# Path Configuration from tools.preprocess import * # Processing context trait = "Esophageal_Cancer" cohort = "GSE104958" # Input paths in_trait_dir = "../DATA/GEO/Esophageal_Cancer" in_cohort_dir = "../DATA/GEO/Esophageal_Cancer/GSE104958" # Output paths out_data_file = "./output/preprocess/3/Esophageal_Cancer/GSE104958.csv" out_gene_data_file = "./output/preprocess/3/Esophageal_Cancer/gene_data/GSE104958.csv" out_clinical_data_file = "./output/preprocess/3/Esophageal_Cancer/clinical_data/GSE104958.csv" json_path = "./output/preprocess/3/Esophageal_Cancer/cohort_info.json" # Get relevant file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data from the matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Get dictionary of unique values per row in clinical data unique_values_dict = get_unique_values_by_row(clinical_data) # Print background info print("Background Information:") print("-" * 50) print(background_info) print("\n") # Print clinical data unique values print("Sample Characteristics:") print("-" * 50) for row, values in unique_values_dict.items(): print(f"{row}:") print(f" {values}") print() # 1. Gene Expression Data Availability # Based on the background info mentioning "DNA microarray data", this dataset contains gene expression data is_gene_available = True # 2. Variable Availability and Data Type Conversion # 2.1 Data Availability # Trait (pCR status) is not directly available in sample characteristics, # but needs to be inferred from RNA IDs in a later step trait_row = None # Not available in sample characteristics age_row = None # Age data not available gender_row = None # Gender data not available # 2.2 Data Type Conversion Functions def convert_trait(value): # Get sample ID from string if not isinstance(value, str): return None try: # Extract RNA sample number from identifiers rna_id = int(''.join(filter(str.isdigit, value))) # Check if RNA ID is in pCR group based on background info pcr_samples = [1, 4, 7, 10, 12, 17, 24, 29, 35, 43] return 1 if rna_id in pcr_samples else 0 except: return None # Age and gender conversion functions not needed since data unavailable convert_age = None convert_gender = None # 3. Save initial metadata is_trait_available = trait_row is not None validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical feature extraction skipped since trait_row is None # Extract gene expression data genetic_data = get_genetic_data(matrix_file_path) # Print first 20 probe IDs print("First 20 probe IDs:") print(genetic_data.index[:20]) # These identifiers appear to be probe IDs from a microarray/RNA-seq platform # They are not standard human gene symbols (which would look like BRCA1, TP53, etc) # The format A_19_P* suggests these are likely Agilent array probe IDs that need mapping requires_gene_mapping = True # Extract gene annotation from SOFT file gene_annotation = get_gene_annotation(soft_file_path) # Preview column names and first few values preview_dict = preview_df(gene_annotation) print("Column names and preview values:") for col, values in preview_dict.items(): print(f"\n{col}:") print(values) # Extract probe ID and gene symbol mapping from annotation mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GENE_SYMBOL') # Apply gene mapping to convert probe-level measurements to gene expression gene_data = apply_gene_mapping(genetic_data, mapping_data) # Print dimensions of original and mapped data print(f"Original probe data dimensions: {genetic_data.shape}") print(f"Mapped gene data dimensions: {gene_data.shape}") # 1. Normalize gene symbols and save normalized gene data normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) # Create clinical data using sample IDs and convert_trait function sample_ids = normalized_gene_data.columns clinical_data = pd.DataFrame(index=['Esophageal_Cancer']) clinical_data[sample_ids] = [convert_trait(id) for id in sample_ids] clinical_data.to_csv(out_clinical_data_file) # Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(clinical_data, normalized_gene_data) # Handle missing values systematically linked_data = handle_missing_values(linked_data, 'Esophageal_Cancer') # Detect bias in trait and demographic features is_biased, linked_data = judge_and_remove_biased_features(linked_data, 'Esophageal_Cancer') # Validate data quality and save cohort info note = ("This dataset studies gene expression related to pathological complete response (pCR) " "after neoadjuvant chemotherapy in esophageal cancer. The trait information was derived " "from RNA sample IDs mentioned in the background information.") is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note=note ) # Save linked data if usable if is_usable: linked_data.to_csv(out_data_file) else: print(f"Dataset {cohort} did not pass quality validation and will not be saved.")