import ast import json import os import re import traceback from typing import List, Optional, Dict def normalize_trait(trait): trait = '_'.join(trait.split()) normalized_trait = ''.join(trait.split("'")) return normalized_trait def normalize_gene_symbols(gene_symbols: List[str]) -> List[Optional[str]]: """Use gene synonym information extracted from the NCBI Gene database to normalize gene symbols in a list, and return a list of normalized symbols. Unmatched symbols are converted to None. """ with open("./metadata/gene_synonym.json", "r") as f: synonym_dict = json.load(f) return [synonym_dict.get(g) for g in gene_symbols] def get_question_pairs(file_path): """ Reads a JSON metadata file and returns a list of trait-condition pairs as questions. """ with open(file_path, 'r') as f: task_info = json.load(f) all_traits = sorted(list(task_info.keys())) all_pairs = [] for trait in all_traits: all_pairs.append((trait, None)) for condition in task_info[trait]['conditions']: all_pairs.append((trait, condition)) return all_pairs def check_slow_inference(model: str) -> bool: """ Checks if the model is a slow inference model by parsing the model name. """ # Convert to lowercase first, then split into alphanumeric substrings substrings = re.findall(r'[a-z0-9]+', model.lower()) # Check conditions has_slow_marker = any(s in ['o1', 'o3', 'r1'] for s in substrings) has_mini = 'mini' in substrings return has_slow_marker and not has_mini def check_recent_openai_model(model: str) -> bool: """ Checks if the model is a recent OpenAI model (with updated system prompt role) by parsing the model name. """ substrings = re.findall(r'[a-z0-9]+', model.lower()) has_recent_marker = any(s in ['o1', 'o3'] for s in substrings) return has_recent_marker def extract_function_code(file_path, function_names): """ Extracts the code of specific functions from a Python file. Args: file_path (str): Path to the Python file. function_names (list): List of function names to extract. Returns: dict: A dictionary where keys are function names, and values are their code as strings. """ with open(file_path, 'r') as file: source_code = file.read() tree = ast.parse(source_code) extracted_codes = [] for node in ast.walk(tree): if isinstance(node, ast.FunctionDef) and node.name in function_names: function_code = ast.get_source_segment(source_code, node) extracted_codes.append(function_code) return '\n\n'.join(extracted_codes) def load_last_cohort_info(version_dir): try: with open(os.path.join(version_dir, "last_cohort_info.json"), "r") as f: return json.load(f) except FileNotFoundError: return None def save_last_cohort_info(version_dir, cohort_info): with open(os.path.join(version_dir, "last_cohort_info.json"), "w") as f: json.dump(cohort_info, f) def delete_corrupted_files(output_dir, cohort): out_gene_dir = os.path.join(output_dir, 'gene_data') out_clinical_dir = os.path.join(output_dir, 'clinical_data') out_code_dir = os.path.join(output_dir, 'code') for this_dir in [output_dir, out_gene_dir, out_clinical_dir, out_code_dir]: ext = "py" if this_dir == out_code_dir else "csv" file_path = os.path.join(this_dir, f"{cohort}.{ext}") if os.path.exists(file_path): os.remove(file_path) def load_completed_tasks(version_dir): """ Load the set of completed tasks from a JSON file. If the file doesn't exist, return an empty set. """ file_path = os.path.join(version_dir, "completed_tasks.json") if not os.path.exists(file_path): return set() try: with open(file_path, "r") as file: return {tuple(task) for task in json.load(file)} except json.JSONDecodeError: traceback.print_exc() return set() def add_completed_task(task, version_dir): """ Add a single completed task to the JSON file. """ completed_tasks = load_completed_tasks(version_dir) completed_tasks.add(task) os.makedirs(version_dir, exist_ok=True) file_path = os.path.join(version_dir, "completed_tasks.json") with open(file_path, "w") as file: json.dump([list(task) for task in completed_tasks], file) def gene_precision(pred: List[str], ref: List[str]) -> float: """ Calculate precision of predicted genes against reference set. """ if len(pred): precision = sum([p in ref for p in pred]) / len(pred) else: if len(ref): precision = 0 else: precision = 1 return precision def gene_recall(pred: List[str], ref: List[str]) -> float: """ Calculate recall of predicted genes against reference set. """ if len(ref): recall = sum([p in pred for p in ref]) / len(ref) else: if len(pred): recall = 0 else: recall = 1 return recall def gene_f1(pred: List[str], ref: List[str]) -> float: """ Calculate F1 score between predicted and reference gene sets. """ prec = gene_precision(pred, ref) rec = gene_recall(pred, ref) if prec + rec == 0: # Prevent division by zero return 0 f1 = 2 * (prec * rec) / (prec + rec) return f1 def evaluate_gene_selection(pred: List[str], ref: List[str]) -> Dict[str, float]: """ Evaluate the performance of predicted gene selection against a reference set. Args: pred (List[str]): List of predicted gene symbols. ref (List[str]): List of reference (ground truth) gene symbols. Returns: Dict[str, float]: Dictionary containing precision, recall, F1 score, and Jaccard similarity. """ return { 'precision': gene_precision(pred, ref) * 100, 'recall': gene_recall(pred, ref) * 100, 'f1': gene_f1(pred, ref) * 100, }