# Path Configuration from tools.preprocess import * # Processing context trait = "Esophageal_Cancer" cohort = "GSE218109" # Input paths in_trait_dir = "../DATA/GEO/Esophageal_Cancer" in_cohort_dir = "../DATA/GEO/Esophageal_Cancer/GSE218109" # Output paths out_data_file = "./output/preprocess/3/Esophageal_Cancer/GSE218109.csv" out_gene_data_file = "./output/preprocess/3/Esophageal_Cancer/gene_data/GSE218109.csv" out_clinical_data_file = "./output/preprocess/3/Esophageal_Cancer/clinical_data/GSE218109.csv" json_path = "./output/preprocess/3/Esophageal_Cancer/cohort_info.json" # Get relevant file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data from the matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Get dictionary of unique values per row in clinical data unique_values_dict = get_unique_values_by_row(clinical_data) # Print background info print("Background Information:") print("-" * 50) print(background_info) print("\n") # Print clinical data unique values print("Sample Characteristics:") print("-" * 50) for row, values in unique_values_dict.items(): print(f"{row}:") print(f" {values}") print() # 1. Gene Expression Data is_gene_available = True # Based on Series_title and Series_summary, this contains transcriptional profiling data # 2.1 Data Availability trait_row = 5 # p53 status indicates cancer condition age_row = 1 # Age data available gender_row = 0 # Sex data available # 2.2 Data Type Conversion Functions def convert_trait(value): if pd.isna(value): return None value = value.split(': ')[-1].lower() if 'ns+' in value or 'nuclear-stabilized' in value: return 1 elif 'ns-' in value or 'unstable' in value: return 0 return None def convert_age(value): if pd.isna(value): return None try: return float(value.split(': ')[1]) except: return None def convert_gender(value): if pd.isna(value): return None value = value.split(': ')[1].upper() if value == 'F': return 0 elif value == 'M': return 1 return None # 3. Save Initial Metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) # 4. Extract Clinical Features selected_clinical = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the extracted features print(preview_df(selected_clinical)) # Save clinical data selected_clinical.to_csv(out_clinical_data_file) # Extract gene expression data genetic_data = get_genetic_data(matrix_file_path) # Print first 20 probe IDs print("First 20 probe IDs:") print(genetic_data.index[:20]) # These probes appear to be numerical identifiers rather than standard human gene symbols # Human gene symbols typically follow a specific format (e.g., BRCA1, TP53, IL6) # Therefore gene mapping will be required requires_gene_mapping = True # Since the SOFT file doesn't contain usable annotation data, load platform annotation from external source annotation_file = "./metadata/GPL4133.tsv" # Load and preview the platform annotation gene_annotation = pd.read_csv(annotation_file, sep='\t', comment='#') # Show column names and preview the data print("Platform Annotation Preview:") print("-" * 50) print(f"Number of rows: {len(gene_annotation)}") print(f"\nColumns:") for col in gene_annotation.columns: print(col) print("\nFirst few rows:") print(preview_df(gene_annotation)) # Extract gene annotation from SOFT file gene_annotation = get_gene_annotation(soft_file_path) # Preview the data print("Gene Annotation Preview:") print("-" * 50) print(f"Number of rows: {len(gene_annotation)}") print(f"\nColumns:") for col in gene_annotation.columns: print(col) print("\nFirst few rows:") print(preview_df(gene_annotation)) # 1. The 'ID' column in gene annotation matches the gene expression data indices # The 'GENE_SYMBOL' column contains the gene symbols we want to map to mapping_df = get_gene_mapping(gene_annotation, 'ID', 'GENE_SYMBOL') # 2. Apply gene mapping to convert probe-level data to gene-level data gene_data = apply_gene_mapping(genetic_data, mapping_df) # Preview results print("Gene Expression Data Preview:") print("-" * 50) print(f"Number of genes: {len(gene_data)}") print("\nFirst few rows:") print(preview_df(gene_data)) # 1. Normalize gene symbols and save normalized_gene_data = normalize_gene_symbols_in_index(genetic_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) normalized_gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) linked_data = geo_link_clinical_genetic_data(clinical_df, normalized_gene_data) # 3. Handle missing values systematically linked_data = handle_missing_values(linked_data, trait) # 4. Detect bias in trait and demographic features is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Validate data quality and save cohort info note = ("This dataset studies gene expression profiles in esophageal squamous cell carcinoma tumors, " "comparing nuclear-stabilized p53 (NS+) versus unstable p53 (NS-) protein tumor samples.") is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note=note ) # 6. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file) else: print(f"Dataset {cohort} did not pass quality validation and will not be saved.")