# Path Configuration from tools.preprocess import * # Processing context trait = "Esophageal_Cancer" cohort = "GSE100843" # Input paths in_trait_dir = "../DATA/GEO/Esophageal_Cancer" in_cohort_dir = "../DATA/GEO/Esophageal_Cancer/GSE100843" # Output paths out_data_file = "./output/preprocess/3/Esophageal_Cancer/GSE100843.csv" out_gene_data_file = "./output/preprocess/3/Esophageal_Cancer/gene_data/GSE100843.csv" out_clinical_data_file = "./output/preprocess/3/Esophageal_Cancer/clinical_data/GSE100843.csv" json_path = "./output/preprocess/3/Esophageal_Cancer/cohort_info.json" # Get relevant file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data from the matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Get dictionary of unique values per row in clinical data unique_values_dict = get_unique_values_by_row(clinical_data) # Print background info print("Background Information:") print("-" * 50) print(background_info) print("\n") # Print clinical data unique values print("Sample Characteristics:") print("-" * 50) for row, values in unique_values_dict.items(): print(f"{row}:") print(f" {values}") print() # 1. Gene Expression Data Availability # From background info, this is a microarray gene expression dataset is_gene_available = True # 2. Variable Availability and Data Type Conversion # Trait (Barrett's esophagus): # Available in field 0 as tissue type, where IM indicates disease and NSQ indicates normal trait_row = 0 def convert_trait(value: str) -> int: if not value or ':' not in value: return None value = value.split(':')[1].strip().lower() if "barrett" in value: return 1 # Disease tissue elif "normal" in value: return 0 # Normal tissue return None # Age: Not available in characteristics age_row = None convert_age = None # Gender: Not available in characteristics gender_row = None convert_gender = None # 3. Save metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) # 4. Extract clinical features if trait_row is not None: selected_clinical = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the selected features print("Preview of selected clinical features:") print(preview_df(selected_clinical)) # Save to CSV selected_clinical.to_csv(out_clinical_data_file) # Extract gene expression data genetic_data = get_genetic_data(matrix_file_path) # Print first 20 probe IDs print("First 20 probe IDs:") print(genetic_data.index[:20]) # The probe IDs are numeric identifiers from an Illumina array, not standard gene symbols # They need to be mapped to proper human gene symbols requires_gene_mapping = True # Extract gene annotation from SOFT file gene_annotation = get_gene_annotation(soft_file_path) # Preview column names and first few values preview_dict = preview_df(gene_annotation) print("Column names and preview values:") for col, values in preview_dict.items(): print(f"\n{col}:") print(values) # Extract mapping between probe IDs and gene symbols mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='gene_assignment') # Apply gene mapping to convert probe-level data to gene-level data gene_data = apply_gene_mapping(genetic_data, mapping_data) # Save the gene expression data gene_data.to_csv(out_gene_data_file) # Read the gene data that was saved in previous step gene_data = pd.read_csv(out_gene_data_file, index_col=0) # 1. Normalize gene symbols and save normalized gene data normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) # Read the processed clinical and gene data files clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) gene_data = pd.read_csv(out_gene_data_file, index_col=0) # Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data) # Handle missing values systematically linked_data = handle_missing_values(linked_data, trait) # Detect bias in trait and demographic features, remove biased demographic features is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # Validate data quality and save cohort info note = ("This dataset studies gene expression profiles in esophageal squamous cell carcinoma, " "comparing tumor samples with matched nonmalignant mucosa. The sample size is moderate with paired samples.") is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note=note ) # Save linked data if usable if is_usable: linked_data.to_csv(out_data_file) else: print(f"Dataset {cohort} did not pass quality validation and will not be saved.")