"""Path configuration utilities for GEOAgent.""" from abc import ABC, abstractmethod from dataclasses import dataclass class PathConfig(ABC): """Abstract base class for path configurations used in data analysis.""" @abstractmethod def get_setup_code(self) -> str: """Generate Python code for setting up paths in the CodeExecutor namespace.""" pass @abstractmethod def get_setup_prompt(self) -> str: """Generate the path setup section for the prompt.""" pass @dataclass class GEOPathConfig(PathConfig): """Container for all path configurations used in preprocessing GEO data.""" # Context identifiers trait: str cohort: str # Input paths in_trait_dir: str in_cohort_dir: str # Output paths out_data_file: str out_gene_data_file: str out_clinical_data_file: str json_path: str def get_setup_code(self) -> str: """Generate Python code for setting up paths in the CodeExecutor namespace.""" return f"""# Path Configuration from tools.preprocess import * # Processing context trait = "{self.trait}" cohort = "{self.cohort}" # Input paths in_trait_dir = "{self.in_trait_dir}" in_cohort_dir = "{self.in_cohort_dir}" # Output paths out_data_file = "{self.out_data_file}" out_gene_data_file = "{self.out_gene_data_file}" out_clinical_data_file = "{self.out_clinical_data_file}" json_path = "{self.json_path}" """ def get_setup_prompt(self) -> str: """Generate the path setup section for the prompt.""" return f""" 1. Path Configuration The following variables have been pre-configured in your execution environment, to maintain consistent file organization: Context Variables: - trait: "{self.trait}" The current trait being processed. Use this instead of hardcoding the trait name in your code. - cohort: "{self.cohort}" The current cohort being processed. Use this instead of hardcoding the cohort name. Input Paths: - in_trait_dir: "{self.in_trait_dir}" The directory containing raw data of all cohorts for the current trait. - in_cohort_dir: "{self.in_cohort_dir}" The directory containing raw data for the current cohort. Output Paths: - out_data_file: "{self.out_data_file}" Where to save the processed linked data. - out_gene_data_file: "{self.out_gene_data_file}" Where to save the processed gene expression data. - out_clinical_data_file: "{self.out_clinical_data_file}" Where to save the processed clinical data. - json_path: "{self.json_path}" Where to save cohort metadata about data usability and quality. 2. Pre-executed Setup Code The following code has been automatically executed to prepare your environment. All functions from tools.preprocess have been imported and are ready to use. You can use these variables and functions directly in your code without importing or defining them. ```python {self.get_setup_code()}``` """ @dataclass class TCGAPathConfig(PathConfig): """Container for all path configurations used in preprocessing TCGA data.""" # Context identifiers trait: str # Input paths tcga_root_dir: str # Output paths out_data_file: str out_gene_data_file: str out_clinical_data_file: str json_path: str def get_setup_code(self) -> str: """Generate Python code for setting up paths in the CodeExecutor namespace.""" return f"""# Path Configuration from tools.preprocess import * # Processing context trait = "{self.trait}" # Input paths tcga_root_dir = "{self.tcga_root_dir}" # Output paths out_data_file = "{self.out_data_file}" out_gene_data_file = "{self.out_gene_data_file}" out_clinical_data_file = "{self.out_clinical_data_file}" json_path = "{self.json_path}" """ def get_setup_prompt(self) -> str: """Generate the path setup section for the prompt.""" return f""" 1. Path Configuration The following variables have been pre-configured in your execution environment, to maintain consistent file organization: Context Variables: - trait: "{self.trait}" The current trait being processed. Use this instead of hardcoding the trait name in your code. Input Paths: - tcga_root_dir: "{self.tcga_root_dir}" The root directory of the TCGA Xena dataset. Output Paths: - out_data_file: "{self.out_data_file}" Where to save the processed linked data. - out_gene_data_file: "{self.out_gene_data_file}" Where to save the processed gene expression data. - out_clinical_data_file: "{self.out_clinical_data_file}" Where to save the processed clinical data. - json_path: "{self.json_path}" Where to save cohort metadata about data usability and quality. 2. Pre-executed Setup Code The following code has been automatically executed to prepare your environment. All functions from tools.preprocess have been imported and are ready to use. You can use these variables and functions directly in your code without importing or defining them. ```python {self.get_setup_code()}``` """ # TO DO: for statistician """ Setups: 1. All input data are stored in the directory: '{data_root}'. 2. The output should be saved to the directory '{output_root}', under a subdirectory named after the trait. 3. External knowledge about genes related to each trait is available in a file '{gene_info_path}'. """ @dataclass class StatisticianPathConfig(PathConfig): """Container for all path configurations used in Statistical analysis.""" # Context identifiers trait: str condition: str # Input paths in_data_root: str gene_info_file: str # Output paths output_root: str def get_setup_code(self) -> str: """Generate Python code for setting up paths in the CodeExecutor namespace.""" condition_str = "None" if self.condition is None else f'"{self.condition}"' return f"""# Path Configuration from tools.statistics import * from sklearn.linear_model import LogisticRegression, LinearRegression # Processing context trait = "{self.trait}" condition = {condition_str} # Input paths in_data_root = "{self.in_data_root}" gene_info_file = "{self.gene_info_file}" # Output paths output_root = "{self.output_root}" """ def get_setup_prompt(self) -> str: """Generate the path setup section for the prompt.""" condition_str = "None" if self.condition is None else f'"{self.condition}"' return f""" 1. Path Configuration The following variables have been pre-configured in your execution environment, to maintain consistent file organization: Context Variables: - trait: "{self.trait}" The trait in the current question being addressed. Use this instead of hardcoding the trait name in your code. - condition: {condition_str} The condition in the current question being addressed. Use this instead of hardcoding the condition name. Input Paths: - in_data_root: "{self.in_data_root}" The directory containing all the preprocessed data for statistical analysis. - gene_info_file: "{self.gene_info_file}" The file containing external knowledge about genes related to each trait. Output Paths: - output_root: "{self.output_root}" Where to save all the analysis results. 2. Pre-executed Setup Code The following code has been automatically executed to prepare your environment. All functions from tools.statistics have been imported and are ready to use. You can use these variables and functions directly in your code without importing or defining them. ```python {self.get_setup_code()}``` """