Datasets:

Modalities:
Text
Formats:
parquet
Languages:
Arabic
ArXiv:
Libraries:
Datasets
Dask
File size: 4,111 Bytes
259c07d
3565e76
 
 
 
 
 
259c07d
 
 
 
 
 
 
 
 
 
e9a1049
 
 
 
 
259c07d
 
 
 
 
e9a1049
 
259c07d
3565e76
e4b7602
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3efd28d
 
 
 
 
 
 
3565e76
3efd28d
 
e4b7602
 
 
 
 
bf99437
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
---
language:
- ar
size_categories:
- 1M<n<10M
task_categories:
- text-generation
dataset_info:
  features:
  - name: filename
    dtype: string
  - name: cleaned_sentence
    dtype: string
  splits:
  - name: train
    num_bytes: 924672739
    num_examples: 1042698
  - name: test
    num_bytes: 1789952
    num_examples: 2485
  download_size: 354596619
  dataset_size: 926462691
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: test
    path: data/test-*
---

# 📚 Sadeed Tashkeela Arabic Diacritization Dataset

The **Sadeed** dataset is a large, high-quality Arabic diacritized corpus optimized for training and evaluating Arabic diacritization models.  
It is built exclusively from the [Tashkeela corpus](https://sourceforge.net/projects/tashkeela/) for the training set and a refined version of the [Fadel Tashkeela test set](https://github.com/AliOsm/arabic-text-diacritization) for the test set.

## Dataset Overview

- **Training Data**:  
  - **Source**: Cleaned version of the Tashkeela corpus (original data is ~75 million words, mostly Classical Arabic, with ~1.15% Modern Standard Arabic).
  - **Total Examples**: 1,042,698  
  - **Total Words**: ~53 million  

- **Testing Data**:  
  - **Source**: Corrected version of the Fadel Tashkeela test set, addressing inconsistencies in handling *iltiqā` as-sākinayn* (adjacent consonants without intervening vowels).
  - **Total Examples**: 2485 samples
  - **Notes**: The test set is refined for phonological consistency according to standard Arabic rules.

- **Features**:  
  - Fully normalized Arabic text  
  - Minimal missing diacritics  
  - Chunked into coherent samples (50–60 words)  
  - Designed to preserve syntactic and contextual dependencies  

---

## Preprocessing Details

### 1. Text Cleaning
- **Diacritization Corrections**:  
  - Unified diacritization style.
  - Corrected diacritization of frequent errors.
  - Resolved inconsistencies in *iltiqa' assakinayn* (consonant cluster rules) based on standard phonological rules.

- **Normalization**:  
  - Applied a comprehensive preprocessing pipeline inspired by [Kuwain](https://github.com/misraj-ai/Kuwain-Arabic-cleaner), preserving non-Arabic characters and symbols.

- **Consistency**:  
  - Additional normalization steps to ensure stylistic and grammatical consistency across the dataset.

### 2. Text Chunking
- Segmented into samples of **50–60 words** each.
- Used a hierarchical strategy prioritizing natural linguistic breaks, focusing on stronger punctuation first (e.g., sentence-ending punctuation, then commas).
- Designed to preserve the syntactic and contextual coherence of text chunks.

### 3. Dataset Filtering
- **Missing Diacritics**:  
  - Excluded samples with more than two undiacritized words.
- **Partial Diacritics**:  
  - Removed samples with three or more partially diacritized words.
- **Test Set Overlap**:  
  - Eliminated overlapping examples with the Fadel Tashkeela test set, reducing overlap to only **0.4%**.

---

## Usage

This dataset is ideal for:

- **Training**: Using the cleaned Tashkeela corpus to train models for Arabic diacritization.
- **Testing**: Evaluating diacritization systems with the refined Fadel Tashkeela test set.
- Arabic NLP tasks that require fully vocalized texts.

---

## Evaluation Code

The evaluation code for this dataset is available at:
https://github.com/misraj-ai/Sadeed
---

## Citation

If you use this dataset, please cite:

```bibtex
@misc{aldallal2025sadeedadvancingarabicdiacritization,
      title={Sadeed: Advancing Arabic Diacritization Through Small Language Model}, 
      author={Zeina Aldallal and Sara Chrouf and Khalil Hennara and Mohamed Motaism Hamed and Muhammad Hreden and Safwan AlModhayan},
      year={2025},
      eprint={2504.21635},
      archivePrefix={arXiv},
      url={https://huggingface.co/papers/2504.21635}, 
}
```
---

## License

This dataset is distributed for **research purposes only**.  
Please review the original [Tashkeela corpus license](https://sourceforge.net/projects/tashkeela/) for terms of use.