# Path Configuration from tools.preprocess import * # Processing context trait = "Esophageal_Cancer" cohort = "GSE55857" # Input paths in_trait_dir = "../DATA/GEO/Esophageal_Cancer" in_cohort_dir = "../DATA/GEO/Esophageal_Cancer/GSE55857" # Output paths out_data_file = "./output/preprocess/3/Esophageal_Cancer/GSE55857.csv" out_gene_data_file = "./output/preprocess/3/Esophageal_Cancer/gene_data/GSE55857.csv" out_clinical_data_file = "./output/preprocess/3/Esophageal_Cancer/clinical_data/GSE55857.csv" json_path = "./output/preprocess/3/Esophageal_Cancer/cohort_info.json" # Get relevant file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data from the matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Get dictionary of unique values per row in clinical data unique_values_dict = get_unique_values_by_row(clinical_data) # Print background info print("Background Information:") print("-" * 50) print(background_info) print("\n") # Print clinical data unique values print("Sample Characteristics:") print("-" * 50) for row, values in unique_values_dict.items(): print(f"{row}:") print(f" {values}") print() # 1. Gene Expression Data Availability # This is a microRNA dataset (SuperSeries) studying small non-coding RNAs # MicroRNA data is not suitable for our gene expression analysis is_gene_available = False # 2. Clinical Data Variables Analysis # 2.1 Data Availability # Trait (cancer status) is available in row 1 as "tissue" field # Age and gender are not recorded trait_row = 1 age_row = None gender_row = None # 2.2 Data Type Conversion Functions def convert_trait(value): """Convert tissue type to binary cancer status""" if not isinstance(value, str): return None value = value.split(": ")[-1].lower().strip() if "tumor" in value: return 1 elif "normal" in value: return 0 return None def convert_age(value): """Convert age value - not used""" return None def convert_gender(value): """Convert gender value - not used""" return None # 3. Save Metadata # trait_row is not None, so trait data is available is_trait_available = trait_row is not None validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # 4. Extract Clinical Features # Since trait_row is not None, we extract clinical features clinical_features = geo_select_clinical_features(clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender) # Preview the extracted features preview_results = preview_df(clinical_features) print("Preview of clinical features:") print(preview_results) # Save clinical features clinical_features.to_csv(out_clinical_data_file)