# Path Configuration from tools.preprocess import * # Processing context trait = "Esophageal_Cancer" cohort = "GSE75241" # Input paths in_trait_dir = "../DATA/GEO/Esophageal_Cancer" in_cohort_dir = "../DATA/GEO/Esophageal_Cancer/GSE75241" # Output paths out_data_file = "./output/preprocess/3/Esophageal_Cancer/GSE75241.csv" out_gene_data_file = "./output/preprocess/3/Esophageal_Cancer/gene_data/GSE75241.csv" out_clinical_data_file = "./output/preprocess/3/Esophageal_Cancer/clinical_data/GSE75241.csv" json_path = "./output/preprocess/3/Esophageal_Cancer/cohort_info.json" # Get relevant file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data from the matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Get dictionary of unique values per row in clinical data unique_values_dict = get_unique_values_by_row(clinical_data) # Print background info print("Background Information:") print("-" * 50) print(background_info) print("\n") # Print clinical data unique values print("Sample Characteristics:") print("-" * 50) for row, values in unique_values_dict.items(): print(f"{row}:") print(f" {values}") print() # 1. Gene Expression Data Availability # From title and summary, this is a gene expression profile dataset is_gene_available = True # 2.1 Data Availability # trait (cancer status) is in row 1 (tissue type) trait_row = 1 # age and gender not available in characteristics age_row = None gender_row = None # 2.2 Data Type Conversion Functions def convert_trait(value): if pd.isna(value): return None # Extract value after colon and strip whitespace value = value.split(':')[1].strip() # Convert to binary: nonmalignant (0) vs tumor (1) if 'nonmalignant' in value.lower(): return 0 elif 'tumor' in value.lower(): return 1 return None def convert_age(value): return None # Not used since age data not available def convert_gender(value): return None # Not used since gender data not available # 3. Save Metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) # 4. Clinical Feature Extraction # Since trait_row is not None, we extract features selected_clinical = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the extracted features preview_result = preview_df(selected_clinical) # Save clinical data selected_clinical.to_csv(out_clinical_data_file) # Extract gene expression data genetic_data = get_genetic_data(matrix_file_path) # Print first 20 probe IDs print("First 20 probe IDs:") print(genetic_data.index[:20]) # These probes appear to be numerical IDs from Illumina platform # rather than standardized gene symbols like "BRCA1", "TP53" etc. # Therefore mapping to gene symbols will be required requires_gene_mapping = True # Extract gene annotation from SOFT file gene_annotation = get_gene_annotation(soft_file_path) # Preview column names and first few values preview_dict = preview_df(gene_annotation) print("Column names and preview values:") for col, values in preview_dict.items(): print(f"\n{col}:") print(values) # 'ID' in gene_annotation matches the probe IDs in genetic_data # 'gene_assignment' contains gene symbol information mapping_data = get_gene_mapping(gene_annotation, 'ID', 'gene_assignment') # Apply gene mapping to get gene expression data gene_data = apply_gene_mapping(genetic_data, mapping_data) # Save gene data gene_data.to_csv(out_gene_data_file) # Preview the gene data preview_result = preview_df(gene_data) # Read the processed clinical and gene data files clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) gene_data = pd.read_csv(out_gene_data_file, index_col=0) # Already normalized in step 6 # Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data) # Handle missing values systematically linked_data = handle_missing_values(linked_data, trait) # Detect bias in trait and demographic features, remove biased demographic features is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # Validate data quality and save cohort info note = ("This dataset studies gene expression profiles in esophageal squamous cell carcinoma, " "comparing tumor samples with matched nonmalignant mucosa. The sample size is moderate with paired samples.") is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note=note ) # Save linked data if usable if is_usable: linked_data.to_csv(out_data_file) else: print(f"Dataset {cohort} did not pass quality validation and will not be saved.")