"""Resource monitoring utility for tracking CPU, memory, and GPU usage. This module provides real-time monitoring of system resources used by the current process, including CPU usage, memory consumption, and GPU utilization (if NVIDIA GPUs are available). Resources are monitored in a separate daemon thread that automatically terminates with the main process. """ import os import time import psutil import threading from datetime import datetime try: import pynvml NVIDIA_AVAILABLE = True except ImportError: NVIDIA_AVAILABLE = False class ResourceMonitor: """Monitor system resources including CPU, memory, and GPU usage.""" def __init__(self, log_interval: int = 60, log_file: str = None): """Initialize the resource monitor. Args: log_interval: How often to log metrics (in seconds) log_file: Where to save the metrics log. If None, only print to stdout """ self.log_interval = max(1, log_interval) # Ensure positive interval self.log_file = log_file self.running = False self.start_time = None # Track peak usage self.peak_metrics = { 'cpu_percent': 0.0, 'memory_gb': 0.0 } # Initialize GPU monitoring self.gpu_count = 0 if NVIDIA_AVAILABLE: try: pynvml.nvmlInit() self.gpu_count = pynvml.nvmlDeviceGetCount() for i in range(self.gpu_count): self.peak_metrics[f'gpu_{i}_memory_gb'] = 0.0 self.peak_metrics[f'gpu_{i}_util'] = 0.0 except Exception as e: print(f"Warning: Failed to initialize NVIDIA monitoring: {str(e)}") self.gpu_count = 0 def _get_gpu_metrics(self): """Get GPU memory usage and utilization for all available GPUs.""" if not self.gpu_count: return {} gpu_metrics = {} for i in range(self.gpu_count): try: handle = pynvml.nvmlDeviceGetHandleByIndex(i) info = pynvml.nvmlDeviceGetMemoryInfo(handle) utilization = pynvml.nvmlDeviceGetUtilizationRates(handle) memory_gb = info.used / (1024 ** 3) # More readable than /1024/1024/1024 memory_percent = (info.used / info.total) * 100 gpu_util = utilization.gpu # Update peak values self.peak_metrics[f'gpu_{i}_memory_gb'] = max( self.peak_metrics[f'gpu_{i}_memory_gb'], memory_gb ) self.peak_metrics[f'gpu_{i}_util'] = max( self.peak_metrics[f'gpu_{i}_util'], gpu_util ) gpu_metrics[f'gpu_{i}'] = { 'memory_gb': memory_gb, 'memory_total_gb': info.total / (1024 ** 3), 'memory_percent': memory_percent, 'utilization': gpu_util } except Exception as e: print(f"Warning: Failed to get metrics for GPU {i}: {str(e)}") continue return gpu_metrics def _get_system_metrics(self): """Get CPU usage and process memory for the current process.""" try: process = psutil.Process(os.getpid()) # Calculate current values cpu_percent = process.cpu_percent() memory_gb = process.memory_info().rss / (1024 ** 3) # Update peak values self.peak_metrics['cpu_percent'] = max( self.peak_metrics['cpu_percent'], cpu_percent ) self.peak_metrics['memory_gb'] = max( self.peak_metrics['memory_gb'], memory_gb ) return { 'cpu_percent': cpu_percent, 'memory_gb': memory_gb } except Exception as e: print(f"Warning: Failed to get system metrics: {str(e)}") return { 'cpu_percent': 0.0, 'memory_gb': 0.0 } def _monitor_loop(self): """Main monitoring loop that periodically collects and logs resource usage.""" while self.running: try: current_time = datetime.now() elapsed_time = time.time() - self.start_time sys_metrics = self._get_system_metrics() gpu_metrics = self._get_gpu_metrics() # Format output output = [] output.append(f"\n=== Resource Usage at {current_time.strftime('%Y-%m-%d %H:%M:%S')} (Elapsed: {elapsed_time:.1f}s) ===") # Current Usage - combine CPU and memory on one line output.append(f"Current: CPU: {sys_metrics['cpu_percent']:.1f}%, Memory: {sys_metrics['memory_gb']:.1f}GB") # GPU Resources - one line per GPU if self.gpu_count > 0: for i in range(self.gpu_count): if f'gpu_{i}' in gpu_metrics: # Check if GPU metrics were successfully collected gpu = gpu_metrics[f'gpu_{i}'] output.append( f"GPU {i}: {gpu['memory_gb']:.1f}GB/{gpu['memory_total_gb']:.1f}GB " f"({gpu['memory_percent']:.1f}%), Util: {gpu['utilization']}%" ) # Peak Usage - combine all peaks on one line peaks = [ f"CPU: {self.peak_metrics['cpu_percent']:.1f}%", f"Memory: {self.peak_metrics['memory_gb']:.1f}GB" ] if self.gpu_count > 0: for i in range(self.gpu_count): if f'gpu_{i}_memory_gb' in self.peak_metrics: peaks.append( f"GPU {i}: {self.peak_metrics[f'gpu_{i}_memory_gb']:.1f}GB/" f"{self.peak_metrics[f'gpu_{i}_util']}%" ) output.append("Peak: " + ", ".join(peaks)) output_str = '\n'.join(output) print(output_str) if self.log_file: try: with open(self.log_file, 'a') as f: f.write(output_str + '\n') except Exception as e: print(f"Warning: Failed to write to log file: {str(e)}") except Exception as e: print(f"Error in resource monitoring: {str(e)}") time.sleep(self.log_interval) def start(self): """Start the resource monitoring in a daemon thread.""" if not self.running: self.running = True self.start_time = time.time() self.monitor_thread = threading.Thread(target=self._monitor_loop, daemon=True) self.monitor_thread.start() def stop(self): """Stop the resource monitoring. Note: This is optional since the daemon thread will automatically terminate when the main program exits. """ self.running = False if hasattr(self, 'monitor_thread'): self.monitor_thread.join(timeout=self.log_interval)