--- dataset_info: - config_name: imaginary-reference features: - name: role dtype: string - name: content dtype: string splits: - name: test num_bytes: 4485 num_examples: 25 download_size: 4391 dataset_size: 4485 - config_name: indifferent features: - name: role dtype: string - name: content dtype: string splits: - name: test num_bytes: 11732 num_examples: 25 download_size: 10536 dataset_size: 11732 - config_name: math features: - name: role dtype: string - name: content dtype: string splits: - name: test num_bytes: 5440 num_examples: 25 download_size: 4740 dataset_size: 5440 - config_name: redundant features: - name: role dtype: string - name: content dtype: string splits: - name: test num_bytes: 5087 num_examples: 25 download_size: 4096 dataset_size: 5087 - config_name: unanswerable features: - name: role dtype: string - name: content dtype: string splits: - name: test num_bytes: 12501 num_examples: 50 download_size: 8242 dataset_size: 12501 configs: - config_name: imaginary-reference data_files: - split: test path: imaginary-reference/test-* - config_name: indifferent data_files: - split: test path: indifferent/test-* - config_name: math data_files: - split: test path: math/test-* - config_name: redundant data_files: - split: test path: redundant/test-* - config_name: unanswerable data_files: - split: test path: unanswerable/test-* license: cc-by-nc-4.0 language: - en --- # DNR Bench Don’t Reason Bench (DNR Bench), a novel benchmark designed to expose a vulnerability in current RLMs: their tendency to over-reason by attempting to solve unsolvable problems, leading to excessively long responses. # Data Summary The DNR Bench dataset contains 150 adversarially crafted prompts divided into five distinct categories: - Imaginary Reference - Indifferent - Math, - Redundant, - Unanswerable. Each category targets a specific failure mode observed in reasoning-optimized LLMs, such as hallucinating nonexistent references, failing to remain neutral in ambiguous contexts, incorrectly solving flawed math problems, overanalyzing redundant information, or answering questions that lack sufficient data. # Leaderboard This dataset is used to test reasoning LLMs in [DNR Leaderboard on Huggingface](https://huggingface.co/spaces/ServiceNow-AI/Do-not-reason-bench) # Citation ```bibtex @misc{hashemi2025dnrbenchbenchmarkingoverreasoning, title={DNR Bench: Benchmarking Over-Reasoning in Reasoning LLMs}, author={Masoud Hashemi and Oluwanifemi Bamgbose and Sathwik Tejaswi Madhusudhan and Jishnu Sethumadhavan Nair and Aman Tiwari and Vikas Yadav}, year={2025}, eprint={2503.15793}, archivePrefix={arXiv}, primaryClass={cs.LG}, url={https://arxiv.org/abs/2503.15793}, } ```