klamike commited on
Commit
bb32ebb
·
verified ·
1 Parent(s): 4f2ff25

Delete loading script

Browse files
Files changed (1) hide show
  1. PGLearn-Small-118_ieee.py +0 -397
PGLearn-Small-118_ieee.py DELETED
@@ -1,397 +0,0 @@
1
- from __future__ import annotations
2
- from dataclasses import dataclass
3
- from pathlib import Path
4
- import json
5
- import gzip
6
-
7
- import datasets as hfd
8
- import h5py
9
- import pyarrow as pa
10
-
11
- # ┌──────────────┐
12
- # │ Metadata │
13
- # └──────────────┘
14
-
15
- @dataclass
16
- class CaseSizes:
17
- n_bus: int
18
- n_load: int
19
- n_gen: int
20
- n_branch: int
21
-
22
- CASENAME = "118_ieee"
23
- SIZES = CaseSizes(n_bus=118, n_load=99, n_gen=54, n_branch=186)
24
- NUM_TRAIN = 799988
25
- NUM_TEST = 199997
26
- NUM_INFEASIBLE = 15
27
-
28
- URL = "https://huggingface.co/datasets/PGLearn/PGLearn-Small-118_ieee"
29
- DESCRIPTION = """\
30
- The 118_ieee PGLearn optimal power flow dataset, part of the PGLearn-Small collection. \
31
- """
32
- VERSION = hfd.Version("1.0.0")
33
- DEFAULT_CONFIG_DESCRIPTION="""\
34
- This configuration contains feasible input, metadata, primal solution, and dual solution data \
35
- for the ACOPF, DCOPF, and SOCOPF formulations on the {case} system.
36
- """
37
- USE_ML4OPF_WARNING = """
38
- ================================================================================================
39
- Loading PGLearn-Small-118_ieee through the `datasets.load_dataset` function may be slow.
40
-
41
- Consider using ML4OPF to directly convert to `torch.Tensor`; for more info see:
42
- https://github.com/AI4OPT/ML4OPF?tab=readme-ov-file#manually-loading-data
43
-
44
- Or, use `huggingface_hub.snapshot_download` and an HDF5 reader; for more info see:
45
- https://huggingface.co/datasets/PGLearn/PGLearn-Small-118_ieee#downloading-individual-files
46
- ================================================================================================
47
- """
48
- CITATION = """\
49
- @article{klamkinpglearn,
50
- title={{PGLearn - An Open-Source Learning Toolkit for Optimal Power Flow}},
51
- author={Klamkin, Michael and Tanneau, Mathieu and Van Hentenryck, Pascal},
52
- year={2025},
53
- }\
54
- """
55
-
56
- IS_COMPRESSED = True
57
-
58
- # ┌──────────────────┐
59
- # │ Formulations │
60
- # └──────────────────┘
61
-
62
- def acopf_features(sizes: CaseSizes, primal: bool, dual: bool, meta: bool):
63
- features = {}
64
- if primal: features.update(acopf_primal_features(sizes))
65
- if dual: features.update(acopf_dual_features(sizes))
66
- if meta: features.update({f"ACOPF/{k}": v for k, v in META_FEATURES.items()})
67
- return features
68
-
69
- def dcopf_features(sizes: CaseSizes, primal: bool, dual: bool, meta: bool):
70
- features = {}
71
- if primal: features.update(dcopf_primal_features(sizes))
72
- if dual: features.update(dcopf_dual_features(sizes))
73
- if meta: features.update({f"DCOPF/{k}": v for k, v in META_FEATURES.items()})
74
- return features
75
-
76
- def socopf_features(sizes: CaseSizes, primal: bool, dual: bool, meta: bool):
77
- features = {}
78
- if primal: features.update(socopf_primal_features(sizes))
79
- if dual: features.update(socopf_dual_features(sizes))
80
- if meta: features.update({f"SOCOPF/{k}": v for k, v in META_FEATURES.items()})
81
- return features
82
-
83
- FORMULATIONS_TO_FEATURES = {
84
- "ACOPF": acopf_features,
85
- "DCOPF": dcopf_features,
86
- "SOCOPF": socopf_features,
87
- }
88
-
89
- # ┌───────────────────┐
90
- # │ BuilderConfig │
91
- # └───────────────────┘
92
-
93
- class PGLearnSmall118_ieeeConfig(hfd.BuilderConfig):
94
- """BuilderConfig for PGLearn-Small-118_ieee.
95
- By default, primal solution data, metadata, input, casejson, are included for the train and test splits.
96
-
97
- To modify the default configuration, pass attributes of this class to `datasets.load_dataset`:
98
-
99
- Attributes:
100
- formulations (list[str]): The formulation(s) to include, e.g. ["ACOPF", "DCOPF"]
101
- primal (bool, optional): Include primal solution data. Defaults to True.
102
- dual (bool, optional): Include dual solution data. Defaults to False.
103
- meta (bool, optional): Include metadata. Defaults to True.
104
- input (bool, optional): Include input data. Defaults to True.
105
- casejson (bool, optional): Include case.json data. Defaults to True.
106
- train (bool, optional): Include training samples. Defaults to True.
107
- test (bool, optional): Include testing samples. Defaults to True.
108
- infeasible (bool, optional): Include infeasible samples. Defaults to False.
109
- """
110
- def __init__(self,
111
- formulations: list[str],
112
- primal: bool=True, dual: bool=False, meta: bool=True, input: bool = True, casejson: bool=True,
113
- train: bool=True, test: bool=True, infeasible: bool=False,
114
- compressed: bool=IS_COMPRESSED, **kwargs
115
- ):
116
- super(PGLearnSmall118_ieeeConfig, self).__init__(version=VERSION, **kwargs)
117
-
118
- self.case = CASENAME
119
- self.formulations = formulations
120
-
121
- self.primal = primal
122
- self.dual = dual
123
- self.meta = meta
124
- self.input = input
125
- self.casejson = casejson
126
-
127
- self.train = train
128
- self.test = test
129
- self.infeasible = infeasible
130
-
131
- self.gz_ext = ".gz" if compressed else ""
132
-
133
- @property
134
- def size(self):
135
- return SIZES
136
-
137
- @property
138
- def features(self):
139
- features = {}
140
- if self.casejson: features.update(case_features())
141
- if self.input: features.update(input_features(SIZES))
142
- for formulation in self.formulations:
143
- features.update(FORMULATIONS_TO_FEATURES[formulation](SIZES, self.primal, self.dual, self.meta))
144
- return hfd.Features(features)
145
-
146
- @property
147
- def splits(self):
148
- splits: dict[hfd.Split, dict[str, str | int]] = {}
149
- if self.train:
150
- splits[hfd.Split.TRAIN] = {
151
- "name": "train",
152
- "num_examples": NUM_TRAIN
153
- }
154
- if self.test:
155
- splits[hfd.Split.TEST] = {
156
- "name": "test",
157
- "num_examples": NUM_TEST
158
- }
159
- if self.infeasible:
160
- splits[hfd.Split("infeasible")] = {
161
- "name": "infeasible",
162
- "num_examples": NUM_INFEASIBLE
163
- }
164
- return splits
165
-
166
- @property
167
- def urls(self):
168
- urls: dict[str, None | str | list] = {
169
- "case": None, "train": [], "test": [], "infeasible": [],
170
- }
171
-
172
- if self.casejson: urls["case"] = f"case.json" + self.gz_ext
173
-
174
- split_names = []
175
- if self.train: split_names.append("train")
176
- if self.test: split_names.append("test")
177
- if self.infeasible: split_names.append("infeasible")
178
-
179
- for split in split_names:
180
- if self.input: urls[split].append(f"{split}/input.h5" + self.gz_ext)
181
- for formulation in self.formulations:
182
- if self.primal: urls[split].append(f"{split}/{formulation}/primal.h5" + self.gz_ext)
183
- if self.dual: urls[split].append(f"{split}/{formulation}/dual.h5" + self.gz_ext)
184
- if self.meta: urls[split].append(f"{split}/{formulation}/meta.h5" + self.gz_ext)
185
- return urls
186
-
187
- # ┌────────────────────┐
188
- # │ DatasetBuilder │
189
- # └────────────────────┘
190
-
191
- class PGLearnSmall118_ieee(hfd.ArrowBasedBuilder):
192
- """DatasetBuilder for PGLearn-Small-118_ieee.
193
- The main interface is `datasets.load_dataset` with `trust_remote_code=True`, e.g.
194
-
195
- ```python
196
- from datasets import load_dataset
197
- ds = load_dataset("PGLearn/PGLearn-Small-118_ieee", trust_remote_code=True,
198
- # modify the default configuration by passing kwargs
199
- formulations=["DCOPF"],
200
- dual=False,
201
- meta=False,
202
- )
203
- ```
204
- """
205
-
206
- DEFAULT_WRITER_BATCH_SIZE = 10000
207
- BUILDER_CONFIG_CLASS = PGLearnSmall118_ieeeConfig
208
- DEFAULT_CONFIG_NAME=CASENAME
209
- BUILDER_CONFIGS = [
210
- PGLearnSmall118_ieeeConfig(
211
- name=CASENAME, description=DEFAULT_CONFIG_DESCRIPTION.format(case=CASENAME),
212
- formulations=list(FORMULATIONS_TO_FEATURES.keys()),
213
- primal=True, dual=True, meta=True, input=True, casejson=True,
214
- train=True, test=True, infeasible=False,
215
- )
216
- ]
217
-
218
- def _info(self):
219
- return hfd.DatasetInfo(
220
- features=self.config.features, splits=self.config.splits,
221
- description=DESCRIPTION + self.config.description,
222
- homepage=URL, citation=CITATION,
223
- )
224
-
225
- def _split_generators(self, dl_manager: hfd.DownloadManager):
226
- hfd.logging.get_logger().warning(USE_ML4OPF_WARNING)
227
-
228
- filepaths = dl_manager.download_and_extract(self.config.urls)
229
-
230
- splits: list[hfd.SplitGenerator] = []
231
- if self.config.train:
232
- splits.append(hfd.SplitGenerator(
233
- name=hfd.Split.TRAIN,
234
- gen_kwargs=dict(case_file=filepaths["case"], data_files=tuple(filepaths["train"]), n_samples=NUM_TRAIN),
235
- ))
236
- if self.config.test:
237
- splits.append(hfd.SplitGenerator(
238
- name=hfd.Split.TEST,
239
- gen_kwargs=dict(case_file=filepaths["case"], data_files=tuple(filepaths["test"]), n_samples=NUM_TEST),
240
- ))
241
- if self.config.infeasible:
242
- splits.append(hfd.SplitGenerator(
243
- name=hfd.Split("infeasible"),
244
- gen_kwargs=dict(case_file=filepaths["case"], data_files=tuple(filepaths["infeasible"]), n_samples=NUM_INFEASIBLE),
245
- ))
246
- return splits
247
-
248
- def _generate_tables(self, case_file: str | None, data_files: tuple[hfd.utils.track.tracked_str], n_samples: int):
249
- case_data: str | None = json.dumps(json.load(open_maybe_gzip(case_file))) if case_file is not None else None
250
-
251
- opened_files = [open_maybe_gzip(file) for file in data_files]
252
- data = {'/'.join(Path(df.get_origin()).parts[-2:]).split('.')[0]: h5py.File(of) for of, df in zip(opened_files, data_files)}
253
- for k in list(data.keys()):
254
- if "/input" in k: data[k.split("/", 1)[1]] = data.pop(k)
255
-
256
- batch_size = self._writer_batch_size or self.DEFAULT_WRITER_BATCH_SIZE
257
- for i in range(0, n_samples, batch_size):
258
- effective_batch_size = min(batch_size, n_samples - i)
259
-
260
- sample_data = {
261
- f"{dk}/{k}":
262
- hfd.features.features.numpy_to_pyarrow_listarray(v[i:i + effective_batch_size, ...])
263
- for dk, d in data.items() for k, v in d.items() if f"{dk}/{k}" in self.config.features
264
- }
265
-
266
- if case_data is not None:
267
- sample_data["case/json"] = pa.array([case_data] * effective_batch_size)
268
-
269
- yield i, pa.Table.from_pydict(sample_data)
270
-
271
- for f in opened_files:
272
- f.close()
273
-
274
- # ┌──────────────┐
275
- # │ Features │
276
- # └──────────────┘
277
-
278
- FLOAT_TYPE = "float32"
279
- INT_TYPE = "int64"
280
- BOOL_TYPE = "bool"
281
- STRING_TYPE = "string"
282
-
283
- def case_features():
284
- # FIXME: better way to share schema of case data -- need to treat jagged arrays
285
- return {
286
- "case/json": hfd.Value(STRING_TYPE),
287
- }
288
-
289
- META_FEATURES = {
290
- "meta/seed": hfd.Value(dtype=INT_TYPE),
291
- "meta/formulation": hfd.Value(dtype=STRING_TYPE),
292
- "meta/primal_objective_value": hfd.Value(dtype=FLOAT_TYPE),
293
- "meta/dual_objective_value": hfd.Value(dtype=FLOAT_TYPE),
294
- "meta/primal_status": hfd.Value(dtype=STRING_TYPE),
295
- "meta/dual_status": hfd.Value(dtype=STRING_TYPE),
296
- "meta/termination_status": hfd.Value(dtype=STRING_TYPE),
297
- "meta/build_time": hfd.Value(dtype=FLOAT_TYPE),
298
- "meta/extract_time": hfd.Value(dtype=FLOAT_TYPE),
299
- "meta/solve_time": hfd.Value(dtype=FLOAT_TYPE),
300
- }
301
-
302
- def input_features(sizes: CaseSizes):
303
- return {
304
- "input/pd": hfd.Sequence(length=sizes.n_load, feature=hfd.Value(dtype=FLOAT_TYPE)),
305
- "input/qd": hfd.Sequence(length=sizes.n_load, feature=hfd.Value(dtype=FLOAT_TYPE)),
306
- "input/gen_status": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=BOOL_TYPE)),
307
- "input/branch_status": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=BOOL_TYPE)),
308
- "input/seed": hfd.Value(dtype=INT_TYPE),
309
- }
310
-
311
- def acopf_primal_features(sizes: CaseSizes):
312
- return {
313
- "ACOPF/primal/vm": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
314
- "ACOPF/primal/va": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
315
- "ACOPF/primal/pg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
316
- "ACOPF/primal/qg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
317
- "ACOPF/primal/pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
318
- "ACOPF/primal/pt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
319
- "ACOPF/primal/qf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
320
- "ACOPF/primal/qt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
321
- }
322
- def acopf_dual_features(sizes: CaseSizes):
323
- return {
324
- "ACOPF/dual/kcl_p": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
325
- "ACOPF/dual/kcl_q": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
326
- "ACOPF/dual/vm": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
327
- "ACOPF/dual/pg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
328
- "ACOPF/dual/qg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
329
- "ACOPF/dual/ohm_pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
330
- "ACOPF/dual/ohm_pt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
331
- "ACOPF/dual/ohm_qf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
332
- "ACOPF/dual/ohm_qt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
333
- "ACOPF/dual/pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
334
- "ACOPF/dual/pt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
335
- "ACOPF/dual/qf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
336
- "ACOPF/dual/qt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
337
- "ACOPF/dual/va_diff": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
338
- "ACOPF/dual/sm_fr": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
339
- "ACOPF/dual/sm_to": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
340
- "ACOPF/dual/slack_bus": hfd.Value(dtype=FLOAT_TYPE),
341
- }
342
- def dcopf_primal_features(sizes: CaseSizes):
343
- return {
344
- "DCOPF/primal/va": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
345
- "DCOPF/primal/pg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
346
- "DCOPF/primal/pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
347
- }
348
- def dcopf_dual_features(sizes: CaseSizes):
349
- return {
350
- "DCOPF/dual/kcl_p": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
351
- "DCOPF/dual/pg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
352
- "DCOPF/dual/ohm_pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
353
- "DCOPF/dual/pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
354
- "DCOPF/dual/va_diff": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
355
- "DCOPF/dual/slack_bus": hfd.Value(dtype=FLOAT_TYPE),
356
- }
357
- def socopf_primal_features(sizes: CaseSizes):
358
- return {
359
- "SOCOPF/primal/w": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
360
- "SOCOPF/primal/pg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
361
- "SOCOPF/primal/qg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
362
- "SOCOPF/primal/pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
363
- "SOCOPF/primal/pt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
364
- "SOCOPF/primal/qf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
365
- "SOCOPF/primal/qt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
366
- "SOCOPF/primal/wr": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
367
- "SOCOPF/primal/wi": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
368
- }
369
- def socopf_dual_features(sizes: CaseSizes):
370
- return {
371
- "SOCOPF/dual/kcl_p": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
372
- "SOCOPF/dual/kcl_q": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
373
- "SOCOPF/dual/w": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
374
- "SOCOPF/dual/pg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
375
- "SOCOPF/dual/qg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
376
- "SOCOPF/dual/ohm_pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
377
- "SOCOPF/dual/ohm_pt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
378
- "SOCOPF/dual/ohm_qf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
379
- "SOCOPF/dual/ohm_qt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
380
- "SOCOPF/dual/jabr": hfd.Array2D(shape=(sizes.n_branch, 4), dtype=FLOAT_TYPE),
381
- "SOCOPF/dual/sm_fr": hfd.Array2D(shape=(sizes.n_branch, 3), dtype=FLOAT_TYPE),
382
- "SOCOPF/dual/sm_to": hfd.Array2D(shape=(sizes.n_branch, 3), dtype=FLOAT_TYPE),
383
- "SOCOPF/dual/va_diff": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
384
- "SOCOPF/dual/wr": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
385
- "SOCOPF/dual/wi": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
386
- "SOCOPF/dual/pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
387
- "SOCOPF/dual/pt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
388
- "SOCOPF/dual/qf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
389
- "SOCOPF/dual/qt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
390
- }
391
-
392
- # ┌───────────────┐
393
- # │ Utilities │
394
- # └───────────────┘
395
-
396
- def open_maybe_gzip(path):
397
- return gzip.open(path, "rb") if path.endswith(".gz") else open(path, "rb")