File size: 4,025 Bytes
717cc57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f5596e
717cc57
 
 
 
a904ed7
717cc57
 
78e4054
717cc57
78e4054
717cc57
78e4054
 
 
 
 
 
 
 
 
717cc57
 
98db198
 
69b92b4
 
 
 
 
 
 
 
 
7171a90
78e4054
 
 
 
717cc57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67e05d4
717cc57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7d48af
717cc57
 
 
 
7ccaf54
 
 
717cc57
 
 
f7d48af
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
---
pretty_name: Stability-Landscape
license: cc-by-4.0
language:
- en
tags:
- graph-neural-networks
- kuramoto-oscillators
- basin-stability
- power-grids
- physics
- long-range-dependencies
size_categories:
- 100M<n<1B
datasets:
- name: KSL
  annotation_type: synthetic
  source_datasets: []
task_categories:
- graph-ml
- other
---

# πŸ“š Overview: Kuramoto-Stability-Landscape (KSL)

The dataset contains synthetic oscillator network topologies generated from the **second-order Kuramoto model**, widely used to analyze synchronization dynamics in complex systems like power grids and neuronal networks.

Two ensembles are included, each containing **10,000 unique network topologies**:

- **`dataset20`**: Networks consisting of **20 nodes** each.
- **`dataset100`**: Networks consisting of **100 nodes** each.

Each topology is associated with SNBS heatmaps, providing detailed spatial stability information per node.

---
## πŸ—ƒοΈ Data Structure and Content

The archive **`num_sections_20.tar`** contains two main directories within a single compressed `.tar` file:

```text
num_sections_20/
β”œβ”€β”€ ds20/
β”‚   β”œβ”€β”€ heatmap_grid_00001.h5
β”‚   β”œβ”€β”€ heatmap_grid_00002.h5
β”‚   └── ...
└── ds100/
    β”œβ”€β”€ heatmap_grid_00001.h5
    β”œβ”€β”€ heatmap_grid_00002.h5
    └── ...
```
| Sub-dataset | # Graphs | Nodes / graph | Files | Heat-maps / file | Resolution |
|-------------|---------:|--------------:|------:|-----------------:|-----------:|
| `dataset20` | 10 000   | 20            | 10 000 **HDF5** | 40 (20Γ—`basin_heatmap_i` + 20Γ—`samples_heatmap_i`) | 20 Γ— 20 |
| `dataset100`| 10 000   | 100           | 10 000 **HDF5** | 200 (100Γ—`basin_heatmap_i` + 100Γ—`samples_heatmap_i`) | 20 Γ— 20 |

Each `.h5` file represents one unique oscillator network and includes:

- **`basin_heatmap_i`** (target variable):  
  - Continuous stability landscape representing dynamic stability intensity (values in [0, 1]).  
  - Shape: `(20, 20)` per node.

- **`samples_heatmap_i`** (auxiliary information):  
  - Number of Monte-Carlo perturbation samples per heatmap cell.
  - Shape: `(20, 20)` per node.

- `i` corresponds to node indices:
  - Nodes 1 to 20 for **dataset20**.
  - Nodes 1 to 100 for **dataset100**.

### Examples:

- **`dataset20`**:  
  Each file contains **40 heatmaps** (`20 basin_heatmap_X` + `20 samples_heatmap_X`).

- **`dataset100`**:  
  Each file contains **200 heatmaps** (`100 basin_heatmap_X` + `100 samples_heatmap_X`).

---

## πŸš€ Intended Tasks

This dataset introduces a novel machine-learning task:

- **Graph-to-Image Regression**:  
  Predicting detailed SNBS heatmap landscapes directly from graph topology and nodal attributes.

### Downstream Application

- Single-node basin stability (SNBS) probability prediction.
- Stability analysis and robustness assessment of dynamical networks.

---

## πŸ§ͺ Data Splits

Each ensemble in our submission is pre-split into:

- **Training set**: 70%
- **Validation set**: 15%
- **Test set**: 15%

These splits enable consistent benchmarking and out-of-distribution evaluation.

---

## βš™οΈ Generation Methodology

- **Underlying Dynamical Model**: Second-order Kuramoto oscillators.
- **Perturbations**: Monte Carlo sampled perturbations `(Ο†, Ο†Μ‡)` applied per node.
- **Heatmap Computation**: Stability status (continuous stability value) and perturbation density computed per 20x20 spatial bins from raw simulation outcomes.

The dataset was generated using extensive computational resources (>500,000 CPU hours).

---

## πŸ“– Usage and Loading

To load and access data conveniently, first unpack the provided `.tar` file:

```bash
tar -xvf num_sections_20.tar
```

Then, for example, load .h5 files in Python:

```python
import h5py
import numpy as np

with h5py.File('num_sections_20/ds20/heatmap_grid_00001.h5', 'r') as f:
    basin_heatmap_node1 = np.array(f['basin_heatmap_1'])
    samples_heatmap_node1 = np.array(f['samples_heatmap_1'])
print(basin_heatmap_node1.shape)  # (20, 20)
```