disease/gene_data/GSE87629.csv" out_clinical_data_file = "./output/preprocess/3/Celiac_Disease/clinical_data/GSE87629.csv" json_path = "./output/preprocess/3/Celiac_Disease/cohort_info.json" # Get paths to the SOFT and matrix files soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values for each feature (row) in clinical data unique_values_dict = get_unique_values_by_row(clinical_data) # Print background info print("=== Dataset Background Information ===") print(background_info) print("\n=== Sample Characteristics ===") print(json.dumps(unique_values_dict, indent=2)) # 1. Gene Expression Data Availability # Yes - based on background info, this is DNA microarray data from B and T cells is_gene_available = True # 2. Variable Availability and Data Type Conversion # 2.1 Identify data rows trait_row = 5 # Biopsy data (villus height to crypt depth ratio) age_row = None # Age not available gender_row = None # Gender not available # 2.2 Data type conversion functions def convert_trait(x): """Convert villus height to crypt depth ratio to continuous value""" try: # Extract numeric value after colon val = float(x.split(': ')[1]) return val except: return None def convert_age(x): return None # No age data def convert_gender(x): return None # No gender data # 3. Save metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None ) # 4. Extract clinical features if trait_row is not None: # Extract clinical features using library function clinical_features = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview extracted features preview = preview_df(clinical_features) print("Preview of clinical features:") print(preview) # Save clinical data clinical_features.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file genetic_df = get_genetic_data(matrix_file) # Print DataFrame shape and first 20 row IDs print("DataFrame shape:", genetic_df.shape) print("\nFirst 20 row IDs:") print(genetic_df.index[:20]) print("\nPreview of first few rows and columns:") print(genetic_df.head().iloc[:, :5]) # ILMN_ prefixes indicate these are Illumina probe IDs (BeadArray) # These are not standard human gene symbols and need to be mapped requires_gene_mapping = True # Extract gene annotation data, excluding control probe lines gene_metadata = get_gene_annotation(soft_file) # Additional filtering to exclude control probes gene_metadata = gene_metadata[gene_metadata['Species'] != 'ILMN Controls'] # Preview filtered annotation data print("Column names and preview of gene annotation data:") print(preview_df(gene_metadata)) # 1. From preview, we can see that 'ID' column in gene_metadata contains ILMN_ probe IDs like the gene expression data # And 'Symbol' column contains gene symbols prob_col = 'ID' gene_col = 'Symbol' # 2. Get mapping between probe IDs and gene symbols gene_mapping = get_gene_mapping(gene_metadata, prob_col, gene_col) # 3. Apply mapping to convert probe-level measurements to gene expression values gene_data = apply_gene_mapping(genetic_df, gene_mapping) # Print info about the mapping results print("\nShape before mapping (probes x samples):", genetic_df.shape) print("Shape after mapping (genes x samples):", gene_data.shape) print("\nFirst few mapped gene symbols:") print(gene_data.index[:5]) print("\nPreview of gene expression data:") print(gene_data.head().iloc[:, :5]) # 1. Normalize gene symbols gene_data = normalize_gene_symbols_in_index(gene_data) gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Check and handle biased features trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and save cohort info note = "Gene expression data from B and T cells of celiac disease patients during six-week gluten challenge. Contains continuous trait data (villus height to crypt depth ratio)." is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note=note ) # 6. Save linked data if usable and preview if is_usable: print("\nFinal linked data shape:", linked_data.shape) print("\nPreview of linked data:") print(preview_df(linked_data)) os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)