klamike commited on
Commit
3875184
·
verified ·
1 Parent(s): fecf6d3

Add files using upload-large-folder tool

Browse files
.gitattributes CHANGED
@@ -57,3 +57,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
57
  # Video files - compressed
58
  *.mp4 filter=lfs diff=lfs merge=lfs -text
59
  *.webm filter=lfs diff=lfs merge=lfs -text
 
 
 
 
57
  # Video files - compressed
58
  *.mp4 filter=lfs diff=lfs merge=lfs -text
59
  *.webm filter=lfs diff=lfs merge=lfs -text
60
+ train/SOCOPF/dual/xac filter=lfs diff=lfs merge=lfs -text
61
+ train/SOCOPF/dual/xaa filter=lfs diff=lfs merge=lfs -text
62
+ train/SOCOPF/dual/xab filter=lfs diff=lfs merge=lfs -text
PGLearn-Medium-1888_rte.py ADDED
@@ -0,0 +1,429 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+ from dataclasses import dataclass
3
+ from pathlib import Path
4
+ import json
5
+ import shutil
6
+
7
+ import datasets as hfd
8
+ import h5py
9
+ import pgzip as gzip
10
+ import pyarrow as pa
11
+
12
+ # ┌──────────────┐
13
+ # │ Metadata │
14
+ # └──────────────┘
15
+
16
+ @dataclass
17
+ class CaseSizes:
18
+ n_bus: int
19
+ n_load: int
20
+ n_gen: int
21
+ n_branch: int
22
+
23
+ CASENAME = "1888_rte"
24
+ SIZES = CaseSizes(n_bus=1888, n_load=1000, n_gen=290, n_branch=2531)
25
+ NUM_TRAIN = 371587
26
+ NUM_TEST = 92897
27
+ NUM_INFEASIBLE = 35516
28
+ SPLITFILES = {
29
+ "train/SOCOPF/dual.h5.gz": ["train/SOCOPF/dual/xaa", "train/SOCOPF/dual/xab", "train/SOCOPF/dual/xac"],
30
+ }
31
+
32
+ URL = "https://huggingface.co/datasets/PGLearn/PGLearn-Medium-1888_rte"
33
+ DESCRIPTION = """\
34
+ The 1888_rte PGLearn optimal power flow dataset, part of the PGLearn-Medium collection. \
35
+ """
36
+ VERSION = hfd.Version("1.0.0")
37
+ DEFAULT_CONFIG_DESCRIPTION="""\
38
+ This configuration contains feasible input, primal solution, and dual solution data \
39
+ for the ACOPF, DCOPF, and SOCOPF formulations on the {case} system. For case data, \
40
+ download the case.json.gz file from the `script` branch of the repository. \
41
+ https://huggingface.co/datasets/PGLearn/PGLearn-Medium-1888_rte/blob/script/case.json.gz
42
+ """
43
+ USE_ML4OPF_WARNING = """
44
+ ================================================================================================
45
+ Loading PGLearn-Medium-1888_rte through the `datasets.load_dataset` function may be slow.
46
+
47
+ Consider using ML4OPF to directly convert to `torch.Tensor`; for more info see:
48
+ https://github.com/AI4OPT/ML4OPF?tab=readme-ov-file#manually-loading-data
49
+
50
+ Or, use `huggingface_hub.snapshot_download` and an HDF5 reader; for more info see:
51
+ https://huggingface.co/datasets/PGLearn/PGLearn-Medium-1888_rte#downloading-individual-files
52
+ ================================================================================================
53
+ """
54
+ CITATION = """\
55
+ @article{klamkinpglearn,
56
+ title={{PGLearn - An Open-Source Learning Toolkit for Optimal Power Flow}},
57
+ author={Klamkin, Michael and Tanneau, Mathieu and Van Hentenryck, Pascal},
58
+ year={2025},
59
+ }\
60
+ """
61
+
62
+ IS_COMPRESSED = True
63
+
64
+ # ┌──────────────────┐
65
+ # │ Formulations │
66
+ # └──────────────────┘
67
+
68
+ def acopf_features(sizes: CaseSizes, primal: bool, dual: bool, meta: bool):
69
+ features = {}
70
+ if primal: features.update(acopf_primal_features(sizes))
71
+ if dual: features.update(acopf_dual_features(sizes))
72
+ if meta: features.update({f"ACOPF/{k}": v for k, v in META_FEATURES.items()})
73
+ return features
74
+
75
+ def dcopf_features(sizes: CaseSizes, primal: bool, dual: bool, meta: bool):
76
+ features = {}
77
+ if primal: features.update(dcopf_primal_features(sizes))
78
+ if dual: features.update(dcopf_dual_features(sizes))
79
+ if meta: features.update({f"DCOPF/{k}": v for k, v in META_FEATURES.items()})
80
+ return features
81
+
82
+ def socopf_features(sizes: CaseSizes, primal: bool, dual: bool, meta: bool):
83
+ features = {}
84
+ if primal: features.update(socopf_primal_features(sizes))
85
+ if dual: features.update(socopf_dual_features(sizes))
86
+ if meta: features.update({f"SOCOPF/{k}": v for k, v in META_FEATURES.items()})
87
+ return features
88
+
89
+ FORMULATIONS_TO_FEATURES = {
90
+ "ACOPF": acopf_features,
91
+ "DCOPF": dcopf_features,
92
+ "SOCOPF": socopf_features,
93
+ }
94
+
95
+ # ┌───────────────────┐
96
+ # │ BuilderConfig │
97
+ # └───────────────────┘
98
+
99
+ class PGLearnMedium1888_rteConfig(hfd.BuilderConfig):
100
+ """BuilderConfig for PGLearn-Medium-1888_rte.
101
+ By default, primal solution data, metadata, input, casejson, are included for the train and test splits.
102
+
103
+ To modify the default configuration, pass attributes of this class to `datasets.load_dataset`:
104
+
105
+ Attributes:
106
+ formulations (list[str]): The formulation(s) to include, e.g. ["ACOPF", "DCOPF"]
107
+ primal (bool, optional): Include primal solution data. Defaults to True.
108
+ dual (bool, optional): Include dual solution data. Defaults to False.
109
+ meta (bool, optional): Include metadata. Defaults to True.
110
+ input (bool, optional): Include input data. Defaults to True.
111
+ casejson (bool, optional): Include case.json data. Defaults to True.
112
+ train (bool, optional): Include training samples. Defaults to True.
113
+ test (bool, optional): Include testing samples. Defaults to True.
114
+ infeasible (bool, optional): Include infeasible samples. Defaults to False.
115
+ """
116
+ def __init__(self,
117
+ formulations: list[str],
118
+ primal: bool=True, dual: bool=False, meta: bool=True, input: bool = True, casejson: bool=True,
119
+ train: bool=True, test: bool=True, infeasible: bool=False,
120
+ compressed: bool=IS_COMPRESSED, **kwargs
121
+ ):
122
+ super(PGLearnMedium1888_rteConfig, self).__init__(version=VERSION, **kwargs)
123
+
124
+ self.case = CASENAME
125
+ self.formulations = formulations
126
+
127
+ self.primal = primal
128
+ self.dual = dual
129
+ self.meta = meta
130
+ self.input = input
131
+ self.casejson = casejson
132
+
133
+ self.train = train
134
+ self.test = test
135
+ self.infeasible = infeasible
136
+
137
+ self.gz_ext = ".gz" if compressed else ""
138
+
139
+ @property
140
+ def size(self):
141
+ return SIZES
142
+
143
+ @property
144
+ def features(self):
145
+ features = {}
146
+ if self.casejson: features.update(case_features())
147
+ if self.input: features.update(input_features(SIZES))
148
+ for formulation in self.formulations:
149
+ features.update(FORMULATIONS_TO_FEATURES[formulation](SIZES, self.primal, self.dual, self.meta))
150
+ return hfd.Features(features)
151
+
152
+ @property
153
+ def splits(self):
154
+ splits: dict[hfd.Split, dict[str, str | int]] = {}
155
+ if self.train:
156
+ splits[hfd.Split.TRAIN] = {
157
+ "name": "train",
158
+ "num_examples": NUM_TRAIN
159
+ }
160
+ if self.test:
161
+ splits[hfd.Split.TEST] = {
162
+ "name": "test",
163
+ "num_examples": NUM_TEST
164
+ }
165
+ if self.infeasible:
166
+ splits[hfd.Split("infeasible")] = {
167
+ "name": "infeasible",
168
+ "num_examples": NUM_INFEASIBLE
169
+ }
170
+ return splits
171
+
172
+ @property
173
+ def urls(self):
174
+ urls: dict[str, None | str | list] = {
175
+ "case": None, "train": [], "test": [], "infeasible": [],
176
+ }
177
+
178
+ if self.casejson:
179
+ urls["case"] = f"case.json" + self.gz_ext
180
+ else:
181
+ urls.pop("case")
182
+
183
+ split_names = []
184
+ if self.train: split_names.append("train")
185
+ if self.test: split_names.append("test")
186
+ if self.infeasible: split_names.append("infeasible")
187
+
188
+ for split in split_names:
189
+ if self.input: urls[split].append(f"{split}/input.h5" + self.gz_ext)
190
+ for formulation in self.formulations:
191
+ if self.primal:
192
+ filename = f"{split}/{formulation}/primal.h5" + self.gz_ext
193
+ if filename in SPLITFILES: urls[split].append(SPLITFILES[filename])
194
+ else: urls[split].append(filename)
195
+ if self.dual:
196
+ filename = f"{split}/{formulation}/dual.h5" + self.gz_ext
197
+ if filename in SPLITFILES: urls[split].append(SPLITFILES[filename])
198
+ else: urls[split].append(filename)
199
+ if self.meta:
200
+ filename = f"{split}/{formulation}/meta.h5" + self.gz_ext
201
+ if filename in SPLITFILES: urls[split].append(SPLITFILES[filename])
202
+ else: urls[split].append(filename)
203
+ return urls
204
+
205
+ # ┌────────────────────┐
206
+ # │ DatasetBuilder │
207
+ # └────────────────────┘
208
+
209
+ class PGLearnMedium1888_rte(hfd.ArrowBasedBuilder):
210
+ """DatasetBuilder for PGLearn-Medium-1888_rte.
211
+ The main interface is `datasets.load_dataset` with `trust_remote_code=True`, e.g.
212
+
213
+ ```python
214
+ from datasets import load_dataset
215
+ ds = load_dataset("PGLearn/PGLearn-Medium-1888_rte", trust_remote_code=True,
216
+ # modify the default configuration by passing kwargs
217
+ formulations=["DCOPF"],
218
+ dual=False,
219
+ meta=False,
220
+ )
221
+ ```
222
+ """
223
+
224
+ DEFAULT_WRITER_BATCH_SIZE = 10000
225
+ BUILDER_CONFIG_CLASS = PGLearnMedium1888_rteConfig
226
+ DEFAULT_CONFIG_NAME=CASENAME
227
+ BUILDER_CONFIGS = [
228
+ PGLearnMedium1888_rteConfig(
229
+ name=CASENAME, description=DEFAULT_CONFIG_DESCRIPTION.format(case=CASENAME),
230
+ formulations=list(FORMULATIONS_TO_FEATURES.keys()),
231
+ primal=True, dual=True, meta=True, input=True, casejson=False,
232
+ train=True, test=True, infeasible=False,
233
+ )
234
+ ]
235
+
236
+ def _info(self):
237
+ return hfd.DatasetInfo(
238
+ features=self.config.features, splits=self.config.splits,
239
+ description=DESCRIPTION + self.config.description,
240
+ homepage=URL, citation=CITATION,
241
+ )
242
+
243
+ def _split_generators(self, dl_manager: hfd.DownloadManager):
244
+ hfd.logging.get_logger().warning(USE_ML4OPF_WARNING)
245
+
246
+ filepaths = dl_manager.download_and_extract(self.config.urls)
247
+
248
+ splits: list[hfd.SplitGenerator] = []
249
+ if self.config.train:
250
+ splits.append(hfd.SplitGenerator(
251
+ name=hfd.Split.TRAIN,
252
+ gen_kwargs=dict(case_file=filepaths.get("case", None), data_files=tuple(filepaths["train"]), n_samples=NUM_TRAIN),
253
+ ))
254
+ if self.config.test:
255
+ splits.append(hfd.SplitGenerator(
256
+ name=hfd.Split.TEST,
257
+ gen_kwargs=dict(case_file=filepaths.get("case", None), data_files=tuple(filepaths["test"]), n_samples=NUM_TEST),
258
+ ))
259
+ if self.config.infeasible:
260
+ splits.append(hfd.SplitGenerator(
261
+ name=hfd.Split("infeasible"),
262
+ gen_kwargs=dict(case_file=filepaths.get("case", None), data_files=tuple(filepaths["infeasible"]), n_samples=NUM_INFEASIBLE),
263
+ ))
264
+ return splits
265
+
266
+ def _generate_tables(self, case_file: str | None, data_files: tuple[hfd.utils.track.tracked_str | list[hfd.utils.track.tracked_str]], n_samples: int):
267
+ case_data: str | None = json.dumps(json.load(open_maybe_gzip_cat(case_file))) if case_file is not None else None
268
+ data: dict[str, h5py.File] = {}
269
+ for file in data_files:
270
+ v = h5py.File(open_maybe_gzip_cat(file), "r")
271
+ if isinstance(file, list):
272
+ k = "/".join(Path(file[0].get_origin()).parts[-3:-1]).split(".")[0]
273
+ else:
274
+ k = "/".join(Path(file.get_origin()).parts[-2:]).split(".")[0]
275
+ data[k] = v
276
+ for k in list(data.keys()):
277
+ if "/input" in k: data[k.split("/", 1)[1]] = data.pop(k)
278
+
279
+ batch_size = self._writer_batch_size or self.DEFAULT_WRITER_BATCH_SIZE
280
+ for i in range(0, n_samples, batch_size):
281
+ effective_batch_size = min(batch_size, n_samples - i)
282
+
283
+ sample_data = {
284
+ f"{dk}/{k}":
285
+ hfd.features.features.numpy_to_pyarrow_listarray(v[i:i + effective_batch_size, ...])
286
+ for dk, d in data.items() for k, v in d.items() if f"{dk}/{k}" in self.config.features
287
+ }
288
+
289
+ if case_data is not None:
290
+ sample_data["case/json"] = pa.array([case_data] * effective_batch_size)
291
+
292
+ yield i, pa.Table.from_pydict(sample_data)
293
+
294
+ for f in data.values():
295
+ f.close()
296
+
297
+ # ┌──────────────┐
298
+ # │ Features │
299
+ # └──────────────┘
300
+
301
+ FLOAT_TYPE = "float32"
302
+ INT_TYPE = "int64"
303
+ BOOL_TYPE = "bool"
304
+ STRING_TYPE = "string"
305
+
306
+ def case_features():
307
+ # FIXME: better way to share schema of case data -- need to treat jagged arrays
308
+ return {
309
+ "case/json": hfd.Value(STRING_TYPE),
310
+ }
311
+
312
+ META_FEATURES = {
313
+ "meta/seed": hfd.Value(dtype=INT_TYPE),
314
+ "meta/formulation": hfd.Value(dtype=STRING_TYPE),
315
+ "meta/primal_objective_value": hfd.Value(dtype=FLOAT_TYPE),
316
+ "meta/dual_objective_value": hfd.Value(dtype=FLOAT_TYPE),
317
+ "meta/primal_status": hfd.Value(dtype=STRING_TYPE),
318
+ "meta/dual_status": hfd.Value(dtype=STRING_TYPE),
319
+ "meta/termination_status": hfd.Value(dtype=STRING_TYPE),
320
+ "meta/build_time": hfd.Value(dtype=FLOAT_TYPE),
321
+ "meta/extract_time": hfd.Value(dtype=FLOAT_TYPE),
322
+ "meta/solve_time": hfd.Value(dtype=FLOAT_TYPE),
323
+ }
324
+
325
+ def input_features(sizes: CaseSizes):
326
+ return {
327
+ "input/pd": hfd.Sequence(length=sizes.n_load, feature=hfd.Value(dtype=FLOAT_TYPE)),
328
+ "input/qd": hfd.Sequence(length=sizes.n_load, feature=hfd.Value(dtype=FLOAT_TYPE)),
329
+ "input/gen_status": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=BOOL_TYPE)),
330
+ "input/branch_status": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=BOOL_TYPE)),
331
+ "input/seed": hfd.Value(dtype=INT_TYPE),
332
+ }
333
+
334
+ def acopf_primal_features(sizes: CaseSizes):
335
+ return {
336
+ "ACOPF/primal/vm": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
337
+ "ACOPF/primal/va": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
338
+ "ACOPF/primal/pg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
339
+ "ACOPF/primal/qg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
340
+ "ACOPF/primal/pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
341
+ "ACOPF/primal/pt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
342
+ "ACOPF/primal/qf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
343
+ "ACOPF/primal/qt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
344
+ }
345
+ def acopf_dual_features(sizes: CaseSizes):
346
+ return {
347
+ "ACOPF/dual/kcl_p": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
348
+ "ACOPF/dual/kcl_q": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
349
+ "ACOPF/dual/vm": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
350
+ "ACOPF/dual/pg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
351
+ "ACOPF/dual/qg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
352
+ "ACOPF/dual/ohm_pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
353
+ "ACOPF/dual/ohm_pt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
354
+ "ACOPF/dual/ohm_qf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
355
+ "ACOPF/dual/ohm_qt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
356
+ "ACOPF/dual/pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
357
+ "ACOPF/dual/pt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
358
+ "ACOPF/dual/qf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
359
+ "ACOPF/dual/qt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
360
+ "ACOPF/dual/va_diff": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
361
+ "ACOPF/dual/sm_fr": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
362
+ "ACOPF/dual/sm_to": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
363
+ "ACOPF/dual/slack_bus": hfd.Value(dtype=FLOAT_TYPE),
364
+ }
365
+ def dcopf_primal_features(sizes: CaseSizes):
366
+ return {
367
+ "DCOPF/primal/va": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
368
+ "DCOPF/primal/pg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
369
+ "DCOPF/primal/pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
370
+ }
371
+ def dcopf_dual_features(sizes: CaseSizes):
372
+ return {
373
+ "DCOPF/dual/kcl_p": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
374
+ "DCOPF/dual/pg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
375
+ "DCOPF/dual/ohm_pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
376
+ "DCOPF/dual/pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
377
+ "DCOPF/dual/va_diff": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
378
+ "DCOPF/dual/slack_bus": hfd.Value(dtype=FLOAT_TYPE),
379
+ }
380
+ def socopf_primal_features(sizes: CaseSizes):
381
+ return {
382
+ "SOCOPF/primal/w": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
383
+ "SOCOPF/primal/pg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
384
+ "SOCOPF/primal/qg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
385
+ "SOCOPF/primal/pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
386
+ "SOCOPF/primal/pt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
387
+ "SOCOPF/primal/qf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
388
+ "SOCOPF/primal/qt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
389
+ "SOCOPF/primal/wr": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
390
+ "SOCOPF/primal/wi": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
391
+ }
392
+ def socopf_dual_features(sizes: CaseSizes):
393
+ return {
394
+ "SOCOPF/dual/kcl_p": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
395
+ "SOCOPF/dual/kcl_q": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
396
+ "SOCOPF/dual/w": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
397
+ "SOCOPF/dual/pg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
398
+ "SOCOPF/dual/qg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
399
+ "SOCOPF/dual/ohm_pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
400
+ "SOCOPF/dual/ohm_pt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
401
+ "SOCOPF/dual/ohm_qf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
402
+ "SOCOPF/dual/ohm_qt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
403
+ "SOCOPF/dual/jabr": hfd.Array2D(shape=(sizes.n_branch, 4), dtype=FLOAT_TYPE),
404
+ "SOCOPF/dual/sm_fr": hfd.Array2D(shape=(sizes.n_branch, 3), dtype=FLOAT_TYPE),
405
+ "SOCOPF/dual/sm_to": hfd.Array2D(shape=(sizes.n_branch, 3), dtype=FLOAT_TYPE),
406
+ "SOCOPF/dual/va_diff": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
407
+ "SOCOPF/dual/wr": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
408
+ "SOCOPF/dual/wi": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
409
+ "SOCOPF/dual/pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
410
+ "SOCOPF/dual/pt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
411
+ "SOCOPF/dual/qf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
412
+ "SOCOPF/dual/qt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
413
+ }
414
+
415
+ # ┌───────────────┐
416
+ # │ Utilities │
417
+ # └───────────────┘
418
+
419
+ def open_maybe_gzip_cat(path: str | list):
420
+ if isinstance(path, list):
421
+ dest = Path(path[0]).parent.with_suffix(".h5")
422
+ if not dest.exists():
423
+ with open(dest, "wb") as dest_f:
424
+ for piece in path:
425
+ with open(piece, "rb") as piece_f:
426
+ shutil.copyfileobj(piece_f, dest_f)
427
+ shutil.rmtree(Path(piece).parent)
428
+ path = dest.as_posix()
429
+ return gzip.open(path, "rb") if path.endswith(".gz") else open(path, "rb")
README.md ADDED
@@ -0,0 +1,293 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-sa-4.0
3
+ tags:
4
+ - energy
5
+ - optimization
6
+ - optimal_power_flow
7
+ - power_grid
8
+ pretty_name: PGLearn Optimal Power Flow (1888_rte)
9
+ task_categories:
10
+ - tabular-regression
11
+ dataset_info:
12
+ config_name: 1888_rte
13
+ features:
14
+ - name: input/pd
15
+ sequence: float32
16
+ length: 1000
17
+ - name: input/qd
18
+ sequence: float32
19
+ length: 1000
20
+ - name: input/gen_status
21
+ sequence: bool
22
+ length: 290
23
+ - name: input/branch_status
24
+ sequence: bool
25
+ length: 2531
26
+ - name: input/seed
27
+ dtype: int64
28
+ - name: ACOPF/primal/vm
29
+ sequence: float32
30
+ length: 1888
31
+ - name: ACOPF/primal/va
32
+ sequence: float32
33
+ length: 1888
34
+ - name: ACOPF/primal/pg
35
+ sequence: float32
36
+ length: 290
37
+ - name: ACOPF/primal/qg
38
+ sequence: float32
39
+ length: 290
40
+ - name: ACOPF/primal/pf
41
+ sequence: float32
42
+ length: 2531
43
+ - name: ACOPF/primal/pt
44
+ sequence: float32
45
+ length: 2531
46
+ - name: ACOPF/primal/qf
47
+ sequence: float32
48
+ length: 2531
49
+ - name: ACOPF/primal/qt
50
+ sequence: float32
51
+ length: 2531
52
+ - name: ACOPF/dual/kcl_p
53
+ sequence: float32
54
+ length: 1888
55
+ - name: ACOPF/dual/kcl_q
56
+ sequence: float32
57
+ length: 1888
58
+ - name: ACOPF/dual/vm
59
+ sequence: float32
60
+ length: 1888
61
+ - name: ACOPF/dual/pg
62
+ sequence: float32
63
+ length: 290
64
+ - name: ACOPF/dual/qg
65
+ sequence: float32
66
+ length: 290
67
+ - name: ACOPF/dual/ohm_pf
68
+ sequence: float32
69
+ length: 2531
70
+ - name: ACOPF/dual/ohm_pt
71
+ sequence: float32
72
+ length: 2531
73
+ - name: ACOPF/dual/ohm_qf
74
+ sequence: float32
75
+ length: 2531
76
+ - name: ACOPF/dual/ohm_qt
77
+ sequence: float32
78
+ length: 2531
79
+ - name: ACOPF/dual/pf
80
+ sequence: float32
81
+ length: 2531
82
+ - name: ACOPF/dual/pt
83
+ sequence: float32
84
+ length: 2531
85
+ - name: ACOPF/dual/qf
86
+ sequence: float32
87
+ length: 2531
88
+ - name: ACOPF/dual/qt
89
+ sequence: float32
90
+ length: 2531
91
+ - name: ACOPF/dual/va_diff
92
+ sequence: float32
93
+ length: 2531
94
+ - name: ACOPF/dual/sm_fr
95
+ sequence: float32
96
+ length: 2531
97
+ - name: ACOPF/dual/sm_to
98
+ sequence: float32
99
+ length: 2531
100
+ - name: ACOPF/dual/slack_bus
101
+ dtype: float32
102
+ - name: ACOPF/meta/seed
103
+ dtype: int64
104
+ - name: ACOPF/meta/formulation
105
+ dtype: string
106
+ - name: ACOPF/meta/primal_objective_value
107
+ dtype: float32
108
+ - name: ACOPF/meta/dual_objective_value
109
+ dtype: float32
110
+ - name: ACOPF/meta/primal_status
111
+ dtype: string
112
+ - name: ACOPF/meta/dual_status
113
+ dtype: string
114
+ - name: ACOPF/meta/termination_status
115
+ dtype: string
116
+ - name: ACOPF/meta/build_time
117
+ dtype: float32
118
+ - name: ACOPF/meta/extract_time
119
+ dtype: float32
120
+ - name: ACOPF/meta/solve_time
121
+ dtype: float32
122
+ - name: DCOPF/primal/va
123
+ sequence: float32
124
+ length: 1888
125
+ - name: DCOPF/primal/pg
126
+ sequence: float32
127
+ length: 290
128
+ - name: DCOPF/primal/pf
129
+ sequence: float32
130
+ length: 2531
131
+ - name: DCOPF/dual/kcl_p
132
+ sequence: float32
133
+ length: 1888
134
+ - name: DCOPF/dual/pg
135
+ sequence: float32
136
+ length: 290
137
+ - name: DCOPF/dual/ohm_pf
138
+ sequence: float32
139
+ length: 2531
140
+ - name: DCOPF/dual/pf
141
+ sequence: float32
142
+ length: 2531
143
+ - name: DCOPF/dual/va_diff
144
+ sequence: float32
145
+ length: 2531
146
+ - name: DCOPF/dual/slack_bus
147
+ dtype: float32
148
+ - name: DCOPF/meta/seed
149
+ dtype: int64
150
+ - name: DCOPF/meta/formulation
151
+ dtype: string
152
+ - name: DCOPF/meta/primal_objective_value
153
+ dtype: float32
154
+ - name: DCOPF/meta/dual_objective_value
155
+ dtype: float32
156
+ - name: DCOPF/meta/primal_status
157
+ dtype: string
158
+ - name: DCOPF/meta/dual_status
159
+ dtype: string
160
+ - name: DCOPF/meta/termination_status
161
+ dtype: string
162
+ - name: DCOPF/meta/build_time
163
+ dtype: float32
164
+ - name: DCOPF/meta/extract_time
165
+ dtype: float32
166
+ - name: DCOPF/meta/solve_time
167
+ dtype: float32
168
+ - name: SOCOPF/primal/w
169
+ sequence: float32
170
+ length: 1888
171
+ - name: SOCOPF/primal/pg
172
+ sequence: float32
173
+ length: 290
174
+ - name: SOCOPF/primal/qg
175
+ sequence: float32
176
+ length: 290
177
+ - name: SOCOPF/primal/pf
178
+ sequence: float32
179
+ length: 2531
180
+ - name: SOCOPF/primal/pt
181
+ sequence: float32
182
+ length: 2531
183
+ - name: SOCOPF/primal/qf
184
+ sequence: float32
185
+ length: 2531
186
+ - name: SOCOPF/primal/qt
187
+ sequence: float32
188
+ length: 2531
189
+ - name: SOCOPF/primal/wr
190
+ sequence: float32
191
+ length: 2531
192
+ - name: SOCOPF/primal/wi
193
+ sequence: float32
194
+ length: 2531
195
+ - name: SOCOPF/dual/kcl_p
196
+ sequence: float32
197
+ length: 1888
198
+ - name: SOCOPF/dual/kcl_q
199
+ sequence: float32
200
+ length: 1888
201
+ - name: SOCOPF/dual/w
202
+ sequence: float32
203
+ length: 1888
204
+ - name: SOCOPF/dual/pg
205
+ sequence: float32
206
+ length: 290
207
+ - name: SOCOPF/dual/qg
208
+ sequence: float32
209
+ length: 290
210
+ - name: SOCOPF/dual/ohm_pf
211
+ sequence: float32
212
+ length: 2531
213
+ - name: SOCOPF/dual/ohm_pt
214
+ sequence: float32
215
+ length: 2531
216
+ - name: SOCOPF/dual/ohm_qf
217
+ sequence: float32
218
+ length: 2531
219
+ - name: SOCOPF/dual/ohm_qt
220
+ sequence: float32
221
+ length: 2531
222
+ - name: SOCOPF/dual/jabr
223
+ dtype:
224
+ array2_d:
225
+ shape:
226
+ - 2531
227
+ - 4
228
+ dtype: float32
229
+ - name: SOCOPF/dual/sm_fr
230
+ dtype:
231
+ array2_d:
232
+ shape:
233
+ - 2531
234
+ - 3
235
+ dtype: float32
236
+ - name: SOCOPF/dual/sm_to
237
+ dtype:
238
+ array2_d:
239
+ shape:
240
+ - 2531
241
+ - 3
242
+ dtype: float32
243
+ - name: SOCOPF/dual/va_diff
244
+ sequence: float32
245
+ length: 2531
246
+ - name: SOCOPF/dual/wr
247
+ sequence: float32
248
+ length: 2531
249
+ - name: SOCOPF/dual/wi
250
+ sequence: float32
251
+ length: 2531
252
+ - name: SOCOPF/dual/pf
253
+ sequence: float32
254
+ length: 2531
255
+ - name: SOCOPF/dual/pt
256
+ sequence: float32
257
+ length: 2531
258
+ - name: SOCOPF/dual/qf
259
+ sequence: float32
260
+ length: 2531
261
+ - name: SOCOPF/dual/qt
262
+ sequence: float32
263
+ length: 2531
264
+ - name: SOCOPF/meta/seed
265
+ dtype: int64
266
+ - name: SOCOPF/meta/formulation
267
+ dtype: string
268
+ - name: SOCOPF/meta/primal_objective_value
269
+ dtype: float32
270
+ - name: SOCOPF/meta/dual_objective_value
271
+ dtype: float32
272
+ - name: SOCOPF/meta/primal_status
273
+ dtype: string
274
+ - name: SOCOPF/meta/dual_status
275
+ dtype: string
276
+ - name: SOCOPF/meta/termination_status
277
+ dtype: string
278
+ - name: SOCOPF/meta/build_time
279
+ dtype: float32
280
+ - name: SOCOPF/meta/extract_time
281
+ dtype: float32
282
+ - name: SOCOPF/meta/solve_time
283
+ dtype: float32
284
+ splits:
285
+ - name: train
286
+ num_bytes: 211462962203
287
+ num_examples: 371587
288
+ - name: test
289
+ num_bytes: 52865882822
290
+ num_examples: 92897
291
+ download_size: 221548942567
292
+ dataset_size: 264328845025
293
+ ---
case.json.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:04bef6d8d495d8968d096fdb549b8e646430bfcbd07037199ba0c3d483634c39
3
+ size 1448847
config.toml ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Name of the reference PGLib case. Must be a valid PGLib case name.
2
+ pglib_case = "pglib_opf_case1888_rte"
3
+ floating_point_type = "Float32"
4
+
5
+ [sampler]
6
+ # data sampler options
7
+ [sampler.load]
8
+ noise_type = "ScaledUniform"
9
+ l = 0.7 # Lower bound of base load factor
10
+ u = 1.1 # Upper bound of base load factor
11
+ sigma = 0.20 # Relative (multiplicative) noise level.
12
+
13
+
14
+ [OPF]
15
+
16
+ [OPF.ACOPF]
17
+ type = "ACOPF"
18
+ solver.name = "Ipopt"
19
+ solver.attributes.tol = 1e-6
20
+ solver.attributes.linear_solver = "ma27"
21
+
22
+ [OPF.DCOPF]
23
+ # Formulation/solver options
24
+ type = "DCOPF"
25
+ solver.name = "HiGHS"
26
+
27
+ [OPF.SOCOPF]
28
+ type = "SOCOPF"
29
+ solver.name = "Clarabel"
30
+ # Tight tolerances
31
+ solver.attributes.tol_gap_abs = 1e-6
32
+ solver.attributes.tol_gap_rel = 1e-6
33
+ solver.attributes.tol_feas = 1e-6
34
+ solver.attributes.tol_infeas_rel = 1e-6
35
+ solver.attributes.tol_ktratio = 1e-6
36
+ # Reduced accuracy settings
37
+ solver.attributes.reduced_tol_gap_abs = 1e-6
38
+ solver.attributes.reduced_tol_gap_rel = 1e-6
39
+ solver.attributes.reduced_tol_feas = 1e-6
40
+ solver.attributes.reduced_tol_infeas_abs = 1e-6
41
+ solver.attributes.reduced_tol_infeas_rel = 1e-6
42
+ solver.attributes.reduced_tol_ktratio = 1e-6
infeasible/ACOPF/dual.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:198c13db2590bdd260dbee140dfe9a938964f9c86c87a1604ef6bdfe24d4b539
3
+ size 4374420083
infeasible/ACOPF/meta.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b2c6cf37eff40ed8fc1cd9a2ac11f7fffb20d0a0cb2240b6f351812dd01b3a35
3
+ size 1174026
infeasible/ACOPF/primal.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:df254bdf46c8344aa95f2d8dcf87f3d4aaa749fde1e242c322bc5eeddc5f96e2
3
+ size 1845622252
infeasible/DCOPF/dual.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a14b5a5e883f7f9c885e69b7c63624434d4affa38a71dd9843c9a9f0439a3693
3
+ size 133608111
infeasible/DCOPF/meta.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:73f147a445190cc6de1a6efdbcaf395e351720c61f4b71eda47624110b2a8172
3
+ size 1188365
infeasible/DCOPF/primal.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:95109b8bfcfb0d0814c0f4f8469fbb24bf8b4ff8f4fab96bbe2de35488d6d1d3
3
+ size 521286630
infeasible/SOCOPF/dual.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a43f76dd4e89bf68e5f68a383ac66a158883b0b728d09a1e77e820801c5d2a87
3
+ size 7345156989
infeasible/SOCOPF/meta.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1acaf7a04ce943510515818d3bf59391ea61410c474f6ee71694ea6ead6bf62d
3
+ size 1242153
infeasible/SOCOPF/primal.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0e7a6670e7ec7ea3c53c5f099b770b613c139fe634f12b15065bcfd3f7f1de9f
3
+ size 2141884604
infeasible/input.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4468d12fb16dbc0edd81529a0ccdebefa75ebb22216e5230143fd2d1b4bc8615
3
+ size 262430198
test/ACOPF/dual.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:035345139ba10243192f6b59a2333643de031651787b4933ae815431e50ea33d
3
+ size 10176519735
test/ACOPF/meta.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c56d1db5ade25fc2db37b3ea1b41cb82aefc65a9bcfe4aa5672d70b3d177f6d
3
+ size 3168804
test/ACOPF/primal.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2e2f39aa14286d080209312eccd91986e2c8058ac3ba980a95246e9fc82a2302
3
+ size 4599883525
test/DCOPF/dual.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ec2261a7a3d586c1761db089d5455e17031a84251579dc88b6ad71ae0d54a4c8
3
+ size 366996811
test/DCOPF/meta.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4e4dc1361c5dcc4115d39c6b40ac955916863d7766132e7a34921eeb85030a82
3
+ size 3080732
test/DCOPF/primal.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:18e68bfc4ec46c8cd71d15d21fa48958a880ba7232a64a33e9e090bd0ef328f1
3
+ size 1367542973
test/SOCOPF/dual.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:20bc17ca1d3f0c812401373324fc1ea41c4eb6bd39f814c572d11b3b866eabc8
3
+ size 19218771667
test/SOCOPF/meta.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:52d38ffdacbabc4cbe184e54730eec544a3a8262d01ad9981e8f72f8929b8d21
3
+ size 3164796
test/SOCOPF/primal.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:be5607be029b86da66c40c96523b4bae3352ff18ad7b9ad77c73f240972f0ac7
3
+ size 5602374327
test/input.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b980b40b75853cac97771fcda5fdcc0cb4bdcda4ba174cbfa899711397ca115a
3
+ size 686700820
train/ACOPF/dual.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f57ce97db72c9c5a1004f54fafd4a2fa59011faa9f89d9dd5a4303a5bf4f3145
3
+ size 40707507061
train/ACOPF/meta.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:95192d529b145badad7f793741ad52185ce786733073ac558163399eafa0c15a
3
+ size 12624833
train/ACOPF/primal.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fa78b43be055ed49846700422c95fab87d8588ef99f7845985c584c5cc18d701
3
+ size 18399494055
train/DCOPF/dual.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2f3084c9f9176009353d7e9ab7d63a7e9c9ad7d38f4c95f107dcd9b6c499093d
3
+ size 1468058276
train/DCOPF/meta.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b9605989aeb000f49cd466f1e57320a1999601ff796998d1575c4870c433801
3
+ size 12269505
train/DCOPF/primal.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:18f6bb21abfc73536bb267138cf607a104102f23918ae83c6cb6855c6a4bde1b
3
+ size 5470207642
train/SOCOPF/dual/xaa ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:91b0c75c754e5e83badbb4bfcb654bcba20aa654ced1d872327a75b9d0d1952e
3
+ size 32212254720
train/SOCOPF/dual/xab ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:03a236c323dc9f86d70cefe8673c82b8ea0d31c809a3044070d83010877b840a
3
+ size 32212254720
train/SOCOPF/dual/xac ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c604ec6a63ead93e753ab77cf7d7094d09b768aa04286841084dcaf372f1f70
3
+ size 23857138212
train/SOCOPF/meta.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:63dea48a5bf560b30aa3952ce5e805fba903bff8a31435c13326a6716f773cd9
3
+ size 12608098
train/SOCOPF/primal.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:62c9552d4bd791d0cc5119a5db42f1f4c6e63fab4fcd79e7446f3402ad3b6b33
3
+ size 22409529912
train/input.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:329792fd7c86372bdc072a688b9717c32ec14e887361189989d1f7ca4e017cef
3
+ size 2746791343