# Path Configuration from tools.preprocess import * # Processing context trait = "Esophageal_Cancer" # Input paths tcga_root_dir = "../DATA/TCGA" # Output paths out_data_file = "./output/preprocess/3/Esophageal_Cancer/TCGA.csv" out_gene_data_file = "./output/preprocess/3/Esophageal_Cancer/gene_data/TCGA.csv" out_clinical_data_file = "./output/preprocess/3/Esophageal_Cancer/clinical_data/TCGA.csv" json_path = "./output/preprocess/3/Esophageal_Cancer/cohort_info.json" # Select the ESCA (Esophageal Cancer) cohort directory cohort_dir = os.path.join(tcga_root_dir, 'TCGA_Esophageal_Cancer_(ESCA)') # Get paths for clinical and genetic data files clinical_file, genetic_file = tcga_get_relevant_filepaths(cohort_dir) # Load the data files clinical_df = pd.read_csv(clinical_file, index_col=0, sep='\t') genetic_df = pd.read_csv(genetic_file, index_col=0, sep='\t') # Print clinical data columns for review print("Clinical data columns:") print(clinical_df.columns.tolist()) # 1. Identify candidate columns for age and gender candidate_age_cols = ['age_at_initial_pathologic_diagnosis', 'age_began_smoking_in_years', 'days_to_birth'] candidate_gender_cols = ['gender'] # 2. Preview the data # First check available directories print("Available directories in TCGA root:") print(os.listdir(tcga_root_dir)) # Get clinical data path using actual directory structure cohort_dir = os.path.join(tcga_root_dir, "TCGA-ESCA") clinical_file_path, _ = tcga_get_relevant_filepaths(cohort_dir) # Read clinical data clinical_df = pd.read_csv(clinical_file_path, index_col=0) # Extract candidate columns age_data = clinical_df[candidate_age_cols] gender_data = clinical_df[candidate_gender_cols] # Preview data as dictionaries print("\nAge columns preview:") print(preview_df(age_data)) print("\nGender columns preview:") print(preview_df(gender_data)) # Select the ESCA (Esophageal Cancer) cohort directory cohort_dir = os.path.join(tcga_root_dir, 'TCGA_Esophageal_Cancer_(ESCA)') # Get paths for clinical and genetic data files clinical_file, genetic_file = tcga_get_relevant_filepaths(cohort_dir) # Load the data files clinical_df = pd.read_csv(clinical_file, index_col=0, sep='\t') genetic_df = pd.read_csv(genetic_file, index_col=0, sep='\t') # Print clinical data columns for review print("Clinical data columns:") print(clinical_df.columns.tolist()) # Check values in candidate columns age_col = "age_at_initial_pathologic_diagnosis" # Gender column is straightforward gender_col = "gender" # Print chosen columns print(f"Selected age column: {age_col}") print(f"Selected gender column: {gender_col}") # Carry over the selected demographic columns age_col = "age_at_initial_pathologic_diagnosis" gender_col = "gender" # 1. Extract and standardize clinical features clinical_df = tcga_select_clinical_features(clinical_df, trait, age_col, gender_col) # 2. Normalize gene expression data normalized_genetic_df = normalize_gene_symbols_in_index(genetic_df) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) normalized_genetic_df.to_csv(out_gene_data_file) # 3. Link clinical and genetic data linked_data = pd.merge(normalized_genetic_df.T, clinical_df, left_index=True, right_index=True) # Add trait labels based on sample IDs linked_data[trait] = linked_data.index.map(tcga_convert_trait) # 4. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 5. Check for bias in features is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 6. Validate and save cohort info is_usable = validate_and_save_cohort_info( is_final=True, cohort="TCGA_Esophageal_Cancer_(ESCA)", info_path=json_path, is_gene_available=len(normalized_genetic_df.columns) > 0, is_trait_available=trait in linked_data.columns, is_biased=is_biased, df=linked_data, note="Data from TCGA Esophageal Cancer cohort" ) # 7. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)