Datasets:
Formats:
webdataset
Languages:
English
Size:
10K - 100K
Tags:
graph-neural-networks
kuramoto-oscillators
basin-stability
power-grids
physics
long-range-dependencies
License:
File size: 4,025 Bytes
717cc57 8f5596e 717cc57 a904ed7 717cc57 78e4054 717cc57 78e4054 717cc57 78e4054 717cc57 98db198 69b92b4 7171a90 78e4054 717cc57 67e05d4 717cc57 f7d48af 717cc57 7ccaf54 717cc57 f7d48af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
---
pretty_name: Stability-Landscape
license: cc-by-4.0
language:
- en
tags:
- graph-neural-networks
- kuramoto-oscillators
- basin-stability
- power-grids
- physics
- long-range-dependencies
size_categories:
- 100M<n<1B
datasets:
- name: KSL
annotation_type: synthetic
source_datasets: []
task_categories:
- graph-ml
- other
---
# π Overview: Kuramoto-Stability-Landscape (KSL)
The dataset contains synthetic oscillator network topologies generated from the **second-order Kuramoto model**, widely used to analyze synchronization dynamics in complex systems like power grids and neuronal networks.
Two ensembles are included, each containing **10,000 unique network topologies**:
- **`dataset20`**: Networks consisting of **20 nodes** each.
- **`dataset100`**: Networks consisting of **100 nodes** each.
Each topology is associated with SNBS heatmaps, providing detailed spatial stability information per node.
---
## ποΈ Data Structure and Content
The archive **`num_sections_20.tar`** contains two main directories within a single compressed `.tar` file:
```text
num_sections_20/
βββ ds20/
β βββ heatmap_grid_00001.h5
β βββ heatmap_grid_00002.h5
β βββ ...
βββ ds100/
βββ heatmap_grid_00001.h5
βββ heatmap_grid_00002.h5
βββ ...
```
| Sub-dataset | # Graphs | Nodes / graph | Files | Heat-maps / file | Resolution |
|-------------|---------:|--------------:|------:|-----------------:|-----------:|
| `dataset20` | 10 000 | 20 | 10 000 **HDF5** | 40 (20Γ`basin_heatmap_i` + 20Γ`samples_heatmap_i`) | 20 Γ 20 |
| `dataset100`| 10 000 | 100 | 10 000 **HDF5** | 200 (100Γ`basin_heatmap_i` + 100Γ`samples_heatmap_i`) | 20 Γ 20 |
Each `.h5` file represents one unique oscillator network and includes:
- **`basin_heatmap_i`** (target variable):
- Continuous stability landscape representing dynamic stability intensity (values in [0, 1]).
- Shape: `(20, 20)` per node.
- **`samples_heatmap_i`** (auxiliary information):
- Number of Monte-Carlo perturbation samples per heatmap cell.
- Shape: `(20, 20)` per node.
- `i` corresponds to node indices:
- Nodes 1 to 20 for **dataset20**.
- Nodes 1 to 100 for **dataset100**.
### Examples:
- **`dataset20`**:
Each file contains **40 heatmaps** (`20 basin_heatmap_X` + `20 samples_heatmap_X`).
- **`dataset100`**:
Each file contains **200 heatmaps** (`100 basin_heatmap_X` + `100 samples_heatmap_X`).
---
## π Intended Tasks
This dataset introduces a novel machine-learning task:
- **Graph-to-Image Regression**:
Predicting detailed SNBS heatmap landscapes directly from graph topology and nodal attributes.
### Downstream Application
- Single-node basin stability (SNBS) probability prediction.
- Stability analysis and robustness assessment of dynamical networks.
---
## π§ͺ Data Splits
Each ensemble in our submission is pre-split into:
- **Training set**: 70%
- **Validation set**: 15%
- **Test set**: 15%
These splits enable consistent benchmarking and out-of-distribution evaluation.
---
## βοΈ Generation Methodology
- **Underlying Dynamical Model**: Second-order Kuramoto oscillators.
- **Perturbations**: Monte Carlo sampled perturbations `(Ο, ΟΜ)` applied per node.
- **Heatmap Computation**: Stability status (continuous stability value) and perturbation density computed per 20x20 spatial bins from raw simulation outcomes.
The dataset was generated using extensive computational resources (>500,000 CPU hours).
---
## π Usage and Loading
To load and access data conveniently, first unpack the provided `.tar` file:
```bash
tar -xvf num_sections_20.tar
```
Then, for example, load .h5 files in Python:
```python
import h5py
import numpy as np
with h5py.File('num_sections_20/ds20/heatmap_grid_00001.h5', 'r') as f:
basin_heatmap_node1 = np.array(f['basin_heatmap_1'])
samples_heatmap_node1 = np.array(f['samples_heatmap_1'])
print(basin_heatmap_node1.shape) # (20, 20)
``` |