import pandas as pd from datasets import DatasetInfo, Features, GeneratorBasedBuilder, Sequence, Split, SplitGenerator, Value class PodcastConversationsWithMetadataAndEmbedding(GeneratorBasedBuilder): def _info(self): return DatasetInfo( features=Features( { "c_guid": Value("string"), "participants": Sequence(Value("string")), "transcript": Sequence({"chunk": Value("string"), "speaker": Value("string"), "text": Value("string")}), } ) ) def _split_generators(self, dl_manager): data_files = self.config.data_files return [ SplitGenerator( name=Split.TRAIN, gen_kwargs={"filepath": data_files["train"][0]}, ), ] def _generate_examples(self, filepath): df = pd.read_parquet(filepath) for idx, row in df.iterrows(): record = row.to_dict() # Normalize vector field if it exists if "vector" in record: if isinstance(record["vector"], (list, tuple)): record["vector"] = list(map(float, record["vector"])) else: record["vector"] = [] yield idx, record