# Path Configuration from tools.preprocess import * # Processing context trait = "Esophageal_Cancer" cohort = "GSE66258" # Input paths in_trait_dir = "../DATA/GEO/Esophageal_Cancer" in_cohort_dir = "../DATA/GEO/Esophageal_Cancer/GSE66258" # Output paths out_data_file = "./output/preprocess/3/Esophageal_Cancer/GSE66258.csv" out_gene_data_file = "./output/preprocess/3/Esophageal_Cancer/gene_data/GSE66258.csv" out_clinical_data_file = "./output/preprocess/3/Esophageal_Cancer/clinical_data/GSE66258.csv" json_path = "./output/preprocess/3/Esophageal_Cancer/cohort_info.json" # Get relevant file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data from the matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Get dictionary of unique values per row in clinical data unique_values_dict = get_unique_values_by_row(clinical_data) # Print background info print("Background Information:") print("-" * 50) print(background_info) print("\n") # Print clinical data unique values print("Sample Characteristics:") print("-" * 50) for row, values in unique_values_dict.items(): print(f"{row}:") print(f" {values}") print() # 1. Gene Expression Data Availability # Based on the series description, this is a microRNA dataset, not suitable for gene expression analysis is_gene_available = False # 2.1 Data Availability # From sample characteristics: # - trait: Row 0 shows all samples are ESCC tumor tissue # - age: Not available # - gender: Not available trait_row = 0 age_row = None gender_row = None # 2.2 Data Type Conversion Functions def convert_trait(value: str) -> int: """Convert ESCC tumor status to binary""" if 'esophageal squamous cell carcinoma' in value.lower(): return 1 return None def convert_age(value: str) -> float: """Convert age to float""" return None # Not used since age data not available def convert_gender(value: str) -> int: """Convert gender to binary""" return None # Not used since gender data not available # 3. Save metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None ) # 4. Extract clinical features since trait_row is not None selected_clinical = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait ) # Preview and save print("Clinical data preview:") print(preview_df(selected_clinical)) # Save clinical data selected_clinical.to_csv(out_clinical_data_file)