# Path Configuration from tools.preprocess import * # Processing context trait = "Esophageal_Cancer" cohort = "GSE156915" # Input paths in_trait_dir = "../DATA/GEO/Esophageal_Cancer" in_cohort_dir = "../DATA/GEO/Esophageal_Cancer/GSE156915" # Output paths out_data_file = "./output/preprocess/3/Esophageal_Cancer/GSE156915.csv" out_gene_data_file = "./output/preprocess/3/Esophageal_Cancer/gene_data/GSE156915.csv" out_clinical_data_file = "./output/preprocess/3/Esophageal_Cancer/clinical_data/GSE156915.csv" json_path = "./output/preprocess/3/Esophageal_Cancer/cohort_info.json" # Get relevant file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data from the matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Get dictionary of unique values per row in clinical data unique_values_dict = get_unique_values_by_row(clinical_data) # Print background info print("Background Information:") print("-" * 50) print(background_info) print("\n") # Print clinical data unique values print("Sample Characteristics:") print("-" * 50) for row, values in unique_values_dict.items(): print(f"{row}:") print(f" {values}") print() # 1. Gene Expression Data Availability # From the background info, we can see this is a gene expression study investigating # DNA damage immune response in colorectal cancer is_gene_available = True # 2.1 Data Availability # Looking at the sample characteristics: # - Row 0 shows DDIR status which indicates DNA damage response status trait_row = 0 # Age and gender info not available in sample characteristics age_row = None gender_row = None # 2.2 Data Type Conversion Functions def convert_trait(x): if pd.isna(x): return None # Extract value after colon and strip whitespace val = x.split(':')[1].strip() # DDIR NEG = control = 0, DDIR POS = case = 1 if 'NEG' in val: return 0 elif 'POS' in val: return 1 return None def convert_age(x): # Not available return None def convert_gender(x): # Not available return None # 3. Save Initial Metadata is_trait_available = trait_row is not None _ = validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # 4. Extract Clinical Features if trait_row is not None: clinical_df = geo_select_clinical_features(clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender) # Preview the extracted features preview = preview_df(clinical_df) print("Preview of clinical features:") print(preview) # Save to CSV clinical_df.to_csv(out_clinical_data_file) # Extract gene expression data genetic_data = get_genetic_data(matrix_file_path) # Print first 20 probe IDs print("First 20 probe IDs:") print(genetic_data.index[:20]) # These appear to be human gene symbols, with some RNA genes and pseudogenes # The identifiers match official HGNC gene symbols and nomenclature patterns requires_gene_mapping = False # 1. Normalize gene symbols and save normalized gene data normalized_gene_data = normalize_gene_symbols_in_index(genetic_data) normalized_gene_data.to_csv(out_gene_data_file) # Read the processed clinical and gene data files clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) gene_data = pd.read_csv(out_gene_data_file, index_col=0) # Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data) # Handle missing values systematically linked_data = handle_missing_values(linked_data, trait) # Detect bias in trait and demographic features, remove biased demographic features is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # Validate data quality and save cohort info note = ("This dataset studies gene expression profiles in esophageal squamous cell carcinoma, " "comparing tumor samples with matched nonmalignant mucosa. The sample size is moderate with paired samples.") is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note=note ) # Save linked data if usable if is_usable: linked_data.to_csv(out_data_file) else: print(f"Dataset {cohort} did not pass quality validation and will not be saved.")