harpreetsahota commited on
Commit
a675f84
·
verified ·
1 Parent(s): 71cddc6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +16 -0
README.md CHANGED
@@ -141,6 +141,22 @@ Each UI element in the hierarchy includes:
141
  - Functional classification (e.g., "login" for text buttons, "cart" for icons)
142
  - Original properties (bounds, class, resource-id, etc.)
143
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
144
  ## Dataset Creation
145
  ### Curation Rationale
146
  The dataset was created to expose the semantic meaning of mobile UI elements - what they represent and how they function. While prior datasets captured visual design, this semantic layer enables deeper understanding of interface functionality across applications, supporting more advanced design tools and research.
 
141
  - Functional classification (e.g., "login" for text buttons, "cart" for icons)
142
  - Original properties (bounds, class, resource-id, etc.)
143
 
144
+ # Rico FiftyOne Dataset Structure
145
+
146
+ **Core Fields:**
147
+ - `metadata`: EmbeddedDocumentField - Image properties (size, dimensions)
148
+ - `ui_vector`: ListField(FloatField) - UI embedding representation
149
+ - `ui_viz`: ListField(FloatField) - Visualization parameters
150
+ - `detections`: EmbeddedDocumentField(Detections) containing multiple Detection objects:
151
+ - `label`: UI element type (Icon, Text, Image, Toolbar, List Item)
152
+ - `bounding_box`: Coordinates [x, y, width, height]
153
+ - `content_or_function`: Text content or function name
154
+ - `clickable`: Boolean indicating interactivity
155
+ - `type`: Android widget type
156
+ - `resource_id`: Android resource identifier
157
+
158
+ The dataset provides comprehensive annotations of mobile UI elements with detailed information about their appearance, functionality, and interactive properties for machine learning applications.
159
+
160
  ## Dataset Creation
161
  ### Curation Rationale
162
  The dataset was created to expose the semantic meaning of mobile UI elements - what they represent and how they function. While prior datasets captured visual design, this semantic layer enables deeper understanding of interface functionality across applications, supporting more advanced design tools and research.