# Path Configuration from tools.preprocess import * # Processing context trait = "Esophageal_Cancer" cohort = "GSE131027" # Input paths in_trait_dir = "../DATA/GEO/Esophageal_Cancer" in_cohort_dir = "../DATA/GEO/Esophageal_Cancer/GSE131027" # Output paths out_data_file = "./output/preprocess/3/Esophageal_Cancer/GSE131027.csv" out_gene_data_file = "./output/preprocess/3/Esophageal_Cancer/gene_data/GSE131027.csv" out_clinical_data_file = "./output/preprocess/3/Esophageal_Cancer/clinical_data/GSE131027.csv" json_path = "./output/preprocess/3/Esophageal_Cancer/cohort_info.json" # Get relevant file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data from the matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Get dictionary of unique values per row in clinical data unique_values_dict = get_unique_values_by_row(clinical_data) # Print background info print("Background Information:") print("-" * 50) print(background_info) print("\n") # Print clinical data unique values print("Sample Characteristics:") print("-" * 50) for row, values in unique_values_dict.items(): print(f"{row}:") print(f" {values}") print() # 1. Gene Expression Data Availability is_gene_available = True # Based on background info showing expression features analysis # 2. Variable Availability and Type Conversion # 2.1 Data Availability trait_row = 1 # Cancer type is recorded in row 1 age_row = None # Age data not available gender_row = None # Gender data not available # 2.2 Data Type Conversion Functions def convert_trait(value: str) -> int: """Convert cancer type to binary for esophageal cancer""" if pd.isna(value) or ':' not in value: return None cancer_type = value.split(': ')[1].lower() # Match variations of esophageal cancer spelling if 'oesophageal' in cancer_type or 'esophageal' in cancer_type: return 1 return 0 def convert_age(value: str) -> float: return None # Not used since age data unavailable def convert_gender(value: str) -> int: return None # Not used since gender data unavailable # 3. Save Metadata is_trait_available = trait_row is not None validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # 4. Clinical Feature Extraction if trait_row is not None: clinical_features = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the processed clinical features print("Preview of clinical features:") print(preview_df(clinical_features)) # Save to CSV clinical_features.to_csv(out_clinical_data_file) # Extract gene expression data genetic_data = get_genetic_data(matrix_file_path) # Print first 20 probe IDs print("First 20 probe IDs:") print(genetic_data.index[:20]) # Based on the probe IDs shown (e.g., '1007_s_at', '1053_at'), these are Affymetrix probe IDs # and not human gene symbols. They need to be mapped to standard gene symbols for analysis. requires_gene_mapping = True # Extract gene annotation from SOFT file gene_annotation = get_gene_annotation(soft_file_path) # Preview column names and first few values preview_dict = preview_df(gene_annotation) print("Column names and preview values:") for col, values in preview_dict.items(): print(f"\n{col}:") print(values) # The gene identifiers are in the 'ID' column of gene annotation data, which matches # the probe IDs in gene expression data. Gene symbols are in the 'Gene Symbol' column. gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol') # Apply the gene mapping to convert probe-level data to gene expression data gene_data = apply_gene_mapping(genetic_data, gene_mapping) # Preview the first few rows and columns of the gene data print("\nPreview of gene expression data:") print(preview_df(gene_data)) # 1. Normalize gene symbols and save normalized gene data normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(clinical_data, normalized_gene_data) # 3. Handle missing values systematically linked_data = handle_missing_values(linked_data, trait) # 4. Detect bias in trait and demographic features, remove biased demographic features is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Validate data quality and save cohort info note = ("This dataset studies gene expression profiles in esophageal squamous cell carcinoma, " "comparing tumor samples with matched nonmalignant mucosa. The sample size is moderate with paired samples.") is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note=note ) # 6. Save linked data if usable if is_usable: linked_data.to_csv(out_data_file) else: print(f"Dataset {cohort} did not pass quality validation and will not be saved.")