Datasets:
Formats:
json
Size:
10K - 100K
from transformers import AutoTokenizer | |
import orjson # for speed | |
from tqdm import tqdm | |
from multiprocessing import Pool | |
input_file = "filtered-ass.jsonl" | |
output_file = "tokenized-ass.jsonl" | |
model_name = "microsoft/phi-4" # Change this to whatever HF model you're using | |
max_tokens = 16384 | |
# Load your tokenizer only once for each worker | |
def init_worker(): | |
global tokenizer | |
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True) | |
def process_line(line): | |
try: | |
record = orjson.loads(line) | |
content = record.get("content", "") | |
if not content: # Skip entries with blank content | |
return None | |
# Tokenize and check length | |
token_count = len(tokenizer.encode(content, add_special_tokens=False)) | |
if token_count <= max_tokens: | |
return orjson.dumps(record).decode("utf-8") | |
except Exception: | |
return None # Skip problematic entries | |
def main(): | |
with open(input_file, "r") as infile: | |
lines = infile.readlines() | |
num_workers = 12 # Use all those 12 cores you're so proud of | |
with Pool(num_workers, initializer=init_worker) as pool: | |
results = list( | |
tqdm( | |
pool.imap(process_line, lines), | |
desc="Filtering based on token limit", | |
total=len(lines), | |
) | |
) | |
with open(output_file, "w") as outfile: | |
for result in results: | |
if result: | |
outfile.write(result + "\n") | |
if __name__ == "__main__": | |
main() |