# Path Configuration from tools.preprocess import * # Processing context trait = "Esophageal_Cancer" cohort = "GSE107754" # Input paths in_trait_dir = "../DATA/GEO/Esophageal_Cancer" in_cohort_dir = "../DATA/GEO/Esophageal_Cancer/GSE107754" # Output paths out_data_file = "./output/preprocess/3/Esophageal_Cancer/GSE107754.csv" out_gene_data_file = "./output/preprocess/3/Esophageal_Cancer/gene_data/GSE107754.csv" out_clinical_data_file = "./output/preprocess/3/Esophageal_Cancer/clinical_data/GSE107754.csv" json_path = "./output/preprocess/3/Esophageal_Cancer/cohort_info.json" # Get relevant file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data from the matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Get dictionary of unique values per row in clinical data unique_values_dict = get_unique_values_by_row(clinical_data) # Print background info print("Background Information:") print("-" * 50) print(background_info) print("\n") # Print clinical data unique values print("Sample Characteristics:") print("-" * 50) for row, values in unique_values_dict.items(): print(f"{row}:") print(f" {values}") print() # 1. Gene Expression Data Availability # The background info mentions "whole human genome gene expression microarrays" is_gene_available = True # 2.1 Data Availability # Trait (cancer) info is in key 2 under "tissue: ..." trait_row = 2 # Age is not available in the sample characteristics age_row = None # Gender is in key 0 gender_row = 0 # 2.2 Data Type Conversion Functions def convert_trait(value: str) -> int: """Convert tissue type to binary indicating if it's esophageal cancer""" if not value or ':' not in value: return None tissue = value.split(':')[1].strip().lower() # Return 1 for esophageal cancer, 0 for other cancers return 1 if 'esophagus cancer' in tissue else 0 def convert_age(value: str) -> float: """Convert age string to float""" # No age data available return None def convert_gender(value: str) -> int: """Convert gender to binary (0=female, 1=male)""" if not value or ':' not in value: return None gender = value.split(':')[1].strip().lower() if gender == 'female': return 0 elif gender == 'male': return 1 return None # 3. Save initial validation info _ = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None ) # 4. Extract clinical features if trait_row is not None: clinical_features = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the extracted features preview = preview_df(clinical_features) print("Preview of clinical features:") print(preview) # Save to CSV clinical_features.to_csv(out_clinical_data_file) # Extract gene expression data genetic_data = get_genetic_data(matrix_file_path) # Print first 20 probe IDs print("First 20 probe IDs:") print(genetic_data.index[:20]) # These identifiers are Agilent probe IDs, not HGNC gene symbols # They follow the typical Agilent format "A_23_P######" # Therefore mapping to gene symbols is required requires_gene_mapping = True # Extract gene annotation from SOFT file gene_annotation = get_gene_annotation(soft_file_path) # Preview column names and first few values preview_dict = preview_df(gene_annotation) print("Column names and preview values:") for col, values in preview_dict.items(): print(f"\n{col}:") print(values) # 1. The 'ID' column in gene_annotation matches the probe IDs in genetic_data # The 'GENE_SYMBOL' column contains the corresponding gene symbols probe_col = 'ID' symbol_col = 'GENE_SYMBOL' # 2. Get gene mapping dataframe gene_mapping = get_gene_mapping(gene_annotation, probe_col, symbol_col) # 3. Apply gene mapping to convert probe-level data to gene expression data gene_data = apply_gene_mapping(genetic_data, gene_mapping) # 1. Normalize gene symbols and save normalized gene data normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) linked_data = geo_link_clinical_genetic_data(clinical_df, normalized_gene_data) # 3. Handle missing values systematically linked_data = handle_missing_values(linked_data, trait) # 4. Detect bias in trait and demographic features, remove biased demographic features is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Validate data quality and save cohort info note = ("This dataset studies gene expression profiles in esophageal squamous cell carcinoma, " "comparing tumor samples with matched nonmalignant mucosa. The sample size is moderate with paired samples.") is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note=note ) # 6. Save linked data if usable if is_usable: linked_data.to_csv(out_data_file) else: print(f"Dataset {cohort} did not pass quality validation and will not be saved.")