VoiceAssistant-430K-vocalnet / pack_restore_parquet.py
mumuye's picture
Upload pack_restore_parquet.py with huggingface_hub
7bcb1ad verified
raw
history blame
4.03 kB
import pandas as pd
import pyarrow.parquet as pq
import pyarrow as pa
import os
import json
import argparse
from tqdm import tqdm
def pack_to_parquet(json_path, audio_dir, tokens_dir, output_dir, batch_size=1000):
os.makedirs(output_dir, exist_ok=True)
with open(json_path, 'r') as f:
data = json.load(f)
schema = pa.schema([
('id', pa.string()),
('speech_path', pa.string()),
('units_path', pa.string()),
('audio_data', pa.binary()),
('tokens_data', pa.binary())
])
records = []
batch_count = 0
for item in tqdm(data, desc="Processing records"):
speech_filename = os.path.basename(item['speech'])
units_filename = os.path.basename(item['units'])
audio_path = os.path.join(audio_dir, speech_filename)
tokens_path = os.path.join(tokens_dir, units_filename)
audio_data = None
tokens_data = None
if os.path.exists(audio_path):
with open(audio_path, 'rb') as f:
audio_data = f.read()
if os.path.exists(tokens_path):
with open(tokens_path, 'rb') as f:
tokens_data = f.read()
record = {
'id': item['id'],
'speech_path': speech_filename,
'units_path': units_filename,
'audio_data': audio_data,
'tokens_data': tokens_data
}
records.append(record)
if len(records) >= batch_size:
df = pd.DataFrame(records)
table = pa.Table.from_pandas(df, schema=schema)
output_parquet = os.path.join(output_dir, f'batch_{batch_count}.parquet')
pq.write_table(table, output_parquet)
print(f"Parquet file saved to: {output_parquet}")
batch_count += 1
records = []
if records:
df = pd.DataFrame(records)
table = pa.Table.from_pandas(df, schema=schema)
output_parquet = os.path.join(output_dir, f'batch_{batch_count}.parquet')
pq.write_table(table, output_parquet)
print(f"Parquet file saved to: {output_parquet}")
def restore_from_parquet(parquet_dir, output_audio_dir, output_tokens_dir):
os.makedirs(output_audio_dir, exist_ok=True)
os.makedirs(output_tokens_dir, exist_ok=True)
parquet_files = [f for f in os.listdir(parquet_dir) if f.endswith('.parquet')]
for parquet_file in tqdm(parquet_files, desc="Restoring Parquet files"):
parquet_path = os.path.join(parquet_dir, parquet_file)
table = pq.read_table(parquet_path)
df = table.to_pandas()
for _, row in df.iterrows():
if row['audio_data'] is not None:
audio_path = os.path.join(output_audio_dir, row['speech_path'])
with open(audio_path, 'wb') as f:
f.write(row['audio_data'])
if row['tokens_data'] is not None:
tokens_path = os.path.join(output_tokens_dir, row['units_path'])
with open(tokens_path, 'wb') as f:
f.write(row['tokens_data'])
print(f"Files restored to: {output_audio_dir} and {output_tokens_dir}")
def main():
parser = argparse.ArgumentParser(description='Pack or restore audio and token files using Parquet.')
parser.add_argument('--mode', choices=['pack', 'restore'], required=True, help='Mode to run: "pack" to create Parquet files, "restore" to restore files')
args = parser.parse_args()
json_path = 'VoiceAssistant-430K.json'
audio_dir = 'audios'
tokens_dir = 'cosyvoice2_tokens'
output_parquet_dir = 'cosyvoice2_tokens_and_audios_parquet_files'
if args.mode == 'pack':
# python pack_restore_parquet.py --mode pack
pack_to_parquet(json_path, audio_dir, tokens_dir, output_parquet_dir, batch_size=1000)
elif args.mode == 'restore':
# python pack_restore_parquet.py --mode restore
restore_from_parquet(output_parquet_dir, audio_dir, tokens_dir)
if __name__ == '__main__':
main()