Search is not available for this dataset
images
list | problem
string | answer
string |
---|---|---|
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDxL4m+C5/EfjPUtR0y3uniuLySRHhiYggnOflU/rXczeF7yf8AZ9tPDElrKWEkKvGy/MB5w5II9cdq8Bs/GXjPSoxZ6N4t1W1jYklLTUJYwT9FYf5zXc3nxi1GX4fad4Zi1O6e8SF/t19JO3mOxdmGXOSflYDrk4rXnPNhCUrJIuaD4ch+E/iaL4ieIvNFlZPmZjGBy0bIFz2JJ4rD1Lwr8RPjXdy/EvxD4euoYrr5tHtYYgBHHwEYk5ySgHzdTx0HFYena/Lr/iSCDxLc3V3pltOk1zay3Luku3kKeeO/NaPxQ8Ut4j8SNqmlXVzp1oLeGK3t47l0RFSMLgAFQBkHHFNSiepKf1KlFL4nrfseufs/+Hr3wZGdMvraWNxLI4Ey4LcLg4/T8K4DxP8As8fEHU7+5Nn4KvrlWu3dWjZVVlycMCSMjn9ao/A342eF/hxqxXx1qd5PblZXEkW+4kZiqgIfmJUccH3PpXlur+G7HxDrV5qVvrel+TPdSSxi8t5EchmJBIWJjnB+nXmrc42POf7yW59VfEX4Xa34x+D2h+ErbR7uXUNOW3d7aNVGNlu8b7iSNvLjn8a8j8N6TrP7OfxCt9ZuPDTf2ssc0kFk96rbo5I2jLnYWxjJwOCCoz73fiD4r+HXij9nvQfhbB4ntzqOmGH7Xb/YbgwEKjqQJEjIIG4HBHzYryhNBi0G0MWm39tLGZMqtpbFFAxj+JVJ4A5I9KTlG2hcYW0udR4o1+fxPrNz4j1e4gmvLyQy3TROjHJ7kKTivcvh9rQ+Jf7P2p+E9Ru7f7Vo0kME73cyohgG1opHZ/lGPLdMnAxGvck182WcAQqHjUfMNzBcFue5rvfhd4y0PQtA8U+G/EskqW2q6PFHE8EBcJKLmLDHHONu5Rk8eYT9YVS7sdXJKVFp9D0XwX8MLfRfE2n36+IvD8my+hdYodZtnfKuDhQrZYnsAM12Hxf8KW3iDXo9Qn1rSbfFmieXqF8kDEB25yxGBzj8MV4J4F1Twf4Y8X6Z4lfWrq7hsNRguRHBYYaQRyKxX75Ck4wCa6v4w/EDwD8SfEMXiK0fWbKOKwjtyktnG4ypY5yHz/EO1WcPKz1D4V6Bp2neDtf0nT9d0q4F0jFpLG8SRI2MRU7iMYGNp59+a8rg+GHhy1ZXuviJ4TVsZIk1pATx1xsP86sfDb4xeAfh34X1zQms9X1Q6wmEmt4IkEREbJ8waTJHzdgDx3615rZWHhe3QG71jWmA7R6XCnb3lNNNEW7l6LTYI4isa43feHHNQ3j2ulWU13cxKURCeUzzXR32j7XzCpIPTAJrlPHkMhn0/SYyS01zuYAcqFB6j3z+lczZ6GWw9tXjF7b/AHDPCcbQWouLsovmEuzMeMHOAfYcYqLxRNc3sq2lpH5r5zGkQJLDkDHrV6V4bPDxAqF7K5B/Or934TMvlNeRxW1zLbRzIbid/nidQ6twD1DA9PxpqxGLk6+IlN7X0OFOk3VpugvrIpOeqzL8w/yMVs6BoizW22ZT67cjHQVYOlx21wbLU7dZlfA3xykY4/hI4PUdc9KyvFFvHocsQ08yyxyJwXIJX2JAAzjHYVWpzRir6G/dxaPdYs7S/EtwwIjhVwSfoMVf8O/Ci81CYy6rPJbxNGCinBJJ9sdK7j9mL9mf4reJ30zxZeeC47Hw3fX1s91eakZEmntmI+eHy23BWU8GQKrZBQsMmsj49eMdK0l9R8AeDfDGni8WwVpZr25u5VZ2tEMluE+0ARlmlYCRt2wp91ulTJ2Z6mH+rxjead/kYvgfSfhd8QFvD4Y1O8uTp8gWZmQxjJLYI3INwO0889Kiu/BbXPiHWtB0W3klEOkxSGIOFZv3qMACMddhq3+xVqHw/k8CeMNUttBsroaN4PvbxYNQ+aSK+hkhjgztf5kYznvg7VHtXrP7LXhXw58Rbj4heM9Y0C0na2OnRWv+jKYULpOzbR0H+pGB7nOTzUOMrnq0quFlhnzR30bPnzSb6y0bUH0O70uZJUdUbzsZUk+hGe9TatPNMkqW7YQNgBTjvW58br3T9E+Kmt6HLEiw6dq9xbWzSTHeI45CoBZiScADr0rkb7SfEt1p0/iKy8Pak+mxztFJqEVg720bhHkKNKBtVhHHI+0nO1GPQE1Sk0jwqsabk+XYNJM9m4lnuA0ZxlCCSBnn2NZWp/E+Cz1Gax+xLIqSsqsFI4BIHX6Vh3MusT6s1haG4ygDHyUzlQASSMfdHen6f4J1DxFNf3VrbTSSWVgbltkZ2n99HGxY44H73OfUe9Wmzlmkj7Ct/wBnvxvYa1bW82lySLI2UjmAUMAMnlsDoa4fWvhquo/tF6p4Zt7Z1TRbGCWUeWGSOWRVk2gKMY+fHHoea+zLTSLCa6ih2Kdz7QN578eteIfslaDp3jLxJ8SfiJqVlFLFqXjKe2tTkEGOB5ChBHUbJkwRweal2voejg6ahh5zXb8zzHxB+z9Y3t1IfD9tqcEPks5jnjRyZyuTllACoX+6MEgHk5yTqeM/hJquoaRokusWFlqUlvp0UBEQkgaCGFfLjWVg6gkg5yCM4HpX1OnhPQIojEmmRKh+8oJwfrVW78LeHJZB5mlIxUbRuYkAeg5pHK0z5o/4UnpF9DDbzaJHFBEowrTyOQcDOD5gbqOctg1n+I/2b/B1zd2819HfSw4Bljs7lYjg7shdwIB9+ccYOQDX03daB4et2wNMhA+lZ9xp3h5bjyfstsCVLBDjJGetO7BRe58z33hvQP2eRP8AEzw3Z3N02lut1pa31yNttcAbYw21cN87+h4yOlfFfjv4reLb7XPtdj4hvI2khV55XmJkkY5O5s56qVPPbFffX7bE8s3hvSPAfgq3so9S1DWbdYmkKnbMwlMAZCeY8RTyuxICrbseuK+Tf2oPhT4P+HnxKj8GeFonktLTQ9PRJ5rh5ZJNtsi7izMT0UDaDtUAAAAAUW6s2jGU1ZHX/sBWtve/Ab4talHKWu4dMt4LsKw3RwS3VrIp9fmW2uj3B8k8ev1F+xTYv4c+BXiTVdXhW2XV7+wa1klwPP2JeRtt7kB5Y1+rivAfgzrMWnfskapqOn6bFDePcR+G3eN0jW4tDL5gWTK5OyO5u8dPvnJyQR9T+BfAUNh8P9L8LanEUEOnwJOiZGHVFz16fMM033PQcPZZY095SOMun0rwD8QfEHjLw/8ADHwP4jm1a8vZri/8X6bPqBRJXbKLH9pSKMDLEHyyxBG4tgVH8NJPGK6rLof9hafBol5emW70Hw1obi1vILlSWh8lGkLxZjjYIuBlQduRXrFj8M/B2nYe1smLMpVvNmbBB6jGat3Ok+HfC+ltftabYklRdqOx5ZlQYGfcUNqx5lrI+WrD9mjV/h94oP8AZb/aLe98PzWV7qF3DvAabchbCk7f3ew9xyc9wN2b9mXwlZ+Hb29+E11rltPrGjPpd9B4juIriJUMkcjTIYYYSjErtAO/pnI2qG+moPCPh2ZNraNE21QOAeAOBUV1oejxfu4rdUVRgKHPH60XsiXTjLcteJPCXxA8GeFdW8Z6tqUaw6VpdxeyqkqMSsUTuQACTztx+Ncn+wl8N9S0n9nXRNWOmrcxatJcXO6zmhhJPnNHvYORnIjHbOAB2rqP2lPiP4g079nvxnLNfhUm8PT2rYtYgT5+IMZ29/M2+uWGOcVP+z14i8R6D8DfCWn6VetDGNAtZQnlKcGSMSdwT/FV+ylexNLF06eUueuskddr3g3xIJPK0S3tYlZOJL2/TKH3VVP4deorPsPh14uMixXGq6HLtiG6R9d8o7u4wYz/AJ7VtL8QviJHiWDXHDDoRbJx/wCO0TfEX4lTxh312XcOMm3T/wCJo9jM815pTj0/r7zkvE/wh8f3139p0nW9FtzFGVeOTX4jG+cYIBUEEc9q4j4peD/Gfwx+E9/8Stfm8+KwMdsW08NcTzSyXEUMUUQRWMrzSyJHGqZYs6fLjmvVZ/iH8QHkR5Ndvwyk7Xt/3f8A6CBmuY8RS+MvG/xW8KXHibV7i70Tw4l7rrafezsy3OqKkcFk5B+95Xn3EoHTeqHBKgq/YTH/AGrT7f195458Hf2Z/i/8RPiDruu+MZrcTaHH9m1EvLI8UGtX9vHcXUMLrE4KW1hJpltG/wDtXJ5Mr189/wDBS34dT6X+0UNG8HeGgs+ieD7BPFTWMxkt7e6a7mCt5jKuAYbvTVOQAHkCZJWvrNPjxL+yx4k8ZL8U/EVzpOia3qbeJtEvLYlkvW+w2sVxp8bHAF0rWrNHExXejrsJKsq/AHxJ/aQ8feO/BPiHUdc8Rxy69488ZRXGuPFa48u2tUaaNXG0h0a4uIpOFAzYL3wtN05RR14fHqUrpf1957T8Jv2b/iN4I+Hvwm8P/EVraOz+KPjmLUbLToZpJXj04pp6JJKCgQsyXLOFXdwV75B+9If2ebqS6NtaavqbjJIki0B5FHtkyKSfwrybU4Lr4va38K/j94X+I0d14c0G5aDQTMWWeRpoQ0QjQIQoVLeMEEjaCnHWvXB488cW7gHxFeLtGBmQ9KSg2zrzPM6cKFBy6pvT19SzP+zq006Xlp41vpzaH91FF4fcBgwIYyKZRnGeMk9ARis7xL8DNLk0mXTH1LUzLNPFLKy6SFAZXXOF8xiPu5+vvWjB8UPHUa7m8S3ZI5XJBwfxFZ998VPiI14ZG8WXo64CvtPU+gq/YSkeP/a1Fbf1+JXvfgZo2qJBNrPiTVkNvMJoI/sLIjyhgMMVnViu3dlQMegyBU+m/AzQjdXV3qHjXV389jsjTTZVigUjgIBnp2OD/WnX3xG8d3MeT4m1Nj6pcMCfrg81TXxz4wcYl1+9B9GmOaf1eVyHnFK97f195wH7aMQs/wBmTxPAsQ3SmwjL45AN/b//AFq774R6UqfCvwvbXCDdF4a0+LkA42W0af0z+Nbn7Znwh1iy+AOq22p2UDQ3FzZxStCPMMebuHBY46e4JwPpXq+n/CT7db2upWAWOKWwt2kRMAtL5Sb2IPTLA8DjBH0roa/euRrUpL+xqdHrzNv8LHnFh4cN2CsKk9PQetad14Ins7BJXiVt+Dxt4yOh969VsPhtaWsCsdPhWQ53NvYnr61bn8IxParatEpAYH77Y6Yqr3PNjhddTw+y+H+qX8Ly2WnNKqHDbQpwfzp/iz4L+JNd8Htb6HrUnh/VhJG1pqY05LrYAVLKYWIV1YBlOSMA5BDBSPZodFj0LciLGitjCoTxj6/WrkUMV1CAxB79ad2KOFUZXPzv/au+BH7VXi34U2/gWbx9oXiOLVNbhF22l+F5dMaziRJGM0sjXs0bRAgAqY/4h6k1B+zv/wAExNFvvD9/qXie6nup5JismmyNLaW0rKFPmKiMoBLZG5CPlG0YFffOueF1nlwbRGUj58A88DrxzV3RNJWzhSNLfaqoAAM8cCs5q+p62HdOnG1j55i/ZusPhT8HPDXgPwhpNnajQdTbV72OWQl55njkE0hkwxZj8vBJyT97GTV2XQ5bhI5oIDIHjDcKCTnmvpHUtCtdb01rC6jzE4IYZNY1h8L9Ltw0C3EwXeSoVOAOwpR917GGKpLFWT6Hz/JosxfY9s0eeBlMZ/OkfwXqdxEbm001ptpwCFB/X8a+hH+Gdm/yGdgB/EM5b6jtUtp4FtbRljFvuA/iLNzx1rT2jsebPLle6f4f8E8Fg8GXygg2DKMcF1A/nUV14NlZGaOxYsDglIwec+or6MHgzQbhx9r0sSbTkbmY/wBaJfhn4XuSXjs/JJ6OJX4/AnFVGo30IeAts/6+8l8V6NonjDR5/DniPTYru1uFxLBMCRkcq3HcEAj6Vr6bb2KWywxqIkRQEXlsAAY5PJ+prhoPjt8Obe5Zbe31SRd4RdqoCWPGAcfNznHA49acn7QfhM2810IGjgDgRPPkFgRkbiOB0PPTp64ocZdj1PbJrc7+6jtIrfPn4x0+TrzVKea0jjD+dnP+ya808QftEeGtF0O48XSS6a0VmVAgeSYidmIXaG2bcjJbBI4B9Kp+Ev2pfh94vNkdVsraKW9vHSCCPUgimNR1Hysep/pRyyfQiWJpx6nZ+ItShjk3M/GOM59BUel36XEWYJST6c+1c9rPxd/Z7bTzqOv+LDpM7PsFnLcxyPuyq8kNg9QflzgZz0rofByeDtbsl1Pwbr9pqNvKpZZBc5B5wSNmeARj6g0csl0M416cpaM08F03SLzVixs/M5wMfSn2/hzXZr+NLXUrD7OUIkQ5Zt2eDuDYx+FX30LU7AF5NRsxg7RiXP8ASlytHRFjFt3ii+5jg06FQR059apXFvc2TrHqurQhhztluQSR7VSXxPoKwtcpqrMEba8PlrkN36HJxQoth7RLc3hCTzSGMg9KwdO+IPhPUbhLWz8QW0zPjasEyM+D3C5ya1NQ1LR9Gc3V34qghjQZP2lNg5OM5x0o5Zdg54tFnAHQUq9cVSg8b+E7i1a7S5muIo8F5LaIng9xnGeKrw/EHwLLqb2F1rS6a4GY01u4igabJ42LnJ9cdaSi0hXR+ZEP7QH7RmmacdNsvEulvEIys0l3plsUIwcEDyCynBOTnk8+1cvc/Fn4n3sbOPFOs3jSsfOSyv5zHk8k9AoGccfTitwad4ukug0N9bxx91aAkjj1+taMFpqsUWXeNpMYztOCf/119IqNNLY/JPrlecbc7+85u21/4v3+nxw2f9myRqxYHWLcTzIcj7rtyoyuao3WmePtU1Z7/Xpw87D+G3LxjoMqCeOc49uK6trrxPZxNJfWNtMqjKi2Vwf1zmoLLxzdSp5cuj/Z5h92CeUBin97kLjnjHPTrS9jT7GE69R7zf3swpfhV4j1AtM0VvGp6kWwjLeueeat6X4Q+IPh6L7D4b8e6npmfmdNHvJ4PrkxkA/T2Fa0niHxdFE0t54SluInH+jyQzLDvx97nzGIweOn51lzeKddSchfAdxJIcn/AJCFz8oz03gbT9B9elP2NO1rGca1SnPmjN/ezr9E+K37THgWyWHSPjHrl6saGNrbVNamlUIx52MSWQ89QQemOlVb34//AB3mvmuJPiPFBPjaHmkE0oUcbWl2q746ZYk8DJNcw39pavCF1Xw/LaEAhQt3JMDnry/ToPz9qZF4X01Bi6tmZTztk6Zqfq9HsdEs3x8FZSb+Z6bpX7S3xVFs1r/wtiZRM2XVgjtuxgbWcNgccqcg5rmda1jxnqk7Xt58Rdbunc53yXrFSCSfuphe/p3rAHhLwgpCmzjyeg3itXTvCejWsAW2sDsb5ip+6TjrR9Xo32NY5ni6kNZv7y5beNtSjgNjqnxI16dNuPs76xO+R6bSx6jtVWH4haDpFyTaWuuxyLIWMsMjKWbu2Qc5Pr1qRoNaVy4CbP4flOf5VatUkKCSUgOP8KPYU0ZvMMX/ADv7zVt/2lvGOoQpAPFPjKZVGEWbV7p1A9Budiv1zWdeeK7bxJdi51/QJriXdlJr8rLJ65y/JPvV43a+ThiOQc4qhJZ2E9x5/wBljdwSA0orP2FO+xosfibWc395/9k=",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigD9UP8AiGe/6vW/8xx/98aUf8Gzbt0/bV/8xx/98a/U+NsDrn1qQEEZr7FZXgP5Pxf+Z8d/auP/AJ/wX+R+Vo/4NmmJwf21f/Mb/wD3xpf+IZc/9Hr/APmN/wD75V+qQYjvS7z6Uf2Vgf5Pxf8AmL+1sf8Az/gv8j8rf+IZf/q9j/zG/wD98qa3/Bs2V/5vWP8A4bf/AO+NfqoZOOBzTRKQfnX8qX9lYD+T8X/mP+1cd/P+C/yPys/4hnGPT9tQ/wDht/8A7400/wDBs+69f20j/wCG3/8AvjX6ro4kbaoPNI/3sY6U1leX/wAn4v8AzE81zD+f8F/kflR/xDQk9P21P/Mcf/fGnD/g2dkY4H7aR/8ADcf/AHxr9VlC7cnvUkZXgZ603leXf8+/xf8AmL+1cw/5+fgv8j8p/wDiGYkHX9tT/wAxx/8AfGnr/wAGykjHH/Da3/mN/wD741+rOYlOWPI7UpuIzyVb8qTyvAfyfi/8yv7Vx63n+C/yPynH/Bsge/7bX/mNv/vlS/8AEMh/1e3/AOY2/wDvlX6qmdewNMeUnlRz70v7KwH8n4v/ADH/AGrjv5/wX+RXjX6U8xM3Pao7ZwHGTxVpmXHJrsc+VnJGndakBXYcE0Ag8imyuWbHpTQCegq1K6MpQtIe3TrikCZPBoVOeakBCr1FO5PL3PivV/8AgpV4H8Gft66n4Y1ey1pNC0+yk8L3iTaoyW8N1BdPJJqAtwSjtlWhUY3lGDbufLH2/PG94yu78jivyF+NX7Pd1c/8FIbj4e/E6F7JfFnjC3u5jpl5JtaLUZ0d1tp5rdfMKvcOgk8oqGiYFTtK1+n/AOz3LqsXwS8L2GuCCPUdP0eKx1C2t79Lr7LcW48mW3eVCVeWJ42ikwSBJG47V5+GqVJV5xbPVxdCFPDU5W3/ACO4NqgGSSalg024eJpYl4UZOfSrOiC2kzNfnc38IBrTvIorm3xZNtcdq6XV5ZWOJUlKNzmXGDnNIWOMA5q1daXqMWXayk2L1dUJH51VIIOCK2TT2OZ3T1E2knPpQFw2c05mJ4qNs55NMSZAVdRvUE/QUvmydGY/SpbW8gyCCpb0IqS8RLiTzAApxzisLpy1Ou0raFcHnJpwcdMVGGVeOadV8qM+dj94ppbcMYpB16U8gEYFUmkiNWfCH7UX7Qvhbw18d/F+t+DvFOh/8JJ4a8UeGrrS7aaylvP7UNkt9HdWbsEHkCOS4TeFfDbNmclwv178IfGWieMRc6t4IuBe+GdVtbfWvD+o2WjxWtn5dy0qTQIUVWkuBc2888/mgSq94FfkYHl3xc/Ya+DXiW5vvHHh3wm9t4gi1ybWUlguXlF9cPI0ssUiTs8eyR3fICgKSCoGCD7j8OIvC8vw20e/8FaZbWelrapHb2lpHGqQLt3KgWMlVwDtKrwChFcFNyhiXfqehWlSqYOLg22tHfZaL/gm1C8iOGVuB2rc0aeKSZZJG68EbulYSTxqTkgVc014pJeGOQRxjrXRVs0clJyizvbGC2e2ACKVI5z0Ncp400SC1u1n0+3OJCS4UE8/5NdJolxbfYo4shSe2PeoPFOjXMsSz2r5w3I6V59CrKnV3O6rTVWlscJ5bA4Ix600p1yK9Bs9C0bUtL8qfTIkl8sK8iKMhvXOK47VdOOmXj2jNu2nhsda76eJjUbSOGWFlBJvY5qJtzgxHGO9adtJHLHyxOehrATUGtxkR5H0ryz41/te+HfheY9L0FLTWtTmQNFYRXUiswIbBDJE6EZAB+bIJHGMkZYmtChHmm7I6MPRqV58lNXZ7hcJCsPGA2eOOTVTznV9h6Zr55b9rfx74V0GDUfFnw3JLwqfPTUWdCS3BkZbdBFncowRnPHNeMfFb4seIPi14+t/Hmn2sdhZqkcV7aW2uyqt1sllUkkR4AKwsNwx8u01wrOMO4Xhr+B6EslxMZ2qafc/1PvOMyvgRoWycDA61Xn1vTbW6FhcajAk7EhIHlUOxAyRjOenNfnrpXizXdJ0u7trrxHNLepaSvBNcX5keN0icsdnlhTnAODwNvA6g7fhT423XhW5s/FGl+IzqWpW9pHHLZXuxbdpGba0m1FV8/vcYyMBFyM53YTzqon7tO/z/wCAbUsloSs51eVen/BPulTvmfPPy5P51lfBDTpPDOteIvhc7ynTomTUdEMuCsME7MWhUhVGI5UmAUAlY3iBYk1znwv8aXupeONR0Wa3W3ATzY9jksCMKeeh5xjFXfCnxH8dXvxZtYvGRtZYYLWe1tpobVInQuUYhtoG4HyRyQee/PPTKvKooycbM8ynCFNVKaldenYs+PfifqfhiOzutI0azmhug2Zr2+MYUgspXCq3OQOmeD0rLm/aS07S7K2nlsY3vCpW6tYbpPkfeQNjOV3KVCnoDknjjNdT4m8M2V3NqWgi0R445PtlrvjZVRmHzICCMgcHj1rxP4m3Opy6n/Zeo2OnoqyW7JLazPbODvUjLs2wgbjwwIrhxWKxMZ2jLQ9TA4XCzp+9HU+gfhP8ZY/H+lNq8emXFgIpdhgupP3hI6sVxwpOcHJzg+mT6Pa+MrGWAJdTA8dDXgXwD06w0zw/qN1bx2fmzaiRNJaRx4wsaYXcn3gCWxkkglvx7wXK4DA124em61GMpbs4cTVVLESjFaI9CHjDToiUjdRk5OAa5nxDqMV5cm4FwWZuvFYn2g9SxFRwX9td5NtdRyBepjcHH5V0woqlK5zTrOpGxxmreK7XQtLm1bVdUgsrSBN9xdXUqxRxr3ZmcgKPcnFfGejfEAeNf2jb2x/sxprLUVL201zbu58uOJB/rJ0eU7toI/e7AM44KrXLr+0HrnxRsZNDgtfDqv5ONQtp9REe1iZdqI7OFlOEVjtOBvUEg5rRXw98JtG8H20mqHQLXWIHfAlvbVZHQI558u4+ZSxH/LQHJAyoxj5bMszniqKjKHL87n1+V5XTwtdyjPmXpYwvjb4cspvFKXNkLRZbeS7k+zpKiy7He2X7qryM45PI8wDcc7Tztre6rYWT2UmnRvbvJEVuTdc7lFxEmPl+b5pSc/7BHrVbxlrPiCfxKZLnxVJPatC62gg1pbhY/wB6G27kmKgAbSCRu+Y8DHFa41yHUZZtJtdcuzcxkCYFlVzIC7YGXy3Hf0GO1Y0VaCTLxVVSqtrQ3Z/EAjtBpV1G8s9ta3EkZjRQyrIjhd37sM3ynAJce3BxVTWCT4l0m0kbUkivTtupFv5VQEXjxpu5bOVUZPP3c5BIYw+JdVvk0+4kGpXJgFmolikuIzGMRog3fMwySD2PPr1Mvha80jxh40tdI0+90triaaRbeLUY7grOsTMzbFt3BJyhAblCFYYbpWl2mYcsXBJn3D8G/EE+o+OdP1T7RJOLjTP3k0tq8XJ5woOAQT3xnjoK7fx3pN5b+MbTUrKy8xldZVcQbghye/bpXkHgU+J4PEumapqemR/aYbmOG4fTLOY28POCAxyAo3Hk9Aa9t+KVu76VDqkVrHLt+U7w2McnPykV7dObnQufMVKcKOMS6HaeImhuLezv44VZ5j5Tkj+Eg/4V4d480uTSb24ZJtu0gbln2sg3A8FlIHPf/GvZPh7fnWvAdp9ojUMseMAn5cHHfn865P4n6RKHLwcDehLbzyOMj8sj8amtDnhc6cFVcKnKYfwI8R6Hp3gt7SbUEgK37oRdOiMxCoCRj7w7Anniu5jvo54vNt7lJEYkqUcEHn2ryn4dWiLqs9lr1/uWWWLyI1Qtuclt24gfLn5RyfpTbX4iaS/xIPg9bGwaD+0TaGMi5EoIcpneMrnPOMY4xkdazoZhOjBQ5b2O3EZZSrVHNztfy/4J64twjwtHMgKsCGHqMVk+EbVtKs2uGiEVzOq/a41xtWVQQxHHXnH0A9K5rUdI8INq9zpp8ZRQupYtDNCAsfONocnDEZxjJPByODWydb0ZrIl9YtXZmLP+/Q8k/Wr/ALUjKXNKG3mZzyhR9yFS9/L/AIJ+XHw28A/Fjw5r813HoEyyLYtKjrocV6hfG5CpkDICSF3OMMo3YB6HfufD3xQ8XPLrVx4Y8Vvq0elz+WkWjrax3EaBZPLQRADepDueN21NwG4AV9H6LquqeF7PV9L0C8mtItaMTahJb3c6Ss0d3NdxlJVkEkW24nlkAjZeWx0AA5Q/CLwFIsO3SbvMFpcWsTf8JHqKhIpwRIMNcHOck85wScYyaUuGsyvf3b/M+fhxzk8YKCU7ei/zPFIvgt8fdZson8N+A/Ec6eZEptdS0aaRlRozkmPa6Ou0p93kDjbuGK4LV9K1WU3vjKCwjvEa+Zb+K0diIdxkbbJsJ2AqCMsQSVbHAyPrD/hVXgL7fHqL6M7yxTpLH5+qXMyBlBx8kkjLjJ3YIOWAPatrRNK0zwvYR2uladDaNFEU+3mNXuHyGBZ5XDNIcN1cn7qjooAUeHszS1t95MuNMkkrXkvkv8z5F0Oy1rxNa2emyXbNbqD9ntriSTbC/JCD5cIWbIGAR0zjGT6J4P8A2Ifi/eaTffETxDaWWjQwRyyCHUpiJDGgfcWi2cfdBXO3cQG4GGPuOm+HdB0/VZNTi0PTbmOaNcQ3WgafOsZVkKlZGtzOcFc4LleuRWde/DPWNYlv5br4teLtmokma3GoReWARgqqGEhE6nYoCgscADipeQZl0S+81pcY5EmnKUn8iP4E6N4X8B+Irq0+LPjnRDqUbP8A2f5geKUiMSLuUt1B8lwpGQ+F2khhu+zVvtP8WeA4L61bzopY0dGjY4IK5BBr4mh/Zv0MlIB4x8RPCI40e2nntXRghB4H2cbSSOSOeozjAH19+z7LawfDWx8PoryLYwi3DSkEsEAAJwAM4x2FdeHy7FYRP2q3MaufYLMpQVKV5K/Rr8za+COohW1HRJ26sJY1L5wDhSB9MD861vHVrE9pKstqWCKWC5I6cisrwXZWeieLZJ13FpAU68YJU9Me1d14q01L/TJC8ecxkHArWpT5dDehXTk5XPAfG+vaV4X0We48MrPFqXy4OAyKVOQw3A9Cc4PvXmHg+bxr4Z1s+O7uzguo57yOe7lubUMRsbIIPBjyxXkEZyBk8ivd9f8AA2nXZdLrTvN3qRjIDDjg9Oe3HH1rC1X4WadrllcW01/K0kyIjySqXdFV9+0bjkA56DvzXK6G8banpe3Xx810v61PIfHGrfHbVdeLvdQI8LSsbeK8t4sbycllL9cAgEnIwSDksTHrHg/442KPeLqOozA52x2dnfuQWXByPJB9xgYBJwFr1K2+FmlaPcw3El/cTrCqqUmtYyrquQqkd+p6k9e9dHc+KZLePyoopJwQQ3my+V645RWP6jp9ckMHWTu4XMKuYYZ6KrY//9k=",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [42,20,69,70] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [48,32,59,57] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKK7+5/Zc+PNlIIrv4ezxEjOZLyADHUnJkxgDknoByeBTLz9mX43WMvk3HgsbsZGzU7VwRjPBWUg1t9WxH8j+5mXt6H8y+9HB0V3r/sxfHVIjOfAEzIF3F0vIGGM4zkSetU5vgD8X4ZDG3gmdmXO4RzxPj67XOKPq+I/kf3MX1nD/AM6+9HHUV00nwd+I8Kl5/DZjC/eMl1EuOM85fiki+EPxAm/1WjQsf7o1G33fl5maXsK38r+5j9vQ/mX3o5qiuii+E/xAmunso/D+ZU3bkN1EOmSf4uehqNPhj48lnFrB4bmkkMbyBImViURSzsME5CqrMT0ABJ6UvY1v5X9w/a0v5l95g0Vo6t4S8S6FYW+qaxos9vbXi7rSeVMLMu5l3Kf4huR1yOMow6g1nVDjKLs0WpKSumFFFFIYUUUUAfp54c8LavJKI9M0xI4py6PChhRcrH98o6JHkKhPUYwzY716f4e/Zx+MvjDQY4vDvh6W00p1WWGL+1LOJRnIJZ2jjj65O0knDA4IIasLSfj/AK34TuoptHunto0O6OKOXaOpB6cdz7HmretftaeJtTg+wQanKVkBDjdk4J6e/wD9evvlFI+CqVpyeiL+vfsqftFaRYC3Xwbb+bMgt1dtWikMjNtBw0cuIhhs73AXjGa4/wCIf7E3x/8ABnh281XW1tLyDSkVoUF5BchoCjSNtczqVC5GQFDZYYGdwFG6/aE8W6fHJDba7cpG5PmRiU4HsAO/vXPeK/2hPFuq2D6VNrshjY5YF857Yz6cdKTUTL2la/Q8t8T6Nr2nX0tvNp8KyRylWdZgU7hslc7vqDg88EEGsaHwxo+ohU1TSIzJKP34AIO7PPOMtx3457cV0Ot+JkuvMYt94EsAaw7PxHHb6mlw8rCNP3kpiUFiqjccAgjOB3BHrxmuepGC3OqE59ChrHw01Dwh4mvNNsI/scMN9NC32kLLNGVIyjhXyjgHBBxjn3rGm8O6ml5cy3s0H7pGMLoZD9oYEAY4G0EZPzcj0PSn6f4n1LxB4w1TW7WynkG+4u9QMeXWFHmRRJIf4RvaNMnqzgd6s6h4qViVZx+dckVTkmdblWUlp0PL/jxa38Hha1a8WMn+0FBeOR23HZIf4vy/D8T5RXrnx+1VL7wlbRLjjUkP/kOSvI68LH2+sOx9BgG3h1cKKKK4jtCiiigD9BdB0nXPF+ka/wCI9KmLWvh/T0u70rDKxMb3MNsBuRCE+adTmQopwVDFyqNX0+21fUriO0gYyO4BxGM9eg469uO2cdcirn7HH/BR/wAQ/shWOteHYfg54F8aaJ4ilgm1nSfG+hjUIbiW3DG2zHKWi2ozvu+TzCksqpJEzB1+vvh5/wAF/fCnwz+LmiP8E/2Kf2c9H1A2YstP8V6f4Ql0SHS725kEbXUk4Dz/AGZI2YOihGwzneR8h+wni5R2jf52Pjo4RSfvO3yudl+zn/wQq+Iv7QH7MOlfEbUPjj4f8LeK/GPnXXg3whr1mytfWlvIqSStNkyxDa7yhIoZVZfJZiPMzH88ftof8Eq/iZ+xx8O9R+I3xB/aZ+EOoLp8yJ/ZGjeKblrqdmJ2JGZrWKIyMEkKRGQSSeRNsRzDIE+rvGn/AAcB638dv2dNYsvHP7O3hTxw2mQX9n4g1GTWhYeD9XuRM8Wmymzvol1C4hV7iwlkjYwE7bh1iUopH5I/tofGf4z/ABu+LkPiz9orw74SsNYhWS90+w8IXhks7WO8f7VkKLiVEZmbf2kYuXkLs+6vPeJx3Ndr3X/W53LC4Fxst19/3GRqHilYTuY7s9cNWV4h8X6bd+D76zg8NzrcyRrF/aJvgVikLhl+TyuhRHG3cGzzuwCjclf+Ii4IMuax73WmIOWxz61VXE6bhSwiTvY6L4aTxr4ga21Vbi4a7t5re3htCNzTsjCAc4487yyfbOM0k+vSMSxfH1NcedZET70kII7g0ja4D/HXIq6jGyO2WHcpczLHxN1FrzQYo2fOLxT/AOOPXDVu+JtQN3YJF6TA9fY1hV5+Jnz1bnfh4clOwUUUVgbhRRRQB6DceJH5BkHHvUI8TSA8ymuSOuSHjyf/AB//AOtTW1hz0ix/wL/61dzxXY5Fho9j0zwN8c/F/wANpdTn8J6isJ1nRLvSdQWSEOJbW5jMcq4PQ7TwwwQQD6g8tNrpl+ZifoTXNHVJT/B+tNOoTEY/rUyxc5JK+w44aEW2kb0+ru3AbFVJr4tnc4rJN3IeDz+NNM7Hg/zrGVVs1VNIvvfqDwaYb8Z4/nVLzPajzPao52XyInvbnzogmP4s1WpWbcMYpKlu40rBRRRSGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/9k=",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKK/RP9jn9jj9jz4m/sb+C/HfxA+B51bxVq41Fr3U4dc1OKS48rUbmJVEUU4iJESRqFjTezYGMnJ6XRf2AP2KNXvbxG+F7QRNAFhV9U1JmR87gybbn5s7Sh3cAHIGcV6dPKsRVgppqzV+v+R5lTNcPTm4NO6dun+Z+Y9Ffr14V/4JAfsna/ZrPJ8MtOtUliLR3OpeOLmJA4jMgjIFzvTfgKCU2hnClsK7CfRf+COf7LF/qf8AZdz8MdOjeVcwMfEWrMpGfvArMfUcEAe4xzp/Y2K7r8f8jP8AtrCpbP8AD/M/H6iv3T0//ggH+ypPa7rb4QaNdbEUtNN421aNpQzKAUQSnGMkgMQcBsgYGYNb/wCCDX7OdrG1p4f/AGVrDUbk3wSSa18fX0kNtGG+Ysv9oLJ0BwSOcgDml/Y2K/mj97/yI/t7Bdn+H+Z+GdFftT8Qv+CDXwo8L3lz4g0/9knU5dEJP2Df4iu4nnBbC5WO+uDE20q2zdIQSQTypr5l+J3/AAT2+B3w+8X3HhjV/g7JZTQOPOVr/UTFGvJO1zNmQKCpJAI579z+x8Ta6lH73/kOOeYOT0T/AA/zPzwor7h1D9kv9lxb23sD4Ut7WOYor6g+o6iY4Mucs6h3c4GPuqeOgJrk7v8AZp+BiPtg8EIy7iAyandAH8TL6c8461P9kYnuvx/yL/tnCvo/w/zPkqivq29/Zm+Chs5BZeFcPvU72v7gsnB4A8zkHvwT8o6d8TUf2afh8mnq2neHlmnlDENHfT7YsZ+Uhm+9jDdeAcdc4TyrErqvx/yLWa4Z9H+H+Z820Vv/ABP8NWvhDxzfeHbKMpFbmPYpfcQGjV+Tk8/N61gV504uE3F9D0YSU4KS6n6qf8E+vEmnWv7CngOx1C6QpbnU5PJMAc5GpXbHAKnPReMHO4YwcV7P4f8AG83hXV4bKSyit5IXkaf7RGiS7t2SrgANGwZehYnoQAMV8Zfse/EebRf2ZfDOii6ZFhF4Pv4Cg3s7fzNer6F8QJ9TtZI575yZCYyv2kE/f3Z5525JPYbmySTjP2uEt9Vp/wCFfkfF4tXxVT/E/wAz6Kufi9YX+mP9p1OaOcToIrdY8xvHh97Fi4Ksp2bVCkMHcllwA+FqPxWvIZ/sxnBMZwFZjkcds/h/OvDLnx7K0EkrJ5ke0bnLg46jgZ6Hg8jGDweDWdN411G7l3qSVUEO4OR7kn6eldN42OfkVj6ot/2tfEWl20NrJe8wRbEbzWUbe3A44FZcf7cnxI0K+J0PxN5KMd2zeTk8fMfU8e9fLF942u/NkjlnlOxvkDnGRj736f8A161PhF4U+Iv7QPxN034VfDfTLnUdb1TzRZWUFrNO0pSNpGASCN5CNkZJIXCgFmKqrMJcoxV2YOjzOx9I+Pf2/Pjv8a7W08AJ4gZ0IFvDZ2ieTvdiBgsSOpGdxPbngcfNPir4lT63K91NftMXJbezlt2e+Sa898T+MNT0u6PkXk8M8bHEq/K0bDjIz0IrnfA/jW0l1J/D/jK6lWM4WK8jdU5zx1GCMfiKylWjGy7mlPDqMW4rY7i+8URXCZLDPT71ZUmtwg5Lrkj1pupeC9UmmlTw5qK38KgncvyEY6/e4IA7g1zv9m+IZp2gt7XLorOwWdcqFIDE89twyPek5pFxs1odIfEVuSC4TPbJqG/1yzli+bysgcba5DWIda0OGLUb0KYJGws0Fwkqq3PysUJ2twTtbBwM4xWNf+JicrFM2B0LEAn8KzdaJvGlJ6o8Z/aImSf4xaxNHjDfZ8Y/69464quj+LVybv4g6hcMclvK5/7ZIK5yvkcS74ib83+Z9hhlbDwXkvyPoX4KeLJLD4TaXpyS48vz+PrPIf616L4Z8dXq2raZ9rTyp54ySyxhlYBgpWR+Yh87FsFVbClw3lpjwH4faw9p4Rs4VP3fMz/38auu0jxjstZLOS4ZUkxlVJxkHgnHXHJr38PibUYLyX5Hg4jDJ1pvzf5nrMfj+KGJrGAosAwFREwqlOF28ZAxxjivtr/gmF+3n+zz8Cvh9rnwL+Jt5bRXvj/XY38QzeKtNtrzw4+mWlr5tpHOryxMZPtU0hYF2wFTanyzK/5mS+IQHHlzNgjnJpsmvfaAY7ghkK4KsMgg9q0qVlUhymUcO4u6P1Z8bf8ABLnxR+15dN+0D+yZ4S0/wR4U1zRIZ/D3hbxbqd5FJqeoRwH7ZY6dNcLIZ3ikjlBNzJC0pjlkRBGpEcHwl/4JP3v7NOsSftCf8FM7MeHvhLoGmPfqPD/iGxvZ/FV8HjW30i3NpctIjzB2cuAP3cEvzw8zR+e/8E2P+CsGlQX/AIB/ZW/ag/Z+8D+PfA2l6289lceIbffLZ3suUOqXcl68ls8VvC8253WLy42L+YBGQfqf4t/8FGfiR8e/C9vf/sZ638N/E9r4PvY7jxB4J8Oumg+KLrQbRLme68lL61SC5RreyMksVlJP5SSqqoVG4ZzrYiMNNUZ+zp83K9GfD3/BQvxF8JP2zfiuPjx+xl8IfE9pd662o/8ACT+DbTQo5FtpLQPKt9CLVmZhNZR/abhSmIZUnYzSq25firUNcYLLEZCA6lWHqK/Sz9vH9pT/AIKDfs8/sveFrb4ReBE8F6Zd2L+GtV1UaQZri4hjR7yS4C+SkFoZlDFmEIutlsjSONzE/lj4g8QXOpXjahewRxzS4adYc7WkwNzc9MnLHGBk8BRgDljipVE01ZI66eGiutzY0Hxh4t0uR7aPxXeLaSRstxEshAdMfdI7g9MdKNK8d6to+oy3+nzeXMsztbzsgLQk8bkJ6Edjzg89QDWT4f8AGGlaJaXstzYvcXM0AitlJURplgWdsglvugBRj72dw24OC+sB5MtJyTml7VRS1No4fmk7xOrk8Q3NxO89zcNI8hy8kjFmb6k/jUc2tk8hscY5FcwNYG7Bk7UxtXQ8GXNL26tua/V9TnvHcxn8VXUpPXZ/6LWsirviKUT6zNKDnO3n/gIqlXk1Heo35nq01aml5HSaBq7WukQwA/d3cZ/2jWja+IjHJhmwMdc1y1reeVAsfpnv708ahzwDW0a7ikZSopts6/8A4SZO7A88cmg+ISx4kXA965Mako/io/tMZ6n860+ssj6vHsd94R+J3iPwP4l0/wAY+DfEV5pOr6TfRXml6rpt28FxZ3MTh4popEIaORHVWVlIKlQQQRX1Z+zn/wAFf/HXgzxrceK/2uvBU3xzeWSylstb8W+M9Qg8RaRJZ/aZLZbDWUdrqzi8+4E8kcZG9oI8MnzbvhVdTx1Y0Nqh6Bjj61UcXJETwcJ7n6lQf8Fuv2Kb74mW3x38e/8ABLSz17xlb6y2sQzS/GrV4tLtb95zPNJBp5ieJI5ZGYvAxeIhtuzaWDfKX7eHxQ/Y6/aC8W6l+0N+y14QufhvcarqMUniD4V30iz20FzcK8k11pM0EKRpZpKDE1rKI3j3wvD5kUksNj8vNqbk8Zpj30zdDUyxXMrChgowaaNOa/fZ5jSjBYgAMM8Y7dQORz359KrnUFznePzrOLuerUmT6mub2jOtU0jR+3L/AH6Pt6f3hWdk+ppdzetLnY+RBfSCW6Zx3x/KoqV+WOaSoLWgUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/Z",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [36,52,56,72] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [48,53,85,76] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPe/+Cd/gvwz43+MGv23i3wTa69Y6b4G1DU7i1utJF6sENs8Ms1x5exiBHAsrs4HyornIGa+xrj9lHwzr2m3sfhjwN+z/p+v6RqA0fXfB/iRYbPUIdauL1LGwsLWUxtZ3/nTreOLq2uZrQW1nJNcTWDSRxV8bf8ABPLxFa+GfjTql/dpKyv4XmjAiAJybm2Pcj0r7Hf4seH3ba1vdqCeWaNT/wCzV72WUaTo886XPr37eX9fnfxcfXnCs4qajp/Wo6X9l7wx4U0jT4vit+y74R0jUry2e4glt/D1pLZ6lbiaSJL2yuFQxXdpKYmaK4hZ4pEIKSSD5jUb4FfAsjj4KeEfw8N2v/xurw+InhiRA51V1O3OwwPke3AIr3P9mj4e6i3i7xP4ouX0i4l8JeENZu3029UTi6LaNfyRzwhkeC5SPyxOVLEPEjSKskSSuiq0Y0pOXJyrV2/4fsTSrSqtJSvstP8AgHz2fgN8C8Z/4Ux4TA/7F22/+IpB8B/gWGx/wpjwn0/6F21/+Irp76/s2Ju0ijtrdnCQDz929hHHvJyBg7y2B83ylTnJIDbs/wBnzLBfZhkaKOVUlG1ijoHRsHsysrA9wQRwalUuZL3RzquErXv5nNj4D/Ak9fgx4Tz7eHbb/wCIr5n/AOCjPgXwH4KTwZ/whPgrSNH+0/2j9qOladFb+dt+y7d/lqN2NzYz03HHWvriHULSZ2iiuo2ZMb1VwSPTNfLH/BTht3/CEc/9BL/21rHE0+Wi9OxtharnWSv/AFY+U6KKK8o9UKKKKACiiigD3v8A4JyeEdK8d/tCnwnrXiT+x7e+0hom1Mxh1tt11bDeyllBUZ5yy4654wf1HuP+CPGu6n8OvHXjrwl8Z9VvD4IMoBn8JW4tNaaCKCa4jsZbfUZpbiRUlliULBte6tpICyEFx+Yv/BM/Qte8RfHfVtO8Paal3KfCNw0sMsiIrJ9qtcglyBgkgd+ucccfZkfw3+KUtndXtt4Zidmb5LWC9t5nRxyCACAwYFWCsygBsYUEivpsvwePr5dz0Kjgle75VJeup87jcxyXBZknjVGVuVtSm43XZ2afvbaNPsz7d/4J7f8ABF34XfEz4b6h4z+MWux+NLXWINPufDXiXwlrd1Y2sEAu4PtvkpPCt79qSFLsLHcWQSUhAGhJ8wfoVpH7HfwStfhV4X+GnwD+NHjv4RrZeIhcSy/D7R4IY765g02TTGt7my1myvoY7Qxx+aI5IxFJdeXdKXnfzW/BH4f/ALOn7V3xn3r4K+CmreI9QurIyw2Gk6fY39zJAVAeTZb3DK0JJVipcfUA8XfE3wg/ae0uwbwl4z8MTLNE2LzQJrSG2azlj3xtDJHPcON24bG4yrJIMZIZcq+TYrGzUpYhPy5fyV9iv9Y8kwTlCEVFJtazjdeTbWrXV2WvRdP1k+OH/BCz4ceIv2evEun6DLa+JviDYeGpofB13d+CrHw/PGIrQGz09ItFk03Sy0cimNbh4HwsgjdnjjjRPi7xt/wRX8f+P/gP4k+Inww0vWdW+N/hjRtP0x/hT4V8aaOmjfaLSWHT5Z7h2jLQyTJbXs7DzzJLdy4YRrCyN8w6H8Lvj54htEk8S+FtQNxbunlxXl/ZMyhSCjoYZCQUYAqAd24gjnpL44/Y5/aJ+I3gXTviT40+Hfi+bRppnfSNau9QMtpdzHe0qLcSM6SkGJ87ZDjyz/dOHHKczoJQjXSs7rT8N9jNcQcPVpOTs+ZW+KPze+/5G78Rv+CT/wC3R8J/D+seKvH3wp1C207QLC5vNS1FNPvRbrFApeV0klgQMgjVpdxxiNWJAZSg+CP23GuDD4WWbURcKPt3llZS4A/0fpn1r7g8N/8ABNn9oLxJa2dlon7LOralqMmmf2hDaQaPLdvd2bvt+0fuyRLCZMIJMFQVIHXNfIP/AAUb8E/ELwV/wh9p43s7WGCV9TOnJaBNqgNbbwxWRiXyVLZVcMxHzYOOjGxxCy+p7WUXtt6owwOKyqeY04Yaervo5Jt6Pom+h8x0UUV8qfVhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//Z",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD1b9j74F+Ef2gfiXfeDfGmpaja2troUt6kmmTRpIZFmhQAmRHG3EjcYByBzX0trP8AwSj8J6R4I034pXXg74t23hjWNE1TWtO1jUrSyslk0uxgsp5L/F0sQFtKmo2KwS523Mt3FBEXnbya8E/YFfw6fi1rFl4ph8yyuvC0sciHdgkXVqwzt5xla+uvD3hX4E6d4mtfFmkeFtB+1afcQzRRahYpJbO0bq6iS3nBhnUlAGV0ZXXKuGUkH2cvweFqU3Ur83VKyVvXXr+HdPp5WMxdWlV5IcvR6t/dp0f39mjyix/4J0/s/a1ptrrOheOvF8tpeWyTwSXD2sbbXG5cqIm7Ed6e/wDwTY+C2fl8Y+KAM97q2/8AjFe9+CtMtr57HwV4Dha+m+S2sLCyla4lYnhI0GWZvQD6AV3fhj4Z67f/AAwufihf6fpkXh+TWrXSJdfuNSBl0ueUSSRzG2hl88QsIJU84wyIdkipmVQATw1GEmktOl9xRxNapre35fifJB/4Js/BYk7fGficDPANzbZ/9EUf8O2PgxjP/CaeJv8AwJtv/jNfRlxHe6nrFzBBOL24Ammma3ycqitJI/QcBVZicYwCelUfORlDI4IPQg0nhqf8pP1qp3Pmz4lf8E/fgz4N+HHiHxjp3ifxO9zpOhXd5axz3luUaSKF3UMBACVJUZwQcZ5r4+r9LPjnLn4HeMwT18J6j/6TSV+adcOKpxpyVkd2FqSqRbbCiiiuU6gooooAKKKKAPev+Ccvgq3+If7RKeEL7xA2lW97pZiuNSEKSC2Rrm3XzGV5IwVBYE/MOAetfp74h/4I+ePdR8DTeIvgh8brDxTqEUkbxWN7ZW9ul9biWeK7e0FreXd1cSWphWR4hbBpI3PkGeQLE/5X/sOeI7Hwr8Tta1i61PR7WVPCtwLNtb8QxabC832i32qHmYJI2MkIT0BccoK+nG+M3g3xJdiTwt8Y/CllbwIZZYbnxfZWon3syLG5n+ZlDI+QmGCgEjbIhP0uX4fFVcu56NXkSbvonu9L32/U8WvVwVPMk69H2u2l5K67e609T9o/2Iv+CJv7OnwM0vQPH3xf8W3viX4h+H/EVhqsV7oWor9hLxXEciWwgKNIEV0HmSkKcKSSE3ofrn9ov4Mad4p8D2Pwq8DeFvBqwoHutMtfF3wmufEGl2RgKh50jt5Idtz5c8oQGZZJSNsYz5jr/Oz4Wi8K/E/THvfAnx4+FNibGCHda638aPD+kGXeGbao1G5i3cL820EqwAbaXAON4z1uw8F65ceEk+NfwjR4pknubnTvibo2pQecRvV4zaXZgcgSHLJLkMXB+bNc1bKpYutzvFp/JO3/AJMVTzShgaThKi1Z23tr53jvpr10P1I+P/8Awbz6HL8c9C1v4U/E/wASN4O1dpV8WR209jYXlhHLeww7bUzqVQJZ3E0mHhmybPZtJmVV+cfir/wb9ftxaR8Xbjw7+z/8OvEF54Kt9LtJLTxX438WaQbm4uWH7+Mx2BDYQ7TnyFwS8eZfLE83xwNVtb/QJvEk/wAa/hpdwRXLx3Fo/wAT9At3uIVaFGlW3kvXlypuo9oB3SeVK/3IZCj/ABnrWjHSLO91j43eCdR0vUbF2MNr8WPD08geF1TyprVrt5FHzjltm8Kdm9V3V1U8LiqU0/rSdlazXz/m3OOpjctqwadG19b83y7bGt+2X+zH8U/2Z/DXjn4XfGvWr3TfEmk+F7mS+0qMwXMZElp5ka+YlwWG5HDYZAQhBI5Ar806+4PHvgT4M/8ADP8A4k8dWetfDG1CaZf22nWdj428MPqr3P2eRlUWtrdC4KHPyskJQlEUu0jBa+H68/NbqULyUnbW1rHoZY6MoSdNaetwoooryT1AooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/9k=",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [21,39,71,56] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [37,41,82,56] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACivqb9nP9m/4L/ET4PaB4k8ReEWutSuxcm+uPt9wm7bcyooCpIFGERRwB/U+iTfsV/s+4F1B8N5GiiXFxjVLwhcn5X4l4GflJPGXQDknPFLH0YVHBp3X9dzRUpONz4Vor74sf2Kf2a7qPf/AMKwYjA5GsXv/wAepvjT9iP9nPRPDFjqtp8NWjkupbpSx1e8PEYjxwZv9smiOPoydrP+vmKVOUVc+CaK+9vC/wCxN+zhqGkxXV78Ni7ugJb+17wfymr2T9lf/gmD+xv8Vb3WP+Es+Ek06WWoWsUCJ4gv0AV0ywO2cE5Pv+VN46iot2YnFpH5S0V/TRof/Buj/wAEnL3wtp+oTfsrzSTzWMTyv/wnOuDczICSQL7A5PbAq9p3/BuN/wAEl5EzdfsmyH3/AOE610fyv6xWaYdq9n+H+ZJ/MTRX9N99/wAG5f8AwScSQCD9k6YDPJ/4TnXT/wC31cZ+0P8A8G/X/BLb4ffADxr4/wDDn7L00F/onhTUL+znHjbWm2Sw20kiHD3rKcFR1BHqDSWa4du1n+H+YH84dFFFemAUUUUAfoP+wdotvJ+zR4dvpIFZpGvMMfQXk4/xr3rTNEsyDDc2h8mVCkwjKhtpGCVLKwDDqCVOCAcHFeRf8E/LIzfsp+FZCvVr7nH/AE/XFe+W1kI0AIHI65r47GTccTO3d/melTSdNXOPjsrjT5zpV2yNNCdkrRoVDnAO8A4O1gQy56gg96f8SbaFfB2giRMnzNUbAGSQFgz/ADFb+seHo55hrunQSFrdlTUSqZUKThJTtXjDERs7E53QKAMc1/i1bxW3gfw4nH/HxqpZ8DBAS2/xPNaUJuVRGFRWQ3wH4ce/8OQLDYF8KAdi57eor3b9ivTY9O8SeJIJYHQrq9huj2nJ/d9gOc1zP7L+mySaN5RtyMWqEqR09P516T+zbEtr8Y/FVsZF3v4isikWcEARp/U/qKzdaSckzOTvofpB4r+LfgP4GfBofFD4ny3emeHNLsLT7Zqx02aWNPMaOFMCNWZgZHVcgEc56c034BftM/BX9p3RNR134E+Jl1630mdYL/bH9laKQpvCkXPl5+XnI47ZzxXiP/BQz4paFr3/AATK8X3GgXjPbwNZacQ0Mkf7231iG3mUB0BIEkTgNjadoKkqQ1eEf8EK/wBoT4feEPD/AIl+GN/4gaHxFruum4tLIWkpD28NsvzNIEMacs4AZgWIIANelQoUpUedM5JSlGqon6J6x4l8NeHdEm8ReMtX0zRLO0tnuL241bXLOKO1iRdzvI4mKqqgEs2doAJzjmvEP2jf2hv2bfiz+zV8VPCnwv8A2gPBPiXUYfhprlxPY+GfFlnfTxRLZSAyFIJHYKC6DOMZYV0P7X3xNhv/ANlD4oW8d7J5bfD3Wgy7uSpsZuPrivym/YE8cSLL8cLZVWZp/wBnvxHEiSoHI3fZ8kA9CB39Caf1WnODkpbEzqShNJdT8OaKKK942CiiigD9NP8AgnY1sf2TfCay9d19/wCl9xX1f8L77TvDGr2Oq3q+AYm1K5+xafdfEyyefRoH3IXkn2yIkYVWC75Q6KJS2wlVI+T/APgn34G1C/8A2RvBmsaX4nvLYzjUGlgbTo5oxt1G5XKEyIQMLnHOTnpXo/xpPjux8GWOjanqNhJph1R0lY2sm4CRQN4H3RkRDJ3NyVAHB3fMSwqxGOlFdWzSde1G1z0L4qWFx8FtY1DwR8RNG+zahcafNLBDsWWGaINGqzRyruRkIlSSKVSVYbWRjlTXCXHxR8JXngyw0T4g6VFKsWo3s1vPZmSKVUkhhCRNIDKOWTcVEcZ4x5hLqEPHXjH45+HPAWmfB+HxHJf+GdG0k/aNIXWJlsXkkdY4QUdRH5g3POGUbc/xKSQOZ+IXwcsfiF4Y0MeF/CB8+2SZr28/tFMXCMI/L+V2YAgiYMMAjcO4458LGpRrxl0NJShODT3KNp+0F8Yda1qP4V/BdrjTj4g1RrXR4dHlVJrmF5FNtGJ3G+J1B+aRXUEDJIAOfa/2ULL4zfDP9p68T4ha7/biXAistY1CDV5J4oLlA80W8Mu7IVpVDOFGZQd2WAbyj9nXTPD/AMOPjboHjnxtBeJHa3l5ZxzuA9uk32aRdw8sEkgiUfKMZX1Fev6Z8V9C8LeO/Eniqy0671OPUNYt54YrNUSSYKgVnHmsgGNvQkH0BrSpz1OaKiZaJ2WwsPxq8YXX7Pf7TWk6quojS1n0KGW0vkZEtbyDVyhESMflLmOcOVBG6AZI+Wk/4JPftleAPhR8VNd+Hfiy70+KTXrOyl0LVIdDd2vL9o44v7OfAJ2lpWUMfLj5uHLxmQVh+AoNC8S+Efi34a+KGpXunRfEDxxPq0Eccgkk+y/aWurZSVV0Vw8kgdTuXJ43ZLHyXwD4Pi8P+N08W+C57C3l0PxjBd2jTaeWEkcYDclJEwFcL+6wNw43x4w3q4NxVGSatZL8jKoqnOm9bn6XftZfGbVm/Zz8Y2tlcMr3/gLUYp4kUsC0lrMh5YA4yfvELxycCvif9h7xF/Zem+JNLvk8xpfhvrGnvf2wJSVbyIzeXIGG47DBlSgHDSF8gps9F8V/tF6j43+HV34H12xs57i+0WTT5tSiR7WOIOjJ5nlbp2bAbJG8Zx2zx87aR4p8Y/s6+D7650Wy07Xs3TWD387yQp5TWbx8Rrg58qZhyWwwzh+pxw1pUpp7kVozjJSsflHRRRXuGoUUUUAftN/wSd+G974j/wCCenw+1NL63WOQauAkjEkEatdg5GMZ+UfnXqnxO/ZU8Z/EPUdMVZ9Pi0vTLo3t5HNNua5kVk8tBkjapy+W5ODjbySvnn/BIjUb+L/gnb4Bhs2mCINVLqigg51e95yf5AN05xmvpyXUW+9pr7XVgSIYhjpnnA/n9a+Er4qth8dUlTdnzSX4tFODnGz2PNtf/ZybxDbS6VqbWN3BNEYzbG6dWZSMEZ28dv8A61Y3/DIWmXmnSaVNBLFEwkMiQXzMxZ2LMQwUAbmdiW9TXrzjUtc22djp8RkRmmSeOMysWx1UFQ2cEnPGPXsdK/Gq3llNBM1x0CnCNGeT224PTqOc+1cSxWIgrRY5O58/3X7EXgaeOzsJZdViGmSI9vHa6iyLbFU2r06jaxXC8EMwPBIqDVf2VdPjZntfFV7AQ2ESeISHuc8bcAcZz1zx3r3R4Nb0aziiS2+2pJuYxOSJSC23gyuVwMgDpyM5XrUSafPqiwwXOmG3YFWc7hkDpw2eT1Jxx09KuGPxcPtGUj55k/Z71uyULputW8jSSYbzrfyzktgncPu49euBWXH8EdZ015LPSdKsrlGmcyfY5zlm3HcfmIBOc/y4r6TvvD195M8kunKtv52BPHcKRnIYD5SCDyMgjB568isu88HXuqL5SQuOAWPyjYox3xyfQfQe9dEM1rr4tSUm3ufNd94E1OyDPrHgC8eJvlHlLvKkZ5BVH47dDnIwa4Xxx4c06ewm0kSajYWtzItzLHcz78SgbN65ChflGMDA7nNfYcvw8u7uzWVYDEJW5XIbKD0IyDkc+wOM96w9d+F731uYruM+Sy4XdEH3HPTHbjJH0PFbQzezuzTlbWp/PxRRRX24BRRRQB+1X/BJOa0X/gnv4A85ocj+1AWeZFK41e8IGMgkZPfPU9q+jNO1XT7a4VpHfACuIbS4VGK55+VnU45HT369/lr/AIJUu0P7BPgExrIXkTVtsaAkybdTvTxyOgBPQ8A9OtfRk/2y0SC7vIHto2A3/wCkKgTICgFuMnoo25PTtnH5/jVH65V/xP8AMtzlY6iKW0e8GsL9kaNYwZGMiAvk5I+VhJn3JC8961NI1/QpGaLWFLRwAtbxs0k8gXljg9wOeCOrD3ri7aTRdYtZbGTTtRtbtnOy4sY3LdPdTGvGT83qKv6dJ4lu9SmsJrGOKBcKSZIlR1wW+6qZYbsZBPG1SO4rjlyp6k6tHR6hrVhDrrW1rfWxTy2Z4VcL5kZzsbIwR90DDbec9cGrltrUNjMk7QrPuT5leRSiqACR5iZzwABz2HsKwNV8PeILWytdY0y2jaJd5fyrxMI24KCF25A9QwAznrk1l2q61q8qy6rp11CrTLOUuGEgZlJIOEIBIJ9xz0PSocotaMTiz0HRfFun6hEYdP0lrd/LAEiX7IysckjbtJHBz95cZ79aIfF3hw2vk22kK6ygAoczZJXHzeXnkPg5Hy4GSR0PH6DrdrJHbSmCGyUSEfZzpzb9w43ud2Pulucc57Dg3zrOlJqMej2832oyyF5ILbegZRkhtxYhWUHrgk8kAA4HO5tN6aEulJmwmraM6SK9wsIQr5ksMUcjjsQqBgwznPmE9unGas6VqWgCS6tNM1B1jhjYov2eVd2QdmWJTqV5whxyMnq3L3M9pZTR3djrciOs+ySR0LbRk8MPMQnPQkZ5529hoW2qQXcFxfvJE1sHTgzJmY8jhc4bj1PcD2rNzD2TR/NNRRRX62UFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/9k=",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvoH4D/ALKPw/8Ain8OdP8AGGuavrUNxdLN5yWdxEqArPIgwGiY/dUdzzn6V8/V9+fsN6Zbyfs2+HbjygWc3hJx1P2ycfyFcOPq1KVFODs7ouCTep5zL+wD8Mo4hdrrXiRoWwu5buHKvySD/o+ACMY5ydrelXLb/gnt8JZ1DHXvFHIyD9rtx/7Qr6lXR0u9OmsPL2tKn7t8qPLkH3W56DPB77SwHJrK00/bokYwyJ8gJiljKup7qynlWB4IPIIxXmLGV2viZpyxPmfxv/wT/wDhV4Y1G3srTxD4kYTW1tIxlurckGXGekI6Zq9bf8E7vhBJCkkviTxQNwzkXdv/APGK+jviXp6J4stGWEn/AIlFgWGO3lg8/iB/Kut0nwrfX+mx3Ftpc0iKv30iJAroeKqRauzNW1bOS/ZH/wCCF37LHx8tfDdx4w8f/ES0/tdgLsadqlimweaUym+ybHAzzmvqK8/4NT/2C4uLf4wfGI/72vaV/wDK2vSv+CZ9u1zZ+DLaOECba3lK+QMpJI3PHfbxnqWA6c19lfG/9qD4T/suf2PH+0h4r0rwzLrnnnT40i1K7EghZBJ80dhtyBJGcZ/jFc08Vi5VHyN2OWpPker0PzyT/g1G/YIaHe3xg+MgbHT+3tK/+VtUX/4NVv2E1lKD4ufGLAPX+3NK/wDlbX6reEvGfh74g+AtM+JXgVLvUNF1mxt73TL7+zbhFuLeYBkcKY94+Ug7SobPGBXK/Gf9oz4N/ALTYNb+LF/qmj2V5eC0tLy58P3SwyTkMdm9owqnajNliBhTzwaiVfH92JVPM/G39uL/AIN4P2R/2afh1pXirwB8R/ibe3t/ra2kkWravpzxrGbeeUkeXYoQcxDqehPGcV8ITfsWfDCPVhYrruv7CmSTdQZzn/rjX7zf8FGvit8O/i5+zfo3i34beJNO1WyXxIyi5sNWtLkLILC6JUrDK7KQGGdwGNwHcV+SOgWVvd+LnSaEP/o4OCM454/kfyNdVKviPYNybuawfMz866KKK9ssK/RX9gu0jf8AZb8MTP8A9PvJH/T9cV+dVfpt/wAE1fEeq+Bf2XvC/wAQ9B1O5sb/AEl74afqFlBBLPa3Ul1eCOaNbhXjDptLK5RtjqjjDKpHDmEJTopLv+jGpcibPTIbfYMoONtU7jRYUvF1iOMrDcExy8jAmGScAKMBk2kZJJYSHoK7f42alpyJP8T/AAJ8SIPiPZazbTalq/iO10t7W7s71n3T/bbE/vIMv57+eu62O1QJNzGNfJNK+POl+CtJ0+98WWNnq1kt894tpeiTiSRYwp3I6F9ixsFVg6AySEqwY14dF81T2b0NOe8OZG58WbaK38e6bbxJxJpmlgkj/pmrfzFeyfCCSxv/AAdf6ZaCRri1tg0wFu4RQ6sUAcjazYGSoJIBQkAOpPy5448Z+IPiRqVvfacmnJPqGqSQ2Qtm8pIoj/qo2VGKmOJE4ZE3sCSd5O6vdP2Vfgv45+HN7rXjWHxhHqGiatoYt7iOWAxT/aYSoRm3A5VUaQKVbGGYEZVSdKqhJWT2MZ3jH3up9IfsIeKtM+Hvw70nxvq+77JoulSXc3l7QzBGd8DcQNzYAGSASRzzVT/gvX8TNM8RQ/CqfTNbtruFrTWbm3mt5w6SRyNZhWUjIIOzggnNePeCfFD+G/2SvEWuaPaySXMHhl725S3I8yVITuZhkgfLEhJ6ZVSOc14Z+194x8R+H/2R/gl4S1O7eG/fRtSuotNjxKvlXF8ZVMrbj8wONqgMDknf8uG3wEZuu2noYVoRnTa6n6vfsE/tfaB4z/Z78LfC7RLfUxceGPB2ixyag1opspitvArosiOxjkR8oUmWNmKOUDKu6vNf+C3PxIvdU/Zc8PebqjlT49t9qBvlz9jveTx2GfzNfP8A/wAE0f2tPC7fCaD4E6Hp3iPT9W0gvPd206Qmze0N6qBCyuru7GVJCWQfvdzEgDacT/gqb478ReIfh74Z0ybUVbTT40QsTdFZI5fKnCBEKlXUguSSyldgAD7zs7ZJ0sSo33M2r0Wjq/g5ql/rP/BMKz8Ou3yx+ONT1C43JhldNPeMZz7N9eK+I/BKGbxlc7c820WOOnzPX1X8E/G3iu8/Z5uvCuv6csEc+maxqK/Zkwo3W9s6vIQdu90uFYKoACjn5s14H8KdMtdR1YARxAi0UyzSEBY0VpWZ2bsqqCxJ4ABPauWvduSsXQaTsuh+WlFFFe4dIV99fsraF4uX9kTwGfAWqSW2qa7qF3bRxybHhlQX915rMrqxQLGrNuTByvfJB+Ba/X3/AIJifA7w/wCNf2J/hd48vtVeK8sE1pLaMopjHmapdIxbPP3VwCCMbj17ceNxEMLTjOXf8bOxnVV42OFt/A58QSeG9AuZZIL2O01VdSgvUFwCyT2Y2JnOQZGLc56Y9Kl8MfDPwzH4bm+Hni2302aTw/dkrLqmkuGdDI0iSeasgLqwPPBGQ6HIBr6x0j9mzQLKW91CfVoLtbu/kuii2mGiDxwqVB3YUZi3YCg7mbcTxh91+zp4M15FmeJbmEuiTG6tmbCHAxgBiWCqSF6cYyMZr56tmGGdZuK0Jg3CFrnxxo+j6nN4sutY0eLRLOCSRbqzSVnjDxg7QFQjcnK7iDj744ByB734A+PsPh3wRL4V8T6STN5TrDLp7LJG5YYydzKV5Occ8A8njPot5+y18ORMUk8MWMxV2UXElmF2KB77sA4z/wDqJqvN+zn8PWthMfC8JjX5fMX92cnn+HbxwcdzUrG4RqzQTlzpXPELD4i63Y/CS/8Ahppug2076v4ZutKurqXUWthbmWN4w6qIZPNADEkEpnpkZzWT4yufDXjDwN4F8AaoLuS48H+EJI7hoivlSXKxxJDtcksUD+Y+MDoBgAnHtV5+zt4NCyfZVlt3iVnZUuCBgDsWFY158BtOtUZ4dWugqRlkaVRMTjPChVHHH/688duHxuGpPmiTKomrNHjvwdgvfhP4hj8T+FfGmo20k8UJuJhBau8oDiRom3wkFCwHzEeb8g+fHA6f9on4gWnx/wDCi+H/ABfrVvplvpt//aFhc2FuGl85Y5EAlDyBWUCTJ27MkZ4HFbl38L9fgkEMWo2ZyCyJMVjcgdtpBJ6+xGB9Kx7/AMGeJrEyWlzo0Vy4UGN4LgfdPptdSOhHTPBraWIp1ainzalr2bjax5H8Vfj98efAGlJ4K8L+Lbe00q78MWNsIoLCNpCk1lbRyqzSIxDkRhSykEYyu081yXgXUNO8LeHV+FuiW11Pqnioi41ICXItbQ7BBHuDEmSWQeYw7JHGMkPIh9F+IHw+0zxBO48X+G9SeTYqmQTTltq4CgNk4AAAGOABjpXMaDoXgbwR4gXxHpcGqJcxTxzSPebpvMKMGCM29W2/KBwQcZ6ZroWKpJprumZOndNdz86KKKK9Q6gr9lP+CTs0Fl+wd4EmupiI2OqFlyRx/al0vHTI59+f0/Guv2I/4JY6zJafsGeBbQPKqyf2nGTborMP+JpdknG5cdueen5ePnavhF/i/RkyslqfTf2z7TKE0yHCKg2NHMmcZ+7szngY6gdRjPa1p01xqbGb7cz+Vu8pllCYUkDucHpgkY6YPvzWma3arcKfPeSRbnDrE6qRgBWyDzJjliDjjBG7itO28UTrIbq21B92BEsBs0AK4zuYBSzHryePbPNfJ+zuzNyi0bcsF3JLElxfm4fO/wAn5pCh6AZAxjGfpx1qnqEniGV4rexRVk3RiWG6VQ0XXLfLwXycDBI+U1a0Lxc3lPDrmiW9wqShYuQp8srnbhQCF3A55XOR6ZrL/wCEntp5DHc2AibzXEJiaJ1lTOFkD5KkEHIIIbBHcGocddTK+tzTg8Ou6G81VXjlZShkns1yGHUbl4784rPv9DL6zKqQMTGAyk3ALgMTjJRs5HBz054zzV+LxO+gxSRTRr++iBtWMBdFBHBY/N82OeRk47c1rrq73O7WZbAQP9nDR2vl/JFhSV+RipCk8+pycdAKi6WxDlJO9jkLn4ZyTTDULhPLLQnZG7OT6l/TGM9T/hWff/DIOHmVg2MJGzSfgOQeevpXoeoeNdeXS3Igjh+XajRRoxkbu6kgkLnuDzg4qqnimC5ihkvLR77CDzB5hjYtjbklpHB45I2csMDAqfazGqkux5bdfBe7SN5rrTpLh4wod4VbYGbGBgjj7w5J79e1YF58BDdTuL/RFQNwN6grz3PB/LPaven1/S4ooYTFdSROcPJKVjaRSOrBRxjBwQVXGOlU5/Ei3FwPs2oTkoojijS7IQKCSFyXx1bpknKjPIGKjiqq2Gqsm9j+b+iiiv0o7Ar9df8AgmJa6hcfsHeDfsbw2QRdRb7bKgff/wATW5GAvmc8FuqqeBgngH8iqK48bhHjKShzW1vtfuJq6P32l0XxNF4gV7O4ia3lskbdHBGgkPI37/MxyVOdqdQvIBwNTSVTVi0Oo6fYRyW6b/OkdHnQnO45G1QOCOD0J9DX8+tFeT/YL/5+fh/wSeRH9CWgeHo4nuZY9bur53cLaJZQxKY1bnCEs+c5GQvGVHGTUXiHwvaXV0NS0jUIb2d4SZ3utOMnlAYDbmYFuo5yw6fjX8+VFT/q/K9/a/8Akv8AwRqKR/QjHpniHTNMCxapbqXYhggAVohwRsLNhsdwMntitJ9ZZMnWLLUUiKBlhtZ3dZGGCD8gJwvoRwcHacDH87lFRLhxy/5e/wDkv/2wuRdT+iBtesJXlmliIjBRYrJYI3Bfk5DgjaxzynY8nHGX6je3rpEuiytHBCmEnuo2IQ7iegf7uT0xnk1/O5RUvhrXSr/5L/8AbByI/of0S6urjT3tdZ8QwpK5DM0d5GFWIHAw5WNlJ27ucckgM3Bqrf3VrPLvtLO5ack4kjuEWNicgfMFKDqPU8Z4zx/PVRSXDNnf23/kv/2wciP/2Q==",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [50,46,78,66] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [34,53,61,72] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAoor6C+Bv7C0Pxl+GulfEOX4sf2X/aYnP2M6EZvL8ueSL7/nruzsz0GM49zhXxFHDQ5qjstuv6G9DD1sTPkpK736fqfPtFfWcP/BLoTXK2y/HLqMsw8NAgDj/p696tH/glOzH918d9wLYVj4WIBHHPNz79Pp61zf2rgP5/wf8Akdf9kZj/ACfiv8z5Cor6/l/4JTLbyKlz8fAm4jr4X5GTgHH2qrVt/wAEkJrqdY4/j2ShzukXwpkA4/6+unucU/7UwL+3+D/yH/Y+Y/yfiv8AM+NqK+0F/wCCQpRsXX7RCRDJyW8KHp683Qz2461cj/4I3vKnmJ+0WoVU3SbvCXK8+guyccjnjrR/aeBX2/wf+Qf2PmX8n4r/ADPiOivuL/hzOqoZZP2jZNgXcrJ4LJ3D1x9sB9ev8uat6H/wRf0HVTuu/wBq1rdOfmXwOHOBjqPtwIP+eaiWbZfHef4P/IqOSZnLan+Mf8z4Sor7Zg/4I7Nd+IYdDtP2iAVnuFhjnm8LRxDceNxL3oVE3Z+ZmA2jcdvKjp4/+CFdzPexadD+06pmllEa58GgJknGS323pmuqhiqGJ/hu/wB5jUyzHUnacLfNf5n5/wBFfqFqv/BtR4k8NhbTxN+1xbQX4d0ubOz8FpdLAwdlCmWPUDG5O3P7tnABHOcgYWg/8G89x4j8Znwrpn7XCNFArNd3reAyNgCZO1ft3zncUU5K8MT2ANVsRRw8mqjs15P1MYYTEVEnFXv5r/M/Nqv0I/YV8tv2ZfCxuLZHjSW7zvBwf9On4OPX6gjmvz3r9C/2HFA/ZX8MyBMlftpB2g4/02fn6dK8zPNMJH/EvyZ6ORa4uX+F/mj6z+HfxM/Zq0LxI2r+M/2V59dsYo5xFpT+P7q3gkxbxw27TPHD5rsGWeeYxvGssssflC2ijML5N14r+EL2OvWlp8GtQS4uhHH4Ynk8VE/2cnnGR5LpVhH2yUxhIgU+zoMu3lkldnIWsBFuyhA8fcAkE+o9zzirdrbrdzloWRURcsyYAJJ/XjrjpXzSqN9F9yPrVSS11+9/5m34+174e6t4tvfE3wp+Htx4c0i6kaS10C/19tS+x8ZZRM0cTFMn5d4LAY3PIQWNK0SbUrqO3vbwLG8oSWQowCA4GeAcevQ8Y+lQWHlxzCNLdJGhDY+TKlgSRjqemRgHrz2NT2xuDPGs0pm8pQoUMTnA5JGc9i3Oc5GMU78zLS5VZC6RfXCarcW9shKRSuQxd33Lkd843ZHGBg4HqcbulW8vlRXF/drJvc7d23cOCxBx04wO/Azz1qnbtbBDC0p81TtxFwckDaAeQe/B+hyemglukUszP55SOQH5YixBBzjaAR0A+vv0oW2pVy7exwXflyXd2y7ky4iQkjGPlz7ng469e/EF/bX9qpk0i0KW6NkyMOPbgnkEE8c/j1qzpN1JHNvEB8oKC/mHaqA9tpAB5H616P4RvNFutN8h9LVg0e4K648w4zj/AOsB2OO2MKtXkkr9TenT5kzyzw94g1K38WRQ24toryQNE8rWkTBFGGypkU+VIpUFZUwykcMOa9/8N/CzURPoF/4jlXT9J1VBJHqAnVpJI0laMsqq6lSCrfISrMu042yBn8U8cXOl6BrAurZVtbm9uHS3KRhnZgSflXofmK8ZHJA7c9l4X8b+OfCFzJ4vs7m90DUL6TZb2FhqMiSbHbgO27JLbd5/3SccZr63IvYUqblUTd9v8/6fzPnc3dZtRptJ9f6/r0PUJvFDWch0+C1mZby4L28G8u5ycKoH94nH6V6F8HdD0i0spbnzI3i/eG5nXdh7hmIkBDAYA27AehCrwOp8U8Oa6tql34l8RSx+ZGpht3mwkaswPmTHPpwAPQseCAa9z+Ffhm10D4d2NlBYXESh2nmMobc07fM0mGbIyWyACRweAeK8/NMQpX5VoY0abjC/Vn8tFfoZ+wqzD9l3wy7xkRr9s3MYzji9uCea/POv0K/YdtfO/Ze8KFw5DNeqqkfKf9On6e9d2ef7pH/EvyZ5+Q/75L/C/wA0e0Wl9azH7HaqGCkqxbk57kds4Hb8BWjPHIsXlmRmjkyZA7MMAqT9Oc7s47fjVKzj8q0F052xSHckfl53ADluCfcDvz+b42mZxHasu52wWySVUZ4Cg8k9Ov1z3+Weh9etUaUc4jjW1ghVTGdkJEg3HJAOc9Op9eAKWUpqGnSRSXD2yNE4luo5dkqgnAbJAwcc9wMHNRx212sTPaSBZCrAYQKWXaSWBbAHC4C8n05IFJLeW9tci3ku/tSRptdPJBTKnIOeucMF69RgDrSTdi9jUeZNLt/O1BmBCBQjDbtLfKMEcg5PPb2PNS2d5MHSbTkhjt41Ad5CShBO4E9M5wAOeuOuMVyvi7xBpFvrWnWupaw1szTSXCW6W7P9pCKE28KeS0sW0Lhmbao3E4PTWsV5flFv4AllG5+1QpIpadQAQrbSAqk7+OcjGeCy1V7LyEtXZGxb6xPsUs7iW6bzztI+4QCDzwBg8DPbPfj0TTvGeg+DPB6tLdyO97Ji3iSJS7gKN3YcDcB94cN61z+neEdP8VRF0ijjMxH73bnahU4PfjOOx+o6VWTwwb3UG1OOaS5ghk8iz8w5Mj5OXA6FeD0J5Bz6nLD0ljcUoLW2v3HRUm8NQu+p2nhP4fXEmuf8Jfd29teywpK8ETJ58dvLJgZLYxH9zAJ27sZ+UDNdppvw1X7I3iO6tTLKEZYriVCzBSBulIxkFsDAGOAowCWzm/BzStQ8QTwRFP8AiXQSEMOv2uUAjcW/iQH7oPHtySfY7uNIVaJrP7R5kaw2sKlQJJH3f3iBwoLEE9B6kCvqsbX+r0o0YaHh4el9YqSnLU8mj8BjWdLj8O65A+2baL+LDpsDxiRlDKcoAsjKG3dV65r2vSddu/D3iTT5Y7e7m0wRJsaBFkHIbDPtIwpAzkA84xjBz5d8SrhrfxP5sVxcSPFbiCze3Vf3spkTzSq53qXdlGMkLtABBOD6Dp1/d+VdWfinULPYiP8AYpYIjEsjKjecmJCckAb8hhkBuBtOfncTWc9z6HL8BF3qSjdWaX6teh/LrX6D/sPNK37MHhWKdwYA14QDJyD9unJ2rn0XPbp6V+fFfoH+wrfuv7Nnhu3jlMbqLwBgqkgG9mJPPUdv84r6XPP90j/iX5M+AyL/AHuX+F/mj2+1sARFEVURhF24QbTgn3GMgdgfr0NXbWzjEyXBulkBG4IOR94KehyOCTn0z1rOt4Jb/wAy1W7bAj4d3yRzjHzZ9ff8etWXSaNFs41ULGSUJ+YheenPXnjJ/CvlmfXpmnqkBWNYbiNrhLhCH8sAqo8skFie3QYAJyeg5xjeKvHHhzwJaLqOt6msCDCBjGWd2YnChVGSxPTj+HJORmqHiLxIuh6PPqJhidraLaE37d0jMqAKBjPzFR14/i4HPyD8Ufij4l8d+I3eTzSVICMFI8pFPAHoT1PufpXXg8J9abbdkjkxmNWFSSV5M+hPg7qFz8cvi7qXxBldorHTIfI0gTIW2QruLvj/AG2HJHO3IPFfVfhrQIdR0vydPBkURjz5PJysgxkYIPyjOME+4xzmvkb9lCB9E8MXer67eLa2lrbG4l3IqrEMYXLfeZiQFAz1K8cmvov4dfEu/wDEU2n3+r2076U82YNLLbUmQIrKzbcMVKOpG4nnBwOlE8BiMyxPs6PuxjZN9l+rN8PiaODwynV1lK7t3On1TVrjTr59D0OYwC63faI0Usy85IzjnkdRwTzn02dBhumlXwZp0Q8zb5lxIpJaGF+ADzgO/LAcYU55JUhY/CNra6AfE9zCILt52isrVwcSNwx4P3VVW3Me+5FA+Ykd38AfA6Syf2vcGSUySeZNNK25pn/vMT14r28Nl8cmw7lUfvPr1t+hxVsW8xqcsNkelfC7w2mhaLbrPD5arGFwORGm3px3I4/Gul1fWk0+K4ENwYLtrZxaqIjuWR1KqcEENgAcjoVIP3sVk3mv29vdwQrh7a1Bkdum+TB6nvk8Y96j8NWkfiy9GpaisokMjC1hjIxjk7tvHzEhmz7n0OPBr1pVJuTZ3wtThyRNHQ/A+my31tqdzbhHijMVvPI+TbgrnKDb0Khue+CDW9Z2N74f8Or9v1m189ZZZpbx4hGpUyEhVj3ZCg4ByScxnjLZrfu9GvdM8Oww6darLcMX2CWTaGLEYbcDnAYAFTwV44GDXK+J9csdI1G4a+12SF5VjS3s5ZgFgYbGKI+PmyXXk5yc9RwvnTlzHv4FydBL/g/1+R/LLX3l+xRqEP8Awzj4btJLoxlHu/lGOQbu4ORk9jjt0r4Nrc0T4m/Enw1Zxad4c+IOuafbwZ8mCy1aaJI8sWO1VYAcsx47sT3r73H4SWMoqCdtb/mfk2AxccHWc2r6W/FH6n+H1a5WLR/D9jK6EgF3IVQy54OOgxn/ABr279nz9lnWfi/4mbw3b2LaxqTQeetlZ4zGBg5Zj945JPvzivxUs/2gfjzpxLaf8bfF0BbG4w+Jbpc46dJPc1ueE/2z/wBsPwFqQ1nwN+1f8S9FvAmwXWk+O9QtpAvpujmBx7V4dTIMVJNRqJfJnuQz+it4P70fsd8WP2frhl1j4X6v4fispIAY7hHzmFgc9h79vT3zXzt4r/YY1DwdPOtvc2E1tJJvS4bd5q5xlVXpxnIPXntivz91r9tf9svxHqkuueIf2tvidf3s4AnvL3x7qMssmOBudpiT+JrMm/ag/aXuEMc/7RHjp1Z9zK/i28ILevMvX3qKeQY+lblrJd9GEs9wVR3nSbfqj9DvG/w1hfRD8O/DEMkNnFdiTU74rzcOuw+SrAc43qxY9MgDPIHr/wAGNE1DwBPaDT7W3iaCxzAt5cAKiuu9iM4BwvYjooXrivyK/wCGi/2gyrIfjt4ywzs7D/hJ7vlmxuY/vOpwMnvgelPk/aT/AGi5jum+PvjVyFCgt4quz8o6D/WdK+ly7Dxy+C5W3LRt+f8AW3Y83F5msVJ3jptbyP3Tttffx7b2bXMhknaIKS6YW0tUZisYzyWd2eZz0LSAD0r0XwlrVnPpCW2igQ4QF0bgpGcgbgO5IJ/Gv58Lb9q39qOzXZaftJ+PohgDEfjG+UYHTpLViH9sP9ri2DC3/am+I0YddrhPG9+Nw9DibkcmsMbha2Nk3KW5thc1o4aNlBn9BE9xLrPiFNF067EcMoV2Zoc5VWwOR03Ef+PE9QK9T+GmivaS/uiywxESAfLyS3ynrxyGH4iv5qIP2zf2wbUs1r+1d8Soywwxj8dagMj3xNV2D9vH9uO1UJbftmfFeNQMAR/ETUwMfhP7n868ipkVae019zOtZ/Svfkf4H9Jnxz+Lvhn4b6NYa14pu7qO3huwAltp7znkEyGVUU4QKH5OFHXOQK8m8VfG/RfF95dan4DsjLehZYYzd2rRMI1Y7l8xoycpJFN+5ILEgE4UDH4DX37cH7aep4/tL9r74o3GMY8/x/qL9M46ze5/OqLftdftXsnlt+078QyvmLJtPjW/xvXBVv8AW9RgYPbArNcPVV9tHr4fjDBUcOoewbkut1b7rfqeeUUUV9UfABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//2Q==",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDwGUXrSZgmXKqQysex7Va0u5nthH9qgWZl+UPEvA9jnjvWd5JjErLAxVXJAjIG4DnHUd/wrRTUPKgW6iiCEKFSU5O5ix6gEeo9OlfniR+mLU1EvbSS4Fs6KjjAdc+vrjjNbNjrsAijht9RQfIcRE43DPX6/wCcVzFjYT6p5rysY/OwZPLAc/LuwAQflxnPGOgz0GLtvo2nvbu99c7HxiML1IHXbjPGMnn3+lX7JS0aGpyjsa/jHxvdnS7XSBp6yWnmxQGSKbAiJZVTaoBB689MKD2NO0jS7FA0g38gKu0g8jPoP88VlPe2sd09jdK4EeHQspfhh1+pBPPOfxrW0m6sUnCrdoJYSTtbK7vUKAvJyR6AY69KPZKK5Ylc7bvImuLZbe2Sz885EmGGS3GSOOfXimpayiTc7MV3EeW6jKDGR+f48mrlukrxJcTzBgHHlA8Hse/Pr/8AWqV7oLGtlHblSZfmD9AehLDj2/KsZxnTWpcXCb0M1dKNxJ9sa5liD8ZUFcDOMZq74t1Xxh4itrTwtrHiK/u4TMpigubyR1AVT90EnGFzj6Vb8NT6a10l23lqgU7ZC+VYA9FIA6jvR4h1AP4hWDT0LxgmRmVWwCxwFzjtgnH+0PSs41pyqWa2L9lCML9zTk+J/wASrO1t7G2eJba1gSN4pYg/nFRgszH5snAzz69RVy6+Nvii/ksNV8hNPuNNlEqm3mY+awHcEDAOSNuTkNgmqviHV2kSJYdKuFEcW1mkt2VGJAPDYG4j9M+9creabfXfiK002w2yG4VtxOfvbl6+3J/Ku3DV6raXU5MRhaC1SPrHwb4+s/GXhWz8VatLFaG9DMloku4xqrlOuBjJUn8a101vw8x8w3WVRSzt2VQMk/kK8V8O+IvFuhtaPBqVqzWgRY520u3MgCRLEo3FMnCooGScHJ6kkxeJvibe+I9JvNJS5hurm5uFinkChfs5SQlkAGAuAq4UAYXG0EMtfS4ZTqYuM6r91br06Hz9aglBxhuz5mtptSnTzZbaBZAcKAxB9MnPT1+nNaOlRfbHaXUpYApIxFjd5hGBgHPHBJ6ep69ciC3ljxetI4UxEKckoQSDkn1Ax9ATRp+qPZXaxBy8Uk3ylZN207QASWPA6dPb8flon0HQ27nWrSC7NvYP5qlFQ+Ug+uOc55UHPHU1G9zKl5L5lqyTrD8uCW5wcYAB74Pbj65pkUV1F5p0+7PzY8yRirNuIwDwSOTjkYHJ4xV+GyeKGIXSMsm843zqWdiewBPy5H5dcdq1eo07EljFqFrG1/LExm2+W/ygsCf4ST64HT0PoadZi9kuVks7cPJM+yWSNPurjJP3jk8YPoQfWq8MIsZXnuPOYRpscRyAbeeo24Zsc9yABggAHOhaXk9+Fa3X/Ro4VlHmx8bSVOcnAJyMfT6knSKd0S9hhs7i41P+1HvDDAJsrDJ82FPbORlg3OTwemO9aw1DTwjwzQJKq4KTM2VZiRlSB35B6jr0NZDXWg6bd7b3UFkkutjwwznarSEbQM/dGQCoLY5UBSzMANiKMvp6ahcuIAU/0cpdgkEEZLZYnnr09RyeuTSZqtCxbXOpXluhuLRViDnyltedvP5Yx/Ot/wAK+FdOvNQjM1/FEiOXn/eASAjALHAJPU/48VyEt0pBkt7mZZJJBvdR8uCMAAH7vyoB0xx71No2tXcrlUiAnfPlgZVicjkk+3+eK5a1OUrpM2pyjHVnu+teFNI+w6Xo0l/HNbXZeKLbExkMpXep3A7VUKrA5HzMy4x0PhFp8V7/AMH/ABHS+8LadaX+kqJLaQXVuJRcq2399GQRswckMDlgBggGtPXNc1bxLobaRP5rW8qETxoxXIHTlSCAe4z7HisXwt8OpvHPjrS/h3plsn2rUbpY7VtQuwiepJZ2ORgE7RknaQATgG8vhKhJX3FipKrTdj0vS9a1CWxkudQaKVYlL5tY9vmEjIVQWPJ+UYz1NRWsT2ZF5eN515KA0pPOT6ADoPYcfhitSXwunhuCHwpJplrYjSFFrPaxDdL56gbnnZXdPPLF90cTPFHwiySkF6n8LeG7G88VRnXpJY7IShLh4WAZVIwQmQw3YPofpX2uHpubS2vb0R87OcaSbep8tNLqt0/lG82JGcxhskOSQMEdMcdeMYNX7ZdF09Bdaq0O8zqsNuI2clmUgsDjG3Ax16jjtWfY26f2nsuIZZFGSV3BtoALEjtwOfSnataWWsRN5E8iQ7lEaxzGN2TfhWBUgq+0jlTkAHBFfJKyZ7GrWhsSa753mR2hOAoJU+mQoH5H8qWztLnU9uoW1+ti0DFWVzzMu1gMl93O7ZkIB90HIG4FsdpdH547MrGXYBmyQQewzyRj09c1JNdXn2FrKODcGuI3byG2NtUOCMjnB3DIBAyqnDbQKIq71KdrEOn6xaAvdLe3crRXB81HHkYcg/dwRjtyNuMZOM1sHV9auVhFnIQZgjuk6CR3IYMwwAuMg9zxxx1BwNN8L6j9se5mjwrFmJd85wRkt68DqSc1tQ20c8y6mSk0TRg+dE+R6bcjqOVHH4+7Umx6FkwS3cLy6iojQkqs20kKvYcDIOSMHPv2NV7PWLizx4f1ciS5iJNrqUqmOK5QYZiwwFWQR8kHAbBZABuRLk1zJcKj2Nq8UiTRsQpYhjx8qkH5cgZxjueK534m2lpq3ha90zVJ0jmlhdgkc20kjaQ4KMDgZA9MHB4YitKcIt2ZEpNK6NXwXFo3iG41DxLb6jOFTVJ45DISwEsDm2faufu5gyAOM4bGc1s6ncPp1mZNIi8uVW2p+7wWU9eMErjrjHYV4z+xPr0niv4ePpOpXCyz6frE0ZLyHdKrsJiSSfmYs7/pX0x4U8Jf2xdxl7ZXe3GFUggSFsZODweh6niufFT+rzcX0Lwv7+kprqefpqGp+W72U0kReQjywnlxknDYIxg4IJyecn3yYL/VGmlh0/Vt32lpAYJ4pNrxc4BV1wVbnqpBBz0r0nXvAGp/20jpcWrQx2rjbOjxiEkMwUMiFZWZlxlvmUAAEg4XzXxN4R1S2vIbK0jbzigLEYAjGcbj7Dk/hVUI8zjK+hVWVk1bU9j+HkV3YaZFLdxuWDFY8jJZjxkepySPrXo3w18HWviPxbb6PLHaxm3jeaaW9w6QLtJOFbhnAzgcsWYAdjXGfsx/FnRfg3qVp4h8Z+D08WXFpaTR2cWp3zLDb3DrgXBGGLFMsVUYw5DggqCPQfAvxJ+H/jG8ku9N8WaZo8klrKphi0u5Z2IGciTDDPy4zuA/lX6XlmDwrwsXKau+jsnbyb6v77HxOY4muq7Sg7d91f08vuPiWztoYriSOaPYHhLkqqlQfl+XGSexOevA9au6fI6wfa0nXdtCy7FCeUBu2EKAd2Tyen3cccGs6a5k1Yt9iVTGFUM8L9zgn6AcH8q0rGLzPOt4yyKDiRguM46j2Hp1P161+aK17n2OpStLmRbdI7uQJvlK75WG9yC21dx54AHrjHpxWr4eaCytpbe2tohM8Za5CyCQFiqnOQvJ4GfTH5V7sQRxtJFOhEkoG3y2JwQcHcTg+mBk5POO62+saakaae+oA3QkLpHsyAOBnJ4J579eeMDlq4+ppiB2hZnkMkrt/wAtDjBAOSecbe569B15BvNaWklrMJJVhZArxqr/ACtk4ZQA2E5DYGCWGOMHNZdoIrQyyI9tGLgM5iiAUq5b5u/PGBmp4pMxjT59OU7Srys8fAGPlxjgg5yCexGM5qo22D3txbuOO0gkFxELdIWBSPaQMfKT8uOepxj0ryn4+/GDT9A3+BLKKNpL6ylUXxkIEZHUYAwfl3jrwQPw9R17U3DSJdWltI6Qbl+UHIByOvYYHOO3tXxl+1VrU2q+MNSmv92EWIRAZwFOSceoyT/kV6GX0Y1q+uy1PPzGvLD0Lp6s6f8AZF+Lcfwr1qKx1aBpodYn4WNwzJl0HmdOylzjvj8R97eBPE9pcWkBOGiwJtr53dQe4yOuf0r8qvhjfXEOp2dzCzsok+aUjIXn1Pev0e/Zo1y11rTraO4SeaFCdvl8CXDbjgng/wCGD71w59SUX7Q6MiqOdJQPYNU1+I2ltBC+XffJJb7R229x05Kn8T715n4v1ObTdNuNSupQ0rsxBRdoYgdvZR09cV6T4u1TRNDtGRLb7NDINzSO5LMxwFXaeSSWOAO4xjpXhnhPUX+P2qQ2ElxJp9lb6sYESe1fJiJwNyZ5zsLe2cH7tTkeHliZxsv+H9TszKtGjBo0vA//AAm3je9Oh6STp+n3Y8u4mTJlkUAnBbI4JPbHHrXo2oaRpfww0Rbaydrm7VVjRFIXLscKo55Pc+gB44rbtfC9l4GQeH/CqG5nbhJnUblB4GQv3SRzj0atjwP4MTVtYPiG+/fQ2DNFaStGNskhxvcE9emAR2Ar62pFYRNze35nziXt9Vuz5T065stMh3W6P+9G0uqbsDHBOPqfpgUNcLcPE0kskQeby2CybQTnIJ4/H8xVY3M7CJjasjNhdqSA455bOcY9Bz9ant4BBai9nO4mQg72X5B0yMdOhOMepGea+Lue+WNMvb2KK4tYYEVbZ3FvKHzxgDJH0GMDsD1pbiytdQjhuby0USwsJVMKhfLY5GeAM8Ng59Tx0xSghsrOzFxLeCFfMC7CFKhywA+YnJzn35OOK0bCJr1o7q5uhiNjuKqfm5x16nj1HvTTbY7dS5a2UaXDCVkQqhc84G0AnGTjnkH3ORnpVqPUoY4UjsVJBP75+Du6cZBPYdOCCOQcVSuJ57aQJZFEjUqkA2AIQOM7enXHB9MGqio7u4nw5R9yCAgBSccYU44PP+QKfNbYpLqyHXUubqCS+fbHDsbftHQYI69cDaep7fWvjr456XPda7MwdREZHt4kjy0hCHOSPQ7vyr7ZvLJ47KS3SAI8wwYWc54XJPfJxgfj7V4Z8Tv2X9W8S/adW06NkEwG10QHLBsEDLDsAM16OArxozd3Y87McPOvSXKr2Pnv4Zaf9jvvtaMPs9iwYl2CsWY4VSp5PPoOgPTqPv39lrXNN03wlaXesXiRMsBkuriTOAAqlic9wOp6dfw+Zvh/+yv4n0zVluLvSXvNrEmTaFIPZSAT37170vg3XfCvw5eG4ja2juf3dxmT5nAwdv0JHJz29zXLmlSGKkoKR0ZTSnhablKNg8TftO3/AMQPiKNE8GaethpK3CJBdAkZBYmWQLwA2AOevzOOd2a+ifAHw90XRtK0rUjPbRi4lb7OFKhoguAWZQM5Ocj27V8hfDbwuI9Vj8WPZn7NAzCyQ/dnboW90H/jx74FfWXwo8SPoXg6bX9aH2jWtQkVYhOmfLg7KMdNx7Dt6cV9ZllKlQw3Lya208tU7nkYurUrV3Lm06npnhbwpZ6z4gux4ejmVb6eRbOS8Pzi3C7XuW/unAwvTjPHNdxquh6VZ2UOladEILOBAmYxjhRy31Y8n3NReCbK50LQYZtYkRtW1KINc+XjEEOfkhGOB6n9c1d3S6jfPYY2oiZY+vGa8vMcR7WrZbL+rnbhKD5T85LN5ntzcgJvnclAoPCk47kdB0BOOKkFqtwXsJ5JL0mHc5jX/UqyDOdpyAHON2f8K/L9Pj38dIzmP40eLFOCMjxHdDgnJH+s9acv7QHx4Q5T42eLhxjjxJddPT/WVCyGr/Ojzv8AWCj/ACP8D9Sr6bTdKsTp7W7SsdskcasWI6AnB44IJyPSrOiXxnijlQvvmB3SO7bmxk8/kD9RX5WN+0B8eXfzG+Nvi4ttK7j4kus4PUf6z3pY/wBoP4+RY8r43+L1x02+Jbof+1KHkVV/bQ1xDSX2H95+rFtEGuZZrzezk4QBiEA6gFemRkjjHbnjFW7K3s7qSGTT442EigHzFK7d3QMSBlufzHrxX5PH9on9oFvvfHTxic9c+J7v/wCOU5P2jv2ho23R/HnxmpPUr4oux/7Uo/sGr/OvuD/WGj/I/wAD9ZngUTLJFiZogNqs+QQeMYP1/DNamlyT33+iXqoqLJkJEAPkzwOewx2r8iP+Gl/2jtjR/wDDQHjbaxyy/wDCV3mCfU/vKD+0v+0cyhW/aA8bEAAAHxXecAEkf8tPUn8zWc+H68lb2i/E1hxJQj/y7f3o/aTw/o+lagzXITZFEP3sb/d5xgjA9yfrmsPxgth4v8YQaBb2qHStPjLzW8g3rNt+UJ7gk5weuTnNfj4v7Uv7TiIYk/aM8eBWGGUeL73BH/f2mQ/tN/tJWztLb/tCeOI2YgsyeLLwEkeuJKMHw7Uw+IVSpNO3SwV+JqVSk4RptfM/YO68Hx3/AIrSBrSGKzsoxiMKAgAHpjG3j8q9P+EmhWuu60viy7tle1t3C28M/O9hzux0r8Mf+Gpv2nCGB/aN8efOMP8A8Vfe/MPf97zU9p+13+1hYRiGw/af+IkCKflWHxrfqB+Alr6aUH7JxjuzxlmMOdNx0P6NdBhmnUzzPmSRyE3HPbrUs0M9vp17qtvdAS3TLbWQLEAOxEe4j6kn6Cv50k/be/bRiIMf7XnxQUjpt8f6iMf+RqD+2/8AtpFVQ/te/FAhW3KD4/1Hg88j9915P5149TKqs583Mj0oZ9RhT5eR/geX0UUV7h8uFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf//Z",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [37,50,65,84] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [48,21,74,75] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigArsPgj4W0Txd4vl0zX9Je9hWxaQQpI6ncHQZBQg9CfbmuPr2X9ibUfCGi+PvEGveKZJPtFj4WaXRIVUFZrv7dZqUckghfIac5HOVHvWlJJ1Fczqtqm2jqrf4KfBsTET+DowE5KSahcAkEDGf3vUe1W4f2fvgssbzXvhSQbwTAsd9cdPUkv0qSXUpvEGs+XPLHG80n3wmxOT1wo4A/lUgvb7Td0Cs7gyMqTAEr0wR6dMe9dLVPsebz1P5n95T1n4D/B+ZIH07wUsCC5TzyurTqXj6FVZ3ZVOcHJHGKu6t+zR8I/BsVjda1oljqMWoWRmX7Nq1xvgYu6KjgSfK5KBsfN8rr/ABEqNSay1mSXTNE1/S3tv7SjD6aY4P8AXI0hVXTGTIN4dc8klCoJ2kDo9L8WaTB4TutC1eP57aUJbtLbRknfgk4JVwMRnLDeCSAdpwTtCNK2qQ3UqLds+mP2XP2S/wDgjbqeuWeh/Ev4Pt4jtr+F/wB9f67rWn3CzLIsX7qVb6CHYqo8ro6ceaqpPIw21916T/wQK/4I5a5ZJqGk/srRXELgFXj+IGvnqARn/T+Dgjg81+Omj+Ofsnjmy8dWtpp1/d6bdC8l0zUIofslyUdGVGgYASKSrBoxwykgrgV+zH/BJH9rGw+Of7NMZ8QaAdN8TaE0NnrjQWzfZr6PYRb3EUi7oyWjTa8YbfG6MWRFePPu5ZLCYifJKjHy91f5HmYp4inHnVSVvV/5ka/8G+f/AASDJ+b9kgY9vH2v/wDyfU0f/Bvb/wAEf2PP7JGfY+P9f/8Ak+vp278f6TYW0l9e3flwwxl5ZGBwqgZJPFfLX7IX/BTnSP2iP2qfiR8O9N1CWXQLUWR8KvNFDGCY0kS52BSZJQ5EThmxtGVYISiN6tXCYSm4p0opvRe6v8jip4uvKLaqNpb6svL/AMG9X/BHwnn9kIn6eP8AxB/8n1J/xDx/8EfSwC/shDHfPj/xB/8AJ9YPwL/4K8+HfiP+3b4s/Zh1y5W10qGR7TwqzaLMk8t7AwSaKZmIMZJSV1BQAghSVZCJPr63+JzNcvD5XyrGjK2OSSWyD+Q/OueGEw9aLcKUXb+6v8jd4qrTlapUkvmz5iH/AAbv/wDBH0/82hf+X/4g/wDk+j/iHe/4I/f9Ggn/AML/AMQf/J9fVCfEjgYX81p6/EZ24BGPUr0pf2emv4MfuX+RTxsL/wAWX3v/ADP4269B/Zv0+51Lxvd29tbySn+yn3LERuwZoh0PXkjgc9+gJrz6vQv2cNa8GaB4t1PUPGVtqs+NFZdMg0y4SNZLk3EHyzlgT5Pl+bnb827YegNfD0UnVSZ9VKKlFpnuGvfDebwfrEmkXuoN5lsZFkxJDP8AvEO3b+4kdR8wYfezhC2CCM3be81XRtG1fwjDpUPmx6ov2mWSLypI2i81SUkIw6YduDg57ZUGvV/g1+203gjwn4g8a/D/AMH6tImh6Rp1vqksviGJtWkimubh5p0uHtm+zwLdXECM0aZZzblhmQlF/bC+Idr8evhsv7S9/pE+janql1p9i2kXExlc+TFNAzlyq5x9mxkKuN5UjkV7SwuGekp63svdvvouvfftuKhhY1o1Zx2pwcnrro0rLTz3OYtPgr+0H8QtO8BW1j8DNal0nTZgkWpNbXKLd21w7XALSyt5ccJWO4dWQomDI/Usx6vR/gv4dnstEuL7RtQ0wReJ5bDXLxQzXmnxQsolneCVQksabJASGAEsciEqBk4X7FX7T/7VnwkGu+KPgt4ha+g8O+Gvtd14Yv7KS7tr6FLxUCbUdXiKNeTTbkYdHyCC1SaJqXxC8If8FJfD9n8QPiDBomqaz46t9Y1v+wb3zrZbq9KztYNEHBVjJK9q6uxIEnK4BDTmWW0cJhHOnNuaTdrWT0v36/PU5cJiVia3LOGlt7/JHXy/8Evf2kvEnjHSNK+GXiCe+tfEVksyareWkltpssYXcWZsuUQFBsMihpCqsoBKivR/hN8YPjB/wT6sL74QeHfEHibXvFHhqGee+0bxRePbeHLVnjDGKKFGLFzueVXLKJMo+2Ibi/3d8D9L1Xw/8NdB0ifU0ube10mJLSWC3WKJYSoeJI0UBVRI2WMAdlr8kf27PEHif4uftneLLnwJ4hGraY50yB/9HlMaStY2Sb9k6KEdpFCBkw37o8gYJ9WOXxwOFoz9o1OdnrbRNK/bb9Tmq16NetNSprkjdPt173t/wD7R1D/gpr+1Lqvwntfilb/C3TvDljrtvNNo2seIrl1sZnt0K3EcUknkJOUbKsse/DiMEZYqfi/9j/8AaSvPhd+0dbfFXxD4rg8ORXsWowrrNxpP221UlN0m5PMEoRs7Q8ZMmWwMktj0/wDaA/ZW0nQ/2C9O8T/CvxX4i1i+HxEvNLuImvohZWMSC9Zp5SsAfm2jjRsPtLTYGchT8X2HiPXPFmk6X4NguZLq6tLh1s7QWEQ2w4LFjODvOPmypGAozuwoA8/EVq8q3Mp8yTvFvTTo7dy6WFwaptctumnft6H0v4y+GF349aw+OHwh8XXL+IPEOoXmo+IJLu/VYkkjYs09rdFQSqzJdKTK4nbZG5U+apb6x0f/AIKcftNaX8Eb7w7Z+ELvUdV8PXqQPrSMP7Q1a28yYI9sZI5Y3KxxkyeYrSECM7syFj8b/tKfH3TfjL8O7L4WeHPD2o6CPC2i2mizWGoX8NukdzBcS7YZQzLuKxQkBz/zyQNtYhayv2YfHHjvwh9m8LeHdIfVl8e+IBpj2tpfSJDpk6zW9sJzLucSI73cQJJUZCAN8wrJSmqriqriu8bp9z1cTgMFGnTlShzu2t9r3tZadrP5n21J/wAFDP2r9H03UNS0b4gW8UkWii88nxMsEhcM7x+Yka2kRaJPKuFMiOF86EpklCGx9E/4LM+Nrvwk2o+Kfidp8fiH7cJra3GkSizgg8rPlMsQjMhEiZILsSs2AWIGPh34n/tCfErwP8aPHa2FxZeH5dYhigePTdEtrqRFigCW+JJhvtpTE372SIhhIWO3KqFqeINImsPg/oUPxS0m48Pg+HLnVNG/4l8UNxr87XEFvABtAKwrCfNEsineYZ1UlpNyqnXxKk37STT21f6nNXoYVyUfZxTje+itfpsfI9fQv/BMz4dD4r/tGXvw/ttZsLG/1fwNrdlpk1/I4Hm3Fo1u2xUU+YwillbYWQFVY7sgK3z1X0X/AMEzvhLafGL40eIdCT+0ItW0/wAGyaj4b1DTNT+yTWF/FqFj5dwsm1h8qtJwVOd3BRtsi+Vh9a8TSo7QZ+ifwy/4JWnSvAU/gXxn8TRew3fh6TRnNppYhK2smoQ34UncfMKTw7lY4/1jAgjaq/PX/BR74feO/h5c2uieObWP7VJeG9nvoNQEkd8JWlCzLHgNGB5ZTa/OQSCQwr9HPDXjDW08P2keq3STailtGL24jtPKV5do3ME3vsBOTjc2PU14t+2/+zfqn7VXw8u44tb1S41XR9Onn8N6dbiBIGu9gPlsWQH96URMtIFXIOODn6BQjTSnHdEYTMJ06NbDT+CorO291qte19zz7/gi18BtEl8CeL/il4hSx1LTtZW2023WSPKZRZHuYmWRQSuJYVbjYxVgCwANc1/wUc0UeC/2uLL4kX/h59P8N2ek6RZ266FBH52qWMd1LNeGIrFIIZYpZIf3jhduY8NueMN3X/BJb43Wevfs1N8KrfSJYbnwdfOk0zfcuY7qaa4RgcfeBLqy84AQ5+bA9a/aC+Cuh/tFaTZ+F/FemQCwjuvMuZUkZZpYypBhVwA0a7hHISrDLQx5BAINyqutD3jzYxdGp7ux8ifsJf8ABS79oDw98SLvw/8AFvU9e17QPGcl3aeC9EtrKF4k16e5tVigt5rhlMUEavs8nzRFGJlO3JBp/wC2T+zL8W/hRpel/tN+EfB1vo8+j2Ua+LNOfVBc/bLiO4keK5kijAQhFCHPmvkBPkXY27GvPhF8UfgL+0P8FfgX4tsYtb0bwf8AFhH8OaqAPLax1O5tngDiNQUlSS1uZDvJy2Qu5Er9AP2ifClp46+FPifwM4uFl1vwzfWMMtvCkjxtNbyRhgskkanBYcFl+oHIMRWnVhH2rbUU7dd7f5aF0abqSdKKXvPq0lpfq7I+bNF8U+BPCv8AwRn8beJ9F+LB8SjXA93rkmj2ogk07Vrr7NALIpISyLFcNCxchWeP50AEiGvlr/glv8Av+Fm/HCbxvJ5u/wAI2YuxaSJsSSSbCwHfu5yPObBGPlQ/MCQP0A8W/sl/Afx98Jb/AOGOm6VJpEPibwZp+l6xdWaqktxLYgGynnMZVZpYGBOej5wcqAB5B/wTG+GHiX4XXfxH8CfFG3hudb0zxav2zVVuXlNy8lujh98gDMpBDKxAJ8w5ArllGMmov0NaSlThz09VF3fZN/8ADHnX/BSX9hj4feHNHv8A4zfCrQfEt9r2oa/dar4jjt/PubeKzeItNOzlHCFJlEp3MWImmP3UGz2P4X/sceD9W/Zc+H1/8N7Gz0HxLDp2leILXWPLEEk9+ILadVn2o26BpoYHkiwctCj5LqS30Rr+i2l9A1tqWl22o6ZcxGO902/tBPbXUTja8UqHiSNlJVlPBUkVqR2EzacrQuzqEwFxtyMfhTVNqpa2n69f0MfrM2tT8SP2mf7Y8T/tO+K9Jnnt7u+XxRPpn2m0s47dbuSKX7OJSkYCBn2BmYD5mYsxJJY/T/7V/wAGJ/GX7Mnw9uPDvhu+TxRbeIrb4daHK94THq+nRSTi1bkiJRK8Ucu8dCxUsccdDoP7Eem/Av8A4KR+EtH1K3F14N8TNq2peG0uZfniuktXeW2bks/lgRsC+VZHH3m319dfF34UeCJ9C8N6c1rd29p4X1uDVtKsNISCJDPAknlx7SoTZlycAp8wX5gM0Qoxld9jonU5FaaacrP5H8+FfaP/AAQss7W+/a28RRXY+UfDm7YcHr9v0/0I9a+Lq+2P+CDsPn/tdeJFKBsfDa8JBbH/ADENPrxsN/HidNbSkz9YbRdMghKWtlI79BlAc/zrE8W2Xi2SzuItN1r7B50LJFIFTcjEEBhuVlyDjGQR7Gt6NYoWMkLOgOMqCQB9Kr6vNHdApHavckJ9wDb+bHOK+gcWlqeSpJyPKPgB+z5o3wFttUudBm8yfVroXOp3EhVprubGNzybAzDJZgpO1GkcoF3EH0ddZNpIJZmkj55VoTx/wI8flVzT7PaG8kw2yqpxv+cAep6D1qGPSLbULmUTa5HfvjIjZEMaLkHhR+HNZ6otu+xwfiiws/FPxD0rW9I8H2FxdQ69a3lzqU8775BbxyJEFzlF2mR/l2MDksGjbDV6nr9xdXsH+m2pEnRRGmePc9KwpNN0RbuOa7tUeWFlMQig5UjgEAAkeme1bbrfahCVaC5tELdWw7Y456kD9a0U01qQ7or2+mmDRxcS3UcKJ8qFXwwJPQDHWqHhrw+Z/F134ilvWe4uQPMnuj/CvAwowAPYYrds9DYW0kdoN8YTmab5yeTxuJzx6Yxzx7ZdnLHoGpM2o2TSoz+WgU7t5PIAWplGF1K2qLhXrxpSpKTUZWbV9Hba662u7drmvr9vDLAvl3Al2t83PGeO1SaK7CxZzd75F6AdFFXXnuruDAtWtQeoUgsR+WB+v1rPs7AW1ybWK73ecctGseMA9yc81V76mO2hw/iW7g8T+N7KdtB0S9utKkk/svVP+EeMl/pxkVVmEd1K58sSBdreWi7lIBJxk9fqOn6pcaPH9vtVuWU8KMBiO2c4FWYdC0ywvjLGigbsnaoHNVtY1m51ORtM0Z3aJGZZ7mMrgEcFFIHXOQT1BHrRGlCkm++p04jG1sYqcJu/IlFeSX9ep/N/X2d/wQza/X9rPxE2nhNw+HV3vDnHy/b9P6e+cV8Y0V83Tn7Oal2PTlFSjZn9GtjqVg8nlXTSNN/cd1ZefcHA/E8e1asekW80LSW7hMjOYHyPx7V/NrRXoLMWvs/j/wAA5JYNN3Uj+jybTtNtrwSOz3M6cCJQWKnGRnHC8c5OM9qijXVr9ZbDVB9ktt2EWNSCwPGC545z0GDX85FFS8w1+H8f+AH1Nr7X4H9Hcenywxoum2h8leEdQAoI/mc56Z963dGlkt4JLq9EczgAwH7m3jqTzn68V/NPRVRzFRd+T8f+AS8E39r8P+Cf0tT6zdawgh0WweRJEDfa8hkbjOU2n5vTPT61j674bvdLiOrNdzpfOuE2sMqPQK3A6DPFfze0USzFy+z+P/ABYJJ/F+H/AAT+knwfqvifVyy3s1ssaLhWjTMh4+9nJX8hjr0rct/D+mWchd4xI7vu3zIGUAdwTgg+/OK/maopwzFR3hf5/wDACWC5tpW+X/BP6QvE8thcXLR2F1IF3Y81bhvnxkHbnqPcenWmaXYSwwotssfloMCIADaPYDpX84FFVLNFLeH4/wDAEsA19r8P+CFFFFeSegFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/2Q==",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigDbk+GnxGhGZfAGtqPVtKmH/stCfDP4kSgtH8PtcYAZJXSZj/7LX0vB4mgaURXxbry68gntxWoviYuyp5gYYwFUbdnvXZ9XprqcSxUux8mt4H8arK0DeD9UDqcMh0+TI+o21s+G/gH8dfGV19h8IfBbxbqswGTDpvhy6nbHrhIya+r/AISa54L0/wCJUNv428NRalpV46DULe5ldEPJUS5TDZUMTwQSMgEZzXqX7OXxQ8Xfsz+ONW1jSNU0y/s47EJPZS3A/wBJQSxsWiJKhnCq5XnkFgBlhi4YSnJq8tCXi5qN0j41t/8AgnV/wUFuoxNa/sKfGSRG+68fww1Yg/iLepP+HcH/AAUP/wCjC/jR/wCGu1b/AOR6/cL/AIJl/wDBR/xB8WdTvvAV54OWDT7NfL0+OMhQJCHkEYxgbyqTOQAAQpwAFOf0Jt703EEcwBUOoYK3Xp3r2MPkuBxEOaNR/cjgqZriKbtKCP5NB/wTe/4KIEZH7BXxoOPT4W6v/wDI9L/w7c/4KJHp+wR8af8Aw1ur/wDyPX9YmveJtN8L6BeeItZlEdtY2zzzyEgAIqlj19hVp/E+iWmlPrF5qUMdpHAZpLln+RYwMlyemMc5q5ZBhltN/gKOcVn9lH8mP/Dtz/gol/0YR8af/DWav/8AI9H/AA7c/wCCiX/RhHxp/wDDWav/API9f1uW93aXCCaKdXQ8hgeCKtxC3kOCw/OsnkmGT+N/gbxzGvL7KP5Gf+HbX/BRQ9P2BvjV/wCGs1f/AOR6P+HbX/BRQdf2BvjV/wCGs1f/AOR6/rtSOBhjzFH1NDfYYx+8uFHrU/2Nh/52N5hXX2UfyIt/wTd/4KIoNz/sE/GkD1Pwt1f/AOR6o+H/ANgH9u/xZBLc+Fv2KPi3qccF09tPJp/w31SZY5kJDxMUgOHUggqeQQc1/Tb/AMFNP2yvh5+yT+z1qOrXnih7TXtVhktvD0cdjLMXuPLZgcqyAYxk/OpPTPNflX/wTX/4KZat8FPip4Z0DxndXuqrd+IZv7S1DUtZ8qK3huziWQmbMcID7JpGUorCLGAf3lc9XLcLSlZzf4GlPGV5q/Kj4k06a3lsFtJLZXlknXE7Nggen8q9O+CP7OWpfEf486B8Gta1zZLrmorbx/YkeSWIFN4bBA7e+Bgk4AzWl+0l+yx4l/Zz8Tp4MudFs/FElvqgh1k2yTLb2cTvbC3aWYBShla4UDAGNvfdgeg/BP8AY98SftF674i03xZe3vhfUfCwt3i0LS9CGqiG1uEk+znzVmj2cxSqBtz8pPrjixlLE4dSUou67Lmt8kdFClTnJXad/O2nqz5+8I2194livLTRVml1C3uiscUcJJZQrM5z1GAh7dM9MVpeIf8AhLrS+ubHWENtc2BENza3Q8uVCgwwYEAAjHf1FeyeGf2fNc/Ze/Z51P8AaH/4WjEGi8dwWI02x077Q9q9u0qxy3CSAKG3FsRvhQrDJcybV7TwFYv8DbzxP4k+KXjOy8baXaeGbPXP7K1Lw9HIJriTTzPAsbXMbyR5SWNHwqtuHKkIMbVcHmaj7kFquZXdrrTrr32tc6cvwNHMa7hFuyu5WV2klduzavb1R4b+z9400PwP8fPBXiew8dXuhXemaqst7q9us0q20wY/L5McXmuDgI8QBD7iN2CSP3m8K/GF7vwLp2t6n4otbp2txHcX9tA0EU0yZSUpG5LIN6vhSSQO56n8APAvxA+APgXwNrtpqvhLU9W1SZd2k6nBeJFNaA7WDKSh2uGRfmHIDvz2b6d8I6BqmofBnQfiJq/xx+IkGjDUrPQfE/hU2kU82lXQiSRJ43SVBcQ+XJBJsyDnKl0JJj9KePlw+4fWaelR2VtfeabS0vbZ7njSwWHzKEvY1NYv9dd/zTt6n2B/wWE/aZ1vwd+y5deEtA8RRxy+Jb5dLuAZgCI3jZ33DB+Uxhl45yy181ftJf8ABWLU9U/4J++FPhpoFw48XeJNKFprP9nRH7PYWUEkltl2BHlSTGEFI15C5Y7RsD/LX7Uvgzxdquuap4igXU9X0fSt8a6pqDqr7FmRfP5cn58p8oyQG5JwTXvf/BKrxprPj/486fonxI8OWl3pXhDw7PcaHp120crRXCLp6JKU2AhGSZHjyWCshIwQDXbh8RiMxlCrG0VU923Vardbp21OWeCp4SLU23y6+v6bn1V/wTC/4KNad8Wvgfpfwa+JPxC2+N9H00W8InjdfttuiBY380/K820fMCd7FWYAjJr698S/tD+AfAeuy+E/GvxJsdP1G2VTc2VxeASwkqGAdeqnBBwRnkV+YP8AwVp8E+DvgP8AEvwh8Zfgl8NJNK1nxY+ox6zb+Hi8T6hckwhWQRg+VKxnkYugBYjnk5rwyy1rVv2kfgPp/ir44+PNUsbiFZTcXzk+bcQJdRRLLKwx9obZKqYKFiYi+4liKvGYzGZfXVB04yS0vr5W/Dc7styaObNyhUa0cuiSS3u36pH7cr+0V8NjZR30fxV0d4ZnRIJU1eFllZzhVUhvmZicADkkiuS+LH7Wa+DNL0/U/CTx6jFeTSxyyzOyhNgQggcE53HrjtX4n/B/4k6SdO+MsFrfa6vgXQ9Pa60O00vUSjHWWuI4LCdd53JuYO5KfMAOhwAFv4viZD4c0jx34X8HSWGmaN4Et7bxNqOua9xCbiN5DhpPKjMsh+ZIFRnQeVGSzlGfB5xXcWnTS7MlZNhVNP2rdzsf+Cpn7ZSftX/FSK+8K+LdSWx0iB7JrIWzQxSqJN3mZWVhLkqvzFYzhE+XK5r5F03U5rPUzNLdHKvyW5716Vq3i6XwnZaxq/ii0sbjTdT04WUsGjzxQyeZdLFcoGCgkqqxj7wwHQ8ZBq78MfHPif4O/Ce68R+HNJtYW13TpXlvjDG95HaRyGKKNJtoeNHkn3SBCN32aPcMAY86p7WtUc6ml9TZUaNOPLCd7Oxo/E+3+KXhXVPF2h/EP48atrMHiHSoo9J1u9vpr641DVLZdNvUgYgtIpxIsSSNhQQBkbWC/W3/AARZ/tPxZ8D/ABb4g8ZX+qT6jJ4ya3n1Ka+lFzKqWsJWN3zvYIzuQGJx5jYAyc+h/ty/ATR9W/Z9ivvh14KtBqPhTxHYa9a21nBHGXWCcecf4RgQvKxBPO31xVT/AIJqaZo3w2g+Knws00KbDTfiLLqGkMhYg2N7awTW3L4J/dBOoz+daOM3O7d7m3PF0tFsR/Fj/gnX4J8XfFLXPEfhzw6YND1fwINLn0O2VYY5L6PUob1Znl8wMN4iVDtToud3auA8R/CT4zeJ/GOo/BNNPtJzd2Nj4e1XXNVl8wm+GiozSo38ZMUKScg8uAcEkD7cm8R2tsCXDHv1HSvI9WsvGI+L02v6To0r2N34qtLxZUmRPIhTTGtZZDl8kszBQoXohJJyALlCXLoztybMfqGIqVE7NwlFO3dW/I/GPWVkhnu7KFTviZo1C85wSK/Sj/git8LvFf27/hcvjPx/q+pW/ijwI89hYX80ksJlXWry3uCCzEb0+yQMcjJ+2Hng58I0r9nDQrj/AIKs6l8MvF2hzp4emnv76G3Kuw8lrCSSFhg5YLIy4znJTacnNfcv/BPX4J6F8DvhBoun2cd0l/bWl5bvLeWUlm7Ry3sk+Wt2ZtrkGNd7fOyRRZwFVV661eOKcFJbM8GlSeHpya6nnX/BXfVrjwR4i8IN4Z0K8v7vW/DusB7W0lCrBa6e1vf3M2GdVB8pDkqNzBMclUFeE/8ABOS20LXP2gta/aK1PxDq2iafY6hp7a1NDftaW1tpsWmyzme8kcndbyzRW2FdhkBmxgHZ9nftofC3T/HeseA/idfXOnhvCOvTR6lHqoLR3el39u9pdWiKWVfNlLwKrOyqvLEnG1vjH49+BPFPwq/4Ji6jY3mm6ffanq93pWleJdS0dIpIls7G9cWU5lQAlSkVsoLZK+aqYBzWUHToYxVY9GnYmWHnVp+1lfVct+m9z6s/4KEt4a+JHhHwD8dPhLqNp4pay1eGy0SLTLxZre5ku9QsGSdWTcJFD2giIUjiduc4U/B4/Zq+M/ilfBSL4phn8I+L2064hksXLyafZTXEMbklgIxN/pas0aM3MLFvuhj3/wDwSl+BsumfFH4oeFPE0dtJqngzxNpVvLcwHJ821urtyEYrny2ntoXOMbhGPavsb4T/AAC8K/Dj4daT8PdR0y3vodJuJ3sXlVm8lWupJ0jTdyEj3KqAkkLGuSSM13Y3MXjeZqKi2036pWQYWhHCyUnJv3XG3dNpv12R+a3x20Txb8DfjvefCXwNeXV/4Z8LeGdusR6VC0kN/BbSzsJr2NCEVhcybd7Z8tihG4/Key8QfsEePT8NfAWp+Ivi1pmjeH/iNJYzajfzyJMv2yS2kuLcPjAJAmuVDCXYyxICQQgf6e+CPwh+F19+078fPAXxL+w6ne+K9Nhint1TFzDaO0k03lORujTy7vTiTkbp42IBEStXp958F/AXiP4U+Efhb4q0Q/Y/CSWi6TYm9MyRtaxGGJmcgGUiPIJIGdxOB28hU7VVF3tbfp6HfUrNzvt/wx+aWmWvg3wHo3xK8EfGO0/4SHx7p2rRC0juZ1u1vNWR7+1k/ekFnj23kU5Q4Z5LYFsbePQPhG3hSP8A4JWeKtY+IVtfJqUXja40vw7NbXHkm8ie3tnFtI+0lreOUS3AQMFaS3C85ZH95/4KXfArxd4l8C6V8TfBVpZoPDdrqH2mWJVilhlmijSKbd8uFVVlQEN8sksLY2qzJZ8JQeHvGX/BKnRfAvwy+HV1riaz4O+wpp9sIh5GpfvGmu386QYVb1JJMrltxXC46dHsFzNp6WIhU5rK2tz6Q8Z6de+JvDt7oWrBUtNQtpLe4UtgmN1KsPUcE1Q+Gngiz8GTXMtrr93dfaoYItk87ukaRKVRUBYhcKccAcAA5wMdfLDb6ha7bqfKkdk/xrOs9FtnmcWltMAOrrJ/TtWbZmnbQ0lYONwNNa4toZB5wBJ/OorjT10pBcz6iIlC8eewYflTM31wyz2AhkQ9JHGBj6ZzUqT6hZdD5b+OXwS+LHi39t/w98f/AA7evpen6ILO1E1tH5kk0SNKZQ24jarpIYjgNgOSQa+tfA2qOyrIsAGCd2T7VzmpW89xqQW6hfC8jCjaa6bwtJptvmO6kLSdRBFgZHv/APrFXCLchTlpYt+LltdatVgvoUKb+Q3Ofwryz9oj4U+Evip+zv41+Hfiq7eKxu9IaZ2gl8tle3YXERzg/L5kSZGORkV6d4qkLQKYLYRAthVD5J46+grmfEPg+LxP4Tv9B1azAtrqMCbc+GODuBBByCCAR7itJRtLXUxjLojyD9jP4VQ/D7xb458WW0027VrPw7YTxyOjGKax0uOKQNtGVkLuxYMd4yNyqSRX0BFbSXJW4fIGCP1rz34K/CrwH8JpL2Hwlp0EEl6ytcLEMK5GfmOBy3J56mvQ/PvnK2+m4PqWXPFTHlkU73OIi+Hem2HxAv8AxVa3cr3Fw+5vtL7tr7QmVJ5HyqFxnAA4Arq47W+uGj8/CBR2X71PtfDxFxLNeyyO0hzgjgflT51juryOCzR5VjJ8+RZTxgfc54+p9sUow5E+hvVxFXEzTqScml11INftrW/0C60XUdGtL+0uLaSG5s7yMNFOjKQ0bgggqwJBBBBB6GuA8Fw2WgeF7bwRpngLTNDtdOj8izsdIfMMMK8Io+VSzcZLEAk8mu58UXskUSWkOnsCZAMFh6H3qPS/Ds9pb/6JIhRpC7iX37A1E0vaqfVK2/c2oYmUcLOg7csmm9Fe621tdLXoPnnuZIN1rDvDdyP8aZptsqS5mvJyxIJhjkZF/IYzX5v23/BwnLHzdfslGU9gvj7aP/SCrcP/AAcSJCc/8MeZ44/4uD/9765/rmGf2vwZH1aquh+lUkEV2AItKjwON0vAH04NQTX0YuTY2dqkrr951Pyp7E+vtX5o6n/wcKS6xbNa3/7JAKkjCx+PcLgEHBBsDnpUkP8AwcMvDCIl/ZDXgYXHj3GP/JClLF4Z/a/Bj+r1l0P0hms7q7f/AEm9MYB+5AAM+xJBP5YroNC0W4aFJVKqh4O4c1+YEX/Bw1EmDJ+x+XPfPxA/+99XD/wcaTLGFt/2QWiYY2uvxC6fh/Z+KuGLwa1cvwf+RMqGIeiX5H6da3Bo9lZpbTgySDByBlm9+K5W7ns5YnXUdQe3WT/U2sz7MA+pPU+wJH1r87dP/wCDiu3tG8y4/Y3aeQ/fkk+InLH3/wCJdWb4k/4OCrTxK4a7/Y92gH5V/wCFgZA/8kBUzx1BrR/gyY4SqnqvyP0g0O1hs1LWKpIc4ULggflXT6VFdWVsLmS3zIy/MY8cc+9fmHpf/Bw/baTCtva/saoqL91E8fhQPp/xL6nvv+DjK5urRrW3/ZC8osRl/wDhYGT/AOkA/wD1fnWlHG4WOsp/g/8AImeGxGyj+KP0gv8AXby8uja2ds0KqxFxLJwQPRQOufXPGOhzxJp5s9MtytvHtHXOc1+aUH/Bw+Yvv/sgBj3/AOK/x/7YUXn/AAcOW94oRv2OEwDznx9n/wBx/FOpjsJOV3P8H/kOOGxEdOX8UfpHq1k+pMmoqcggFATgY9auKFsNKkurtyFjj3ELjnjt71+Zr/8ABw7e7PLh/ZPZF7KfHoYfrp9RT/8ABwtqF5LAL39k2KSCGVZDF/wnBBdlztyfsWMA4OMdQKhY3C31l+D/AMi1h6/b8j83KKKK8A9QKKKKACiiigAooooAKKKKACiiigAooooA/9k=",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [45,32,58,69] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [58,36,69,72] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAorr/2fdBbxT8e/BHhhNNt706l4v021FndpG0U/mXUaeW4kBQq2cEOCuCcgjIr9QvC37Jf7N+i+E57rxB8GtButUvsGx2eELKVVKTyKAA0Kr5ZRMmQbjmQZXgEeRmmbRyxc0oOS8vN2MateNJ2aPyOor9Zfif8D/2XtDay1fxx+zl4V0S+s7UtBbaf4GVNOuVLhER5Aqh7gqrsyuww2RiMAFvIrn4Z/Abx34qm0bw/8JvDGmLcX4i0hl8PW5Lqo/fZAj2EiEFx8xAIY8t81b4fMI18Mq/K0rXOOeZQi7cp+e9FfqDd/Az4M+JTDq/gT9nzwhayx77V47rwpZyW0U7MNhIKksm2QEzODHGXRWxhCfgv9sbQNP8ADP7RniDSNK8NWOkW6x2MsNhptoLeFBJZQSbljHCFt+8qOAWOOMVGDzJYus6fI1ZX/E2oYyNepypW0ueZUUUV6Z2BRRRQAUUUUAFFFFAHbfs1KG/aN8AKfO58baUP9HfbJ/x+RfdPZvQ9jX62/tC6Nrep/EWHwfZ2cs2oW3hux8y0kidIpEktlm3ozNtZcTSFpRgAREFuCK/Jr9lL7YP2o/hr/Z1u81x/wn+jeRFGAWd/t0O1RnPJOBX7ueI/2R4/iZ+0R4Ov/FWs2/hbQ9S0axGn3esm4givHgtIIppPtO1Y0CpbvbL+8Z/MiiZlkUKleNmmHw1acFVvq0tN7a9ul9L9G10OetR9tJLofD+v/s//ABl/aDvovEfwP8B+I7pbMLEk19bgaXPKjHeWu5gLYSjKu0UrYO8gMAI4x9Ear8INa+Anwy019c1nR9X8R2tjYalrWmOy/aIY3ia1ldIFjb91uga3jltzvLOoUARRge8ax4u+KCX/AIm0e28P3WrazFqOo2Phq3e7JivXt1WafDyIqJHFFHOXO4iNLdy2CvOP4P8AiT8U/F2maTf+I/DN7d6tLLeWus6Xa+HbeZbGWO4kRCLqZCxtySswOFyoO2Nhllzr0lHBeyuktld/r5HdiMrwOFoOEZc03pfRJen/AA53v7Mfwo+A37N2nN8RE0231/XrryNQ07SfGN59og0n5beWOC0igHlxuPvGaViRsIXy2dlf8R/+C13jnw/8Sv8Agp78U/HHhfSbOysdQvNMeG3sEKxAjSrNWYbiSSzKzFiSWZiSSTX7jaF4y+IMnge90nxPqt5Yy2s0cThNQtFub53WQecZJGEoVim0EfNHuA+XIdfwk/4K629/b/8ABQrx+uqagl1cPHo8ss8d3JOGL6PZP9+SWVjjdjBdsYxnjFcuT16lTHOMWlTUdElu7pXfV/PvscNCMI/DsfNtFFFfTnQFFFFABRRRQAUUUUAdr+zZ48tvhZ+0X4B+J174gn0mHw5410rVJtVtYfMlslt7uKUzIu1tzIE3AbWyRjB6V+x2tf8ABab9jf4h+M7nxh8Tv2pPD2s6tqCG0uNW1v4V6rcGGAeUokQpAkcZPlCRjHaq5MkgYyZAH4eUVzYjCwxDXM2rdv6+QnFStc/dD4T/APBYT/gn58K/BWhvpv7aOoNe6BrV54h8oeFtd/tC6128ilFxdGUWqxzgG5uovMuHeSWH7KrBWt9zVfDv/BZT/gn54ckgs1/aIL2sk9x9uKeHNaleUSzvO8koNpEjlixUDYxXcoDKFJP4c0VhiMupYpr2km0umlvyHJubu2ftXd/8Frf2M7G4j0nQ/i0klm1yWN3NpGswyRocj5hHb7XwFAyyN1X5cBq/L7/goj8Z/Bn7Qv7Y/jP4wfD7xI2r6RrElibTUW0w2fneVYW8L4hKqUAeNgMqMgA4Ga8VoowmWYfBT5qd72trbrbyXYSSSCiiivQGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf//Z",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArrNP+Avxz1exg1PSvgx4sura6hjltbi38OXTpNG6hkdWCEMrKQQRwQQRXJ1+sX7O3w0mvP2U/Amr3RkdJ/C9g6XGp3ixRWkMdp57pFKsr+TkCVtroFIJc/MqqvkZvmiyynGWnvO2vpc58RWlStyq7Z+bSfsr/ALT0sbyx/s4+PWWK7+yyMvg+9ISfBPlH91w+ATt68dKST9lr9pyK0W/l/Zz8eLAyM6zN4QvQhVX2MQfKxgN8pPY8da/V/wAMfCzU5fA6aF4jjN0t1f8A22yZdTu5zc28hNvGh+yyqkdt5Z3O64DAuSXAiYuvvhvremWdsl/4ftb3Qp9LmbT9V02JbcRWrT2sVtYyTXJaSaOJ0dY5STggoWWNvLTlp5/SnRcmkpdE9n6MmrXqU6PNy69j8lv+GcP2h9kj/wDChvGm2FS0x/4Ra7wgHUn93wBg5zVe1+Anx0vhGbL4L+LJhLcPbxeV4cum3yonmPGMJyyoCxXqFGTxX6n/ABJ1jxhoE9npk2qXktoS1taXiXUkIaSNYYJUjbJDqp8oBlBDLMWGBtal+LfgD4k/Bq5g05dLhtr6/uJVvtMihjiNheQsRcWLmKUnbEWZRKTtfaxypLADzbGezclTWnn3OGOY4hwlNw0W/wAz8r/EfwF+Ofg/QrjxR4u+DHizStMtCBdajqPhy6gghJkEY3yOgVfnYJyfvEDqa5Ov0e/bK0/xSf2JfGB1u6ugunW2lxNHc3IDSs2oWuXeIozqRjaC0g6H5UPyV+cNejluMljaMpySVnbT0T/U9DDVnXp8zVgooor0DoCiiigAooooAK/WL9kXVtNb4C+CPDXg+ytxdf8ACP6LJck75I1meOIbI0jzLJdSMHIPzIgfaVK/u3/J2v3h/Zbg+DXhH9i34X6p4b+DtpoN1e/DjQ5/EH2LU768utfm+yQK95N5snkxxFiQsKRZiMkrBwSjV81xNToTwsJVJpcruk76v5JmFZJtN9DhdH+EvxE1zWYtI0nwZOdCtknjmu9P1C3t3itgPszRzSBhE0O2OOPdiWEhsKApRq9A8LfDvwzoemzxeGfioNSs9OgkspIbjSnkVQxEiKsjSRSSBT5mJniUuWLbYwSg1PhDqUNl46tNd1C40zVbFNJli1OPyERFtpYwsUkKPtwxmKsyoC42sXIXc1Y3h64l8Saxr934UsGS/tNWdjpl7okv+lWGRiUStKixEkoUjYbnjYSL8pFeJhKGAx+HdSquWKdlfZen5fI9rLqWWvCutXjfW2raX4NHRn4Zaf4rGgS+JRJ4qeHWo7+K11nSrCO1SdYmTcFaGWXY0j7nHmYdfMXCu3n1734d+BmqaHZSal4f/Z7sddiNsf7MN14aMljrUgsYY5oVdpYrfkXMsivIyYeOUKJHbDfPHi3WfiN8RPiQNL/Z/TTYxp8sdvrD3dy0YE6QxNLDCQkhZlLAZbCl5cK2FIf1LR/FHjPx58L/AA1oWn+L7mHQYbOC70N5buYzNb3AV2ljTCGOJ1MR2cIfKTIytezCvluV0tNemmtuq30631M8xrYenT9nhYJJ79enz+Rnf8F6vi14y+If/BKT4nza14VvvC6w6Z4as73wtrmjS2M+jyHXLC4+xxvJEftCkkskaFESG3jYkkoZv5xa/cv/AILKaD4h1r/gnh8Q/iB4o8a6vqMhGkJC15FK8ckjarYSSrvkd9nM5k2q23LggfPmvw0r2cBj1mNJ1UrJO34L/M8ynHlja1goooruNAooooAKKKKACv3M/ZD8O+C/GP7JvgG6g8HSyXUPw20NpJYoWRPNhs7VQ0plmUMH2SbduV/dt0XYE/DOv1J+B/8AwWt/ZL+Hf7P/AIB+FfifQPiu+p+E/COmaZeTafpGlm3e4trWOJgjG6SR4g8ZKZ2tiRifmxjws9w9bEUYqnDmav8ALzFyxlL3j6e+MHwX8KRW2m6Jbzx6JqUukahc6TcW2qXTrFHEISEuP3oDRmRIC0fzoQjMwYKA3d6XH8N9b0a21z4fXVxcmJPtMp0qRGW8c5LvdXX7yWfewVmkkZpHLEnLFi3yPJ/wXW/Ycsnju9I+CPxAlvBK0hvdS0uzleMkhtq5vyxXdk7dygdeapf8RAXwUuIhbXXw88WRxLkeXDoFi4kG0BdwkvGBAIzg5znJPr83/Z2Z4mjCjKm4qN9Xs7vsdDqx5FBLRH2H8PNU1XT9I1K5vtOewuta126uft11OuyVA5gtCsSzCUoLa2to9sfBIVgrEmty68Za4bu4XRzqBtjeuY7bSdJWGF2NpGbmZ5Zys01xNcJcSvJvcs0x2qq9PjL/AIfxfsb+MPFfifxV4v8ABPxV8PfabeMeFdI8PaTYX2nWcqqqsXiu9QWVE2LtjjSYrFuyAyqIzwWm/wDBZj9m2S4tYPFmheO9SthKrXEo8JaZHcRASRMfKP24plwjH5lwhbo4zWlbIsxlOTW0n8/L0/yMnUnKWiSR9Df8FhPirdan/wAE9/HXh688OahYT6nFpHmQ2mk3MNvAsWrWf7uUDbDCAy8LgqXf5ckHZ+I9fcX7YP8AwUt+Cfx6/Zs174KeCdP8YrfahLCLe71TSo7a3lijvLecI0aajMsIUQuVCo7EyYd22oy/DtfS5JhKuCwsoVL3cm9fNIT33CiiivYEFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//9k=",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [47,47,61,69] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [51,43,78,72] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK/smWBLbJi8S3qJ2Cnj9a6cPRhWvzStbyuJ819Fc/jZor+ys3F864HiOSVfSaNSKoz2iIDJNPabQMuxiC4HrxWywdJ/wDLz8AftOkT+OKiv7EdQ8N6XcDP2b5u5jcj+tZNx4Z02ME3Fg8ozwHwf51awWHa/ifh/wAEz5qt7cv4/wDAP5BKK/qv+JvirW9F+MngL4Z+EfCmpga02qanrN5bQ2xtINOs7byiszysHDNd3ljsWFWc7HJIjSTMfxh+FGmfFPwxLomo2wS5RSbO7GAYn9fpUVcDy03KnK76J6X+d2b0FGdVRqNxT62vb5aH8qlFfsh8cPA/xD+C/jxNO8d+HJYUeYi3vVXdFMMjkN+XFfbPwHuZvDvwwspopQomtw5ZT6gV8vXzWeGT9pSs10v/AMA+shwvTqxUqeIun/d/+2P5lqK+ov8Ags9ey6h/wUr+JN5NJuZzo+W9caPYj+lfLtepQqe2oxqWtdJ/ej5jE0fq+JnSvflbV/R2CiiitTAK/RXxN8Nf2ufhrPpV58DtF+K2j6tHdT3k89ja39q1zKEfyZYiipvlRbm/h34DLHcMv3WKV+dVfu5ov7F/wg8G3UTp8PvCMb2ysxS/1ae4jlIcRt5azh1mUHnJ4wpxktXVhlBqSkGjVmfCsfxt/wCCk3je507xf4b+L/xCkksllstP1y58fXSyYb/XxpM9zgK0lmQwU7W8ld2SAa7Xw7+2R/wUB+G2kxeKov2yNVv9Wjby9U8N3mr3erPp0DefG7Trfq8M237NG6vB9oUC5UmRGkZX+x9R+AXwQ0Hw/Df2Hw/8E2hkvZhqFs2h2aoOQTKWA3EfMxyyLkjAY84yvEf7Nn7PU2ni6k8C+Bi+XR4h4HgMykLlZNzr5fLE46n5M8g87ezpRTt+t/zJXKt7/efMY/4Kn/8ABQ7wPZWGjaV+1rpGqRC1jxPcabav9kjPlqI7i5vLSMtKMr87sxzv8wsxBW34E/4Lb/twW/jrTvEHiv4oaLrunx2+6Twpa6XZt/aIjt4U2FodksMkrSGUssh8uRHHlbU+zt7p8Xvgt+zkPgFeeHrvwPp73Oo6dNYXEtl4fsLea1RkzvSRYiqFWVSGVMoY43AYgGvz10H/AIJ8fFWSZbmS/sbRGAJjuoZDNFzjBCFueRxngE5xg1lTq06crNtv5kTnFPT87n0zrn/BXvxj8RP2lNA+O2tWNxb6foeoJFoWjyeMjZW9vp0yqt6s0UA82VppLa0lCSSSwxNGCYpd2T9ZeBP+CmPjH4yfDhPiT4O+FsOl2xefyYNT1O8uJ9SkhJLW9ssNpsAkACLcyyLEruAQwSUx/nX4Y/YvutP1630vxf45kmthIGkntIkTKFXxjfuJJGAMnA3V9afDfwR4W+EXgyLw14a1e6jtUkkWV7nU5GkRgNoKRZ2L1BZVXjB3E4G3pjWjK7i/6+4FVTex6Drf7bvib4vNN4e8ZfsnapLpzq6Rm/1Bx+5b+NhJaKVkwF+RC4G85JxXqvgr4s+HrTwjBoVpDcxxJAvlx3Ns8ZhDKD5R343FM7Sw4JUkcEV856940u9PlhsLe7V5ViZ7y6+5FG4KgA73+Un+5ubh1I3bWxY0z4izapbxyW8cqq9uGR1R3Eh2qQBwM792AfXnkYzwZrgqOaYRwek1qn+jPUyvNamX4pSV3Dqr/ij82/8AgrJejUf+CgPxAvVbIdtLwf8AuFWYr50r2z/gonq8Gv8A7Yni7WLa4jljuI9NZXinWRSP7Ntf4kJB9OD1rxOuPDU5UsNCEt0kvuRjjKsa+MqVI7Sk2vm2wooorc5gr+gqfUNAsIVgtby5eWGBhHcTyKpIIxu4+UYIz9zk/jX8+tfuHe+Iv3G5m8x1Y5LqGBXHv/LHc88munDyUb3M6krI6a48G/Dm8F7PdX10f7QLm6ka5dGbc5IXcAFUKSQMAEc8/MxOTH4O8K6XrZ1q31y8Miy+Ykc98rGQfOQH/wCeqAyvt37ivGCMVg6j4o00ebcR3UTKwJ/eXAZoiOoO0gL36jp2rGufF8CRF5bxkQnq2AgHTO4nGc9OOfWtZVaXY5Kk2dXrlrpUViyxFVZ7hNy7yFYrtVW4BJZURDnHBXjaCa5XxDo1xZ2r6hpV0krooECeQY2chcYdpC2MYwCAFwxJ68NfxZdzhbnzzIAMIc5LL0wOfYc1iax4wvzc/wBmwSyBlIYtFcohHGdrBQW7k/d59+p4pyg3oSlKxTurPW9M1a4efTUvSu5SqyRoQScgEl+AFKHawGQ/JzyQ+O4ptOuo7pNXi1G0RlmtZJ0inLYYBVkCFJCweJSoLfNhgrBcipea5NY6gt+5jJR9ymTLEH34x246Y7cHFY0Xj/X0v3vG0+wubdpCsF7EXaW3yBuCsDiPqTlcYwDk4pQdnuPmSNrV3tdKCw6Zol3HC8ga8nt59+GeSRmiQhFEirhN3lq+ACpRySwztHvrDxLMV1Lxes0Es4E2miELLckx7jlW2KPlDFu4IySoBUcx4++Jfhzwd4en8WX13HYRy6pAn9nw3UsUcfmSJEzEDKp8heQsRk7OCGGDxXgT4y+HfixprXXgy+tY7m0uDHNbXbpEZJhlY3KZ+cNF8ql2wTvB5HzUqrcmuxfLV9mqjWn9fM+WP23HEv7TviSdHLLJHYOhMe35WsLcjjJzwRyMA9Qqg7R5TXpn7YV3fX37RniK61KOdZmFnvFzGqOcWcABKrwuRggdgRyeteZ0nqzrhrFBRRRSKCu1f9pT9ouX/W/H3xq3+94qvD/7UriqKAOzm/aN/aFuUMdx8d/GcikAFX8UXZBA6DmTtiom/aB+PLY3fG3xccYxnxJdcY6f8tK5GigVkdc37QPx6dSj/G3xeQeoPiW65/8AIlJL8fPjrcJ5U/xp8Wuo6K/iO6I/9GVyVFKyCyOoT43/ABpiOY/i94oX/d8QXI/9npV+OfxsS5+2L8YvFIm2BfNHiG53bR0Gd+cD0rlqKLIOWPY2dY+I/wAQ/EVr9h8QePNavoM58m81SaVM/RmI7n86i0Hxv408LM7+GPF2qac0hBkNhqEkJYjOCdjDOMnH1NZdFMLK1izrGtaz4i1GTWPEGrXN9dzbfNurydpZHwoUZZiScAAD0AAqtRRQMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/9k=",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAq74a8NeI/GniPT/B3g7w/e6tq+rXsVnpWlaZaPPc3lzK4SKGKJAWkkd2VVRQSxIABJqlXo37HvxL0f4L/ALW3wt+MXiFLprDwn8RtE1m+WxRWmMNrfwzuIw7KpfahwCQCcZIHNOKvJIHojel/4J0/8FBoHaOb9hP4yIyKWZW+GGrAhR1J/wBH4FUx+wX+3MW2D9jD4sbvT/hXWp5/9EV/RdN/wWf/AOCfVxqiaPH+1JBeXUysY4rDwTqVw0gwSdpSzOeAeh5xxWR4g/4K/wD/AATUspLgeIPj3DDLblRcLd+AtZjmQkDaCv2cHkEY47E9jj0fq2Dh8c38v+GMXOq9lb1/4c/noi/YL/bmmIEP7GHxYcscDb8OtTOT/wB+PeqviX9ij9svwZYf2p4w/ZI+J2lWu7b9p1LwFqMEecZxueEDOAfyr+gj4pf8FQf2BNE+Dl/8VfDHxu0XXJxC66No1oZoLq9u9k3k27pJGz2okaBl82ZFRAVdjtZC1jRfjL+zH8b/AINWOmeIPiT4ZvW12G0tNS0+PxBa5XULiLzVgVLa6njSZ/mdESaUkDKu+NxUsJh5QvTm7+aNabamvarTrZn82/iXwD478GW1te+MPBWr6TDevIlnLqWmywLO0e3zAhdQGK70yBnG9c9RWTX6Bf8ABcv4N+HPgdYfDDwf4Z8RPqVrNqPiO7gknUCaKNxpgWN8feIKthsDPpwa/P2vNSqR0mrM3xEaMKrVKV46WfyCiiimYhRRRQAUUUUAFdr+zb4YsPG37RXgHwZqgJtdX8a6VZXIAUkxy3cUbcMrL0Y9VYeoPSuKre+FvjY/DX4m+HPiMNPe7Ph/XrPUvssd00DTeRMkuwSqCYyduN4BK5yBxTTs7gfpl+21+yL4O+FnwPm8QeC/iXZ2eswwSaZa6JeaNpu+8s5JFWSMvDYwMGxtkSVnfy9rqNhkZq+NdG+DXxu8W3VxqzatBczOA9zLe+IY2YRRq5MxdXYKkakgkt8obOMcj1Pxr/wWJXx1Nbyax+zmCtrBLFEv/CWL8u8Y3AizGGAzjHGcHGVUjH0z/gqvp2jahJqel/s5RQzSwRwySJ4owzJGWKgkWvON556njJOBjpliZ3snp6HNUjVlO6/MxbH9nT4tS+FpdMg1fSGg+1iWaCz1RpAjoQgIwuM4l243ZOPZa9h/Zp/Z80j4Xa7H8QfFmuRalJACv2Y7Ps8JYrH+9807ZFAYnC4Ifyzk7NreU6j/AMFPoNS04ac/wQnjVZQ8TReLADGBghV/0TgAgHHtg5HFVdK/4KXQ6VDDFF8FJHEEPlRLL4n3qq/KNoDWpyuF6NkfM3ZiDEMRVjO7Zm44h7o6r/grx43XxfZfDi3ishFHYvrKoyxBFk3fYiSoHUZGM9yCemCfi2vUv2lv2l5v2ijozz+Fp9ObSPtGXn1b7T53miEdBFGEx5WTgfNu55BJ8tqKtSVao5y3Z00ouFNJhRRRWZoFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/9k=",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [37,41,58,59] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [51,40,77,53] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAoorf+FHw51z4xfFLw18I/DN1awal4p8QWekafPfOywRz3M6QxtIUVmCBnBJCsQM4BPFNJt2QN2RgUV+hun/8ABtN+3ZqWDB8VfhMM9N+u6n/TTq2bX/g1v/4KA3a7o/i98Hh/veINV/8AlZXR9UxP8rMPrND+Y/Nmiv0zj/4NUf8AgoZIu4fGP4Mj6+IdW/8AlZTx/wAGpf8AwUOIz/wuX4Mf+FFq3/yrqfquI/lD6zQ/mPzJor9OP+IUb/goh/0WX4L/APhRav8A/KulX/g1E/4KIN/zWf4LD6+ItX/+VdH1av8Ayj+sUP5j8xqK/To/8GoP/BRIAn/hc3wW4/6mLV//AJV03/iFG/4KIf8ARZfgv/4UWrf/ACro+rV/5Q+sUf5j8x6K/TSX/g1P/wCChsK7m+MnwZOPTxDq3/yrrPvP+DXL/goBZDdL8Xfg8cD+HX9V/wDlbT+q4j+UPrFD+Y/Nuivqr9uj/gkH+0r/AME/PhZp/wAXfjN428D6lpupeIYtGgg8M6leTTrPJBPOGZZ7SFQm23cEhicleMEkfKtYzhOnK0lZmkZxmrxYV6t+wgu/9uL4Mpjr8VvDo/8AKnb15TXU/A4XJ+Nfg8Wdz5Mx8U6f5U24jY32mPDZBBGDzwQfcVPOqfvvpqNrmVj+rbwraKAuMYrt9Pe3tIFluZkjQAbmdgAPxNfix4aj8e6fd3UemeNNQtYb1VMkra27z7tpO9f3S4OM8Et0HIA21uv4V8da5MlzqfjG9uJDIAs8iM0pizlFLSM+cB2xwOXGAACpynxjgEvhZwPL5/zI/Xvw58ffgd4oe6h8OfF/wzfNZOq3Qtdcgfy9yhlJw/3SDw3QkMAcqQI/Ef7Sv7P3g67sdP8AEvxq8L2k+pXCw2MEutw75XOegDEheMFjhQcAkEivyI074HW1lDbWtnrV7DPGgczTWWOq7GkCKFRdwxkoqHCg5+UVpaj8JtA1ZEOpSTExY+zvcacJHfcnO4OABk47LyBk9c8/+uWBf2WH9nVe6/r5H67y/HH4NW0skE/xZ8NK8ShpEbXLfcinOCRvyB8rc+x9K5vxH+2j+yt4V1G30vWfjr4f826eRI2tLz7TGroFLI8kIZI2w6kK5BYHKg4OPy6n+EvhvdNex3s8szRr5qveJx94FuMnJ67jycYJwMUumfCnw9cIsxvXWTyP9fqE7Ok+ThgFDrgkAnnaOox0WpfGGE/lf3FLLav9f8Mfpyv7dv7I5Mwb456SiwOEkkkSZU3EZwGKBW98E4PB5r5+/Zg/4LOfBX42fG7xJ4I8W3Vx4d8N3FpDe+AdR1uwiiuJk2K1xb3hiuZAs5dy0EaR48iBy8hkyo/M/wDa9+I3hfwpGvwZ8GxPdeJL3y45XgjS4a0t3OWVRuIeeVMIsTDLKVPy7lL+ueD/AICQWfgLT/DV94agtbuHSILY6qzyyN5iIsfnCN2bLZyQCDxxhlBFOpxRThCFRxaT2VtX+O3Y2jlvLB82789vwP1N8V/tz/st+GPDV14ruPihFeWVkubptL0+4uXTkZ+SOMsducsQDtUFjgAkcRb/APBQb9nLxd4cg8VeGb/UrrTrskW1y1rHDvw5T7ssisPmBAyOeMda/O7UfhfaR2gM8MUytbjzmuUuX8xdpXcGE3AweNu3k5yc84upeE7ezsJ21HwpZ26yYkcW8NyCTsAIG9h6cAkAAbuPmo/1torZP7l/mY/UrP8A4L/yNP8A4OJv2kPhv8W/2RPC/hPwp9sW8j+JdpeFblYgDEun6ghI2SMfvSL27/TP44V9q/8ABSzRBp/wk0m6eSVZP+EmiR4gzCMn7PcEkB/m4PQg4we/Br4qrqpY3+0Ie2OqlTVOHKgrq/gQhk+OHg2NcZbxXpwG5cj/AI+Y+3euUrq/gO4j+OPgxycBfFenEnOP+XmOlX1oy9H+RofqJ4f1S3ms4tGj0W0ijuQSwvJY2jlB5IUM+TkAnGMKpJ6jA66Dxrc6to/9nQ28+m3dykkDTW1xbtJE6q2XQSF03AKWAbI+X5uhWuFazu9YS30zS4NJdGu4ZopbuNZWj2urKyrgZbj5TkFSARzitO58ParLFb29pqRaaCTzRLDpyliTE8a7ys+2QcBgWXAwhADIrD8ydGPKm5WZTnGx1Fv4v1G4P9qx6kYhJFCv2SWeApE2WJmJjyXGO27B29FBZimq+LLbRPDl1LJr892I7eWZRHMqSFVTiLcdu1u3zHjIJZdpJ5ex8EeOEjuLPUfEE2qwNF9mgSbSIM7ATuOAFRt6lPl2qAsfqciS90j4h6TZQyC8DT3aP54/s11fAVtuW2Sqm3OQeAz5+Xa2Kzas1aS+4XO3sJYfFjSNUsbu3XWpZbc3LRmR7qHdsy5MvnB2ZlJDqFJQbQ3C/drzP4vftO/DXRdH1Dwz8N9Khk8Tx3MltbMII5LeNjGoScsQwlboqIocs8ZVlXADezx6T4rtWlubdBKpgVI7U28cccGwBsJsCFcknJOSeDtGAK+d4v2eNU8ZfF7XtE1G2YnTtWW6ku0Te0aSu06l5WAYsx29CGy8hyRuNdmA+rSrTlXd0rO2vdb/AOR00Ixm25PZGl+xr8A7z/hG7v4ytqNqlvba8bDSLrU7y2mnv78Rh5ZPswcSxrDGyIshyN1wAo3LJHXr2vfEHS9FvZ9J1fxLY+RaTCV5J/DkqWkUy5l8wzhXiwpHJBwrqclWKrXG/sz/AA+0/wAK6fqenwa7frrdtcm31gxyRhY2SV8eUDnfG8awuZCFLuXU8puPpsvh7UXtL6zuYbq5mktzHFFdvtW4Y5Ut5md4GGxjOfvDK9jNaqrY2Urvl02dhV2lLl7FPSvEmmyWl3L4e8X6O9v9pxJDFHFu86V5EJYKwJLSKwDdW2kANmue8VwNd6Jcr4m8VNJZyhLmKUWjWxhUMsitJNJJtO1wCASp+RhyVJGsNC8Q6IYNF8MW2i2DG3Hmw2mnCFEfYBvMYb58iPZjeoUDGTtC1z/jI6hBbvHdanc6bBFaqFuI5klbPO4GJs/w46A/MCRtztbjjGLmnCTX/b39fqYnzR/wUe8QaZrnwv0eS2Mty58RKI7+K5ieB0SCZCAqSsQSQAMgY2MOMYPxvX1l+33f6JqXw3sbnQNQhVG8QQPdWUOmiMiRradsmQE7sfNx/ed/QKvybX6Bkv8AuK1vq+/6kvcK6L4QXf2D4s+F77aD5PiKykwc84nQ9gfSudrc+GOtWHhr4leHvEWqzCO10/XLS5uZGUsFjSZGY4UEnAB4AJ9jXpVk5UpJdmI/RvT/ABv400edltPCy3c8Uqtan7TESYySDtUsASqtgFigYntVzTPi58e7y+hubn4ZatHFmZporLSWkRI0IUyMd2drYJUjPAyQCdtefaT+3V+zRbES3nxD+4UOwaFeEscjOR5YBwRnJz0HB6DqNK/4KHfsoWEMgHxRmVlAdT/Yl4xkIkJ2EGDGNpHB4wvUHr+fSy7FKLvRbfe0v+GHdLoez6x4w16wdYIvB2rly8f2kvpcyCKRmwzhnTLBRycbge/y/NWXqer/ABNtdaXXbLULpbBfO3adbaXuYgogjHmPKFTeXZxlcfKVJBxXA23/AAUV/Y9ubBTd/GGWCdGYsB4dvTvJY/NkW+cnczfeHcDHdmtf8FPP2SdM0xGg8a6pqZe6BltNP0m5DKBxuHnJGuDwcbj0PACoBxxyrML/AMOX/gL/ADJdmtj0Txp4k+OF9oZt/B/hGSPVHM7B7u/g8mJtgK5+cs5IyBhsBuvAyfNP2WPA/wAadH8F6RqtssdvDqfhu11bUtdvnZ2R4pfuuxdlQTG8XcZBuMkWVH3w1C1/4KkfssalFNb3l54is3jt2aC6n0SOVy4GRjGQJC2SMjYGIzjk1leF/wBvP9kqz8GaBp+tapZz6hoFoBFYyy6slk86RG2VhLHaGUqEkeYKUHzqEYkFnbto5ZmEKUqfs37zV9Oydvlr/nc1g3yWO/8ABPgD4t6v4uvvFMPibStN0qXUL2G7j069ma4ndNQuHiEwKAbVLTIhJyULcgsFGzqfwn+Kep60uo3nxAsmsgPOmFyg82Yqz7cgEKI8iLg9FOSN2a4Twp+27+xrp+r3Os6n8e7MG4hkURx+GNTQxM2o38wIItGDZgntznClXMw+YYL6E/8AwUB/YskkSaX4zs/n+YblI9A1IEEKEA3G3Gd27cOoHlkELnB58VlmYSq39nJr/C/+HFUlNyvc7+98Ba0L4y3nibeYipmFk8iwTFcKPkZgOEbHysRx93+GuN8ceAtX1e9abVb/AEySJYc/bLqZ2luUVvvyI+4Fl4YfNgOWY45JyLr/AIKFfsmXllKv/C7HikWA+Uv/AAjd6dzHdxj7Nt3fdIPTPXg4HLar+3N+zXeyfaP+FyxlxJkJH4evRGEGcLt+zg8A469SSMcYKWWY2P8Ay7l90v8AIxtJvc8d/bh8HXPhz4S2GoapNaT3l14ih825tlclx5N1gMWA28Y+XqeT6gfK1fR37YXx0+FXxP8Ahxp+ieBvHA1S8j1qO4ngGmzwiOMRTrkGSNRgF1GAc8+3HzjX2+T06tLBKNRWd3v/AMEqN0gooor1RhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//9k=",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK+qfhn/wRO/4Kc/GHwFonxO+HP7Mx1HQ/EekW2p6Nff8JlosP2i1uIllik2S3ium5HU7WUMM4IB4r5Wr+pT/AIJr/FD4T2H7EXwS8O6h8SvD8Oox/CDw48thLrMCzIF022ViULbgAxwTjg8V1YWjSrSam7WObE1Z0opxR+HkP/BvP/wWCuP9T+yET/3P3h8f+39Sj/g3a/4LGN0/Y+/8yB4e/wDlhX9LGm/E34ZLCMfEPQuR/wBBaH/4qo9V+P8A8DPDl/ZaVr/xo8J2N1qUvladb3niO1ikunyo2xqzgucsowuTlh6iur6phf5n96/yOb63iP5fwZ/Nav8Awbqf8FkGGV/Y8/8AMg+Hv/lhS/8AEOn/AMFkf+jPP/Mg+Hv/AJYV/S5efGv4V6XEZrn4g6VtB58m8SQ/khJrNf8Aak+BsLFJ/HcSkHGDZXAP/oupeGwi+1+KH9ZxP8v4M/m1/wCIdP8A4LI/9Gef+ZB8Pf8Aywprf8G7P/BY1eW/Y+/8yB4e/wDlhX9EOsf8FE/2MtEbUYL/AOPmkrNpNwkGo28ME8s0MjYwpjSMsevOAQArZxtbHyD/AME6f23PAngSL4sePvjD8fdZk8Jw+J9Vm8D2WpLbL/bFtcanfajJdtbRKrRX73FzNuQR264njhKyG3QQRKjhIyS5nr5opV8Q4Sk0lb1PyTuP+De//gr7agm4/ZF246/8V7oB/lf1yvxM/wCCLf8AwUv+D3gbWviV8Rv2azp2ieHdJudS1i9/4TDRpvs9rBE0ssmyK8Z32ojHaoLHGACcCv3L8Yf8Fq/glJLNJ4f+FniA6eLM/Z7/AFZfIaa5WQh4hDEkrbdnzI+fmb5WWMfPXyV+0T/wWe8EfGP9kX4ofCP4m/CXVdL8S6t8PNc0tbrSPLktPtU1i6R7o3k8yFP3hJJL8JkZJKLbw+DSfvO/qv8AImOLrSa0X9fM/EWiiivNPRCiiigAr9TP2Y/DXhKT4LeBtRudclnaTwvpaS2dqxkZZJLeJQNkSlz0fJ/gCyMcKpK/lnX6j/sz+Ldftfgx4K8OajJprWdx4U0wW5iv3Sa3Q2sCCR9p6M77PlIK7VJ6kr4OfYjEYejCVJta9CoxhJ2krnslv8NfB1sfsyarZZnmKxrcTu6OAGJjCFo+VAYYU5wOc0T/AAwvJdOVLPXdIktlzNYzpeOzQhxuEsO3JDA7QDk8YPzEZPPprXj621Uw6Xo1td27CHcYvFkskykr+8ZVe0K8O5ABkXesaHjJA3bi/EwW4he9n1Bv3c9ijiONCUUsHdCVUqpVgoXnnDfMAflHmuYpfxH/AOBD9lTv8K+5f5G5pOj3mlfaJIfG07W1sm24gtb5QIwql0DNnjEQHUZ2rnPUnndV8G+E9b0/7QmsxWKtZPJZ6q15FO0IYYFwmJNhUKu4blKk8kfezlR+NrTUNR+z2elx6Ta2F1N/bHiPXZi1vBFiUFiiTCYCNgS26NQI4HZd2EY8p8bfit45+H3woa60FbKye7ulh0hkMksdqrRtMs8X7sLN83mfKVxkqzBidrTTx2YV6kVzO7aXxfn6Fxoxnol+Bj/tSeJPCnhfS4fhH4JtZ7/xP4quom2JuEZgnfy2ZnaN/OMuyWNI+SAHZQDGit6V4E+EumeGPA2h+Hmed9Q0m0hjury2vFje5nRFWV8ugba0iZzjJ757/NfwN1LxbrH7QVv41+KV5c2+oapf27XMoWBLhZzNDGsjw7X2qAsK+SPJw3llW+Rkb6aXUhf+Gre48feF7KG4Fqm3RxNBMzShTKQ77FLMGVs7N6gDgkCvQzLFYjBwpwjVlfdu93f520X/AA+5pPDwp01G3Uz/ABbonghbSaxvdBlDzTACS4knYtIo8z92yhfmABOV9M/wnHinx70/wJ/woTxRqegaJhLjwtfS215DcSSJMGgcrJyx3BgS2ST1LdDz7DrfjL+wguk6H4PtNOggijcRXkdusdzGqhYkQRSF1GyNcFkAIQAA9R4x+09reoeIfhF4o1Fl1DTLf+wL9Us3tYN8v+jlsNhiwAI5IAxz1GGOOExuMlVjepJpvq/8rnO4RT2R+c1FFFfoJIUUUUAFfpR+zt8WfCPhH4W+BtFkvJ5dQbwxpzDTomBmcfZ4kDbSThd7qAzcYxxjBr816+v/AIS/8FBfhF4E+HHh/wAJ6x4U8QG80XSre0eaxsLfbIUhSNjuM6lhkORkfxA8Yrws+w+IxFCKoxu0w1Prq2+MnhHUtdm8BodWnj+W4AmcxfZofnGQPLDBQyNgYJYt977tbN1rvhq7P26/8MXEsMm4y309wvlxfutpDE/d4QbhjPI+9zn5tsP+Cs3wYtLMW7eG/Fu5OY2Gj2mxc5B+UXY/hJHXk47AAa0f/BYb4DLp6W7+AvGW4hjKn2S0IVgGKFXa4JwSdpAC/KActtAr45ZTm/NdU5D5pW0R634z17UL/Xbfz/D+lwxX92sNrcX9skygRtGz7WKNvkQEOoB5xnKtla4j9oz4meH9QgtPCt14X1bVDNqUdxFPYaJsik2EKJ42C/Ou2SOHJ3gPcRAklhjnT/wV8/ZygjlhsvAvjhU2ReUr2FjztJyv/Hx8gxjkZz1wDycrxt/wVd/Z78WaaqR+DvGsF0NQsZ2IsbTaUgvYpyoP2nIOxCFIHBJ6BiRtQy3NKdZOVF2Xml/maUqsoTUn0L2q6P8AFjwZ8SLHT/EXha6/t9tLuhY2pWVsPbHzsKXQJJJGAW+XzAxiCYIOH7mw8aftFaL4S1TU/if8JbuxgsSBZWlhZrdSXUap8jbkJx0OSwJwqgBRk15hoX/BU79mzQbrSLO3+GXi6ew0XQ002wk1K3tbi6t9oRftETidAjssZyuCii8mXDFEc7B/4K5/s8x6Y9pF4Z8fNLI22SR7C0BZOmSRd4LYzwAB8xxggltMRl+aVJR5qF7f5vbXqu9yq1edRrX+r/5HbadqHxP1/wAKJrOr+Dvs17Jbjy7DV7Ro5bPODtKFcEhQXVSVGSilkO4L4j8Xpvju/wAL/Edz4n0DS7O3l0fUBJaW7Ruba2FsdgL7wzthpVIAIDICMhuLx/4Ke/A6OJrMeHPGtyXjUyahPbWyTSyqqLlkS42gEIpIUgA7iFyxrz34s/tx/Cvx/wCBNX8O6X4d8RRXupaVPbCW5gg8sO8bKM7ZiQBuGTgk8nHatcFluPpVNaVldb9PTUw55M+WKKKK+/AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//9k=",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [55,34,78,77] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [43,40,61,77] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+ivsAf8EEv+CsZXcP2Uxg/9T3oP/wAnUo/4IIf8FZG6fspg/wDc96D/APJ1X7Op/K/uFzR7nx9RX2LF/wAEBv8AgrVNnZ+yivHr4+0Afzv6U/8ABAP/AIK3Btv/AAycD9PHugH/ANv6PZ1OzDmXc+OaK+yF/wCDf7/griy7x+yauM4/5H7QM/8ApfSr/wAG/n/BXNiFH7JY5PGfH2gf/J9Hs6n8r+4Lo+NqK+yj/wAG/P8AwV13bP8AhksE5xx4+0D/AOT6en/Bvl/wV6kJC/skrx13fEDw+P539Hs6nZhdHxlRX2af+DfH/gr0G2/8MkA/Tx/4fP8A7f04f8G9n/BX5k8wfskLj/soPh7/AOT6PZ1OzDmj3PjCivtL/iHm/wCCwJ6fsjp/4cPw9/8ALCgf8G83/BYInb/wyMmf+yheHv8A5YUezqdmF0fFtFfaY/4N4/8AgsIen7Iyf+HD8O//ACwo/wCIeL/gsJ/0aNH/AOHD8O//ACwo9nU7MLo/onilDIFzTqw7XxPp8yp9m1S3cOAU2yA5q/HqxVQ8mAD0b8cfzIr2NGcrTbL8crR8A1ZinlJwDgD0rMi1GGUlccrjd7Z6VYjuNpyp6eooVxao1InmbkkVIkj85NZyX0i8AAD2p66iw6r+NSVzI01uHQDnNTQ3zgZJ4zWbFqET4QnBqYSKRw3WkDZrpeow6E09bmP+/ishZSO/4ilExHIJp6EmyLlQeJBThcbf4x+dYom55c4qZbhCOGNOyC9jWW8YH7wP40v25+nFZSyI3/LT8KeGX1o5R3Z+WF1/wVp8BeF9ZuPDcPw+fVI7OUrbX8Xim2jS5j6CQB1yucjAPr7V6NpX7cvwU+IPgfx5D8R/CMNrpPhvULew1GJPEFpcNeyN9qcBAWiYOotZCEXMjbiAvDV8meGLC1tltNP1L9ljw9qVxb6NYPeXc0FjczXMxRGH7m3i3RDbl3EiooEeHb5olb2WO71TSNA1rw/a23w78Ix+KosatPo/h20ubxWSeYh51AEV08kUgIL5K/aZkYKV8xuCeYYCi4xnKzbsu9/Q7qeDxlVtwWiPTfgF+0DceJfE/hz49a7qn2zULq1g8O67qzTzXBsrOJ8A3mGOJbnDSqzd7bKjCvn6wsPjx8E7+SOKy+MHhed5SAiQa9buzZOBgB89eK+DtB+Ker+Cvg8ZPin+09NrNxqFht06DxD4heeK31K3KsLxJJlLKkUVy0LRB3HmSo7E/KIvlLS/iIviWSXTvCs51O+gUN5NrFICRnkjIG4Dvj09wa6FUdObpvoGLpptSj2P3Msbq2vrZLuyuY5oZBmOWJwysPUEcGpcc4zX5Efs+/8ABQT45+Brabwd4V8fSzQJABa2ZuI7tInU5wFdH2jaGztZeSM5zUfxg/4Kh/tdnxh4ajPxrsvD+n2l3/aE9ydEcpNjzIvKlW2AM0JxIpXDgPhuGjVkbqRS3RwKPO7WP18lurSwjWe9u4oU85Iw8sgVS7uERQT3ZmVQO5YAcmr8BOCK/HLSP+CrX7VfxA8fy+EL/wCJGk6tpV9qVlPp7aL4cmtj58V1bvGi+au8LhMnhdzZHcZ9T+In7dnx+1+yFn4x1x7ZYUz5Z09YvX59u0fN1+Yc9h3q6bdRaBP93ufqANw4x0pThF6gfWvya8MfHH43fFPxWmm+A9Z8R6xrd2u1LfSHubi5n2xliAkeWfCbieDgA9s17Do+s/8ABSnTdPjl8RfD/wCKP9hjD3d7qPhK9aCGIfMXeSSEhUUDcSTgAE9Kpxsr3M1Uu7WPv+51HT7NS95fwxADJMkoUfrVCb4heCLVSZ/FFmoBwT5uRnn0+hr8yJv23PHixLp/iqBvtsFt9qKrw8kLNIqs6E/cYxShWAwxhOM4NdjoX7XHhTW44pdRS9sQb2F5YSpkQRgYbBADHOT2/Ks+ZlcyP0Bsvir8P713W08RwSmMruCZJ56YHfPbHrVyx+IHhTUH222rxkHZgkEffzt9x0PXHSvgjRP2s/AGm+JLi+H26Oy+1YtYnhDARfdzj+9gk85AI79Dd0j9rD4Z+FvFlq2mare3Wn29xGBLJagysp/1jYO3J9BkYPTjNUnMfNE+C7qb4p+PLuTX9f8ADsFu0tz9peHUE8nc/ALFXO5jnJJySdx7DA09O0HxvKotLuw0pkR0Uuo8t5AFDFgUcdSSOccr0AxWpZ32q399KyXz3UAUloREdyAck56Ade3bqea6Twrqmo2kkdrPYQXJSIOc2nmSIu7O5cDjJZcZzyM/T8s/t7NMRU5YpL0V/wAXc+mp4anzatnM6j8Ix8S/Cep6z4s0173VYIIl8N6XZ3jfZLYtIPtEhIYAsI40XJxkkk7ioIqfDf4V+I/hodQ1HS/DMEjappbWkw/tVlPlNLG7KRvw33MAHjIUnIyD6LH4y0IStHdXmqSoFW2cx6FIGSNGYqN6I2VXeeBkDfxgV0Wm+LfhNdwyQaTp1xc3AKgf2lYSBMYONisMAqCTls+/Ne3QxOYul++krvyuVLBUJaRueKa3o3ji20O41N/BsFpJEhuDqUd2C8ZiKyqVYydVK5U4yDyOQCPB/FPxG0/xOdV8OaN8N7nxNo+iRRLZavZwS79PEr+Z+8CgxMXkLjcy7jtAByM193arY/DLxRoFxb+NryZ3kcW32WbXPJieH+OMYlVcZIyUIGBwTkV574C/Z6/Z78N6lcRfDXSb/Rnv2AkOmeNbwCYA7VACzjeSW4DFsDOOpx00cU6cbSX4WCOAhBWhsfJ3wk+OF/8ADPXdPtfCfh+78PjXb6GF9X1CN2SSNZony0MYjjuBE6xTKGB2yRxtkMqkfamj+PfiZ450m28N+KNfsdcOoSRLDez2tvFFJatLui3xc7VVGUkEHBBbC5IE+p/s4/s/fFHTIvCHjrV9VvUtAxtLq51aJpLdmdSxjndHkQExqDzggAMCOB9DeDdPsfCfwp0P4a+HtbuprXR7SGy09tWnM0DxxLtQM8ChR8oGSwHTr2a6uLnOP7uVhPAx0U1dHN/tV6jpPxY+G2o+ItR+Jl54y1S3km1C28INrcM5t4zcQowhwoljCBnk+ZlBjtyMkmqCaT8KbP4N2N9q3xmig8RDQLsXGiWevWtx9nuorRZIrcRqgkfJO3bgO6uQOSDWhf8AjvxdpV3LpJ02TS5Y7YpBqOl2gaBQ2UKmSEAKNoJy54z1HWvOvHXhafxhqq6rqviGa9u57UNFdtfNL5m3hwX2v8q9dxwAMA1yV8fjKNK9Fcz9bGdbK8LPVwT9T59+JvxE0j9nXWNHuJ9Lv9Qtp9Omtbdzo4McCLIzlCk52k77mRwx53OTnPT0f4YftA6t4p8D6f4/fwjpLWeq2cslkJPA+mHdBG8tu0jhISY282MkHOQFJzlsrc1v4U+KtHIW30qeS3kjEkclvLFLlMqd3yKqnqMkHHNYmpprNrbm3m0PUZouQxg0mQoE7sNg479gBj3ryKnFOY0qXLOi0/5v+By2OP6jTpO8o6HQ6p8X/DN7vuP+EU0m2julZkT+ybV2jm3EB8iBQF+4PLxtyGxjdxAvxvbV7t7s6LoBTy44nVdCtkBCFiOXJZCdxzgDPPoNvHXviz7C2LzRrgosjLksATxkgFyCpPHGDjjtVmDxLdXVgLux0mSNV8uOe4nmdViBOMfKpyPqecDAzXD/AK443u//ACX/AORM3HDKVuRnFQfFDUb25ZofCtqiP8qpGCjAYxweeQe2ecDp0rZ8JeJNKsLW5e+jvbeZgXt2t5mRVk3qSWJGOQHyQMg4POa46FrO8uGtrcujGQKEuHCLuA54Ixnj15JGKpHU/EbJPY3ej6X5EBIkuI7pX3HaPl+Ric/MOoHTNfOrFVGt7HUq9ak+abT+7/gHrs/xC8IW9p5V14kSWeN3a6E6mFvLKnHlsBgvnGfnUdz02nd8O3n/AAksITw140tJLXzjEbeLWsNCxXcGZG2lc4IyRtAG7dzmvn3UtR1ezmkv00KNfMIClrNzuyDty2cnHJAz/XLbjxB4jjU6fLqCW8srnyZLaEIyAg/KwKblyT1PpgYwa9PD5ziqC5YtNdv8tzCeYyjPWOnl/wAOfR0ut+INBa2t7SHSbxp7llnTdArxIuQzMxK4Hy5DHIOCBklQZtS8W6XDPDpd7ZxfbZonYxWkyMwwPvEMW2rnjOT/AIeAS+PfF3h8WcUGvyyp5ZEdvcWsbk9DzuzuxgDrkbunGDuaX8VPG9yg09ZobqKFC3l3EBw28BduQ6hcbTgj3yD0HoR4ktrOF0WsyhtZp/L/ADPUpNb0BYoJtRtLjfKMl4UM6opJAJfAJ75yM/XHFJfEVhLdAWGpPB5JVVvGuJoBgkEFf37Yxls8Z6jAwM5WhfFz+0tPSPUtC1FFBcskcgVSxThlXDByD2C/w9RwRJpureFNUgS11m2jQQuzyvqajDjneTt3EEdckDoOeMjop8RZdUkk1b5ndDE3taR1um/G7X7SZbybxJbyi3GRFqGqeaqsACWUSqpGTkDbywC1vy/H/wCGV9bf2j41+F9vrE7qPOvLfUoY2gQ7QWVXSQdCAQcdcYya8y07w/4Y1Oe4W1aCORHzbw3cCzR9MEbnkfJ6YPAB5yNoBbD8NdBS7zMsbWl0UIeVZPLiKjDIB91BvI3EKAmccgKK9CjmWWVrWmr9r7Gntqj8z0/TvjP+ypOYUv8Awb400q2NqZLWawm5zu/1kexol2FuCAoBICg5wK6XR/if+wylja2R+M/jq3fd/qNS0mCVPmJAAAmL5PPVjjjqQRXg9t4B0J5FlCJZrNdLFCqpcbHIG1XJK9C2ctx253cVUXwJcaH9pvtI8URxyyzNcK8dt5XnkELyY2LsVwvznsRjIFdsK2Ena00/69Q9vLqmfUQ8V/sMXt2ZG+Kvip7V1XYW8KKpjZuxk4HOR8rDIyCTzXSaL4Y/4J2+IokmvfjOTJKhXy9Q0nEyZIUYZUYAkdMZOOuORXxQvg94rdNCsbiG3lTeZ7IyqGGNpBUYZiu0/MSRhiuMkZDm8K+JF09tLtEuXuNrPJs0i32y7BuBEjfOu9s8KitjABBwK1dLDvVwi/l/wSfaRa+J3+X+Rxdzba9eWMQ0+1hkuWUsZLiZsAEsMZCnnpjsBWhBo9uLKTTtaMbB5VRZIcngMCTjIPOBgZGRkcZ4p6RBf6izf2fcLJFDg5kLZwN38IA64/rV+K/tvJLMYQ6MqmPYct6k8nHb8zjpX43OpU2S1PNVK13fQ0vD1pZWVq3lWDqhjISMgqGxkdc5/rUlr4ZsLuee/vVYCSINhdrLgZH3CvJxxjkH9Cal4m0iOwbQ7MXSXDypieHkYTcGHpgk984x+NZc3irw8bsaedXGA+DJI+dwB29uACf51Fqu9jRuhCCvZl5Php4d0vUp4TrlxHIJxAyGUkAMSCGAVmPTOO+3jnFTJ4B0DSZZYbi3s5rbarKZ5naUktkfN8u44XHGOvvkVVv7Fr6C8Vo7hDMVEiLzGdhzkg5/iByfbitB/EmnLL5UhaSVmJxgndkkk5B68dazqVquydxw9hzX5bFw3WgS3f2GO7ito4odhaVwpCEEFOpwD6Z59+1zSfCnh8Mbu4vrExs2yC4fhMlScHeMA5KAZxw5JIA5wW13QbK0kuZNPtZjneqTWpZsjPy4wDjHHvirFjr2vw2cWqeF4pLSzlVtiyIXQ8q/R8g4YRkA8ggHgkGpgk5pu9mbwqRva1zorhbC2la1vdTT/UiSE27BJACoKMBg8fd4HUAAEZyKcuo6zc2SWuna5cyWhDkW9xqEjRHIJIMRJXGX3YIx83rWRP4gv4tbcX1jEtuXVWklkB2qi4UbSOBgDsMkkjHSp7i4tdWnlluNQttoIZkXIYgkHj/ayPpjnnoa5p0n+7ZfttbGrPdeKLyc6jea4sUrYM7lFAY7WAw2CEfjC8e+Rirt/wCK5o9M+z3UVqDNKzssjBiBk4wD0A5z055GOtca39pLZymLX5pwXyUW5XDLx1BXdkdufUEcgiJFnuGiuRAsc7FVjaIlWJ54IHHJPOPT8a3jVqQa96xn7WotVE6PRtaeHRzHqXkEyOXcQRtyM5yo3MQ/C9Mn5FxjArR0rU/Bk968+t3d3HaSMwvBZwQo8cHmK2YsLhHG8hS+4ZK9dgrnLfWb21un1m5soybeVZQbeYqWdiR2XBwwBwOPmx9cOS01Ke7YpEY7J8O2y58vaCxIXA6jPbPfkYr0qOcZjSv+8ZEqlmro52w1WecG2tb5vNVtxDLvUdOo/L9Kz1l8SrLMNQ1CxSGRCUaFTuAJ4yMc4x/WvmO3/bA+I9pGEg8PaCp24L/ZZtx+bdnPm+tPj/bI+J8asv8AYmhNvxuZrWYkjPT/AFvFfQx4VzOL0jH7zyqnNLY+mbC10u28QRyXWs3cTvHgxPc4VvQ7cY7fgAfqOq01dKjuRLcWQ8xSMvGwJIPqc9Oh/Cvjhf2vviQJknfQNCdo1wm+1mO3r0/e5HWtCH9uT4sQoETw94ewARg2s/IPr++96wxHCud1UrW+8VNOHQ+xp00m+j2KVikxwVXIAHQkADPJx9PoKXzIJ1tbhNLSTynwCWCMhGDwVyCckYHI718bW37b/wAVLS4FzD4c8OhwQc/ZJ+3b/XVPB+3j8Y7bIi0Xw/hvvKbSfB/8jVxw4LzpfEo/+BHXCu0rSR9aw6rraWpknsiYQ33VGVSRiD0z04P0zXSp4ogWyjtjaRyXDyeUA0eTGAMcjAJ5CjHPP4kfEtp+3j8ZLJZVh0fQMyrjJtp/l5B4HnYPTHzZGCfbEll+3z8ZNPhaC10Dw0qurK4bT5WDBkZTkGXHRvzArRcHZ0pbR+86KWJp03c+zLnU9J1u2kMkkcRiIaZoU+YnBz6cHuR0zn0qlJoWmX0Ul1ba15j28yqsDFvTLLgggEDHPHU8Hivj6w/by+Lunj914b8OswRhG721zlGKlQwxOMlc5AOV4GQRxU4/4KB/GgMJP+Ef8Obx/wAtPstzu656+f64P4CrfBmbKDa5b9r/AKhKvQqr30fW9qmmxQiwRXdIixlkKtGW27flY4DEDgjsTn3qNdQ8PXdhtmt7iM4LqURsvkhRl/4c4J49OnJNfJR/4KA/GhpGeXQfDjq3JR7KfGfX/XZ/WnJ/wUA+L0JVrfwh4VjZRgMthcdMg4wZ8DBHGPX6YyfBmcNr3Y/+BFRxNNWR9Yahp13ewlPD2oQBZWIUu2C2RhQN3yhlOeeBkDIqHV7C7gjbTdQvkVI8EzROSyhhgEE45AOemOn4fKn/AA398XhBCkXhPwvHLAG2XCWdzvJY5yR5+0kduKpz/tzfFi6jEd14d8OyYUjc1rPu5zznzuDgkZFbrhLO10j96KnXwstdbn//2Q==",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACivtX9kP/ghH+1z+2l+z9oX7SHwu+I3w40/Q/EJuhZWuv6vqEV2n2e6mtn3rDYyoMvCxGHPykE4OQPTo/8Ag12/b6kGV+Mnwc+h8Qar/wDKytFSqNXsTzR7n5uUV+lMf/BrR/wUBl+78Y/g3+PiHVf/AJWVOn/Bqx/wUIkGV+MvwZP/AHMWrf8Aysp+xq9g5on5n0V+mY/4NU/+ChZ/5rJ8GPx8Rat/8rKev/BqV/wUNYZ/4XP8Fh9fEerf/Kuj2NXsHNHufmTRX6bN/wAGpf8AwUOXn/hcvwX/AA8Rat/8q6af+DVD/goYP+ay/Bj/AMKLVv8A5V0exq9g5on5l0V+mg/4NTv+Ch7dPjD8Gf8AwotW/wDlZXx//wAFAv8Agn58Zv8Agm98ZdM+B3xy8SeGdU1bVfDEOu29x4Uvbie3W3luLm3VWa4ghYSb7WQkBSMFfmJJAmVOcVdoaaZ4XRRRUDCiiigD99f+CK37THwf+Ev/AATJ+F/h34i+PdI0Od31v7P/AGzq1vai4xrN6zeX5si79odc46ZHqK+1fA/x5+HvxB1S007wlr2nX639jJd2VzZa1ZzpPEjKjMixzNIy+b50W4KVD2soLD92ZPwy/ZHtNI8R/sneCNO8R+F7B5EuLm1stUfTVnYW/wDassjpKz2sqqg8ycjGG+Y7jIoWNPoCfxz4isfhf4w8HfC7wNpthFrx0v7dIIjb21tPayM0UsNtaWCBgyLMp27ED3EjMZHaNY94ZjhotU3JXXmvu73KWFc7s/YeDUGReF4qPUvHnhjw4HbxD4jstPEen3F9I17eJEEtYNnnzncRiOPzI97/AHV3rkjIr8ftO/bs+Pn7PXhu48Ij9rGHw/pMuo3I0pvFXhe7mcwptUyRZtZXZSWT92kispYsAfmNeC/F79qr43/F34kT/tGWfxGtNRvvEWiDSpGu5ZNG+3aXbzJ5ts6+XFFPCsyI0sIZ8qVaRNgYru8ZRaumYxw9V7p2P6ELG/uXtIZGnJLRKTjscVaS+lI3SSN9elfjL+zF+2X8a7HwdZ/DXRfjvr+nXulWtvDB4ct7pdUEdkEUZiMtw4iiTBjALKB+6AwXCjqPh9+3p46+J2kN4guvGWkXtpb3zW82o6nbXdvtnVVk2HZhgQpXkADn64HjMND4pJerM3TqKVuV/cfrwlzuXKSNn/ezRJeSgf6w/lX5ceGv+ChPxSsb5ryw1TRrqS+hE/lSC5fyn+bfEqibBIJIBJK428qeBuW//BQv9q3zp7BNP03UbpXYxokcm518sKXVfNXjhn6ZBZ+FAVVTzDBLepH70LkqLoz9JX1KU8ea1fgT/wAHTEzT/wDBQfwk7MSR8HtOGT/2FNVr7Asf+Cgn7TnguwtL668MwarcWt189xqc4y43Z2lzKgztyMZ5VuOQDX5rf8Frv2lPGX7Un7Veh+PfG/hqw0q6sPAFppsVvpxYo0aXt9KHJaR8tumYHkfdHHc51cVhq0OWE035MuHMpao+P6KKK5jYKKKKAPuL9jfXrGz/AGf/AA5ZTw3G5FvmVlQFCzXM2BjcuclVDEHIB6nAWvfdL+JlnpUtss/iu8tjb8Nb/Y1mRyF2jloH2fLgAgEg889K+bf2UZrmb4BaDayPDGqrdLELlQ8ciNdzhsoflPPAB579BXqNv4E0m+tJdWuYN8bTeXbyHbiJ+WACqACMAnuASPUZ/Jsbm08FmtZxtdSl0v1O6nWrxhaK6ddDufir4X+HP7QTWz+Mtf1PU7G3imjsW054HMbSGBTE7eXufLRKem0BeCPmI8m8SfsW6NqGg3fhTUPGVks8lx9p0/VP+EauvtWnW5ZN8aRxX4t/LGACXhZsu2CvBHTWvgrQZJnNrqV2Sm3ZH5SDKAhsEnkknPJGeME889JpN1BYW6wz67qNqkQxbxCZJUkIboQzHA4JwQv3uCOAOulxlODUXC/o7fnobwnOp/ES++/+R59+zv8AsteFvgn40HjbW/irrepwKjRy2cXhhraF4c/fkl+1riMPsJ/h37AxK7lPvGmT/AnxAyWt38Y7/SWMYkjXUtCnigkbeOhjhnAIwTzJnPXAyw5BvEa3WmxJFcW3kRKGgaSBX+4GGdqkktjPJyQFHQioNS8R6Zc+VBdtA7pIxmYw7Qwx5eCGOQxIyd2SxPTuNKvEeUZjJPE0m2tNUtPusX+5jFRsj1NPhh8ANYtPtel/thaZHliVSXw7qkkkWD8wKx2uM4OTjp3zjJz9V+CHh5wLnwv+25od0IhhYLZ5LHPBJZxdIpGB/dPbB54Pl73/AIR1jZZLA0k6TIsam3APmFg20YAALAED+7uXGeKNSltor3Ze2xkVrdvsIt7aNT5Jb7zBB87hQVLgl/k+8xqlW4Wk9NP/AAP9WYeyws9bf18ju7X4Y/EDXkgtU/aH0O2l+YxXN/4vthJEVbGdqyM3Qbh+7ycnjG0n4d/4KneEfFvg39obSdO8Y+ItP1SeXwfbywXOnXMsqiL7VdqFYyKpDAq3AGMEe9fTWmWGlXEqWrC1hwyvJNcGeNiC2NwAk+cqXUYAckIWx1I+N/26HsX+L9iNO1Ca5jHh+LEk6bWGZ5yAR6gEZwSAcgEgZr3cm/st4u+HqXdnpd/kzOvTowp+6mvm2eMUUUV9WcQUUUUAfRn7Pn7RvgL4e/C+x8Ma14rayuoEuFlWOyldgHmdgMrGVYENyCehxzkgdhZ/tV/BFrsSal4yeVdpUNLp9yAowBgKkeOeSTgHNfIdFfNYjhbLsRXnVlKScm27Ndf+3RO76n2sn7W37NzjZL4ydVKBGQabdEMuOM/us8H36McAnkWtO/bN/Z9s97HxhbF2ThjoNym3BO1ARESRyTg8c89K+H6K41wRlK+3P74//Im0K04bH3Ef2yf2dZoWVvHU1u21QPIs7zB45HMPrg9eo/Nsn7YH7Pc0khb4ipEG3YeHTr7f0B6NAVySoHoM+2a+H6KP9SMpvfnn98f/AJE0WJnHZI+ytZ/bB+DEN1EPD/juSWEHEq3Om3Kq4C4+YCMg+3B46gcYyNY/bM8Az3MVqPEfm2wYK0sNhcExruOdofBAAJOM9eetfJlFbw4PyqHWT+a/+RM5Vpy20PqcftYeC7q7W4vPGNoIl27ES2vBKOSck+URkHH94cZ9q8V/aK8aeGPHXji31fwnqjXdsmmrE0rRuhD+bKxGHVf7w6DHPrmuCor0cBkWBy6v7Wle9ra2/RIhyckFFFFeySFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/9k=",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [38,38,57,58] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [50,37,70,52] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD81fi3awxeCZzAqss7QhGVeCC27cPX7v60/wAIaz4W074GPo2pXttNcNBcbbM7WYuXYqSpOc/MMcfw1V8W2clp8L9NtrsN50zQLJHICGQhJDgg88Dj8K9B+FH7PvgXXvCOma9rGl3bTz2weT9+6o5JJHH0I/Sv0mtRpxloesnhsDgZqtLRTauvKx518JvM8N+Etb1uaRYxLNDb28kqfuvP2soLNkDbuZVJ7YFcp4o8WeMtR0I6murXlte6fdGHV4DhQY3YiJ9u3HVWU8dChJO4V758ZvAlvP8ADS+8K6JaLEIVBgiihzu8shgMZ77QM89e9fP3hS+tdfdtJ1C5KzSxGyEs6n97ETjaQTy8bKHTP3igTILLXDVteyPZymrSxcfbrq/mZGn+MvF08q2q3Mdxu4jSTT4pGLE8dV5Ne4fC7xLd6X4tXwGdOsp7e1t1i1XVreGGFRdk8nKbUddx8tQBuYjI7gec/DTwjLo+o3niLWJRZf2XK8EVxJGGEMwB3yFScsUBBRQDuYqcYBz3fwv8LXnj/wAfaV4b0K0mj0rSrtb24IT95MEYMZZSAAWZxgDAC5wBxzz1IR5T0sRKDjdLY0v2gfhv4Psfh1rHiKDw1bLfhI2F60A83c0yAnd3JyeevNY/7NXws8E6/wDDm11zWfDqz363sv8Apb53Da3A+nbFeh/tSWn2f4Q6sM43Lb4yMZP2mOqX7Jmmmf4WWTAHEl3cEjZn+Ij+lcTvexnGb9jfyMHWrASftWaFE0QKnRJXK7OARDdAcfgp/wCBCvR5dJV8pgDdkf6vpWBqnht5P2udLCQsRH4aLECI94pcn88V3t/p3kTMNhHzHPy4xUyjZJnLGXNY8N/ZhS3TwHreo3fyR2+sTM7hMlUWGLOPyzWt8KPh3/wu7U7v4oeMbJ5rBLqWHSbCWAlFUFTuweGXqOmCwbupqL9lrQpNa+F/iPTISA93qV3FEWXjJhjX+or0z9kF4P8AhBLrwNqUX2bUNEvZFnhcfMyO7ENg4xhtwxz2PfFVF6jxXLD3luM134f6Stu1pPpls0Lj543sl2t9R0NcZ4Z+DfhXwPrt7q3hxriGK7AK2PnMYoz7An5hgd8nPfoK9T+NnhLVdY0OOw0XxU+jTecrfakgLFgM5XG5fr1r5+t28a6J8bNM8BW3xKvtYiRll1UyR7VjUFtykbmyMBe4++Px7aMnb3mclKlKpSdnotdTob/wVpvjaW10u9eVFW5D4ibG44IwTg44J7V734H8HWHh3wpbaRGryQ2sCrEXY5A2gAcYzjA57159B4H17wL4+j8JeLtJez1C3mxPbu2dh25+8CVYf7SkqexIr282sNroe5k4Nup4J9Kr63Kqrs/LeIsXjMNVhhpXjrqn38/wPH/FiCO7aNwCwkkDehOa8u8X/s8+FvGV5JqGn3cmkXMhBaaBTIjH18vKbT/usPXrWh8cf2ifC/gTxPJoDoLi9OJJUJx5WTznn+Ln/vmtLwx44bWPB8Xiy102S6e6ylraWZDPLKCQI1zyWPBwM4GT0Brhlik3offZDDE0sFTUdWw8Ffsy+K/iFqtvb+LPibF9ltXIihsNGMYdiB87gylScD0z79c/S3hL4AeFPhT4Qa18MaSE3Msl5cyuzSzsARknA49BwBXIfsoHV/Fi2et6j4eubCK+kYWyXjKC2OjYHzYI5yQOv0J+uPHPg61svBkcskKESQjbtkbsK7KUvbYdzRGbY3F0cVClJ2b3/Dc+GvjR8OofiF4ZuPCE179lE6RkShSxQrKrHjIznbj8aZ8CvhgPh/4ds/B8V+bwx3UjCZoymQxJxgE9jX014mP7HHhLw/4H8EeObuS88T6/Fd6t4uvNDF3qN3ptmkkiW8SW1mJCsjL5ZcyKqrvOQG2AeR/CPWfDvifxSf7GhvIIvtbC3tNTtZILhEzhWdHUEZGB069q8z28PrPsz6uWHqxwacVdW+7Qj8Y/so+I/EfjJfil4V+JS6BdJpQtIkTSBdMAN24nzHC4IIx8uevNcLZ+BviL4b1y4bxT8S11+3kjkSOKTR47QxvuX5/3ZJbjdxkDOOuePvjS5fhFJY2PgS/vo5NSuNNufOu7K9jk23cSlvszAD5dsWxmHDjeOQQa+T9b0M+JfiRD4EsdStLG5vL57WK51m5Szt1l3Y+aaUiNc9hn5jwASQDlXxuHjKUb2s+vpc48NgcyoezdWzVSPNG3RXtrov1PJvgj8J/+FW6HLoV3q0d/9ovZLmR4rdoQu8ICoBdifudcjp0Ga9bT9l/QfiFqCfEDR9evfDuvJt2axpKjIABxviG0SH33KeOprxKx+PF+/wAe7z4Tr4PAtLXUZLRbgLJ54KHBaRei8g59K+5/2f8ASINS8LoZYw2Ys8sR3x2rTBVYYiV4O6POz+tUwVF1V5Hxv8Wvhl8fbE/2VqXxot3iOYzLBpEccmOcnKgYPSuR8F/C7Qvh2l0+kXM13d3ZX7Xqd3/rpwOgIydqjrtBIzz9Pp346+Ddc8SeKDpHhTSTdXKwyTmBZ0QlEBLYMjKM4HAzkngZJrwjR9R07xHpcer6a2YpCy4bgqysVZTjuCCD9K7JyjGfKiMJPE1MBGo17r6+Z6P+2D4Y8aeGfjno8ni3xPBrLDQYPsV9DYm3UwqXBUK087EK5YBmlckADPFZWtfF/wAMeFvD51LxQLoabDCovZdPiBmRDhSUDEAtz6j6jrWp8ffB66T8TvEmu6jBci5/4SFLUvISYzAthbeRszwvK3LFR/f6Ahq8W/aIktrb4RatJ5v3oogMc8maPg46cbuvpXm5dXbwkY9tDn4qy6hiOI3UmrpPmX/BPqD9nH9oz9kT9sP4c/EjwD8P/wBkfS9P1bRfB51pNQ8Qafa3s8U8duUKwTbC6xxGC1CuBGzurSsnmSOzeU/spaN8Afh1qGrfAy/0QzeJvEmjzX+i6hrkEcklnCSY2a1cD9xOXEfKjdthXJxkVz3/AASY1K3s9L+JFtBqAQSeENQ+0KCN2fLSVRjGSD5WOP71eZ/tFfE3w98Lf2lvBfiu1u5Gl0h2/tF7Vv3wtJXJYL0GSG3L9K8V0FKdacfif3WufoFLNp+xwU5pLlbT9H2+R9PfBTxfBrUOj+P4pppreWGZrGe6ZXd4UneLcdnABMZOBxjGOK+lPjH8RNO1P4dpp2myRySG0JB5x+VfOvgLw3Dpd9qHhTwtpjzaWbyXUPDLWil1/sy5Yz28KADJCIwGAOpwM8VX/aL+NNt8DfA6aje6eZrrU5mtbCKQ4UMF3F2yRlR8oIBzlx6GvRy3Mf8AZHRXkeFnmAjWzL6zN2a1+/Ub42/4KXfAT4Q/AHT/AIVfA39n2WXx5fxX+nfEfxfq0cCrcWcl3MBFbON7zSbCjLNKoWMDDRSscReo/tCftRfCLx18E/hr+0X4g+HY8KafDa38d7pekwRG7tdNM1rHBGSqqHXfuZQQdmX2febd+Z1zfafqWoxW8N2rO+AMHjqc8ngd69//AOCqvxUbwfpHw++Fujyxi11bwrLe3I2k+aw1nU4EYkccCAY+pPQivGxdKP8AasKy7P8AA9jA5xiHg6yqO6ilb7/8j7e+PH7RnwOg/ZxuvjF4G+FOn2Op6r4JtW8May9gv2i30+6toZ7eDzm+dXCySOqJhQBKSBvO74I1H40Qzada3Pii2jKPGokklOfNLAZ3Z4OfTvmvVfjnLqniX/gnx4c0y3AtNQ8N+C9NuARzt+zWVlDJ8wypykVwMA5BHuAfgjxF8WPFrtFoyzW6yWbKYUMbY3KRtzzyMjnFY5jh5YyKXmbV8xjRx0q8lrNRt12S0+8+4fhLq2neKdKlOm6HLpyWlw9u9rI+SrK5Dnnp8wJx0GcAAACvpH4JfEiw8KaQ+n3skXzLkKThhg4/lXzt8Ary68QeC28WXFnND/a95NdxrOAGKM5Kn9T+Vd0vnRLnYMdM17uUS+q0ku2h8zm9KGPjJT2b6HR+JfFehz6yust+0F4W8A6jq8F3Bbz+I7hAqQ26xyGTazA5Z5kCbSpLRnk4wPPPif8ADVPhr4ltNEk8eaZ4gOpaXHq8F9pFsYoWhuXd0wD94f7QJB9eKv8A7THwl8L/ABr0HwZ8G5/Df9oeIb3w9qF9pOoQPJGdLRr9onmfH+sVSsYIAc4k4VjgVwmn3niBfHet+E/G2nXNtrHh64l0XTYNRGLldEt55BYg4VAy7P8AloEXe2WIBbFcKxirZ1Lvqe/iMHDC8PcsY2i1FrtdvqeNftnfEXwR4y/ZCur3VPHqaz4k1ay8GQrp+mXKvFYaxptndwX7M0TFMLHcFABhT5m5Sa+FdJ1C/wBNvkv7Zz5iNnO7rXqfw28f+Kvhb480/wAZ+FfEaWN5ps3nxX11pcN/BEwBG2W2nV4p0P3WjdWVgxBU5wegs/jV44vPOs9U8GfDu3t7SXyYLxfhP4ezdzc7F3rZchsbt+fLXKhshxXLh5PD+6n56nyWYVK+Y4pVXG0VFLu21fpr5EXw6/aM1X4U+FfEt7pGlwyXXiXwve6M+pKgE0CXMJiYKeMLtYg4GWwuT8uD5t4a8bXmmLHceTFcG2mWaO3vF82FyuMI0bcMh2gFTwRx0rt9d8W+K7q4Xxt/wgWixajaKka6NH4RtFtImEZUyNaLCInwrI3zoQWAY5zTNPfxB478XW8vibS/Dq3un2l1d+Ro/hbT7GEC2tZbrZJDbwpHLzGoIdDkOVJOcVbny313K9pXkoRbuorQu+N/2y/HHj+48UXPiTT2kuPEun6fC0q3ZH2aW0iWJJUAUBcooG1cAYAHAFcZ/wAJr8Tbe6bR/GvibWrmKNBLDb3+pSyIpYDDqGYj5l/iHUd69Mtf2iviVFdW8dr4I+GU9vc5ku2/4Ur4VD2JUFnTdLprblAwQxyCOmSpxZ/bI/bQ/aQ/a8m02f8AaT+K9x46v9DeSPS/FF5ZWqSGCaaa5eEPHAkoj8+4ldInYeWrhNgCRrG6EoU5WXUVeeJrJczbS/r5nDeH/FOsWt7DBPcPJulGdshUYPGMCu7/AG3f2k4vjTqfw9s4poZ7jwl8PLTR72aNHjMlwl3eXDFyCC7/AOkAlwRk+4yeP8J+H7GeexbULxVJhZ2DAKxAB+bOexI5+lZ3jjUNNuYZNMtRYPm5KSMulWay25UtlTNHGHlJOPnLYOcY4FOor1LsIVasaEqcftfofanjz45+MfDn/BNvwx4i+Inw28QafD8RLC50/wAEai+nOtlewQMkV5Klzl1ZEkilTYWMx3/OioRI/wAJpql1q3iaaYTyFlkHylycgE5PNdJN4u8V6x4U0fwXfqlzpWkW8kdjdyxxlrYSFpDbwmQblQyMZGRcNuaVslGFZmial/a4XSmsrO3EQ+SSOyjWe8DDcu2RE3Erk5LEqykAncEyOce46lXEV1H2m6VtP+Cad5+2n+07p+mW/hXTvizfWlhp8AtrSC3hiRo4wMAeYE3k47lic81ofD/xl+3h8aLLVdR+GGs/FDxLb6HZNe61L4duL+4TT7ZQS08xgJ8qMBTl2wo4yckVzL+ML6y01Us9H8OX1zHtjltLjwrZtKkYyu/cYSZGICnJJI6ncSTXoXwo/bE/aH/Z9guz8EPidd+C7bWYUj8Q3fg2Y6THOqbxHDcx2TRreEeY/wC7k3rtZ9ow0hqqeIsjjqRq87Wv4n0V+xV+1Avj/wAb/DN7rxRrF9r3hjwhe6LrUur6hJI12zaoL3cCxIbKuEyTnESk/dUDxH9tn46fELxf+1h43sfF3ifUZI4PEV9a6dHPcbZIbFbmR4IgUCgDbsPAGe+Tkni/ht8Z7vw38X9C8cXmiWdlpumagvnnRNIitzeRTHbJlYEVXfaxwAMrnbzivTv+Cg938LvE37Qer+NPh54k0HWrfVNRmmkv9OglSYtLKXzIJI1A2g7F2sw24Axg15kacoY91ejX4n1ssbOvkLoNq8ZLTyt/mfaPwd/ZJ8P/ALK2t33iLwjr3iPT9a/sXT9K1OPTNTltoHMUYV7iCe3lzNHI6lirO20kEYyQvdw/FHxSspWX4seNleIGNRJ4w1Ftg3EkDM/qT+HHSvTNS8FWGroVvfFIlBAB8x2J4OeuKqxfCPwl/HqduSep5/wq4RhKFp6+peJjQVVexjZW6dz53vf2Ufi/4d+P99+2f4t10SeGdZ0RlsL201W8bUhlYUMsrKoG3MMqkmUnBGR8oUYfwm/ZF8XeKv2qdd/bF03xTbatottawSaPFY6676nBcx20cHnSuXEkewwsQCxzuB4619t+GtE0nwX4OudF0fxPcRJffvJYEvZfIzs2lhETsDEYydvOBnOBWV/wjEkmnx2tt4kvDagsUihuXjQ5PP3SOtcynNto6Z4bLHCElHVrW/c8duf2hddilNvefFzxkjwlkMLeMb5dpzyConx/9Y+9cT8ZP2ffhD8ZtUg+Pfj34u+LpNf+36bu0+61tVkMdlK0sSxNL5jffcsS7LjywFZdxB+kLf4WaPN0hYZyT/p847+zVF4o+Cnhu8t0S+vHhRH+QfbZsA4PfOa64ulGF1ozCn7P2jjKKcdlfoj8wPB/7Bf7T/i688a+IPAP7O3jnWdFgmng0O50nw1LOZ1F5A8cyKAzyReSA2+MMuFO7oxr6SvvhZ8MPjJ8f/Bvxa8a/FXV49a8F6ULTTtP1iWeaK5jgWWS2MV1I+LVopXZ1TIXcowQSBX3F8L/AAdqcOvaN4q8J+M57TUPD0XkQTmSS4UQnbuiG9gwU7VyARnAzkZB5DVvgz4L0/WrqLSluraN7h2WKG6lVU5xhRv+UccDsK5YYqvOtKM/hWx11svwFKiqkGm5LVW2PBv2xPBvxP8A2h/ghbfBfw98QPEGu3vifVLGbR7LWNfvGs3k+1RAu/2lvLxsB5xgZyMYFeYftI618Q7j9gPQP2d7jVvFOp6poOnaPaal4Xi1G7urRLi0SMSqLYM0R2mJ8HZwFOMDNfc3iL4ReD3svD2p3UkwksIVeKZpZNyY2NnIcEnOTk5rlvDvwm8K+EvHk3j7w/dXVves9yyXVvdSAnzlZWOC+DkO3XOM8V0OonK1zhp4WhKHM9Hft07nkngL4n6toXww8M+E774o+MoRpnh+xtFtbfxlqMUUSxWyRqqRLOFRAFAVAAqgAADArS0/UbvxCwn074meP5jbhpN0XjPUWKDOWyftA45yRnHtxXVy/AHSMEwareqDIWA/tO47kn+/W94J+DVlpEF6ltdrJNcwMga5aWQ7TgHLGTJ/Lp9K1jNOJlOPs5uMdkfMnxc+Ffhb4sQaEt/8WfFMdxo/ii11SJtVvNVuodkefMRXebbbu42jfH842+hr5l+PXwc8U/sufG61/aB+GfieS6tbnxXcXdtD4fN3DLY2rMrBS7KkqM6tPGQPlwUwfmK1+ht/8AdMnYbLtNuPujzF/wDZyP0rT8M+AtU8JsYdO1Uxo7FnaG4eNzxjGVwccDvXNOdWLvBXfmdEaGDqxtNcvmt/uOTtfibrDLtWTZk9VjAI/WrC/EvXccztgdm53fUV8CT/ALTXxbSPyP8AhPrnkZ5hXP8A31tyPzqnf/tL/FuG3Z4fiLeq+OoAyP8Ax2uxZfWS1b+48KvmUaVVR8u5+hlv8S9albY5TGQB+6H+NPl+IWtm5jjW7dQXAwq4H86/OrS/2lvjbOzMnxP1I4Izyvv/ALNVtV/ac+OUOpBIfihqGd4xuZQOg77aylgKrTs9fuOtYxyt/mfp7pPjHUHjBkfd8p5Zcnr9ad4n8Y3MMCuo6yAfcHofevzu8PftG/Fa6iVH+Jd3K3l5Zg6k5zz0FaPxH/aJ+MVnoMrQ/ErU0d14Mcu0kc55A9cVf9l4hKzbv6Eyx0YtL9T7n0jxpqsRCrfTbdxz+Vb1/wCLnitvOIYnYCTsHr9a/Kez/ai+OLXKKPijq2WOAPtT13HiH9oP4022jWYX4mavG7SLuVbxsEkAE1yfUqil8X4HTDFynG36n6Vt4xF74VDyo+QDjCAfd6d6xLjxYsUMbBHyVz9wf418I+JP2gfirp/w0RYviHqaTom4v9qk3NxwTzjNeW6r+1T8d0SNYPizrC4BDKt22G6cGq+oVXtJ/cZvFtO1vxP1O0rxfP8AZI5FeRc55QAHqfeta08aTBAFLscfedQSefrX5j+H/wBof4ztZQxz/EvVpFK5w923Un/69dbo/wAdviyYlLfEXVh8p6Xj+v1raGArvTmf3f8ABMKuYRhv+Z96at40vDKEj/ujrGPU+9Zdz49vLaYB7ZXO3OelfBur/H74swOFb4j6sPlH/L5J6n3rhPFv7RvxqTVyU+K+tNGIwI2a8bJGTWDwOIdSyk/uOuOJjKjzfqfLniH43+NfEV5JezG0tmk06CzZLO3Ea7YoY4hJgf8ALVhGHeX77uzszEyPuhi+MXjOFrORZ7YtZ20kAMlpG4mVzISZAwIdx5hCuQWXamCNikckCwOTnFa+maHb33hrUdbNwRJZNEFjA6hyQT+GK+z/ANYMzjJyVTe19F0aa6d4r7j8+VO5s6J8afGmiNZKlxBNFZ3v2hoZ4ARcfczHKww7xkIBsLYG5yoBdy0F78Ttc1LRbvSJwjm5kjZrgvJ5iBVZSo+bbhgVzkE/u1wRlt3M1NBFbNAXa5KyAnMZTgjtzn9MU4Z9jqdNwummrfDG+zSs7ebKjBylv+Jt+Dfil4w8EQ3Vvod+BHd2/kyJKu7au9XJQnmNiVxlSDgsOjHOmPj98THvPtd3rf2j/RWg8mZAYwDF5e8L0DAc5H8XzdeaxfAuieD/ABB4ng0jxr43Hh7T5VfzNVOnPdLCwUld0cZ3FS2ASuSM5wcYrJ1GCC0vJba2uxPGkhWOZVwHGeGx2yOcVzYfM8bhqcVTnZLVaLun1XdIclZ2/U6bTPjF400qa0uLee3d7OdJENxbLLv2uz7ZA4IkUlsMH3blVVOQMUl58ZviNex+TN4mutgYmNfOJCAjG3nJI+pJrlFjmdGkRWKoPmI7UmW9TU/2rjHHl5tPRdFbt2BOUdm/vZ295+0F8V7+2ks7rxTKYnlV0jCgCLGcKvouDjHoBVK5+LXiu5kVvNijVYEjEcacArGiF+STk7Ax5xknAGcVyyHrk0+MCSRUz94gcVpRzbG0klGXboujuunmKTk+r+87O++O3jm90Oz0KO7ggW1i2vPbw7ZrhvNdw7vycjeEwu1SsaZUkZM1p+0f8XLGFYbbxO425wxjUnt6j2H+TXpmv/sYfB/wH8LvDfxC+Iv7X+hWN94l8LQa3a+GrHQ5Lm7jSYZSJsyoobIIyxUfKTnivny6WCO5eO3n8yMMQkm3G4djjt9KK+OxztUclso6W2SstPRbjjUbjy3O2uv2i/iteRyJca+rNJMsnmNbRkrtDjauVICndkjHJVfSom+NfiKWG7S8trSWS4t/LgmYSK1q3mK/mJtcBnwGj/eBxtlbjcEZOIyx6E1I0Esf+sjb8RSw2bYnCz5oWbfeMX+aKlOrU3bP/9k=",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD8A35VQO3WkbofpSngGmgkqc10TlzSv5BawJ0/GnU1On407IPQ1EXsAKSp3A80AcgClTDGjo341qp2gl2BRuwA/eD60jdSfVqXOHzSH2pc94W8wasz1bwzYxmxtEjG0G1tye/JhjJ/Umuv0q2jt0CSTKued7cAcVz3hGNLnT7NwjYFpbKc9yIYwcfjWprFoxmiidCYcKZMDnGTxn1r7GclGmpeSOLDYZ4vGqle17/gr/edloMNvexh7S5Rx/sEH1969M0Xw1YNGohZTyeVYkdfrXHfDz4eaZY27+IdMmMrSRhMJJuVRn1Hfpx2x71j/DP4UL4v8M6x4pOrT2lxpQLWxiGAWEZcZbqvIHI6UqkKrirHqYfAUpznyydo23WuvlfTU9jh0A28flxNnK56f/Xqaw0lGcpM/wB32+vvXJeC/iS1j8Mh4g8XX7b4Ll7ZJ3R5GkwMqWxycDvnkL1ya4rxj4/1WLX7y0vPiHrVtJBMYpbez0SBUODxgifLjnIJ7HPQ1xTw0nue9gcFNTcX0/4B8lMflJFIv3DT9mIs+xqMNgYxXyrbvqfOONtxU6fjRH3oTp+NEfejsSaHha40y21IvqVokxKYthM37oS7hgyDjKYznBHXPOMHdutRv015bSzsNLgtJ181HfRbeURxc7skxljswykjqVJHXNclHw1fTHwNk+G19qPw18Ga98KNJvZ/E6Wtob1r25+2StPfTWckqss2ImRUQo2whTEoCON2NKdKdVWidWGi6r5Twz4iNow1IQWmlJaXaSv9pigVVREwoRGUdJRg7+AMnG0ENnnYwGcA1peM9M0nRvFmo6RoPiJNXsbW7eKz1WOB4lu4lOFlVHwyqwAIDAEAjIB4qHw3pravr1ppqjImuFVvZc/MfyzVKlONX2b3vbvrtvsZV1yyafS57V4M0l7WytrKcfNDEivj1AUHtXrPgT4eeFvEN8NE1hlkmI3BS+N3HQEDOcg8VyvgrwvLq266XOGc5wmcfdOevvXvfh74D6V4j0SPUdd8y2kKBMwOuQuARwQwyc9etfouF9hGndq9j5uvj8Hg8RGWIk4p7NJt3POPA+nDw/4o1vSdIvTLp1ujYLNuBCuGU56Btuee/Par/wADvglq3jvw7cXEPjC60+0e7aOe2hhYpMoVM5O4AnDMOQeK6lfB+l6Gs2j6fC2yUkSuzfPIpHc/7pwPSvZvg58PND8IeEhbaPZukE264ZJJi+GOAcEnPQD8qxr4mk0lFbHv4/iSjhMK6tLefIk7b2Vrv1Pnz9oDwQ3w/wDAVjpuhWrz2UF5ImqI43CZHHzPIOM5KgZ6g7cYwCPKdU0MeKE0250gtK/yWahzlhnPko5GcMFBQdBsiQ8bq+tvHWlWerz3Wj6jbx3EEqNHPHKp2uNxBzggj8CD6GuI0D9nHQrbV2k8MeJtT0mO+xHcxWzRuNvI+RnUsh5OCGzya82pWTkkj6jJcengYuq9Wrn50KmLBiew4/OqqruGc1eiAbTJOOi/1qkv3TXxTbaPnZrb0EYbTjNCru70q8jnmlVSvWpbM7ai19S/sxeE/iL4t8cfCex+EPh+G/1uz0OS+itbq9it2uRb6he3LxQSOfl3RxSB+5UFcbSQ/wA0eGtB1LxR4gsvDWjWclxeahdR29rbwx7nlkdgqqq9ySQAO5Nfrd8Pv2iv2Qf+CefjzwD+y98VfgfB4nXwZ4XaHxV8QfB5gTW47+bzHntoZAEeWJLoYMLzrtLMMKUO7nxGZVMFQnTpQcqk46WtaNmnd+XQ+o4dy2hi5yrYmfJSja++t+it1Pys+NHws174K/EnU/hn4nu7OfUNLlVLqTT7pZ4GYqrZSRCVdSGBDDgg1s/s6+DrvxN4wkvgn7ixh3lz/fbKqByOcb/yrtf+Chvj/wCDvxG+P0niD4OeDn0qzl02GbUZp9V+2z3t3OPtLyTS4CmVBMsLBVUboDnccseu/Z0+HMvhPwdby3Fowur4rPcll5UtkKnTsMe+WI9K9TKOfEctWorW1f8AX4ngZ5Cjg8ZVp0neKbS9P8z034K/D3xJc+LLLRtK8K6jrMt3IFg0vRrJ7q6uWO07UijBZjgE4APTpX0X4x03UJfCegaZBaar4Ru9VluLJLfVNHjFzb3UGd8LQzSRqGykhUlsuqjarFlU998OPC3wa/Y7u/hxZy/GfStI+KXi3Q7m68R2fiWQfZ7TTbvTJwtk8ThUi++m4yhiZUK5Kjy6+ZvjZ8dPGuk+NvBvxc+G/iZtQtfFP9o6S2meIrVntLC/jlWPzUtGIFu6rOuCoBLRSMd29hXmrjTG4nHzw+Gh7mybW77o9x+HGSQp0cdmk3KpTalyRas09bS6+tiPSry31ab7dp2swanC5+TULRWEVwoyA6blUhTjgEBh3AOa+qfhR4AuPHnwtvNYsPGVlpY0qwa4ufPtZpy0Xlykf6qNwiloyC7YC98ZBrz/AOG/w8uvj1rvgXwW9lBbatrfiWLQzPZ2gjM6zPGiylRgZQu3zdMDk4TntP2uP+CyPxU8C/tfeLvht8PPgz8OpfAvhqK68OeFLC50RJlKR+XFbanBcwGKaNzHFHsjVwiRkJtyisNMzzjMY0qdPDr338T00St+evoTgeG8injnWxq5qEdYLZXkrq9v5e2x5FHbG+vWmI4LEjHPf1Brf0DS5TdQ+UhLeYuxQMljngD3PT8a9E/aU8CXWh/FKPxff6HBpsPjnSbPxTp9tbQiOFI7+MTPFEP7kUxmg7ZMJwAMCvU/2RvA/wAE/hH8OfEn7b37U+vXWleCPB7JZaX9ljk8zUdVm+VUjMQ8zdEro+I8NukRtwCPXfic5pYXBfWJb9Ot2deFy6m8X9Xv7vfyP5+7GOJtDvZpGOUCBeO5Lf4Vmr9w1etWjGnTxs3zMBgY68ml0Xwx4h8R3X2Dw7od1fTkcQ2kDSN+Sg1xqyWp8xOE5NcqvoZ4DEcU+u1t/wBm/wCOkwwnww1XOeQ0IBH5mrcP7K37Q1wMw/CjVG/4Cv8A8VWcqkL7oI4au1pB/cztP+Cb+h6VeftgeE/Gnido00PwTdnxTr88kqr5Vnp+Ll2G7knKKAFBbLcCoH8Xa74q8Yy+JvFl152o3901xcO3zB5JJN7sc5yWkZ2OSclj24rnof2Zfjr4SjfxR4o+HGpWGnWO2S7u5YgURd6gZ2k9SQPbOTxX6a/s3/8ABPD4Q+MPgL4cl8VeJ9bvPDmt6Ba67rGhW/xC1iBJdTaxiZZF0yLQ3tnkhZp9shuzuyg3KF2tyT5PaOpzdLdX+Vz3sHGs8GqHLazb1v1t/kfl94Rm8ON8ULnxb8WNZcwWd0bl42hM8t7NvyqY5GOrEsQOMZyQD9pfsFfFL4c+LfFnij9o/wAZeEGtPh78IdJj1rVX1eQynWdTeUpp2mrEh4aWYGRlJdWitplP3wRyfhH4VfH24+Ld5+zD+z/+07eR6LYXtxPe6tpmqazZaVZFZ5I2S+WK1EnnERqG8qKQbnRVc4Yp7h+0B+zR+0nqn7JNn8PPHH7VPgDUNC8D2t/rmsrbX3iGbU9fuAZJVDvd6UokaOHbDErzJGpTPyBuHiMfiPqjoUvd5tLq97fdp/mXhMspLF/WKt5cuqvtzLVdb/hqj4t+L3x++JXx++NV7+0D4x8SPd+Ita1qK6muQCViPmLsEavnAQYC5yeMnLEk+gftUfEDU9G8F/Djw94g1e+uPEetR3fjG+1W+uHM7NfzsY5Gkb5jI/k+aWznMmTyaw9F/ZR+JOo/AWH9pXw1cWN9pf8AaM8M+k2rTNfWsMTYN24MQjMO4FflcuMZZFXmu3tfhV+1L8dfg1cftA+HvjouoO2sw6FceFtPkvI7iaWTZCsDwxwLZxReS6v5jTfNyWO8qF5YQhCMEtFF3/qx2061Sp7X2iblP+mdd+yb8dviB8M/2fvFf7UmufE6XTNZ8B6bL4R+HMcOuzre6z4g1kpFNeSqciY2emyXUqksFEi23ynEmfAPE+n6usEmn6df3U101m5t3luSXLBTg7ieDnFe4XH/AATW/aZ8FaFPBB+0H4Xeyt4muJG03UtRj8gCMNIEiazUS7vnX5mTOOcAkNyXh79kj4rfFD4awftEaP8AEnw9p2jRRXEkVhrUtz/okcbMk0jGOFwCxhUYXJb5OeAK1T5arnv/AF5mdadSph407beRyvx+/aPPxT/Ze+EXhvS/jN4sk+I3g83nhvUtL8mWJW03z2uLXbKkzGR4pZp4/mUMyyRgAeX830f/AMFEviD4v0X4UfAb9hrw34x1qy0L4c/CTTdd8a6Tqj3CXDeLdZC6hewXYkx5jwJNGERhvgE0qEjJUeZ/Dj9n/wDax+IUmh/GX4TePZPDs9jdRzWLjXLu1+0S27jy5YgkeFRZY0IYFWyjHGQGL4dH/ad/aw8dxeFvGvjSTxNrWnpcrc+INUupnhVWuZZ2kkmZS2WaQqi7Qdqqu0BCRlXhOrypLRO44SqWm5L3pWWnlf8AO+pz3ww/4Jx39rAl98SoZr6bd8tjZBkQDn7z4DE9OFx06mvf/AfwOuvA2lR6N4K+H0GnwoMAW9mqliccs+NzHgcsScAegrStPF+rRL+8165PqBIP6c1eg8c6gqnzfEt+n90JJ0/Jx/nvW0sanuYQp0IWsTWvgb4iW7bm0ja30z/Ktay8N/EoAtHpi/TyzxWWvjibywV8V6ozdwbgj/2c06bxfKPm/tXV5Ub7rveZ2/h3/MfjWDxFI6Iygtja8QeAfiL4s8Nah4N160A0/VbKazvIN+zfFKhR19RlWPNdn8IPgL8WPCv7MZ/Zt8efHW10TxLD4duLbTL7SbbzVttzSSpC7yiPy5DGyxZUHY7khjtAbzS08UyNMjyX+pbSwAYzEDr65rpIfEnh+NmmE11JEY8BbmbzDnryWYk/iacqtNxfLoduGnSTu9S98Hvg/efBTwsPAnw6tIYrSO5eWcm8YvcTHhppCcl5GCqCx5wqjOFUDuNW+EXxN8beFr/RdU0a6urHUbOW1uECMUeORWjYEgdMEgntzXjsfiWaymbyNUeIFjgRz7QB+B966Dw58UfGvhzV7bVNN1y6S4sp1ltxNIzKrA5GVY4P5Vftqbp6K7sZe1pqrq7K55n4o+Evxu/Zu/ZK8K/sw3mlw2vjnX9Zm0BtMsb2OWVnkvJZJ2DrlNhD7WkzhFck4IxX0D8Bv2Ytd/Z2+HcHgLwo9k6z2bf2vNGZlS6uZECyTqCmUyVUqOqhVBLEFmNA+J2u6/4I8V6X4y0WfVJtR8vUtN1OOxidrDUEkL+aGJUxAq7oSnIDthTuOeSi+IHjGBBDc3w3Y/5aSyZ/9CrChXlOTUo25fudzpqxw9FKpTd1LbTVHoep/CTxhrWkXOjRaakst5byQxwwynLsylQAWAxkkcnAH05rzXRf2BvHr/si6d8BfEWqeG/Dz+Fryxn8faLda00txcQves91BZyW8UkDyLdPH8/m7dnKkkrXWeEfiZr+janb6ophaSGQMCJHBHXod3HFdFbfE+7gtNTnTTLOO61IbZXRuJFLq7BieTkrVV69W/urt/wSaMsLKP7xkOieCruwsbfRPD9jptrDawpDZxQXLBIUUBUAwgAAGMdBgV4b+wx8OfGXgX4g/E74FaxAiz6J4gguLCWZj5l3bSwnZJnGCvlpESRna0m085x7bbeNdWhw0aafEzcgfMMD867e01nwrF+z9rXiHR/CekP471DxJZ2txrxsY2lGlRRSSLbifmWNfPkZ9q4B5BOBitq2Y06cU1DdpfeFGjGvJ8rtbX7j8Sb39pz46W94toPjLbyK0EMhngtImUGRFYr/AKlcFNxVs91bGeMw61+0H8dpg8D/ABuV4Uu5445bXbGX8pQVbCRhgj7sLnjIOcYzXj/me1HmD0r6xV8j5bPBrp9qXf067H5+6+Lf2/wR6PL+0D8eLZPPj+LerKRGrloNRZWAPbIwc/Soov2hvj3qt0tv/wALj8R7mzgvr8yDpn+8B2rz9yFAOc5GcUS4jbZlWx1KtkVyVHlcq8ZRoWit1e99e9tNNOpSxGISa5j07Svjj8bYrpbnUPjb4iZfK8wtJ4pmY7Q4XoZM5yPu9cc4xzXfaP8AtE+OdVMNhafF3VjJcSRWkYn8USwqJJeFyzuAq8fNISFX+JhXzgp2nOKeDkZrSNXLFUuqHu9uZdu7j31/A0hjcTTja9/ket6h8dPi7cT+VZfFXxDMzpJIg/4SOZTtUFiOX4OAcA8ngAEkV0vhT4v+OvCniC3j8WfEO8ZIra2vJVXxJ9qQwzRLKvKOys+yRd0f30YMjKrIwHktn8EfjJqHgw/Eqx+FPiObw8IXmbXYtFnazEaMVZzMF2bQVIJzgEHNZHhjwp4o8ba1F4c8G+G7/VtQn3eTY6baPPNJhSx2ogJPAJ4HatYTyqF1Kg9dveStpa/wO+upEsXiZNO/4H1P8RP2pPEXhHUPEPgDT5rmaNdXmsf7RtddSWIvCQsgSSF3jkXuHR2VgQylgRXJP8Y/FllYWeq3vi26hhv7Fry2/wCJoJWMImeEkhSShDxuNrANgBsbWBPi2t/Cv4p+GPFVj4F8QfDvXbDWtTWFtO0i70maO6uxMdsRiiZQ0m88LtB3Hgc1T8ceCfGvw38TXPgz4ieE9S0PWLJgt5pWsWMltc25IDAPFIAyEgg4IHBB6EVtB5BSjpQnfreat0t/y77X6b2elrO3mWNk1dr7v+CfUU3xl1DRbZ4r74jKZBa28zNZ6utwsazxedGS0TMoIQjcpOY2BRwrgqIJ/wBoHWZtHRP+E8mJuL2S0jZdRyfMUruGB0U7gA5+U84J2nHyerbu1WLLTru/jnlt4iy20BllII+VQQM8kdyBx61jOplEppyoyt1tPrr/AHH5aeXnpX17EM+srL49GysbVbj4jZa4hSRQNW3FQTtG/BPl8jOGxwQ3QgmfxP8AtXHwrokngLxBr+pRz37W91GssUpYRMgkikG5R8ro6srDhlcMOCDXyArMhyhwamlt7mFtk0Z3EZxn8axxEcnqYdRjTkp3WvMrfdyrc1oZljKcm4227f8ABKlFFFcN9DzgJJ6miiikAqqWOBSskiDJzTQSDkGlLuRguT9TRqPSx738Nf8AgoD8Z/Bf7Kev/sbzPZ3fhbWbd4rGWWBUn0xXkeaZY3TBYSOQTuJx82Ac4rxzwr4u8QeAdVfVNDFulxJbSQN9s0+K4Ta6lSfLmVkLDOVYjKOFdSrorDGBIOQac00zosbzMVTO1SxwM9cVtOvVny3fwqyDSx0/if4z/F7xp8TH+NHi74n+IdT8XPeJdyeJ9Q1q4m1Fp0IKym5dzKXXAwxbcMDniqXj34g+Pfix4on8bfEfxfqev61d4+2atrF9Jc3NwQAA0kkhLO2ByScnqckk1h5PrUkN5d2wxb3UkYznCOR/KolUnK93uJWNa28IXtsJLjWLOZYUhLZj4OccD5h+dQ6Fez2NvexRKH+1WbQurKW4LqeBkc5A55+lVZdc1qdDHNrF06kYKtcMQf1quk00Z3Rysp9Q2KxtLqzonOhz3gml5lm7028s4FubmAojkbcjrnkVAZX2Aq7DHTnpSzXt5cRiK4u5XVfuq8hIH51Fk4xmr1tqYuSv7p//2Q==",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [44,29,60,75] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [57,36,76,77] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iva/2Pf+Cd37Yv7fH/AAkQ/ZM+D/8Awln/AAin2T+3/wDioNPsPsv2rzvI/wCPy4i37vs833N2NnOMjPtX/EO7/wAFih/zZ/8A+ZA8Pf8Aywp2YrpHxVRX2qP+Ddz/AILFnp+x/wD+ZA8Pf/LCj/iHd/4LFD/mz/8A8yB4e/8AlhRZi5o9z4qor7VH/Bu5/wAFiicD9j//AMyB4e/+WFOX/g3X/wCCxzHC/se9f+qg+Hv/AJYUWY+aPc+KKK+2R/wbp/8ABZFjhf2PM46/8XC8Pf8AywpG/wCDdT/gsgn3v2PP/Mg+Hv8A5YUWYcy7nxPRX2v/AMQ7H/BY3/oz7/zIPh7/AOWFN/4h3P8AgsV/0Z//AOZA8Pf/ACwosw5o9z4qor7V/wCIdz/gsV/0Z+P/AA4Ph7/5YUf8Q7n/AAWK/wCjPx/4cHw9/wDLCizDmj3PiqivtX/iHc/4LFf9Gfj/AMOD4e/+WFH/ABDuf8Fiv+jP/wDzIPh7/wCWFFmLmj3PtT/gz9bb/wAND8f9Cl/7mq/akyHsK/EP/g0e8Tad4db9oH+0A+Jh4U2lFB6f2x7+9fsvB8S/D8smxvNTPdk4/QmtYfCYVH71jpd59BSF2rDHjnw8x/eXyr6fK3+FPTxz4XYcaqvH/TNv8KpkdTZ3tRvas228WeHbpxHDqse49myP5iri3UT8xyoR2w1TcqxYWZ0OVIH4UGeUnJbP4VCJc9CKN7UcwWZIXYnOaN7etRliRg0gJByKOYOUlLE8E0m4kYzUfWgEHoaOYOUlUnOFNA4bLVECCcA0bwp60cwWR+E3/Bq8QP8Ahe2T/wBCv/7lq/XCe8tbbH2idU3dNzYzX8//APwR1/bml/Ym8LfFXVtP0W0v73XZtBEMN6zLGEg/tAuxK+nmj86++/2QP+CinjD9sLxDc6v46+JHh3w/pVjctFHp9jp7yGQhQ2SWkDDjjkfT0rhqY+hRnySdmtzoeX1695xW+3mfoG2o2CyeWbpNw7bqim8SaNaQm5nv0WMHBfkgflXxV+3X+1X8NtY8FL4Y+DPxKvbvWGby1XQjKpZ+hDFSpAx26jHANeEfs1eL/jh4i8Z2vwz1vV9c0YXm9zc3JmjJAychGwGJOMkn9eTyVc3jGsqdNKV+zOijkk50HUqtwt3R+qllf2t9ALqynSWNxlXQ5BqzHdTRnKTMh7FDg/mK4/4Q/D24+HnhiHR5/FV9q7mMGS4viu4t3IwOO35V1NxPaWqb7i8iQdy8gUfrXp+1jGClUdjx/YylV5afvehPeeK9R0i1a9l1W4VIxyTO2AK5CT9r34UWs72F98eNAt7mNwrWk/iOBZVY9ipfIOOcV4/+2T+3F4T+BvhW50/wvqFpeasy+Wo3qyoxOOeenPJ/IV8WfsO/EK7/AGl/2mNRl+Id4mqtbqrvF5CJDkk4widuON2a4KuZU3WVOi1Jnq0csqxoyqYhOKWx+tPhf4s6r4jsU1PR9ZWe2Yfu5Qisr8dQcc9c5zV7UvjBqfh6ze/1X7OYV+9JINgX3J7VyGo634S+H/h5LvWNRtdOsbeMAtNIERAP88182fH/AP4KT/DnwLp89x8O/FvhPWAnBivZZyWOc4CqAD+f59K3xGNw+FhepJJ/10OfDYPGYyf7mLa/D7z6cf8Abv8AgPZO1rqvxQ8KxSxnEsR16LdGfQjOR+Ndl8Pf2h/h18Ro/tHh3WoLiErlbm3lEkJ+jqSp6etfhz4e/bJi+OfxnvL7xjo9tZW22Vk/seAIHI4X5HkG4Yz1PGenNfTv7On7W/7QHxU+KJ+CnwlbRbTR7NI2ku9R05RMgIPBETOGJwMEt3PHHPFQzVVanK1vt3PSrZVKlS5k9VvfY/Vy01PT71d9neRyD/ZYVPkHJzzXz/B410j4e21pp3jLx7p8GoFQnmvOsBmfvtUnNdmvxkbw9oMut6koubaGAyb0b5mUDJPvxzXsKSaPG5u6P5JvAWtX2lpeW1mhYXHl7xk4+Xdj+Zr2b4F63D8HBfa7f/6a13Eph+xXbxz2zd+h2sCDghufQ10v/BNb4eeFvG/hb4j32v8Ahmw1C409tH+xve2STGISNebwu4HGdq5x12ivrX4U/sjeGZNQFlrvg/TxYzMTKrWY3MGznHGBx0Hpxivg88zelh8VUouO1r+eiZ9nleGlLDwmn3t97R8geAf2y/H3h7xZdXsdzNNCCwtpLjAlVT244B/Hpivp79jH9o69+JfxysvFOsXb/aYiUEU0o+ZTGeQO3SvQv2gP2K/2eLLwVND8N/hHpul6pcRMov7eJ2ZSFHIXJGSfQda5D9kX4K+DvBWvx2mpabBca5BCxN60BDkknAB+hAx3x+XiyzjByj7ajBpr9D03QruHs5Sumfq94Z+Mnga48NwXOoa3DBKIAZFZiNuPqPTmvyQ/4KY/tqePYP2g7jwx8OfiHeXdpBCDcJFcS7IWzwMH1HOPx7ivrjx3dX9n4Nu2hldX8napTIPTGBivmH4N/AqyvPiFeax4s0KKT7Vdl3u5YA7vuypJLr2UDHJx9Kv/AFpqY6g1Vpqy9TkoZRSwdXnpTd2fHWtftD+N/Fur/Z/EGoJIoB3vLIe3TJPv/Ovv/wD4I06Fomi6he/EW8v0jju2DGYSBllCbgP1JGRXYeKfhT8GdJmtL/SPhV4et7yAOFvrbRYEm5AB+YJnkV3PguHwh4B0K31Lxf4ns9NnubNJIdKaZBdyx5woihJDSM2flUDnHWuaPEDjyyoUtV3f/AOx5W8U3Cc9zQ/4KveMtE8cfs73+j+DvEzrqU1pLHaRx7vmkAyo4HOSQK/E/wAc/wDC1PBuppbeLorq3luFMgjmYkFemeCR1/z0r9ePivb/AAs+K9xYPo/xKkSzaMy2t2bAOrDdsZWQOHV1clGUrkEjgDJrgfid+xhp+h2E3xW1nxtZ3f2eAwWsthCZnIaRI41CD5stI2G5wiqzMQA2OqHEtWrUUsRTV9uvyJhkVTDU3ClJ2Pgr9mP4g+G/APii81Px/eXUUc0KCA29oZGY4bPGQBwR3r9CP+CZ91beCvGWtfGjxBY38VnqbwmximhCyMqhuq9vveprkvCv7KvhWzlng1zwfol5qchzNqVzbJdEkHHBYEAEY5XrXuPgfQZfDejQ6EyRMkKcMgwCe5rjxWf1KNT2mHjaXn0BYH2tL2dTY7v44fHPXfH3iiz1nwsJYLayn3C2mt1zKPrzjnmob79qf46azdx2c01rY6bHbtHJbW9ijNKenLuDgY7AfjWFNKtq2zjPfFMd7m4iJjUAAZGQa8t8S51KTk6lr9khrKcBGKSj+Z+e3/BDazgvYvilHcQq4H9ifKy5H/MQr9B4ZWs4wYolAHXivgn/AIILWkVzH8WHkBOwaFgfX+0K/QGK7mlmaH7Ht29Ce/6V08V1HHiCsv8AD/6REzyqM/7Op28//SmU9Qng1KBUmtt2Dyp5qjpfhPw1pl8b+w0xbeR1IcoByPqa6CCSTcVe2HP92pZ7RNoaJiSx5UjpXzzqy6HoKE7GZqiR39v9nLqVJHFZd7ofhnwppVz4n1rWobO2tUVppZSABlgg6deWH4ZPauiWwCgbYXBPUhafPoUMsXzxGQHqrxZBpKqwcZdWc3erZ30kR0SaO9mlxJGu8GJVxu3Oy5wp4AHVt3HAJHj3x/8AgJr/AIq8f2RbXry5tdauUjuplYBowCuQV4QqOWX0Jbpk17/9ghjhEFuQuzhVAwB7YqvN4d+1Spc3d0o8vOwL1GRg9a2hi3DYEprY+b9E+BGo2PizUvhjYm3lls7yC5/tiVjG0kLRP+7DANg9eo65IzXr3w+0rWPifqWqeIvibqlhrcllOtrYLYRM1hAijBEAkGcDJBBHynOOteiaToWj6fNdX9tCiTX1t5F7KwBM0eCMH8CcHqM8VZmsdMsrRLa3uIlRRhI49oCj2HatJ4/mh5jipJMwpNB0tFWOEJEVGAAAOPSq1xY6jDLi2ZCD3wTn8q6KKysAodZee+AKjvocKubksp7ZrlVRyVzOcL9THgtWwXvpwGx0UdPzNIsvlvtX516A1pJakAtbxBgeoI/wqIw2Rl8t4mRj3AGKyctSoxdtz8/v+CCU4jHxXixkv/YR/L+0P8a/R+x0+K7i3NtQ9yFzX48f8E0P24/hV+xlH43HxL8P+Ib5/En9m/YDoNpBL5f2f7V5nmebPFjPnpjGc4bOOM/V1v8A8FzP2TYyHm+HXxEZgP8AoFWGP/S2vs+JsmzjFZ5VrUKLlF8tmv8ADFfmcGU5jgaGXQp1JpNXv97PtJ7CFJyRdLwTkZANN1CWJ0EMMm0juDXxBcf8FvP2XHvDcRfD7x/tJPB0uxH/ALeUk/8AwW7/AGYJRiPwD8QE9xpdl/8AJleC+Hc/f/MPL+vmdk82y6ztNH2yNWlWIQJhmXq2afJrht7cO8G4jqN1fEVv/wAFsP2UoH8z/hBfiIxI+YnSbHn/AMnaVP8Agtr+yqk7THwD8QznoDpdjx/5OVC4c4hX/LiRj/a+Dt8aPtK41uBohMIUGT/FjIqvczXEpE3kRbM55Jz0+lfFaf8ABaz9mJpnluvAPjuQMeA2kWPH/k5TtQ/4LXfsvXdmLeL4fePkYY6abZAf+ldKXDefv/mHkZ/2rhX9tH2sL+OZAjRlce3FLcztFGHCuB7cV8R6f/wWq/Zohwl74H8fOgGAF0yyJ/W8rXH/AAXD/ZR8oRt8PfiHwOP+JVY//JtOnw3nltcNIpZthOs0fYw1SBrXy977u449frRBoFxeKboXLL3+Ymvio/8ABbD9ltnZz4A8fc+mk2P/AMm1a/4fifsvllLfD/4gEL/CNLssH/ycqpcN570w8hrNMC3rNH2ili9ny8pI9D3ps1slzPiWUxjsxr46m/4Lm/spzoFb4d/EMEDtpdjj/wBLaqT/APBb79lqUHHgD4gg9v8AiVWP/wAm1m+HOIb/AO7yNlm2XJfGj8taKKK/fT8+CiiigAooooAKKKKACiiigAooooAKKKKAP//Z",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9VCMjFN8v3p2ece1IWA6mug4mkxNmO9OAI6nNAIPSigFFIKXe3rSUpOQB6UDDe3rRvb1oJyAPSkpNjdhysScGnU1CBnJo8z2pcwWQ6im+Z7UjNuGMU7lcqH018E9abTS+DjFLUTaQOwPAppIHWvn39uH9qfRPgr8J7zXfDPxH02y1ZISbSB9sryHsNmQec9Tx7GvGv+CcHxt/bC/a0h/4Wb4r+K2lweG7e9eI2b6ShuJdj4IXy0RQvT5iWJ569a4/r9F1VTjq32O36jVjS55q3qj7oDYGMUK23tUcR2RqjybiFALYxk+tKZEHVv0rs5jhaJPM9qC5PTioZLq3h5llCj1bgVxvxT/aI+DvwZ0l9Y+Ivjuw02JVJVbiQ7nOOgUAk9R0FZTqQgrydioUqk3aKudvvb1pQ5HXmvhK+/4LWfBeP4jvomh+CvEWt2MbkS32m2SrHEM4B/eYLcfrkdq9E1H/AIK/fsbaRoA8QXPjO+uMlVNlZ6ZI8qEkjkYAxwTnNcsMywUnbnX5Ha8sxa+z+X+Z9Ub29aASOhrwH9nv/gpP+zL+0nrcvh74f6zfi7jGRFeWLRhhg9G5Xt6/4V6v8R/iHZ+BvCk/imRGeKAHKKQCT25YY7V1QxFCcOaEk0cssPVhPlkrM6gygdRTTICM54zXxPrP/BWP4O2VjfXvi69n0EWyt5MqW6XnmHHHyIwP4ZFfNetf8FxPifH8Qmt/BXi/R9U8NglYhc6EtnPJlsA8yNyF6fMuT6Yrilm2Firv+vyO2OV4mTSX4/0z9a96+tJ5ntXwl8AP+Cr3jD4ptPpOnfAy6vryOfaDbaxbqH4yezfzzx155m+NP7b3/BQLwhJLq3gP9mKSayjUl4brTGnKgDk74ZOeFJzgdeg4qP7awXV/h/wxo8kx3Zfefin4t/ak+KHxF1CS28X6pdyynJZZZDuHfn5ePXP+NfoJ/wAE1viL8SvAPwrguPD/AI3v4IDKZBbR3J8skkE5XJGTznjPNZei/BHwHpPhUa5c+ANNk1eV8y3z2SNIpxz8xGQMDt6133wjXy9HEcemyQBVwFKYGAx4H0r8rxebXp2oJxa8z7GNKU5c1R3Pou1/bA+LkVoIpNUErDjfIBnGPpUI/ay+Ljyl21IHPIUKuP8A0GvLVeZvl8phx/dqxbm4UcxEgD+7XnLOM1X/AC8ZssFgHH4F9w745fGD9pr4lyC20r4lXWlWOMPb2SohYYHVjyecnjHU9axPgr+zN8M/Hni+MfGHxazvF+8lm1LVWXzHJ/hZ5ByeDhfSukUNOg3R4H0r5v8A+CiOl+INN8BW/jvw0ZHl0q4WZYoJXVywKYxt5/KurD5jjcXiIwrSbi/M0VHD0I3pxSPbP+CjX7B/wG0TwEnj74XeJrVL6LB/s+2uVd7pQM4zvJIOPwxXnHwf/Z3+EcHhKDULn4X2NpcTqHlV4zuzjHPP1rlv2b/Dvx6/aCttL+I/xMePRNDtpnS3tb3etxISyhiVZflUY43EZ+mM/UeqeGrTQNPjuPtouI5BlXjG4sMjpjr17V0ZtiVGShTf9aChQqTjzWOR8J6fF4D1T+1fBVqljOBhZbdQGA9MmoP2gPjz8YJfh7d2+oeNtQljdCNpcY59cD6VvR3GlR39zpUbu1zaWttcXSCFgsUdw9wkOWI2ksbW4wAScRmop4be6bCuoHfdXkQx+Jov3ZNL1IqYaD+Jan5dfEnwf8QbrS7/AMRP4f1OSJZmYSSwkKV7kAivJrC28Yza7a3M+iXq2QuEaSRrRgoXcCedv92v1u+MGh2Gp+DLvTmjjctGcIB14NfFOofsZftM3Ojan4i8IfFLT/7LuZZJP7Pv5ZVaJMYCrw4xggdvpX02AzmlUVqmn9eh51bCa3RZ+E3/AAUW8P8A7PHinStL0rSFbTlBe7e2+d8rgYXI5JIHORivoLxl/wAHCfj7xHpEXhb4OeA00xdgjnv72fMzHhcgBSORjPPevibSv+CcvjTXdKuPFurfE/TLWVJWElhb2rysgHfOVAGB0PNelfAL9hTwr4c1Mal8RfEd1qMEu3yFtR9nXHqxySe/GR+lejicRgIUuZTu/maUnXvZ7H3zH4YtJbM6czJsPU4BI4x6VPYeHrHQoPJtpyw68gDB/D6U3TtSjuHKqwBx/Gfp71LPcxgMHmBIzwGr8+dY9ZQjEuWkMDIXecAgcAsKDPAj7DPj6MKxYNa/0owFhjPr749a0WS1mTeZ0X6sBS9t2JtAnGpKgKxyhgP9rP8AWsTx/wCHdL8W6GbLU9uEYMqmJWydw9fpWlDaxtzAwb1Gc1meIdMOo31jcXF5Pb/YpWcRxYUT5A+V88kewpqvJSuU4RstTkPizpninQvCvhPwh4f16601dV1CQ3L2Q+5GqrtLDA+voSB6Vyfhm6+L3hP4i2uiWnjue70+F0knlmlP+qXJbIXqOw49PWvVtdhh1aNPOYl48eVIyhtmMdPSq2i6PZadfT6nGg82aIR5IHC9x0zWixKlGzRtCqoKyNWzOm+ILtPF8JbzJrcRKxJHyKzYGD05Zj/wI5rSSyi25+0nn0esczBUENqxUDoqHH8qbHqN3E5WVJCPoa55SuRKcKkrss+IdItLqzdCGk3KRgnPb2rJ0vwrbjR7jS2h2ROjqIwOBkDoCKvrqd3O3ywMB/tqf8auWV6jOElhA9SFojKUdiZRo2ueNwfAu+sLvVLR727jtrliyFGBGSuCAAOnPWui8C/DODTgllewG6ihQLG06H15zx/nJr02aKDcsyRgjg5UDIqO6uIpoyYg24DGf6Vu8VVlHlM06KehmW2kXUD7/nBbk9f8KnXS3JJlkY5Hr/8AWroXhhWPewjPHaqUiIwaVWUBc8E9azcU1cu1jHGhwRSmYF8/h/hU6R2ScT+c/wDshuKsxXVoxIuZQvP94D+dOM1gT+4iWT1IANRy2JcL7FeK7Cg/Z1ZfcjH8qigmjvLjbfSM5Hfj0q1+5aTHkFfquM0kkWnxfvk2qx9cDFO6YRpTktxRZ2JUqEB+oGaY1haR5KqOfYU63X92ZFlRh7NmoL+7aLBB/wA8Vm5xiaql7t2yO3itIrgNNx7celXQdOkk4jU/UCsqO4FzcAyhQB/hU0N9byZ27BjuMVHtYEqCbL8tpau2UZU+hAphsUAxGyknuDUWnXUNw+JHzj3FaSNbRDesZPpkDFONa+qNVRTW5HaxvAnlylDnoGNWZwjRL+4DEKB93OKSKWOcNmOPIU7eORTLK5K3LJIVIBOB+NCqroTGguYj1aPUogBF8qn6gY5rPlluwgiaRSSeRETnFXdR1d71NiAjj6evvVG1gmN2qswyxHU+9HtAcVbQdBojXp3L5uP4s/8A6qc+nz2M/l253eo5P8q39NtfstuxJBLZHXPUCqNztt7pmbByT1ocwcLLUzr64ltxumVR9BTfLM0BaVOPp71Fr3nvMGLDaff6Uk2oP5IRAAD1qXo7lxpqxLH5dvHjzGCj1aqc13b3sohgfd+Iqd7hbmARGMDPfHXmoLPRhZObkuCB23fh6Vm48zL5baET23kPumk2qe4OKnTS4Wh328o5/wBr/AUvkrqL5mOE7YP+fSrps47KIbGYg9OahUvd1IlTbehTs9MuoG3RnPsM/wCFWRc3aApKpAHTINXLRZIiCQMZ6mpNQhWW3zHEN3qq+xqUmiknaxRtnlkJ8oy7jx8vSmxR3Vveb5ZWOTz8xz1rU0bT3iTfKq5YZ4/Cqep2c8WoGRidh7A+5pcrsWoy6n4S/wDDXP7V3/RzvxD/APC0vv8A47QP2uv2rwwcftPfEPI6H/hNb/P/AKNrzyiv6P8AqWD/AOfcfuX+R+W+3r/zP72ejj9sb9rsDaP2qPiPj0/4Ti//APj1Nf8Aa+/azkO5/wBqH4isfU+Nr8/+1a86oo+pYP8A59x+5f5B7ev/ADP72ehP+1x+1bIMSftOfEJv97xpfH/2rTf+Gs/2qcY/4aY+IOPT/hM77/47Xn9FH1PB/wDPuP3IPrFf+d/ez0H/AIa1/arxj/hpr4g4HQf8Jnff/HaU/tc/tXEbT+058QyPT/hNL7/47XntFH1PB/8APuP3If1iv/O/vZ6Cv7Wv7Vajav7TXxBA9B4zvv8A47Tz+15+1iww37T/AMRDjpnxrf8A/wAdrzuij6ng/wDn3H7kH1iv/O/vZ6L/AMNfftZ4x/w1D8Rcen/CbX//AMdpR+2F+1uowv7UnxGA9B43v/8A49XnNFH1LB/8+4/cv8g+sV/5397PRx+2L+10On7U/wARx/3PF/8A/HqR/wBsL9reT/WftS/EZv8Ae8b35/8Aa1ec0UfUsH/z7j9y/wAg+sYj+d/ez//Z",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [44,59,81,74] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [43,43,70,60] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDxHUNZsLny7eAxg7yzscZ6AAZz0/rWR4i02PVtPuZbiVSqKPljbLMMjI5HPSp7nRUSc3EZIK9vwxVa5jcMEWY5b7y444r8wo1FGSPKhNKVzF1281OztbXxF4P1RFtYN/n2UjYDgliX5ySc9jV7w/4/HimWy04r9nlSKQzSpLjaEBY4x0yxY++a57xReW/w9s5r29txPZ3VyoeLyuIMq2WJH8JOOD/erL8Hra6vc/25oFxPBFIxTaJAQwyCewwD0xz9TXsQhGdFyO6Di43O+1XWrzVNTe3eRFt0hcu4JBI3DHOcdM1a0vUku3jtLwweS7HyijZOe+SeOuK56+0V5YRKGmVsYMi3DDt0IBGR7HirXjW4g+FvgBNSsIG1C4iCtK+CzckH5QM8jPbk4rOlh3WlaJph6Eq8rROH+MX7TWifDa5n0bw4GudTtpmRxIMRqewY+uOvHB+tfPfjj40+J/iDqZufEHiGe4G4FYjN8kfH8K7sCuo+Ifwf+Jfxb8RN4o0jQ/sVveOHupr9/LOW53bMZ6jvjr9M+a3nwo8WaV8XI/g7Yy299q13qdtY6eVnEUc8s/liLLyYEYLSqCzEKoBJIAJH0+Aw2ChG0UnI0lTjGVjW0LxVceFNf0rx1H5cgsL9JY1nQOpZckHB4PPfqCMjkA1+kHwy/wCC1XgTxzaWGtfF6fS9J1HT7KSN1isppHmmIDCZNkZUkFTjeQ25/Tmvmrxf/wAE9fHMGlT/AAm0/wAZeHY28PRQpr2ua3YXGnpDfu15L5CloDJsMVpcPHJKI/MiRX2qHGPBD+zB8XtA1uHTvFfhhtN36lNYotzcopa5imETxAEgZDnGSQpwSCcV6qik1yiTsmj6i8Ofti/Cn4v/ABj15Nb8M/2ZYa3qz3Oi3FyqRtukZmk+0bDtDu2GyMjLNksfmPqN34CstVfb5AkjwCjooIIIBznbX5za9Jf+DvE974Y1SzeG80u+mtby2mXDRTRuUdGHOCrKQR2Ir6//AGWfjf4m8SfDqEXOqyzyaZKbWTKFzsA+TPHocdO1eBnGEnB+1h8/xIb5Vc9w8AfDuPT9B8WxWUknlzaSYlaMbcjzRg8CvP8A4m/CJdb8Z380ZaU3epTTjy14/eyMwXp0GcDkf1r1L4UeI7rWfDniiFoxE0WjeYqqc5xNGP8A2Y/lXKan4iuI9UjjD7JYULyd9wOAMnHYfzrzqc6jpoFKLjqcedevEbynTPocj/CpDclhlo+frWJp8upxFf7Uj8uXGSqrkf5xirh1pJG8k9V6814M6MIzcV0OGdGF7ITxBDZappF9balbLNFNaSJJE3AcFenFcf8ACaK00S9OhKRts/mICkA7hj8PXHvXTyanPHJJ5WQ+w+WQM/NjjtWZ8P8AwrqOoeKLw6Xpdzc3c8crPHbwO7FUG9mwucBVViT0wCa9LCxaw0jenDkps7yCWC4VSV/djB6msHTdZ8I+J/F9x8Jtd8f6Vpc0u6WzudZuHjjVxGsiRFkVmJYnaPlyOOp4pY9ZFurxRkMyAqVB7CvEvj38LfDnijWp9e8AeMrmXxA/lnVtFlswoThV3RyK5OFGMhlU8jGecdeWUnOq29rfib4as6Mro9n+NGst8PfAd34iS9t7hvs7SWbW7iWKVz+7iIdSQy7snIOCPUYNfIOtfCf436TqZ+Ivi/wb4ksZZrrzo9Sl064gIm4ddsnBV8bSMHPQjtXv/hj9vHw/+y94Ni+G3wb0KfxHrtmrJqninxBAIwrgBSltGGd44l+bnKE55A6V4x8T/wBtv9pDxnPJBrfxEu4ImLAWNg7QRIrYLLhTlg3cMTnJHQ4r6XA4WGEW92/kSpyb2Hp4p8c+HviRN49+I1vqM17Lfi61G+vyLhNUM++R5Wm34nWUbiWVmD5bJFeyfG79r6P4keE9Jm8dfDe0kVboajYajZXBRryQTs0nmHbl1xLcnGQRJOSMKBHXzPB+0d8Y2kt4IvFl0BBP5sLLK29WKqmcg9AF4HbJ7nNe9eHvit8RPiJ4SnT9qn4R654n0a80z9xrRt2try2jX5UubeVoyHePqu47GCFWyp+X0JSUkbQ9iqcua7dtPX7tfvR4949+A3i+0utK8U2UzaqniWxN9JPAmBFMTmSJgQMFd6ZyTkkgdK9n/ZB8OeKPAdrqWo3N+YEuJI0msTGMvtJIYnJx1xj8a3vEPgyc+C7P4k+DVk1Lwrp9+mlWusGPyt8s0MkkcRjYlg4S1l3AbtpTk/MpOdBpmqCKSOzV1Ixu2dfz7V4mKq1KsZU5Hb9TjPAKtfU+l/hB4h0vV7DxlFCULR+FpJHCSbuFlibt06Y/GuUg1CHUZmWwClkQbo2B4X68VX/ZZgtbDRvHUM91I7HwbdpH5incczRYcn2BIx0JB9K87udc8RaDr0d7Czou3AYKMcsevHIxXnfVXJWR5coPltY9KuvDFwA00ihiT6EgfTitX4bW/wAAL/xx4d/4TOWdtOmuzb+Knk8y3Gm/M0ZlYnYDGgHm5VgGXA3rksIPHMPjzwx8KvEvxG0zRIbu08Oac11cyXF2IshSCQu8jzCBliq84U9yM/IGoftbfEvxpZ2eh6mTdBVFvKm8yCaDzHkMSoANoJdgQpGck8Hmsspw0a1R1JJNf8MTSoVKkrtb7eZ9aSaN8ItZ+JGneCT47tPDyXXkJqc95qC3NrpoEKvcT/aY1YSRIFnf5Qz4jHDFsj039p3wZ4e/Z5+AHgX4+/sL/GrVtL1rxFpHmeIZD4xjju3tmyFntRbiKVGHzrJb/PIrAqC7purL/Yn/AOCSPxw+KXi6D9pPS9E0qx0DSDY3UcXi+aSb7YwsoXuLUQyW8i3ALvIu2SNo8fI/PXxPxd+zbonjj9o2x/ZZ+HvgPUI7eW+s5r7xGYJUexR7ZZ76EhwFkEEzXEKMT+8EKcktkt51kGGxFah7SPNT1muy8zKpVwaVSNSoo8u9+p0nxj8DeKvBnwz1L47W+jh9Ngu2N81mkWIc3Hls+IsRRpk7lC4TGNuAQK8m0KBvFvil9V8EJcQX8YgudSl1C0xGdNaRYWJYf8tBI0QAGeNx4CZr7++P3g74P/sjeGrf4e6F4jkv9LuNJaTX7bxC0e2aJy0ZhCg8gqCGzyd449fgr9nn4n/DLwt8evF48HWj2PhRtEu7nTLcxrIZPsyO0LMzfemCM6rk/MGbOT81b8P43B5ngnWw+sJu6fdHoYf6pVwUMRSd1JHzx8fH1PwN8XvEGh6Pqfl3H9q3DS32nBovMR2JVVIYkLsYZHfJz1xXFzeA/E39nWeozxqF1CDzLVpJQSf3skQUjqGLRtwccYPQiuv17UNB1qS6uRM80k9wJLqSSMCVmDNnax6gg5yfQHmvTvjD4QHws8Xa78ONV8V6bHcfZrW+0bUfCN60unRfbbRJzFGxCsQsVyYJBtzvjdTuAyfo46rQx6Hjy+CTocc+oWenyXMVksIuZ5EyvmuVHAPONxAx6c19bab441WHwF4e0HX7mUvZaNFE9vLKWWEvmR4wC3Ch2Yge9eQ+HvBRs7PQfC2t6iLqITLr2tM06Sb0GwQRttJCkuhcqcHZszggAWPGvxDl2TXT3b7sElmfBzzgfe+nFaLVAnY9muPjhFb/AAwP7MPgoQxeFF1m08RX9pJAvmR6tHbT25eNweIXS5f92cjKIRtwc6fwK8JJ490XV7nSZEvLy1uMzWkUivJHCsRcuVwSFCpKxboAhJxg185fDfWLoeLbHTL/AMQWTTajZEzRIh8yAgLIJJW6MjI64YsWG1twUAZ9Y/ZU/Zx+MfxVY/GP4eWpuPDeveMdR8KX89zMYxZIbOOVbiTkEDZNIVI43RBTkuqngnSg6rcnZHoxr82EVNH0v4C+Fnizwh8OfEnjiXwHfLpl/wCHrq003U3sWWG7nDoTAkhUBiCCcDgYbPOAfD/Csi/Enw/a6kugzWjTDaI7goNo25DE+hBBHfkfWvsm80T9pz4efCyH9nT4q/FXw3rHgy0nu30TRLeVnlsbmedpEDEwq/kiPeCodsGQ8ZINeQfDX9kfxL4Ms7mfxD490O4lvJDKtjZTXTxWqFmICGSI87dnGSQcgk9a89VaVNS5n10OfEvCx5bS6a+vUp3Xg7x18ZtKtvgTPrWmWuj6tNcRiK9sy5uBLD++AbeoLlYwFHXIGCCKxfhJ+wB+z0f2sbXwt4Y8S3sGr6XqUWo39v8A2Z5ltZwl1aRvKyGjjQPuUFssg3JnGazf2rfif4x+FN5pE0VhLCbaCPVrO6tbyJXO5wLaWKRdzxsJYpQysoyPqCPT/wDgnZ/wVM+O9p8VNJ8CfFu18EJ4e8fQpoWpeI7nSGF9pNtun3zRTFkDOqSzKAzMpLKDkKorPAQrUsqlyx96SdltvZflr+pw4NRlG05OK7/cfqfrH7THwd8Hw6P4P+HExnsbS1KxW1tbMn2OOMDbv45LDcxIySQTyWAPh/jvx0/jj4lXunfDfwhoHh++vxDFHfy2Jivpr1LYTXvzC3b5FFxZIsrhA2+XaWAQt5H4d8X/ALP3gLxh430Px/d6vBb2Je8TxVe2xfS7vTwPMQLJE0iLKI7hWkijLgOzqSHUrX0D8O/i/wDsaeB/D1l4lsfiP4As4dRT+0LV7bUrVppmaONTKEUmTcwiUfd3EqOM1/MnE2UZhlWdVKbo1J8z0lZtO6vulZ+h+X59Sr08fNUlKVNv3W1v0Pl/9t79k7Xv20/2h/DX7PPgbxtpei69YTXOpXlvqkt1HZ3mnmwhmO8qrpFMoS9KkgxhWjUzBn218yftlf8ABGT4l/8ABPv4PXnjj4pfErw7cXUsPnW9vpP2meS682Xy44g3lJHGFQyEszZJTAUg7q/Qr4ma18IP2hP2gvC3xn+C/jcaw1l4RvtM1T+z7g291CYrSXUoCqThEeMK0wm3NlGj8sL5m4Dx7/grb+2pof7ZH7G8/iyOSKKPRvGdnpd9YbVjHltBfypNuV3OT5cWQSvXgcNn+iuD6VSnw5h4uLpy5Y3ja1mtHo1fW343R95lPNHLIQd4tJabfgfi3afDbxNL4cuvGL6d5VhbmIF5PldvMfYjBDzsLZAboSpx0ONnUIvC1wzy3BRItN05I7TTIrdnbUrkoAR1G0O5ZmPJG44GcEejaQs3i/wx4o0q0k8+w1XT9DkgMI3BZoZ4rSRCR/EMK20kHbIrYwc1h+PNC03wv4qn8UeYh2RRx6fEkeBG6RKjMcg5PyA+nJ9sfYRR60W2tTOl1ybw5o0tnNdtJfX6rJfS4IKkAhYhx91ANo9q4jxNdXHiS1ey0u6nku/NH+iRRkmXnsepOcDHfPFM8Q63LczyTD7zZx+Z9qp6B5yW+p3cTETNDFHFIo+ZJXnQqy47gocY/SqbKO5/Z8+C83xK/aO8CeA/E3iSbQrPxLBHcR6pasHkSOKKVcAZG13e3lQE8LkNyDg/pJ4c+CPjH9nLwr4i8M/s0a9LP4RuNPGp6bp+q3EYI1UMkUy7xtDsyRxuqkYO18sojyfzw0nxE2kftSeDJbDw3eatbaTo9rDJpdjExcxmJ96qvH8DKxGcHkH+Kv1aX4z/ALGFh9n0b4a+OPFWr2f9gx6j4j0jXNLFlNaea0HlrHycAecFZQzAHaVkcEhPEzPEVqdaEYxbjLR6aJ+Z72W4GljMFVtJKa1Xy6f8E5TT9M8U65oVjrHju3NpqzwpJeQx3KzCGbHzKHAw2DnkcfXrV+NNQiRUjmD4UDLLyfevon/hi/SfE3hqy1bwv4q1DTRd2yTra6nZK7Rh1DbGGUKsCeeuORiuT1z9j74waDGH0yTT9RXnKxXIjYDtw4Azx2P415k8vrS1t5/1ofJ1qNVzd9Tkf2yP+CefiD9rn4R+HvBfw8ns7HXPDOmXP2Q/ZwHvCsXmCE8qCXeLaGd/kMgxkZFfml8Nfgd8Z/H3x2sP2dfCWk3Vn4r07VnjucYDaZJDKGklcg4URlck57fhX70eBtN1bwxpN543n1CdHa38rTVKoBubKk4I55xz2+brXzVD+yD8Gv2dfjF4l/bNg8W+KrXW9Xtxbat9gt4ruE+fLEjPHbLayOXdwhYjcfmY45r36c3GHLboekqUNuh8lfGLSviH4Xjvv2eNJ8R/b9OvtGGj6PPbu0mo3yTTvPdvcAKG+0TmONEiDsCoWAeYWO/Fuv2ePir/AGP4w1jwz8MtY1XWfD3iWSy0+xl8PzLd3tk0j7plAV5UixkgnLHcVYljivm/4yfGyXw9461uBfFbeIGutes5dG1CRp4GRIWeSOdoziRCWaJ9oPO08sME/WnxJ+E3wQ+KF745+P8Apf8AwU0svDJ17XdTl8KeENP0+98m206WeWWOG4KSZgyGLbFiKqdpIJbA+WzD20MQ/a8yUv5btemh4OaYenh6sq3tHGDqU7WV20lqrLZdzr9I+LOt+APjb4l8Cv4zsPBEemX2rWcbaRptvhFvLV7ZYZZEVHdfImkdN2GBlVwd3J+C/FRuHg8W/DKK6mgAv4baDzblmi3LBOA+CSOZYcnnIC4Bwa6n9tf41eB/id+114w8V/CqK9h0vWvFSXtmEt/s7zJLHF5aGMEAFWDqAB3ABOK8x8feIZ7gahexwlZbnUUuSWUhxt81dvXOP3zHHt+f1GT4Wp9TjKS6LR7nsVKVCgpRjq3KTv5N3t6Lp5Fr9izxx8DPA3xiaH9oSO/Tw9qOjXOnz39pbNK2mTzfItz5SP8Av1WNn+RgfmYELlFJ9K/af/Y08TaLbj4w/C3xvB428A3kYeHX9LQSfZVAyROicxYzySBjHzc18sXd0L3ULqeOMKLiYuqKMADJOMVr+EvHPxH8Made+FNB8Z6tZWGrRiLUrG11CaOK6TOdsiKQHHsQa69pDjsRRfC7xx4le30vQ5RcX1zqRtVt0RcspA2uOcEck+3Oeleq/EL9nO5/Z3+DWl/8JTrqR+LNf1SJ4dFiVTPFbKsh+0SkEiPMgVFj6kBiechec+EPxZ1/4NePF1vR47dtRSxxaXU4LfZGcp+9UEgFwARg8fMa0fFEPi3XPj0dO8TarLr+oLcLfSag0oQ3UIhFyJd0r4VTCA3JwFxyAONCkrux0jjx78MtX/4RbW/CQOpWtppt/qmrRRyh4hc28NxAzuUUhdsyAY/dsRlGdSrt9c/8Eqv2Qrv48XfiHx58UU1JtKhvoZrO8nlaVJrsMsp2o7NC5yqM6yxyIygAr82a534a+ObLxD4d0r41fGuSx874rXdr4e07wzPbwPHdaBpVjDp9leNHu3DYbfyi7A7niLoBgmv0U/Zj134ZeFPhTpXgf4S+BprPStJtkgEdonmqZAo3SOR8zu5+YseSTnpSqxiqXP02+83UZ4eaa6q6fzPXNNOoaJp0NpbzmWOCIIu5UBOBjsMD8ABVu38WwqfLvYyh756D8cVm2uuSSNg6XOF9Gg/+vT7gmY7hZNz2MdYaW0M7I2/Gk1rbtaeF9PJMNnFiVeMFzz0HHb07msp7G3kgKmPBPsPWnxXEmqX0moXGC8zlmz+NXZfKQEeWPyrGKsi2fgv/AMFC/wBi341fCX49eP8Ax5/wrO6h8GW3jVU0LU4IP9FitHHnW9up5OEgmt0JGV3oybi6so5G3vWj8OrZz3CoblGZkV8BDgx4x2+7zX75fErwN4H+JHgzUfA/xA8Pw6louq25g1OxlGBNEcEjOODwCG6qwDDBAI/CD9sn4YaV+zT+0Z4r+Cuj+JrzUNO0PUYhaX14P3hhnt47oBgBjKibbkDkrnAziumnLSxnNcyOI8O+APiR8Y/iZqmm/D74Wav4nuZNJS4NpoekyXUsEShI/P2orbQHkj+foCwyRXrH7cv7F/xd/Zr+IWr2cvgfUrrw1bhbiHxAtuHthC4RgpkT5dybtjkDG5ScAEV+pP7B/wCyZ8EPgR8LNC8a/Drw0n9r+JfDlrcahrE5eW4mSZY5hErOSY4xti+RNqsyBiMgY8J/4KheAfjF4o02bQpk1+fR5nlisNPmWcRNLI8iQwtuRQWbLFVBOB1xWkcRKGi2ZHJfc/JXT/DiSXN1r08sVvbWdss6xXCf65i8SCMADGSJDJzxtQ85Kgv8Jaddancx3txDGqyEhMdeDjPfFWH0W9OnroGrSyyTQxeXJJK5JQxLtXGeRtVduPQY9KraRPq+h2dzLNbSYhgY2zRozKzZPQj86m1x8ruVNclK+MTIrjZHsTcDwygj867bUNM1X4p+PdKHh4QRTano1ssoV/LVEhjFo4Y4wNwh3HPBDjJOSa8zN7qGoXI2WUxkPyAGJuTnrkj3r3r4L+HNY8HaDHr2ux3MN0GmtlR0+WMLsZ03ZyGBcqVxgHcMk5ApKxZ9Vf8ABVTxi+gfA/8AY+1EaJFcG/8Aghb2LS2syrdWeoWMvluFl2PjEkm10H38c7SEYe4/8Eef2jfB/iL4eX/hbxl46s4vE19rMUWm6RdXarNNH5I2MgbBbcxdQfVAO2K/PL42/E7WvibafD74d+Jb69jtPB99rZsJJLwyoFu71bo+UhGYceYqlckHZkYya++/+CMH7M+o+A7XS/i/omr/AGrSZ9Gu/tFxcaXHDNHqMk4QwRTZEssKQwxkhh5YkYlC2SRniI+1w7p30ZrGq1OLlry7ej6H6AxzMhCvGBz6YqzCZJfuYxTZoopjsxg+uKYsc9rykpI9K8vnxGFXvLmiuq3+7qdChQxD918suz2+8rQ2d0oCx3GPT5BUGoabq8hPl6gy/wC0qAHt718Q/DD/AIKaftMfG343+E9B8J/BPSdG8H+NrZNW0ZNSt3nvrPw/Nd28NlqlzeR3Is99yiao5s4fNltf7MuBIXEUjJ778P8A9ubwJ4q+H/wv8Wav4M1+G4+KGjR6jp8ek2f2210xXggnEd1MfLdXKXMQVUiduJXYJFBNKnfyStc5b6nZeNfB/wAQNZjFrpHjqaxDcNIqZYemOex5r5h/aD/4JI+GP2h/HNn8QPGHxa1OK/hVEvZILVHN2iY2BixBGFyuck4x0wc+/fta/tQ2X7MuieHooPh1rHinxJ4y1Yaf4U8P6PDJI0+zy2uryYQxyzpZ20Lq8ssME7gywII2MoIxtf8A28fgZ4E+Edh8W/iZLqGkR3MNxcT6AljJcalbx2tulzfB4VAKNaQyILjcVWGdlt2YTSRo7jzdCXqy1a/B34o+EoYb/wAC/Fy6j1C1uYJYG1CAPEyxyI7RsFYH51QpuByu7IGQK8v+P/7Hf7Vf7TXjy28UfEn9o3TNI0y3MckNh4esp28uVCpVwsxK5yOeeMnFcX4E/wCCnXxY8UXugQeJ/hhoun3mmeFdW8QfFPw7Bcu9/pyLK8un6TZRlhJ/axtra9WW3vIreJpYoNkyJeWrTfTviT48/CKX4QXfjPx94oXw/oN14T1DVLyXU0kjuU0mCIG6u0gjBmkWOOWMkxK7KZoQAWkjVlJSvqNXR+Kv7bXwhtPhF8fde8JWnj4eJTHMkh1dfK/eq6Iyg+Wdu9QdrcD5lPFeG6k13putw6XLNJEJArN5cmMAgEHjr1r2T4+fDT4l+G103VfFnw5vtCh1GAzaZbanozWl/b27L5kVjMi29uJmt4QFe4MCNLN9pcPNF5L1xPhCP4MbdSvPix4mmstNsbdri71Cwt2lk8tYy3lxLgBpXIEcYYpG0skavJGpLrtF8u4tLnFm51KXUHtotTnkjDFdpJJbnGPfivT/AAt448deHfB2kw32m2t1oltcutpHcwplSzBpBlcOOQfvZxk4rp9a+HnwP8HeGE+JOgeCdZv77w/BZ3vinw5B4j85oN+6KEWk1vayi7t7ycWxS62rFbR6zpeXujdKat/tB+GNQ8Hyr4ddYrq3bxFqraZe6fE32e+tkuJGFxB1zEUYMDk/LgmrdxHsnwM/4JsfHD9ovxFY+MbDQLTRtIu9Jk1bQNV1WL7RZS3BiRoo5UVt2xnVVP3sLklWxtP6Rf8ABOb9n74vfs2fAN/AHxt8Q2Wo6zNrl1fA6dO0kMKSkfIrFV6sHcgKFHmYHSua/Y6+PfgLQv2S/Adjf6jHaQ6R4T0231a/vZfJtbAiFAzTTPhIkXDEszAAKSTxWL+x/wDtgfGH44+PfGHxa1+4A+G2rXYfwFp6WVvGLbTgqrbTMyxCZri4hRb2YST3CRm/jgQxtbyxrlUk3oB9dkDOQKhulwmfevN/H37VHwv+F/hTXvGPjjXFtrTw34WvfEWpQJND9qNhagCR44ndC7NI8UCDI3zTxRg7pFB4/wCCv7cFj8YPGei/C3V/g/4r8MeKdU8Nvrl1pesac0S6fb+dcotvP5yxzLeIkMRuIvJ8uGS4RFmlUpLJzVKftabiXBuMlJH/2Q==",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDzLUis8HkiPaYmOQW79KoaV4otI7uC2vbSUyWtmUnl2YRSxLZJzwNqoOnUH1qOHWjcwvNNGM78nnk1nar4gttK1Br+eNDbXYEcnmMAFO0AD0wen1Ir83wrbjyS2POpcrujam1208VaNOmkTxziZCyeVICMr+uOMVb054F0UKpCTxRYALZ24HSvLdcgbwbqMmoaAssEDSFvJiOEUsMnAAx/SugtvFUN54QhjdWeZ4i80yEZJLE4474IH4fhXRKjy07J6HTGHJDQ6PS9Unl1H7NcFZCDhnUbcBgePSsD4kfF/QfhtpEsmtXqC425gtkGWcnp9B15pfD2rR6peLpFjbSmPyjJJK6kFQuAf1IrwD9r2K38VavHq3hi4NzPbxm0mtEB8wkEkEDGe/fsRXVgMEq9X33aJvRw9StFyWyON+Jn7TnjHxzcG2l1FYbfBXyIGAH3iQcgA56flXGv4h1ZSviC0u2afTZY7hJXG/BVgcc/Q1yXirw5rXg7xC2j69bmK4WJJDHnoHAYA+h5wfcGvrXwP+xbZ6T8NvDljrvjXT7XUPGvh9dZunuXDRwWE9ktxC6ejCJyX3EYyueCCftMPSoU0lFWQpWgrnrn7Pf/AAW+1vQ/B2leBPixKrW2iRqtjLbWCkvGQVKttGQVB47Hn0GeL8bf8FCtG+NvxyvPEXiDSFtNJ1B4Ire5yQ0exQgkZcdCMZGeNue5rxH4tfsG/FH4J+I9Sk8RvDcaBYarLaWeuwqfKvQrFQ6g8dRgjOQTj0J8z8aW58D+KbrwzNKkzW0qlJonBV0ZQ6sCPVWBpVKMatBwlsXJqbuffOo+Fn8U6KJbWCK50+4j8y2nA3AhsNlTnvgc1Q+E3wsh0346+CtbXSnX7D4o06ZD82MpdRtzzzyK439gL4szeJvAOo+DNf1ECPSJIzaNK/KxSbvlyTjCleB/tegFfUnw9tdNbxr4e+y3KSj+3bVw6lSciVeMjt/gK+TrVPqld0n0MmobHh3xu+HmnapqvjdXtZ/Im8Z2EspVjzJ5V+oOfT5mH5V43qvwshMzWenW8yYc88ndgkDrX2F4stLe51bXLBgB52rNI3yjkqZQP/QzXIyeDNNkTzklBJyGwo471tHGWne4nQU3e5lMsLfwgn0xVGe2tZ0ZLq3WRe6soIP51Q05SWLGc89Aas3N0Ez8+Mda+Vp+0ptM8506kdTzfxPeeLNB8cwaJfXCz6bdzedbMxw0asxBjIB5A5xXoXhjSY7nTkeIBVbPOO9c38TRNcW1pqFtF50iMEiRQNwyRk/pXR+Dbya20e2huD0iG4A98CvaqVXPCRbR2aypJMuRvP4Y825ljBtpmCs6nlf4c4/4FXDaz4F0jwfL4i8fz2q/ubSS8WeTlQFjYt+ICgfT616a0tveWxtbiISQuuGQ9xXhmsftXeP/AABo3jH4BeI/hrHe2HiwXFlYTSB1mt4XBhAiAPzfIR3zk85NdmXXr03T2PQp4mP1R0nofIeuHW/EGr3HiHVrgNJdTM5ZmycklsfTmu01Tx74o1ay0p/E+vXN02kWEdlYsz8xW6LtSMdOFU7Qeu0AZwAB9Jab/wAE1LnxL4Usdb1r4gWHh+5e3SR7PUEUuoKBuRvTDZOD1xj8vIPiT+y5B4Rv/wDhGJfifp1zI6Ws8N7b8oUkuDFIpG/AZFBfGfm6cda+0owhBJHG3KUbI9Cm/as+J3xd+CF54GdIbzw9o11FeX2n3JIYuxLswYnPLJI2P9pu+DWVc/so6Z49+EWl/E5GW21K8v4Z7yYyFg1vIdgUA5GRujI6YAYYPSqf7PX7Ov8AbMzyyfGTSdLju4nX7NcFf3wViBnLj3Pfg+5r6P0P4Z+OPAfw4vre9u49X0mKHyrW7sXDqi7Ttcp/CAcdz0HNcONeIjFun0PaVPK54OjKEmqq0nF7PXRp+nQ80/Zz+Dmk/CnxLfk35kF7phjLseMhlYccf7Xvkivor4IJdN8W/Cd5YaorwxeJbHciqQeLhCQc+v8AWvI9AmSGNL/UgpaOPtz2x6V0PwO+KNlc/HXwdo1hZyx/aPFNgmQ/AJuI+elfM11UxE1UerZzZph40MSuTZo9C8fXj23i3VBGSGN9Nt/77auM8S6hrNjoUs+nDEgXqG+4SMA89eSKs/GjxXLoXxN8QRXE7eUL+XykH8PJ9vXNVtD8UaNrGnf2lZgkiNRIhPIJGc4/Os4Rmp2SPO9o+ayMOHRNeu5orDSLHzrmVwkMMaks5PAAA61qaz8K/H2n+FX8W6ho0i2cMojuZA3+qbJGGHbkfhUfxC8V23ww03/hMrLxLb6VfWbLPpt1MAwWZG3oQhHz8gcd643xH+0T8S5bbxPpPhfWJNQ1C2vYpNYVJAbctcSwHzl4+67yBMYwC7YxyaxwGXU8RQlOb2MoxfI5LZHsXwH/AGMfil+0pBqM/hoQ20Wk2VxcpJdkj7S8KGQwJgZ3MAVB6bvXBFcrq3xD0z4p6f8A2D4Q+Fceg3fgsQabdPECs+qBzcO00sW0bXjMYBPzEiQZIAXPeaF4g/aj+FP7M+h/Hi91rU/Br2mj32m+J9IvNNKx/YZtQjNvqg3dZWlnitiwGdnk9gay/wBh34WftDfEC48T/tN3MdlrGkQag8NpqsypHJdxop83aAoJVvMA9TgZzgV1YivlGHy5OVSO9k7qzk9kvPyG5YeVOFSVRKLklv1fkeOeM/iBqPhzSbyTQLxZNUgQiK2Zd3zA4IxxzjOPcVxl74+1/wD4Qe++IiLBNrmlCM3TyQZ+zyuQVyOxKnIz1967j/gon4A8IeFdf034x/D7FhJrGqG11XSGHzxXBUusqKFACkK2fQ7eOTjP/aLvoNN+F3iE2fgyaxsbu/3pcumd0YVWhhY95FRlzkjOQe+B7GAwtF4ePI+tzsxWGnhXbc+RviF8WfiL4s1eXWfF/jO7u55Hbh7g8DJ+UKOg9q4O81bVp5C73rj5icbiOa6jwz4dudU8a6XFrtr5sEl5DJcQyscSRmRdy8HIyCR1FWpvhzZzXQsrWEmVtzFpHO0Iqlmbgegr1VoYrTY6b4L/ALOnxi8d+F4/iJoaKmnm7ktreSa52M0qKjtjjsJE59/avVfhF8Yfj94K+Jlt4Cs/ECySXNzHp1/Y3g3wyLIdpV/TIJ9K2/gh4m1Hwn8BtF0md3tDLNNeNa8YBdtqOAOm6JYuPavOdQ8V6bb/ALTVn40u3uVsop4BqNxaHD7lXIYHsVO3ntg0O7QO76n0PpGgeJby7tfBd1aOup3U8MEUMqhN7SlPLPYYYOpB6EMCOK6/4OfCfxN4N/aN8I2viTw/LayW3irT5Z4Z02OqR3CM55A7A15PYfF9Ne+O1nNp/jdYNKu4kg0HWSzM8d3biOONpMkFdqhPQ8A5FfYv7WTeFtO/as8IP8L/AIvxeJNMWbw9PZa9Hdq4vAvkLcwlkVM/vfMjMZAZRlHG5WrxqlFqryvRvU9iryYnD+0i/h0d/uPD/j1oFzrXxd8RJDC7K948oJztKsOCPqOfxrznw3b+IfDGoeUxfyGkGVUZ+TPT8hX0T8QfD9hYT6l4x12TYJIoljdVy0sv2YybMe4jY+gway/Bnwu+G11fx33jHWp4NStdQhEGmPCDb3tq8cwlZmByHjkWAKADnziSRtAOdnSpuaXRv7jzo0VKolc8o/bs8C6r8fpNO8PfAbSRexeGDds4ggbzJ0eWBUyzADJQs/J/gIzzX2R/wbz/APBPTTfDHhbxD+1f8cPCrf2za6t/ZGhaXfBWihESRzSXTJ8yud0kaocja0bHGcGvLfA37QfwP8JaNrXw98a+I7HQG1CSVNM1+RAGSTcYWSTJH3Wi3cHO1z3zj6f8D3p+Fvwn+E1t4c+Nkd/o3jbSbO5fVNPvwrfaLvyUliBUkBop5jbtzkGJ92DuA8TiCGKp8IVIUHyz5W2/JJt/fsebiqjqYCo+dQ5Yt+tl8KS6s+jf2q/hR+zn+0V4c07wX8UGS7GoXUNpY2NrKc3G6RH2FE4aNWVJDnhdgYkYBrwX42aT4d/Zv/Y91y1+EHgO8FhorC2j06KHy5JEIfLLwCxAjABxk4HbGfY/h78DNP0XxtZ+JtY1F7280cymw8/LeQZYvJc9erRkDnpj3Odf9oP4ca1r37POradoEA1DVbSeC+gmmGHwl1G8wXAPzGAyoFIwdwBxnI/mbI8TPHZphsHXnJwVSL5bvlWv+Z+VYfGYvGYunGq9FJO19L3P58PiNcfFvxz8RNR8SeKRdtb6d/psUlxkpDEzAxjn14HHUr+Ne7/tb/GGx+JH7FXhXxDZaZ/Z97a3ckWpWMqt++bbGiSKSv3VaFwDnncAcbcV+2/xc8E/Am8/Yuv/AB3o3ws8NDXbS2uribZp8TzJLbLMoJOM4HlgBucEjHNfj5+1s/gr9on9i+TxB4Zv4X8R6N44hsda+z7fLEV013Ojjb8pLSJIPXKsTjqf7EpKtC0IwSjy6tPr2t+p+vTxFZzXtFe6Wt76nwP4K8RWV14i0vUr/SFb7BdpNcbCf3sSurFTngcDHX+ddZ4S8P2t5qGq3+i3rmHWpZLC1heQs0FuzK02Ax4yhC57bsg/LXN6b4bXRvCNhqAjb/ie2olMgJYxRJdzQnsBy0Oe/Uc9q6bTZovD9jca7bxmIXymK1hLf6uDI6k9Sf5Yruiro10ep0Hi7xbbo7W8LRRQREqkadERQAACfYV5N/wkEtp8QZLJLi3uEl1JlMqYZJMvtyPUHAx65rS1PxZFZ3R+1W3mrcq6OhOMAj1/GszSfA1q3iXSzDqYY3KfaoyQMAJK4IPP/TMn8apRVyHex7L+xd+zPrnxu/a5tPC9jYyto2lapHea5PEVURWDODjOesiEquOcnPABI/QXwD4F+GXwE+FVn8EfG1jpup+Jf7VuLi2ur+ECUB3ZY2hJXI+ZRwD971r5V/4JH6Z4+8ffHLxho3w7lMmr3Xh+AfY451DTQQLcyORu6lI484ByQuBkkA/oH8RPhtqOual/ZvxP8ArH4w8H3aWa20pR3VpAkyNGVYg5Ekbj/erwc3xEqWK9nF27dz2qGCqTyeVeF7rf/NdzjY00HVNNtLbxFo9rM1sqOv2iAHEgQrnkckAsPxpt74c8I37pMdNtVePJR4oxuGffqOg/KtqTwnrEILatol7b+gltmTP5imQ+HrKZyqhkI65rxJvFzdrs+OrVsRd6s/Oj9pf4aeLfhx8e20vxvorpFHPO1tPLFmK8CXDq7LngjIx69M9a9F/Z9+LHxlv9E0yybwtNqXg3Q9S+wQSzk+RarNdmUrGAwOVaYNxkZAPGK+//APgrL+yzq3xx/Z/0rw/8L/AMU/jbSdR+2ecI1V2s3VmkiDAfeLBDjI7ivhzWvHWo/sv6d8K/hRrVkbbw99t03UfFShhI8jpNHJerxk/eEgXb2IxzX0mJk/qz5Y3Z61TC06mHnF9Itr1toexWX7SH7V9v8Vdafwj8RdU0+y+IV3cS6VZiQTLbQWcfljywwbYQVctjnDKTuyDWz8Ov2o/iTqWn6R408Z/GrxBcrejULSDTlkVFuri28y28x9pB27rgg44Ow9Cqmsv9nbRf2gvjf+zz8Fta/Zx0/Rdd1O3h1Wa41LVZEjjtzBqTw7HwCx82CBYiMHdtLE85rh/+CgfxG8ZeE/AXwh1LxV4F07wtr+m/8JhHc+H9NlDwW+ye3kEY25AJSWNwc9QD/Fx8Fg8Pl/8AaSkow9q/7q5tH1dr209D5ijgqU8bKEnH2kaVOTVlzKTceZv5Nq3Rn0np/wC1XDc/tU+OvDnjGwu9LsfEvgrxQunaVJdM6BZ7K8mhU9ATlgM44OPSvz68ffFTRP2c/hl4t8DeDtHDv4i8e2+u6ZbzOr/YobCW8hW3kC4wA04IB4wM9+fRf2UfDviv9uXx3puj63rV9Dqthocl2+pWtyYXjhQmIqXX+8LhgfUMevIPB/8ABUH4O3vwI/aLNle2NtDp+u+HZLnT4oG3bFCLZqW6/Oy2qyH/AGnPfJP3dCtiJ4tU3FqNtX0v2/rQ+ir03TxLjDWKS1PJvDmhaa/wRstXvGJS3nazgkmULmGG6+1EDORuMj4IHHToTk+b+NPE6XkjSMBDBCdqrn5VGcADnFdp+z3+0H4R0TRrn4T/ABn8ONqfhfUdSa83wZWWwnfbvkTbg7TtHyrjH0JBh/aM+G/w18OX0lj8OfGkOq6Nrtit1ptyo3GLE33WAGQflI55x27V6adtDoi7njWoavLe6qtjHp1xJPKFZIlXJIIGDj0rtbrTtT+HWoaTLrFjN58ekBhDKhU7XmkbjPbkj3r334CfCL4L6L4Xn/aN+K0iNDEscOl2QwfPEQdXAHYlgv0wc+3nfjHxtN8cP2hJvGraSYdNt57Xdp8XJS0jkjjCDgDPz5ycDLE8Zq7toG+U7X9k/wCMVx+yn44j+Mnwm8T3tn4ngt5Ft5I0QeUzhlKtlSrKwLKytkEEg1+gv7BXjX9pD9qbx9d/tGfGbSZdQtL3ULS7fUZPLjE0hhijDIAqhhGltCnTPXk5rwPxn+w/4P8Aih+0R8T9X0PVY7E658WNbvvCF0Js28+kpqs0LAp2+cSkYI+7kfL1/Uz9n/4K+E/gR8JdH+FfhC22WWlWawq7ElnI6sSeTk5NclbB0KklWnFOWyfWx10cZiKMHSjJpPWx2YtvD2tQg3dpDMBkDzIlbH51Tv8A4T/DvUkZpfC9kWYHcRbjLZqdtNRTmMge4FSQXFzbdZiQD35pxjG+xyuCe6KlzC2uarPfXADGSQsNw6DsPyxX5Mf8F6/gd4u8PfGjwrq3gH4ebfD2peGLu7urvTYJGklvoX23Hm4LbUEP2PAAVcs5wSSa/XWytxCCdo5NUvEPhTw14nAHiDRLa72wSwr58QYiOUBZE57MAAR3wKyptWLufgH+yx8Y/if8KfAMH/CH/EHVtKtPJlWe2srx41EhlLKeDjBzKcDjJJ6muS+OvjfxB451Sz1Hxf4mvr64uNUug9xPOztHE455Pqu38AB0AFfQH/BR39lST9jD4sHw54UvWPhTxAsl3oYcYYFZSWjYeqedt6ngjntXtP8AwTO/4Js+HfjF4a8F/tUePvELTWi6vd3kGmbEdG8h5bdUYFCcmSIE84CsD6itI0KHPz8qv3tr95z+wpKs6qiuZq1+tu1z13/gjt+zn4Dvv2Z9J+NkNnJaa/qZu9OuLyJdjS2sFw0canIOcrFGxIxlhz0qh/wWW/YR1r4ufDrTvi98PA11rPh+B4LqwVdzXFsWLApz1Ri3HORIT2FfbvgTwX4W+HHhy28J+D9IgsNOtN3kW0CBUTcxY4A9yawP2lLDxDqfwuvT4YgZ7mJHZDGoJx5b5HJAGRx9SKpTUanNY2eqsz+av+wbqCWaO4PlmNiGJ6bueP0NaGgabPey+RM52r3HPY/4V6n+174Iufh94n1XSNMhjKX+qpeXaIgMkUirKpUY6DdI+cdcA9q870PUrCzsLq+iOfLjXG4ZwxOBn2zWr9/3loRsdB8CPiasPiKw8L+MdQ8zSZoJtMvBcjclrbXJdJJlGPvR+Z5g90FM+GPi3xh8JfiBqX2LRx9pm0290rUo7mIN5Ec6GGRj1AZSwIboGA615xY3sen6g8tu5IP3SuSf0r6N+CGieMWstR+KOreEZLnT9d8Ntp097NCTE4ciHcTnhy8GQc8sreoqkVa59P8A7e2u+HP2KP289T+AfgPX5H0/4UaDpuiW1rchVd4LiytbtpjjhsvOxJOD8/oMV+hf7G/j7VvjD+z74f8AiNealMP7SWYxhsnCpPJEBnvyhGa/HL/gol8XNY/aw/bF1T9of+zoRq3ib4feH9Q1llI8hrwaPaCYIATgKYzHtzndGwr9H/8AgkB4V+K+g/D668PfE2e+SDRNH05rC2kcm3Sa6a7uZVi3DJ2xSWwbB4kMg561hi51IYW0OjudMHGvXi56Wjy/cfZ0FjciIKb5jjvk082EhGDcMfxpYn2LlXJGe5qaOVJB8rA464riw+MhVSUtH+fp3Lr4eVJXWqMTxB4vtvCnh6/8U+J9XsNK0vS7KW71LU9Tukt7a0t40LyTSyyMqRxoilmdiAoBJIArjNO/aB8N+JGtF0PxZYhdTuLePQ5bpWgTWVnt57mCawaXaL+CSC2uJUnt/MidImZXIGa+d/8AgqR8cf2SfHOhn4C+K/jVHeeIPAup2nifWPAOh6xLC2sXDRXdppOk3dzErQ2jyanNY3AW4LrEbaGWe3Nu5mj+OdX8AfDD4KaP4K8L+ONf8T3fiGPxHB8Rvjfqvw51KO3u7CwEMi2Wn2kOpeTAlxqt19lhtLCHyrmOy06FWs5N7u/XTpe7c5dj68/4KSfsX/FX9s/R9BbQmtbW/wBAup1huHUkSwShCynoQQ0aEHnqeBnjtf2SvhH8ZP2YPgP4b+EOoarp0MNo8sUUk7qoluGjmu5UTP3m2RXMxXkhIpG+6jEfPehftiav4J/a/wDFvjjwD+yppP8AwsPxz4J0i51j7f8AFizg0jTrqPT1u7pL/VZYRZS2lhpEVrfSX1nPJEI7i0QW0c2oXEsO98AtB+KP7b37Q99+3J4c+NuleEl1LRv7D03wy9l4b8RmHw3DLBfW9rcIkTS212txNb6oWmYTRS3VpC8eLBd9pOKEfXniLxzffD7wpeeNPit8QNG8P6Pp0Jn1DWNWvobS1tYgQN0kszKiDcyjJPJZQOSBXPah8TV+Jmpa98PPhn8bPDmoX2lvDZeIdKttRhlutOlkhM8ReMMWj82IlkYgB1jfaTsbb8Ift7a74f8AjJ8bxpesa945+Jvw98GXGlXkz2Xwf1TVNB07V1trRNK8ORzwobW61W/lv2u3uLyGWMyXWm2Ebx2txf78j/hX/hbw0914D8b/ALOmv+NvinoPj+z0tNS8N+KYtZHiTxgyaiiaZo8U9zNdadp1lYQRab/aE7PBHBos7iGC/sFDtUrq4anNf8FJP2LLr4R+M9G1fW/idayHxTqchu77VFkFrpNsiB5bqfykkkWGNXZ5GRGIRCQpP3vhvU5dGsFhsbG8tLqLUNMsb7zrG68yNVuLWK5WJiOFlj80JInOyRGU8qa+4f2vf2k4P2hdQ074x+PPhzoV34f1eS71Ky0zwf45/wBNv9EWS7TTLWV9e0UxW8t62h318LhLeMvpkL2str5t5Cs3lHiX9hvXNL8e+NPhN8adVsbfx9pHhZPEcniSf4raM2hjZr1lod4by+uZh++mv5r9RHNJBcQPZqksckkziCoxlFahZnzT4c0Sa+8SW+j6Los17dNcKtvbwo0jyuWAVQo5YkkDA9a+qtC1/wCN/wAFfhlq3wS8W+JvCKaT4i0zRtetbJPGOl3Fw1jePDd2E1vHHcNIGnW4ilEQTzvLcsyhVYjyPRPgz4Rgad9f8T3cbKP7Us7nStEsdVa5e0ikkisGstQngtblZ7g22InLtM8UdtHFK1yFPrui6PqPgmbwf4r1X4mXNtbf8JF4a1vwzDpGr216s+pZtJBYpeabZX6yW2nWejWRuYJoLi8kk0e1khjd9VaG3pNsNjA+Gvwy+JPxL1LUPFGh+Arq907TdLjbVLfToDuUDEC4XA4JPQZOMnoOP2h/YKuNb1L9kjwVqXifwxJpWqyaKkd/bSnMkssRaHznOM7pFjWTB6b8c4zXxtpX/BUuf9njVL/wFa/sPWT65Y6Dp13/AMIfpvxCsJdd1qPVGtrfQbGCG0juTcajdvcJdTQctbWjBwblzGsut+0d/wAFWPilr3jjUf2e/wBmjSPD1rpWvXmteGNB+JL39vBDpw05Lcatrwur25tdLjjsvMmihha7dbm58pzKkJt/t0zjzKw0mfYnwB/at+Fv7Ruv+L/DngCDV4pfB3ii+0S8fVNNMMd+1rO1vJeWjgss1o06TwpLkFpLWcbR5eT6bhYz+7HJPQDqa/OT9kD/AIKFfsz/ALPfwesPBf7N/wCzPqq+G9N05NY8QWaeILW519NMuby30rw5Da6bZWayahqeqFoZhBL9mMfnrJcTSNci6mp/G39u39or9pH4c+M/gj4t8JeBvhlpviKx1nSdYDeMb6XWdF0vRLSO68YXsjPo8kLpHE76TAYY2dbz7VLF9rhiW4i5auDp11yyRtTrVaMrxZ//2Q==",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [53,30,80,68] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [50,36,74,73] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD8tvHfw/1/4aomoa94jiuINqNvthuGTztNcD4r8P8Aw48c2kmrXlm9nMgObyC3MQ9eRkg16n41W/8AiN9j8GxPHE1/MYlbJIjJHEhxk4B5PsDR/wAFI/2dvgr+xvJ4C8F+APHF5rPibUNH+3eJGN07QbRuhXbkAYaWKU8dAF719pxPhMHl2KjSoq6kk+umiPIyr21XDynUd7f5nE+Dv2D/AI03Hwqb476L4L1DV/DUVxLa3XiDTbJp7e1mQ/PuVMyqq8AuUCBgRu4Iq/8ADT4KeKvHfhu28Vaf4hsJYFlY6f8AaFILBGxu/wBU207gRncBx+Ne+/8ABK//AILHaP8As3eHI/2fPj1YT/8ACNG9km0bWdOAP9ntJhnjlTBJjL7m3DJBc9RVP9qj9sv4e/tP/tCf8LR+CHhyDSNGOnrZSW9vpwt1M0c83735UQOXRo3LYzliD0ri4fw2BxWa06eJT5OttzqzCCp4F1IS97TT5nyz+0Noer+H7y50rxdJerrFtflLiCdVZBullLurrwylhvB/265r4VsbPxPYSxjd5l2Ihn0kwhP4Zr0b9ru5m8QeM9LEnh+GcX2lo01wkbNKCHZTsweSBg9DyRXnnheBofEkGmeGXM7Raksdg0vBchwFLY969HNMFOhjq3s/gi0tbX1V1+Bx0Jp0Iue5634v8OJZol8TI4ACsrLxjJzXaaDaLpfwx0i0trXZ50ZkZcHIy7DP6VJZ+D72fwwtv4kuC07IZp0QgqvHI+nFWI9Vj/0fTfOjKxRCNBvGQuT/AImnh6d4J2M6iTk2jyvxHYXy63JqMUa7IG3Nu46HJrovj7rf9m/slsYlRzqmsQ27gt90ALJkep/d/kTV7UfBd34kvLm2tmO2YtGcDnGOSPoDXF/tFXgs/gDpHhC+QrcLr8lzGQOGRLeRP6nP4etcONUqackdGHSckj5yuCS4J9Kjp0pLNk+lNr5urK822eotgooorJtWGfYdr4h1fw/exeJPDvlfbrVXa0d4w6klGQqR0IIYj+VeS+O/A/7RX7QvjOTxf4+1G61XUHTy/tV1nEaZJWNRjCqCxwo4GTXp8RMHguTVbbLyQQsQq89FJ7fSvO9F/aB8X21vJJYwTbQ25vLiYjp3r9D4qp05zp1JLVrT7jx8M50m6cNEclqXwH13wpeR2/iCQwyrh5AOgAPbNelfBnQLXSdC+w21y0ii8yrHGTnB7V5x4x+J/iXxpq6XNw8h3LsYFDwCa774I6he3ekxwTW5jbziBhSCCDgde/SvMyGnTWYwdu4sbKtKi4t6aHpnxV8K6KvhJvGDny9c0ixVtMdnw0JEqyBth6jKDqMYJryDS9Q0XxH8drbWfDsCRpdXdpO9rCmPJlfy3kjIHHyuzLxxxWp+0v4n8Q/8Jfp9lpWoPMdR0C3E8KHOH3uCvH5Edasfs2/DmbTPEieINTsJvOWUSqTGdoYYIXp6jpXp51i1Vx9WlTjo2nfvZIypR5aCue6LC7WV22xt727xFMc8qf15rhNAuPDD+J5INevp4Z8+TbLCARkHJ356HB4r1S60/wCxeIXsASpeNZU83jLkDj6ZrwnxP4W1G28dz6yuoqoF4s6wq4xIAQePUHGK5aMuSCuPllLY7AapLpniyLUNHlldIlaIRuOH3ZB6expP2tfhGl3+yZB4+sI5ZJ9G19GnIXJWCeKRH6DoHMOfr7iqf21pJLaZHAEiKxdT907iOPpiu5bXG8UfAvxv8Or6Z7p9R8MXi6bAnzEzxoswOB3JiQD6mlWhCvTkrX0NaMnCpZn5+yja2Pam1YvLcJKVUkheCw6H6VAw2nGa+LnGV2evF3QlFFKEYn7p/Ks+SQz790b4M/s22mirH4u/ar0hGdAqWemafcXkgJUfKxhygySRliMelecRaf8As/eGNck0HXLS8kb7YVhMahWmQNjKoCST7V798Cv+Cbvijxz4E8Oaz8P501aSfQoLnxLHfT28Ui3pBeSCGPzNzIilY8tgs6sRgEAfL37SvgyL4f8A7fPiT4deBNEvodK8P+OP7P0e01NcyW8KyjakhBx1wc7ujZzX3GMxtLMXRpp3e2vmeVGjUhNzPd/+ClX7GXhH9iLxzovw3Gq6dqNzqVkt413HC0O1DLKm0BsE48vr0OcivKvhZ4HOv+Fk8UNFcQadLfyWz3dvZrJCsqAFgWMi/dUhmABIHNd7/wAFp/ix8Yfil8XvBni74t6fZW16uhOkEeluCjwC4LKT+9k7yyKOeiDjgk3v2Mf2cPAnxD+AWt33j3+3otf/ALMtbrwdZeH0guPtlwWmEkM8bsAu52iLF3i2rlgWI20Tw9XJM1lSraOO9tVqk916jt9Zo8y1TOYiHw68NxWM2leI9P1ZfKZVudWIha2bzG+RVKn5c/MPXNXh4v0tvltvE2jK54QW5LZPbpjn8K6n4tf8EuP2gNV+Gt98SNB1nQtNk0bRpdRl8O3+qxLdXccKtJIsZjZ180IpwnU4AB5r5i+Evww+L3xI+Jeg/C/S/DV5FqOu6rHaWzTruSIkjLyLj7oGSfYGvPx2MpyrSqRe50YfAyryjS2ufRXhLUfiV8WvG8Gh/DTwdc+LtUcKIrXRLd2wyfwkkkDGATkjAOTivT/i1/wSp/aY8O/DOH4wajoE11GlhH9t0CytHa+tuSOVTduCjklR0z0r7Q+CfwQ8Bfse/Cu18CfDZ3jne2hOuXsbn7TfT8PIHfhpRu4VTlVAG0Bua8u+K37f3jTwX47vPCHh+5D2MLKjrLLIszEj5gGDjaewIxg1xwxuIrP2cV8z7atwdhsty+FfGVeW+nfU+C1+CnxF8CfDxPFmufDvXdP0UXpt7bV9RtikMsh5CAknJJ3DqOhGOCT0HwGngHjOxmvI0MYuwkiP0KNtVs/hmvu/9qX48eAP2if2IvEemahdxnV4IbS5tYrhH2xTrPGCqMSQWCbjwf4iT1r4F8F6f/Yms21rd6jFAbi5RDO7gLGrMBu/Dk/hXq0HVUUpM+IzDDYWhiv9mqOUfNWPkrxh8O7jw34t1TwlcwTLNpupT2cyouRuSRl+XjkcCsx/h3qMx3W0UwXoRImDn8q+vvjL8D/CFt8Tdamg1tr77ZeNdG7tmUgtL87YOOcMxx7YrmYfgp4bcjOpXw5/vp/8TXn1cBKU3yxHGq+VK58zj4a6uo3MrDHUkUg8E30LiPz0yTwCwzX1JH8CvDLrk6lfdf4ipH4gLk/hQ/wb0OzH2a01gJIwzGHsSTuPA6rUf2bUUb8v4lqo+57v4W/Z70rw9ftrz/AF5b+OUSLfSeGmLKy85JCY6jNUvFHgmLWPHLeLNd0O2+13N4txdtP4fjbL5GTxHx0HX0r9AfCP7TEfwv0MeG9d/Yo+ImuaiwJ/tvXfj74i82ZugYLb28K4HptyfWuO8Vft5xaLdXFre/Avxjpt26sWht/j94ohCtjALxvIC303DPTI617UMHCnK/LaxLacbHyX8a9Lg+IdvbTXvhKxvFS3EMRj8NxJtjH9393n3yDWF4S0jRtM0yTT4NDtkWBTCxaM5jQjlTzgde9e1X/7cnxJPxB06X4h/HL4peGdBSQi+0v4feM9ZnuJIycqUmv724CyfwkgFRjO3Oc/RHgz/gqD+wxo3hp9O8Wad+0trt2gIj1LxF8btTF5jb/Alvf2sR55A2AE98dDEfv6znUV29whTUKdo6I+Dn8E/B8f6bD4C8MJcx4Zb2HSrczhhzuDlSQx6ZH4Yrsv2XvDngnSv2gfDPiWzs7oXK6rtgke3DIHeJ0X5srg7mUDryR1zivpn4jf8FQv2ZbjwxfS/B/wr+0DLrX2cLpa+K/iRqElkJ8nmYrrU0hTGPkCgHnnk188a3+3P+0t4hkmuIfGOoaNBIhWS3jvlu4gDnLH7cZ3xg/d3bePu5JJweAhUfw6GlKtOlVjK+zR7V+0L8V/G3hG21bTpLWKCWKOR0e5idZE+Q4YZYemRxXxDrniHWta8RT6vqJMs0txuLlT81e2aN4l+J/7WnxK8P8Awttbm0udU8S6nbaSNQVhHChlcJvkWNW24Usx2J91GIU4NfWPwv8A+CCmiab4tg1P48ftT6NdaXE6m50LwtY3Md0WDZMZuJdpGRxlUVhnIOemTw9Cg9I2Y8ZmWa5j+7xFRyhdtJ2PGf2HP2ddX/aU0C68K+K9IuIfCusQyWlxqaTLCFONjmFnDZlXJAJUruXBPBA8F+In/BL/APaA+HX7QuqeEvA/w08X+LtOtpxNpd1pmk3V0k9oWJSTzEjCRyAcNE3Ksp6qVJ/cbwL8KPg58JNAtdA8BaRNNpun2OLfYhYRRICMDjgKF7cCszxDqvgWGczadZyKW+dJbiRgFk7YAIA7c4z79Kl1WtmclKlZ2ex+N3xd/Y+/aR+CPg+y+J3xf+CmpaRo9/8AZ4pbq9jjAtp5jKsUcmJC0bEQH5GUElhzzivPodOtHiaeCGDcudsX2Z2LEdsg4Gelftv8SPD3w8+Mv7P/AI3+HHxCOktpp0OXUL271j+05rO3S2aO4D3CabPDdPGqxSkiKUMMng7sN+YHjTT/APgn/Z6vcW2geLvgvMIIiEv7Lwx8UbNEcZIdJJb64yRwQ3luns2CDcKk5OxvyRvoj58vbzXbBvOh8P2ixIm+QzwODx1/iHGBTNJ+I0NzuhTSrGdlb547eVA2PTDEtmvrT4c/sZa18Try0j8D/sa+NvGWlarAq2HiXwpqXiSz07zHJUFptX0Q8D5WJ3CMKRyPmNdR8Xf+CVHgz4VXccOsfBq4ju7mRBLZaR+1F4fku7dmwCZYrnw+jqgOc7WyMEAEjJv2k3LluHKkz6I/4J1/sX/sz/tT+Bhoni/9qP4k6P47jeVLvQ9M8YWES3vlkb57eNrbzVQKy5VwWU85IIr6qf8A4I8+GvDOizP4H/bc/aQKwIWi06z+JtvHuYDgKTahM/73HqcV6L4h/wCCYf7Lvj74kyfGnWtV8TTeLPtyXf8AwkGn+IBaTJOoBSQC1SNAwB67ckMdxbNfN/7f9h/wVM/ZjudS+Inwt/amvtU+HcEKyefq9roovNPB+UwOXtA0wyPlkXBIYAgMMnyXjsXiKvLCb9GacsYxvYxvGf7Pngv4f61N4S8f/t7/AB80jUIlH2nS9c+P3hO3mQEcBo5cMoI9q5XXPgl+z1c2U0Fv+358TIrl4GW3muv2mvDaRxsQQrNFbyRCVQeSCykjjcOo8FT/AIK0/t+RRgz/AB1mkYLhppdHtNzAeuIgKhl/4LA/t0RfI3x3umJHC22n2yg+3EL8/wDAW+h6V20446ybYrroeMeOPGnx58HanfWN18dvF2qW9lcyQf2pF4oupLafYxG5HW4dGQjBBDEHPBI5POv8XPjal2gl8XatJLlSk2oM1wUzyD++3Db3wcqc9OTX6k/sH/tw/C79sDwQPhF+1J8b9f8ADfinUwdMlstT8V2dvbeIWlG3y4YnjHzsrEGFdynB2s5yB7dP/wAEWf8Agnxd2xubHwJqbAoxVo/ElwVZjk5wGwOey4HoK1eZxoPkqXTQ4wTlrsfjJ4b8d/Fe71+x8UeItT0zVPsF9FKXufDGnMy+W25Crrbh42Qs5VkZSCxOa9e8P/tT+P7GXMPim8VWuQ+yRt6r04AbIC8dOnWvs74xf8EwP2afhKl14r8VfA/wXpHhy1nSOHXvE37QF/pERLHC7xNphRGJOAN7A8DJ6V52n7PX/BP+H5rXUvgbG4OUmj/a8IZD2II03II61LxlGtr39P8AM09nC90jlvgl+2foqaLP4f8Ait4YbXNMulKwarpd41pqNr833oGDfZ3IOSFkjwTwzY6XviZ8Tfgjq4I8C/tQTJpc6hk0fxz4Mv3ntnPB3ta2FzC5GB8ynBHp38v/AGq/gn4L8EiPxz8EPih8Pb/RQqx3mj+GfjBZ+IbiCUsfnUNFaTMpBT5EjlIOWZ1Vvl8IvNV1ORSbnUriP5MYa3jXj1yZ8j8jWkKcKmqMpcsZan0H428VeA4vh3rGlL+1P4Wt49Qsbi2uEsdK8SWUMkbxFWWRLTR08xSCQQQ24cEEcV8Yx/Bv9mPSRJp0n7TfgBpY22wGTSPF+egA5OhAdfXArqfFequ2l/YVvjOXfkm+iQAHjkZbj3rN+B3wM8G/En4r6b4b+KXx10HwN4c1C5cX3ihvEENwliQFIWSBXTbuzgSMwRerlFG6tlSVNcwk03oYWmfs3fCTXLy3sfC37Xvw8sJry8ZTd6tJ4gt7SFyFCl57rR0hgXJGWeQIo5IAyTP8bv8Agm1+1f8ACCx/4S/4heDtCk8KXMH+heMNHW1vdIvgwO3bqFsnk7mz8pcKWJC9RX1Xpv8AwTx+ESW9xruj/Bv4q/EXw3bytHH4q8PfFPwg0E7qASFghurgKNpVvnuEbDgMqcMep+E1toP7P80tx+zX8V9a+F2qC5/0zTvHfxU02LTpQAObiHSbm9ErdiJbY4A+9zgQ3J6xCyP0z8JfAL4/fs5/Bq08K6D+1pruraT4Y08RW0Unw+h1HUGhX7qKI5A8u0cAAFsAAdK87vf2j/Gms2UunX3x68f3NvIdk8Mv7MOoyI2D91gyEde1eaeDP+Cq37DPl/2TqXxy+O2ixAYjm1b/AEzj/ei89x+NR+Kv+Cgn7Hmu6qJ/C/8AwUu+OOkRCL5rKy8IfaUGP4gX0xmHvkmvEjRrQneUdfT/AIBq5Qa0PS/DvioeJp5bX/hc2pWDJGCh1f8AZcuLdG57Fohn6cfWo/HFt4i8P6fJfRftX+CLJQhOzUv2dyGUep/ej+X4V5JB+3n+ynOCq/8ABWT429cEy+DbdCPoG00Z/I17P4R/4LKfsD+EvDltoOv/ALSmt61PbweX/ad34LuY5psfxyCKAIX91VR7VcvrK2i/u/4BN42Pzt/4KPeONa8X+LNO8O+JfGvgrxhY6bbefaeJfCfgWPTDIjkh7aeN8EYIztIbqCDyRUHwu/4LA/tyfBPwZafDrwv8T1v7DTwY7VvE+mpeXMSDgRea/wA5VcYAYkjpnjA+/vix/wAFqP8Agmpr/huTw7r1zrPjCzuYyt1YjwU7q6kEMCLkRrkj0554r8lf2hpP2e9Z+LV7rH7M3h/xHpHhi9KS2ujeI5YHltJT9+OJopJCYc8qHYuMlTwBXq4SH1imoVoaLuS5JdT6Q/4fl/twakg07xDrOgyxTSKJ5YvDdqf3eehVwQ2OSPrUGr/8Fnv2nrNjFpfirTIiYsqz+CbAIG5wW2846Zxzivkj7BbQ3KR6rHIqEjfGwwWTPOAce/cVF4h0vw9GqXug+GTcFSATJOFKnOfuhm/P9K71g8JBaQQc8rbn07ef8FoP22ppTJZeKPCF66R7hIPA1mxXGTj5kJ9/xrifi/8A8FWP2n/jn4Mu/h78UdP8D6tZXcLxgP4Ms454WZSu+KRVBjcZyrDkHB7V4dpa+IbLXbbU4fCIEQZN8MkqbZF3ZPO4HBHGQD+PStTxJ8GdW1edvEFnpM2j/a03i0vdQt5FWQ5xslhJBU8EBlUjnOOtT7GhF3jFXJu5PU43Xdd8S3EUlxDoMIRYDuVrpdxxk8c1xM6eILa+e8XTb+B4pS0kCQiQB1PIPIweMYwfx6V6Drvwa+Jel2Q1KzuLaVVf5v8AiYxsOOccd6+sP2Kf+Chvww+EdjF8O/23P2SvAWuaMtr5On+NtB8CWD6xZFVCq0q/ZmhudoC4JxJkZbzM1FWThG6VxxSTPgCDVr+K9TWLLw9qIcSiX7XBbyKFYH72EwmRjqRn3wBXb6X+1X+0ZoMUEOmfHv4gWtpFIojsz461O3h7fIEScIFPTG0/Q9K/TL4nfs4/Gr4v+Crr49f8E3fjp8Mvih4WBL3eiXnwU8KnXLGQqGELodMQllDIMMiuRj5G6n4v1r9q/wDaD8Pa3N4Z8bWXguPU7eRoLjTdR/Z38M27xyAkFWjl0hXQ59eMYPeuenVjOVkv6+4v3SLTvCPirXbwWOk+GdQups48m1snkf8AJQTXd+Df2aP2kL28RvDPwl8bQzyMFV7LRL2OUqfQogJH6Vb1H9u79sS6s2spf2n/ABhGhHA0/XHsgP8AgNsY1P4g1wniX9p39pbWla31j9ofx5eRyofOS48ZX7K59SvnY/SvSvVWisYKSPar39gP9q/X0Uz/AAC8WNLjab3VtIngyPUtLGMn3JxWLrX/AATc/aGsLffrHhyx0diPlm13xVptnEB6kzTIce44r508Q+KNa15BH4k8R3V+w5WW/u2lkA9NzEkj65rKWC1uofK8zcgbICPgBux470KVVbtfd/wSuZJH0AP2EvG1lPt179oT4KaayNloLv4taUzFe5HkzSHPUY254qy37G/ga1UzeKv20fhLbRngnTtbvL50Hpi1tJNx/EfQda+epEt4trlMBBlyp5b3Oe9Vr7WWyV0yaVAU+4x5LfT8qm027t/h/wAOO8HufQsv7OP7Kvh5sa/+3fosoI3D+xfBGs3bf+RIYx26ZH15qpfeAf2AtPjebUf2sviLqAjQhotD+FCxeYf7qm4vgef7xGOfY1843mo+JGzgTkbOyGsq71HxAr4kM4G3klSOKmXMl8T/AA/yHp0PqWDxf/wTg0S0Fvf6h8bdTMceV8630Wx3J68zTEd+NuaqRfGD/gnNpEjvon7NXjbVbdvndtc+K1tC0j98pb6dlRgD7rhuuCDg18wxxXWokCXzJCx2AgZP0/WrFvoFpHFumvJYieVBtmfI9cj3B/KsJO27Y0lY+gvEv7Tv7F2nKB4Q/YV8MTPtDE+LfiVql0inPXaj27Mv+yCCefmGeKOmftp+DNHy/wAPv2Nf2erKIn5zPY6peyF++PtOpyDGMfLgjrxya8CubXwhNviutV82TBXeLRiF9j6VRXSNCjmxpt+JNg3sI124x6g89utZOpTbs7haVz6q8I/8FQv2jfhx4hi8S/CvSPhT4Mv40Maah4f+H+mRyxRnjAll3OFGSccj1B5Fcd+0J+2D8ZP2ovEdlrP7RPxP0TXr+GPZZXp0TTbZ442LcF7aGNpEBLEKxZQSSACST4tp2uJpMY2wWMyeZu23VtHIGIxlckZx7A960LLW/COot83gfwxBLLJj5Gmi3McfN94qD75A47VmnRU7pC1uf//Z",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD6cooor9dSueC2mNm+5+NfKX/BaC1kvf8Agn3rflED7N4z0KaTceq+ZOOPevq2b7n418t/8Fkx5f8AwTu8V3K/eXxForAHpkTuB/6Ef0rzc0i/qrNKabR+DGrArqFwD/z0b+dVU6/hVrVyTqVzntMw/ImotPtJr68js7dcvIwVR718EoSqVOSO7PXi1GF2eu/sK/CCy+Pf7UHg/wCFWqauLWDUdYjXfMxEQJYDLEZx+Vf01eGf2LPiZ+y/pWmaRPYW+p6LaWsMFpf6NI0sccKKFTeWVcHaozjNfz7/ALGfwDb4Y3um/GLxZqtzb6npmrC607T7VgjzRhUKsWZTwW3DjHSv3I/Yh/4Ld+B9dtbbwZ8Tbkw2u2K21Cz1GMuFPCybORk9cckV1PK8WlsvvKoYujGTPY7bUv7MdpobuNZAh3Rk4YDP/wCqvNv2iviJ4hk8F3M/hm1nubpLS4VY4gCzHZ0HPvV39pn9sL9lvWPEj3fw31x7aSS1MsnnwiOPbkZAOeuSOK/Pb9tH/go7qfgVIrb4d6xFLLbo06S26syszkoVbDc8KDxjrVRwdeCs0elTxVGUdD8v/jJ8MfjJ41+MHjLWdY8MXUJm8R6hMRcoVKFriRsHGema5xP2cPiRHDHcmG0PmtsVBK+4H3GyvZvFH7R3xF8c6tc+IdRuYEfULh7iZY4mG4yMWOcse5rDg8f+JE1e3vpL/wCVZ1dk/hGDmumEJJo8SrJas9l/YW/4JyG68G61+0X8d9a0+30XT99h4csI5nWS61D5ZFmBKD5ExjIOdx6d6/S7wVqXhz40/AXS7fVLw3t7Ho4sdUlVg/76E7lyc5PyEcnnOfrX5ueCPFnxA+PHhnRvgf4e8T3i6ZoOiXCWsVq4VpJWkMhmckEGTJC5AA2gDGea+hv+CRfjHxX4G8a+O/2avitdl9SM/wDbOmzzEnzEKKrIpJx+HrXdQi02cFaSkkfopgegpjKQTgU+g9DX1idjFK5DN9z8a+af+CvMUUv/AATl+IJmjVvLvdIePeAdpF0csM9MDqfSvpab7n4182/8FdYmk/4Jx/EMgjiSw6/9dq8/M3fCs2g7Kx+BOqQvJqs4AwGnb5j069a9u/Yq+EVt4u1S+8Ya7okc1rYxmKE3dqGjaQlWBBYY3DB6c9a434RfB7xL8XfiCNG0S2jaG3uFkvpJiwQRggsMgHnGa+0/Dfgvwp8NvDUOg+FLV4oiQ1yCoG6T1GD06181gstrPEQm9rmtfEuFFpIhvtQnuEjs5keOOCMRxxMCF2gnoPTmsC6uVt5JWiuAhRm2lXxjFbOuXMb3akA/6sdvc1zWpwuVuJRyMOQB1719HVwsYpann0cVJt6D5fEutztuXX7p32bSRdMTt9OvTpxXL+N3U2LLcuMsMkOevvzUes6u2kWf2t38gbsF5eAeDxx34rlNV8e6Xrlo8QuS7q23eMY/n715eIpJVD1aGKkobHPXjRhpfLKjBO3bVNZJGOGdiPc0241K3EjoFY/MRkAYqFL2LP3W6elecptSHUd4tn13/wAEprO2ufHPil/sqSTW+hxNAdgLRlrhVJXuCRwcdRxVjwd+0boHwu/4KNaf4r8XXbRaPZNd6Xq0gm2rEpQEO5zhcHoT0zWB/wAEt/iN4X8GfFXWoPEF2Yf7V0uK2t3O3CuswclsngY9M89q8b/amvLHVP2ifGF94cvY2tYNYuBO5ziQiNR8uAc8+uK66VR3ZwVdLH780dRWN4B+JHgL4q+FbP4h+AdWjudM1NMwMk4kUMOq5B6881tvFIsnltGQc9MV9RGSb3E9CGZBs6nrXg3/AAU88NR+Lv8Agn78QPC8Dyfbrt7BbBEIwz+dyDxyMfSver0raxv9oYIUUsQ/HSvkX9uT9pjTLjw7/wAKztJreTz5A8nluDgq2AT9OtZ1oKouWSuiHKSPjD4UeBNO+FfhRdH0qxWG7ljBvrkqPMd8fMMjHH4VparqEzWwBVfvjsfeqWran/pU+zUy/wAzYbzc5rGm1CRkxJesRnvIaqUowpaaWMm5S0Zbv5WmmDMB93HH41nTgIHkxnGTg9DT45muG2xylz6A5rz/AONvxRtvA7ppttfp9peLMkKyfOvHORXm4jEJRV5fidFHDy1ajp6G94wbSr7RzDrFpH5QfK7R/Fg+vtmvBfiImn6bdtPoWUQJ8y543ZPP5Yrn/G/xe8U+IV+zx6teQRCXcCly6g8EY4PvXJXOtalc8T6rO4PUPOx/ma8XEYhOrpI7qVNcux1EPiq8WJHmji2hRuO05x+dWLfxYl0xS0CFgMnIPSuGe7nKlDcuQRjG84plvcTQMWhndCRjKsRXke1nzbnRyXWqPTND8RazpOojWtMv5IJgNo8psDivW/hP448Aa3ZXUXjbTrdri6ummlmQYdnZQpyTnjAz9a8E8ES3N1pN/JLI8hSP5WYk4PtW/wCCWmtYlllgLScFVZcljXbhqkm3dnPVpwstD9u/2DvCfjX4BXt14Ba0jn0G9HmCB7pJWgcA/cwcKPm5+gr6Nt7wxWYuboSKpLESsuRjJ71wtz4HU2KatpE80UqxlW8tgoOfoPavlH9sfT/G/he1FzpPizVYt0mWUX7gY+gOK+lwuIpqbOacW0fQv7QvxysvBWj3V/8A2ms4x5YaCQHluO5r87fib44uPF/i251O63sN5EZPpmq3irxb4pu9IaG98QXc6GRcrNMWFcrJqNzKQXIyO+K65YqkmctRuLtYtTMJGZh3zVK6CgxQs2DLKETg9Tmr9vbyXUKpF/rJBhfqelek/Dz4X2+i6dH4s8U2YlGQkYcfKHPIOPXg15lbF0pxlFbs9DAYGtiKik4+6t/Q7H9mz9i648YpH4m8Z3SQxmbbFAC2549qkN0x1J/Kuk/bt/4J4fD34l/C57rwdZW9lrekaS5trllI84xxHaDtBJJIH51rfD79ombwu8ekrLFsU5jDx5IHTHX2r1ef4mt44s7caeIneSJPMVkyCSBkY9K8PGUZ1YpI+9pLKoYNwb1sfg1458M6v4Q1WTw7rduYrmCVlkRgRjBI7+vWsCUFWwfSvr7/AILEfCvRPh78fNK8U+GbNorXxboa6hKGYFRMs0sTBBj5V+UcV8gyElufSvIqU5UpcrPlZexUn7PYYXAOKAwbpSMg5NSWQgMjC4BxsOMHvjiimm5pCex2/wANbC5k8P3UkcZYTsyKR2IA611+heHrq3nti8yZULkc+lb/AMNvBen6F8FrLXRE5ubpmmbe2Rzjt+FOtLeMyJNzkkH2r0qVOS3OWrJWR/ULp/gT4a3cbqhhtVGMrKg+b9K8H/a9/ZO0T4k6fOukRROhRjA8UQwx28frXsunalY3sAnW4VcjoTTkvoRcOl4nnw9IwDjFehTxEoSukQqUZaM/Dn9oX9n/AOIXwr8Sf2JqsEhy2BCF5J7VyHw1+Fmt+P8AxFHbw2UzQpIY5HQ8Bs8jrX7W/GT9mr4SfFCzuLnX/D4MsikPJxuxjnB7GvlnQP2Z/hr8BbG40rTpF8iG7kkhklHzAMc4J71o8VNvY9DA4elUq+zkjy74f/sxfD/wLpNrqOpWJlujCr/vVDAPjPf3qP41W1hb+CVSG3iRRdpgIgH8LelWfip8XbTTr6e1sWMkcUjCMq/DAdK8s8b/ABgbXNF+wzadIAZQQTKPQ+3vWMfemfeYrEZPRyWrQpfG42+ZxHmebevHC5Mm7gA81678BfFN7ZXsNjfhkXzEjDOe2QM149on+la0JRxnsa9A8J+ItE8PzPe6pqccIgYuwY/3Tn+la1YJI/FsRisQ8WqfNomeD/8ABcySCTxL8OdOhZDPaaFOtxGOse6QMoP15P518CyxOrYZe3rX0r+2v8a9M+NfxlmvNctZrqz0+MwW5jnHUEYOcdMZr5/8Wroq6kg0Kykgh8gbklcMS2Tzx7YrwsarV2fSw+BGMzDkZqXToDPPtPC/xN6Dpn86gf75+tafg2zXUvE1lpshwtxdRxt9CwFY0FesjSTtA+wfiT4In8HfCXwbosUBV/7Ige4UAZDNk4P4EH8a4d7SVVIEGCPavX/jTcHXrS2s0HlrZJEiZ5+VY1XH6frXl2ot9jtZblhkIpOK9lRUTz6s3ZH766V4h8SWcRLXg8p8eSNg4FdNpXjsxWMUd1LmQD5jtHrX5Yfsv/8ABRjxp4XCaJ4nEV/pqmMb8N5oAB+7xx+NfS3g/wD4Kv8A7EOsX994V1L4n6honiixmSMadrNjO8R3AH5XjjZO/c16eKyuthqSmk3fQ1U49GfYOvfECJNKlIkH3f7or4P/AG8vjZq/hzRpDpF8IjIxDny1OeT6ivQfip+2N8NbDSrnVND8d6bcsEwEinycH2r87/2g/wBo23+Lnimb+xr4XLQboyqKwGSc9wBXmyjODtJWKhWcHeMrM2W+J0urQxNf3G84BJ9ah1nx5o9raCW8BKbwAAcc81594F8OeOby6+0G4Co7A+SSMgZ6daz/ANpG7uvC3gZJriPy3a/RMZz1Rz2+laNSjC9jmlVqSk9WztZvjJoWk3iyWOVO3PPPc+teOfHv9pfUNTmm0rw7qXlGR3inwgOc5B+leKX2q32oXTXE7spzhRu7VFktywyfU1zVK0mviMoYeEp80o6+gyaWSQu8jlmlk3uzHJJrE17/AI/F/wCuQ/ma2rxWeIAD+KsHXI3F2uR/yzH8zXnVnzTuelTvyme/3z9a3/hdCk3jzTFkGQt2jDnuDkVgN94/Wt/4YXMFn4zs7m5k2okmWbGcflWFBv2yLn/DZ9X6/wCJ9Y1KZlu7hWDAE4jA7YrlfGEjW1qYYjhZE+YHvTDewysZUlJVuVODyKr+KWF/CgtG34QA9v517Ck2zz6lrancfDa4+x3At9m7aV5zivLfi14OsNe+OWpXOpy3FtBNcIxvIo+I2CKBn+909RXqvgaCIagcL/Evf61qfGiCC2+Hl/La20SySNkyGJSxOOOSM1+k41KOWQb7/ozipVVKWh88+LJvGHhe7isrjVZl8+VxHIpZS0Y6N94/e9K9U/Z68O6fJpdzqjBmf7Qvmbzksdo5z2rzn4q/EPQ/F+leHLNrUHV7SxWG8uQcblUDA2j5fxxmvUv2dXY+Gbvn/l4X/wBBFfFY60q10+hqereEHSK9lkjjwqtkLmvK/wBsrVvtngyGL7PtxqsZzvz/AASe1emeF5ZBcT4b17V49+19cTf8IlF8/wDzE4+w/uSVnWkvqz9C6X8RHgSp5o3ZxS4xx6VXguJth+fv6VKHYjJNeBUkrHoiXB2oDjvWJrp3XanH/LMfzNa907eWOf4qxtYJN0uf+eY/maxerKiZr/fP1q5oF9/Z+pR3Xlb9rD5d2Kpv98/WnQuUbevUdKzp+7UTNJK8bH0N4O1T/hI9DS/8jydreXs3bugHOcD1rXfTcxk+d2/u15J8M/iLqGn240u4usp5hbb5a98e1ew2cv2m3ikPIdAfzFepRmpNnnV6UrI//9k=",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [45,36,71,61] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [24,44,67,88] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigD6Eb9gy5Dz2yfEiZp4NuY18PnBBGc58/I+hAOfQZIhl/YV1CMyEePZ1CMyIs2hbHdxjKgGfH8S4wTnnjgZ/ZSf4E6/qTC7h+PniuAFNoWOy0hlBxjOGsG5p8H7P3icNuH7Rnikjuj6LoLD9dNyPzr8qjxdmG7qr7v/ALQ7Hh4W0f8AX3n4wr+xDfvcLbp47mZj95V0Ft3TjA83kZyM8dKksP2BPiNqKqbXUp5W+YOkGjySEEdAMNgkjnt171+0Uf7PviBlCSfHvxE/rv0HQeT6/wDIN/zinv8As/600m+P4366gxgqvh/QsH/ynZ/Wq/1wxyX8Rfd/9qSqEe/4f8E/Ge4/4Jy/Fu2s7C5aW8ke5G66jg0KZvsy+Y6dSRuPy7sHb8pzRB/wTq+KE1u1yU1oKN+0L4ZZj8rEcgS5XI5H5V+zkPwE1mGVZG+M2tyBSCYpNC0Taw9DjTwfyNPn+BGqSbR/wtjVVxnpoWjc/wDkjU/64Zj0qR/8B/4AlQXf8P8Agn42eGP+Ca3xO1vULu01abW9Mig0+WaC4uPDBIuJxbtJHCAJ8rulCRF2wF3luQpFMs/+Ca/xYuIUaZ9UR2PIXw+zgL9RLnOexA+tfssnwEvUdWk+Kepvj+/oOjEfl9gxUc37P968hm/4W7qqtnIVPDuhYH4HTiKznxhm32asf/AX/kP2MVu/wf8Amfjfc/8ABMb46vdw22i6fqd0szH97J4fljVVAHJO44+hx7ZPFR3v/BMj9oWyubqJvCeuyRQzP9nnh0LeLiFScMFWUsHIwQhHr82cBv2R/wCFEa5BGIoPjZ4hVgflf+wNCJH/AJTfp/kmmj4HeLBcGU/HrxKIywPl/wBhaCM47ZGm8fhSjxlm8VZ1IP8A7dYnRg1o7fJn4/Wf/BLr413lvLMuneIUMeSqyeFGHAPU/vs8jkYDHg521Uu/+CZnxxtvNQaRru+OAFEk8KzrumBw0ZbcVUDkhycMMEZBJX9mIPg94jClR8ZtdIbv/YuiA/h/xL+P0zUi/BzxMpz/AMLs8QqCwJ26JofX/wAF/T26e1VDjDM07yqxf/btv0HGjS6yPxQ0b/gnn8ZNWv102TRtdtZG0i4vS914YmjiV443kWEyMwUO4QgDOd7KmCSKv2H/AATf+KOoaPa6hFcaos06ymW3fw3IBDsLcFjJySilgAOSVUElgK/a/SPhfcadE6aj8QNV1JmbcHu9N0pCPUfurJRj+Va3/CHaKLcRy6S0rgf64iz54wOPs3+fatpcYY6S92pFfJ//ACH9WNJUaDWhHp1qIpxaTu6KxHJPQ/StePw8krhY7tsgZPuK5iPxG6nbvjUjGPn4B/KtPTvE3mEQyXCBgOSHz+XFfn8a+Hhpcj2tBdbmwNBDZYXjj2pf7Fld+bojnpx/SqMutGNmScOrqcYLY/Slj191O8SsD2bzeK3VbCNdSvbYVvqXn0hos/6bkEc8fypBpAYDF03JxgjnNUV155EwyFWJ+60nP1prayir8svOfmG+mqmEb0uL2uG8y82lhel0/PtmkOkMH2teOOOBnFUv7dnLbRKM/wC1IBx+dS22oz3U8cJlSMO4QySygIuT1J7Ad6TnhXtcOfDN21JzpLrxJfMD1GD1oOmkjAvWPvis3T5l0XS7fSLWK4MVrAkMQuLyWeQKoCjMszvLIcDl3ZnbqzMSSXSa6UOJcg+pI/oaylUwydlclyoeZbOmN2uWx67qUafzgXhP41RHiBScKE6ctu6019fQpyinnIw3NCqYfzF7Sj3ZojTYSwDXrKe+GzTl0aN2LLqmB2DGsoa35oEaYU5AxvwD+fSkGveS5SS3Dc43BwR+HWqVSgxe0onAf2gjRAyaZgsN2WLDg9vv5qaw1GXzFEemNG6DhvNbGM8HrjP1rPtGuoANjseOS6jn9KsSi5MSgrnJyrLGvfHr1/z618/Oq10OJnRWOsXl4Vga1HmMeS64UD164qyby7VzFJa5A4OwA1zdtK0Sh44wGU8Kdqn+VasF1JeQB1yXXgqSMg+9b0qsmhJsuG6ulYKyEAjPykgH9Ka1zIDuhjXnq2c8/iOKgT7TcAmbYP7p3LkVx3xz+Nfhn9nXT9JvvHOjapejW7kw2H9jWi3CkiNZHLy71ijIVh8jOHJDqFJjcL6OFw9fGVOSjFyl2SLUXJpRR1HibxdovhHQdR8V+J72K007S7KW71C8mbCW8MaGSSRvZVBJx6Vd8BavdeLvhTbfFbSdAv7zTZ9Q1G1m1WfTPI0uS381ls57S4kkBvjLbvDKDEp5LModI5jF88+L/wBtH4Ha54VjuPil+zB428a/Dy7nC+N9NtNY/seR9Gw3nyrPb3IkJG1gIdyCXayOdjMGwdE+OPw08OfDfxX4X/YWOsT/AA20C+u7Dwr421+1XSL8WyhdpuYLVVV97KS0wMDywkPMkMnm7ftMDw5U/sapOtTvUlJRWq91LVy36vRrey8z1KGW153U4PmtddPnrv6H1KmpiVsR/N/tRsec/UU9byXzN6NKmAQRu+8D6/J+ma+Yvhh8cv2nYPHjeK/2g/DCS+G/EM32iLXNNtoIrKzeaQ+RBHYwDzoEMm4RSlWV/MRNx/dkfSGb4L82zA/uqxY/Xn+VfI5ll9XLqiUmpJ7Naq63XqtLrzPPxFGWHlZtP0d/kWnv4I2APmqcgcHv+VDanFEg3RTpuPLSRkD8sGo57baQyToWKhiywsR0Bx97r2PbjqetIsd00gYsoXHTBBx64zXnJ6nOSvPEHUwq5HJYqCf6VKbyFolJik9juP8A+qoQl2ZFcSHoSu05+nVqc93KWxKWYhuDsGD9ef8AGuinK26JbPMofGlnEFa40u4XOAFSHzeMd/K3Y7/iakbx/wCDIJ/Jv9Q8jjgXMbxNj1w4GPwFKmkSxxiaSGNGU5Y8Yx6c9f60670dNRtxb3kMcsaEZRlBXjOGAII/LH1rliqc7o6LXIofiB8OmmEtt4nsBzz5s4UDHbPpxmtXRPH3gq7uzNY+ILKa5YYMUN8hBH+7u4x6j/69c3d+APCErNDJ4X03ymwNwgCkjHqF4/OqNx8DvAcp2x6L5BK/6yO7cgnvjdkfh1FUqdG/xP7hONmeoLq+m+YHhdC4cbhvGBxnuc/z6189/tW/Cz4nftXeOdF8F+F7fTdE8M+HLtbybxjfFjcG5BKyW9tErfvUIKElti7oWG/gBvQ/D/wt8M6FcwSwaWbiOGeOV7bUWW4trgo2Qs9u4MNxEfuvHKjI6kq6spIq/onw80zw/ZRad4f1Wa1tYYwiWYuj5SLn7oVgdo+metezl2KoZe3Wpu9VaRutFfd76vola2tzalJ05cy3PKPjN+xNoHiRNP8AEms/GS50/wANWU9lL400CWWLT9MudOtpI5JwksSrJbYVbiUtI8zEsF8yJRvGx8B/iJ+018BzeftMz/E258KaHql48Gr2lha/ZJo/Ci2Udhah7dAxt8W8Fo0g3M0aRq48uSAGuy8b/Cu58fSaXZax4h36bY6kl1e6c43LfsqSCNJMYDIJGjk2spBaJc10N/pWqNYzRwXUUwKsvkzIrqwx0KkqD+Yz7V6tLP8AG08Kqbqczbu9Eml2TSWr79LdbnfHNMXZqUuZPudJDFYWq/6LHAsYZndYwNhZmLMSAe5JJ9SSalkms5BCTCB+8O5o+AB155/Dj1rkPht4Zk8EeELDwzqPiA6gbC3WCG7ZGDyRoNsYfLMWI4BbPTnHXPRx7ZF2bbdZGOFLSEjPsOn5Yr56pTjCu1CXMr72tp+h5ulzSia2DieR1YDgBuA3HQ4wTSMFEnmRzKDjGFKlc/n/AFqvaxeYxR1iYlSdrMwGfx6j2pJ7Zk3GKKCIDjO7j8cmto0qUloS1FrQuiXjzRKVG75FyCD+Z+lIjN5LSGU7mbAXcB0+hOAazTDctKIV2AY/ikO1vbOc+lRPPNBOFEcaZH3i/C/mcjP0NP2bRnY43CnKNPPtGCsannH1xzz2x+dEUYhLMLhsFMqG6gHrn5f6CsZtRt2kWL7O5k2YJEw5Pr17+lPN/CVUW9rICXG7bIMA9+ST37V5cIvmulsdNrO5oC2eZTHNemMIQQ8SDBXnjlTjHr/9cVd85HhMbtkbcDJHr3OOKxE1W32BBI464G8nn65NSLqMFuzxrdTJt4IjcgE/99dK6JYdOPtIrQqUI2ujXxtl3QyFdpG4M3OPyNSW0jPKY42z8wLlQeBz7cd6xJtZa6yqFiigqCfQdFwT060tvr0RX98X2YwI1ZjtH1PHr0A/GhU1e6WpnZdDqY5IDG1vBnaWyNi/N0I7dsE0xtkERjljIG4MevzHtjAwev6VgW3i+zEskVve3DopCyxLOCycZwdp9+noa07XXNMtAZo2OEAADSrtjU9OCcfmPpVR0d0RazuaplzMAhYurZ27clDx0/IflTo7y3m+SV8MTuYKOTzjPP6/zqm2oWsn7zznAIG1sjAwe+0de2elTWt/a3EpxKUkQ5bEoU89CSR9eRk16EIxmk+pfuyVzRZru3jMRcnYdzAHBPH93vwegz1pfNkKNPLcSypgnywAvUjOMkDOeaqR6zAGeC4si6nhW3ksB6qRjjvg0SXljCC7ky5Hysr8fTB4/Wtfq8epm4oklnt7hTHHdlRInUHIyO+AR0x2qtNEgYHzT0ycA4btnIP86tf23ZJPFLPFOoLAGISgFlBzgZBGcZ5wce9QDVbB0KT3cgYg/M8mdx9OnH48U1Tt8QKMep8Vxf8ABUr9lWJ8R6/raqew0iTH4iiT/gqT+ypuDpr+tEkEuG0eQ5PbnivzMor9MXAeSKfNzT+9f/ImvPJn6bD/AIKh/slZKv4j1oq3X/iQPwfrmnQ/8FTv2UrOBFTxBrM7ofvy6K6kj/gPH6V+Y9FOlwJklJNJzaf95f5CU5I/TyL/AIKnfskhQsniHXSOhH9jSjA+oNI//BUn9kQnP/CQ642M436HIfp1PNfmJRRHgTJIu6c//Al/kK+tz9Qh/wAFVv2Rlt/LXWNXZsEgtoco57ZIPT8KmtP+Crv7JVmUWLxLq+wD5k/4R+Ujn0+Ye3NflvRRLgTJJO95r/t5f5Cep+rEX/BWz9jlgHbW9YjIbO3+xZzg+oyTk+mas2n/AAVv/Yyt2ec+K9eMhA2ltAmP/s3Ffk9RV0uB8mpfC5/+BL/IF7ux+s0n/BYD9ja5/dXGs6uFOMOPDspK+pA3Cmj/AIK8fscK28eKdc6YBGgS5A9cdM/jX5N0V0rhHKlezl9//AHfQ/WG6/4K9fsbSMfK1zXcEcEaHMCM9ed2aZD/AMFcv2NolKJ4j15QeD/xI5iffJJ5/wA+pr8oaKUuEMqkrNy+9f5CP//Z",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iv1Pj/AOCVXh29tY4JvA0EUiSylpx4XUFkcJtXaBjK4b5v9oYxjmnc/wDBHPS7jwzJpGlWUdpM93HdR30miJJKmxXBiw5J2EtkqSMkLknAx8hDjPK2/ejJf9uy/wAjZ0ZW/wCAz8vKK/TuD/gjXr1ki/Z5dMfG9GefwrDIzx4Hl/xlQyhcFgoL5J4Y7q1r3/gkTf3abrPwr4e2Bhsx4fXcAAeDsT72WJJII4UY+UVT4xy29oxk/wDt2X+RKpVH0Pyuor9QB/wSK8TwzXCap4I8LOlwq28f2WwkV44BktLvNuUEzMegUbQMbyMAZ2l/8EjvF3hu8029tdG8Jak+naut3NBrGmfJdRowxBJsQgoVDBhtwd3ABGa2jxXlr+LT1/4Y1jhajZ+aFFfqVD/wSr0PRfFmt3Fj4X8NXWmTrPHpH2y1Qy2w8wlGaMxupbYdh64PK84ZZW/4JaQ6laGGy8H+DkVihld9IChXZW3hSIQwVC3y/N820EqMgCo8VZZKVrkSozi7H5YUV+omr/8ABLSV9UubuL4f+EJjI8h8m1iSNV3Z2kIYgEwTnAOCAOOtc54r/wCCX3jtvsz6T8K/DzIiAXCQWtsM/Ng87Acjg98+uM4648QZXPaoiPZz7H5vUV+iN3/wS/8AGcgZrT4SaYCJ94UxQjAIIC5IG77xyOBkA84FUPFX/BMT4ravrljdaV8MPD9tZ21rbQS2/wBkgiaXYVaV22HDMzF8EnO0hSQAKf8AbuW3/iL70XGhNpn5+0V+it3/AME4PGEbfYpf2edOmiWAW8bxSaejHcmwTkiQEMoJYg7stjg4529M/wCCenif+z4bS/8AgL4ZWaKNo5ZX0ywP2gADbkqSVOc/OuGIGSATXn1eK8BSina/zRMqVWPQ/Ra28MaJYWy2dhpVlBFGuEit9PgjUd+AqD6/jVq3tpLaD7PbwW4TnhtOt2P5mPP61ZXSHLAGRvzFOGkx7TidwR1Gc1+TfWsavtv73/mdjlU/pkCkblLWdgxT7obR7VgPwMVQDSdKaQyL4f0cN/EU0K0XPbJxEMn39qtyaYSmVkZjjj6Uz+zSVAZnUnv0prF43+eX3sXPUQ6GKCKB4I9M0oo/UNo1scfTMXH4Vnah4F8P6nGUme8tgW+7peoS2YH0EDJgew4rSXTDu3BzjHAPepItHRsGViPTaRWkcVjVrGpL72P2lXpcw0+D3hsOZYvEXiYFhjB8aangfT/SPapbj4awRwLaprHiBo1ORjxbqO78W8/cfxNby6HG5CpduCDkknH8qn/sTaoAlPJ6hhXVDHZivty+9icqt9jkn8D21vtEmp+IlCdP+Ks1Hnp1/wBI56Ukvg7Srpw8mq+IAVUD934u1BAQPYTjP1PXvXZJowVSVmJ9RxUNz4fin5Py5HParWYY5f8ALyX3sn2lS+pxa+ANHWYzprPiYHJ4/wCE31XGfp9qxXQ6Pc3Oi2C6dYSSSxogVWvLuS4kwAAMySOXPQdW9fWrEng+MrgXrjjjJz/Sq0/hHUhhVuVYEcYasp5hmP8Az8l94e1qeZMmp3G4tLbRkkjB3SDaR3GHFZlzoGk3U7XVxFdGR2yfL1q9jH4Kk4C/gKdJoGownDrJn68VEdMn27ZJMuPvc4/rWDzPMF9uRXt6iXU0E1UlSI+mPmXeowPzqM6xGp+UHGRkBxXPnVpHbBuYsgZDNKAw+ozS/wBpzbC5kU/3pROP8RxXkvFVX1Ob61V7nQDUUZVEfOcnAdeP6j8aR9RRWwysOMnJyBXPx3pWQrHtBPPmecMf+hVKL2dG4ZSVP3o36/rRHETvqT9Zqm6uoW2Mkupz244p0eqwoSqsxyP74rFhuXY/vZtue/mYqnf6/Y6M0LanqsVubi4W3thNOqebK2dqLk/MxwcAc8V2UnWqyUYK7eyXUh4ib3OnmebUbR5ree9iS0aOe4ktXiDeWJUUqfMVhtYsEOBuAYlSpG4I2vW3EkSyjccHBGM1kx36yaZKJjOty1wvkSGTCBFDeYhHrlo/pz6g1VF9NIpkjuABjg+aOfxzVyrTilF9Addo6AeJEU7ACSemSB/WibxVHG2yZJMgdNwOa5o3N1gjzTkkZJkA/madFfytIYWk5wdpa6CgjHuQKXt7vUTxLfQ6OLxRE+NkcgBPJBHFPHimJRsj83J6jcP0rl1v7hlYC7ib5uR54/oTSrdPNCqiRDz0aUDn9aJSi0L2tzoE8V2cxKxuzDjPluDilk1m3dQ29+TgB3GQfz/Wuf8AtTICv2jGOPvrSpdSY5cDHrIozWL5ugvaPoYodFQK9wACeMgZ/QVLBOqOYnVVXcNjpKG3DHcY459CadEunzxHzkIPdfL4P0NTTW9m0SLEjYXg/u/5nqa4VSlNXQtWPjngRkT5CSeTxxQiBpfLVx3PCA/n+FRRpaJIFBUEn7pB+YflUGr6jdW013Jomk77lLCSeyWS48uCWcSRxpblhudCfNMhfYyiOCXlpPKil6KNGc5cqX3tL8W0idS2/lMm2O5cMDxL8v5cYFfPXx9/aq+Mfwn/AG0Phh4F8E+FLG50KK/0rUtT1W/sgzJcvqa7PJmEZktJkjtJf3kLCRobicDHDDkfCv7anxo+Isv2vTfD/hnSLBYjcTzvbTXElopBKQOwdRI/CjcFQE5OABXf+A/+Ch//AAUS/Y18MeI/Fngrxp4G+IHhbV5TbzfDXxXo4nsYxfTBIWLLIkkyRyyqn2dW3GKV9x+XzF/ROHchq5fmaqYlxTSfKr3fM9Fe2nfqevhcsxqX1hR0Wp61qnxF+DOkeINde0u77S4NKsbe41O71PTHktrZs2du1qNQitUikxcz3UxEpUogmdio/dpT8FfEvwl8SbjU08K3lwY9N1E2gupLQCG9wiMZbZwSJowzmMuP443GCu1m+e/2e/2Q9R+LvwzvbD4ifEjTYLvwpDbJc6D4ju5k1GG4WUwXMdgg3Rb4SoV7djCZNvmCRystehfCf9k9f2f/AB/d+K/h54tfU7bVLwR3dl4kgVpbOzJ3FYZ4kDEqS2IyFRiys3zRKa8/Nsry+hBqvVtVadtPdfL33tfbovzDGYOlQ1rSSm1dJLT5+vkezxTTK3zRcrzkxAZGOuT2qG4lgZ5FnkQBz93KYPI6jGOMdaddG2cFwpPoTnsOwJx+VQr9jbJmBb+6Cv8AnFfG35Y3Wx4pbErAxzOAEK5x8vP0pPNMYDLMGDr95ZBz+GeBUcUcJgYwy9O+wnPTjNSs9oBzuP8AeYrjJPYY+n/1qSbfQSJI2BhV9qZPK4uhnj1Hb8adsSZw5lYMTj5rjdk0ye4t9qutzImD8qnAAHfHFV5LiF2DRyk4+7vj56/1q1JrUd2cqvxo+GkDNDJ4rUYPJW1lIP4hcVqWXxI8D3kYGn+MbU7wPlFyFY8/3Sc/hWZceBPB85EF74Y0xVIIG20QE591FU774OfDdoUX/hHlVlYkCOUqCD6kn5u/B4FejCjhOrkn8jo9651S+JfDZumhtdRt5JnUNiKRWZh0ycH2xXC/Hr42aj8MfCUsXgfw5Jq+uzWN1PY2/lt5FpFBA8r3NwV6RrtChAQ0rsqJySyyP8F/CrSpJ4fWCFkfMoMIlJwMYAIOMZbnHc1NYfDH+zbS5j0XxPqMWoTDK6pLfN50DBty+WV2iIJ/AEChTzgksT3YP+zKeIjLEtuC6W31667emr263Vc3c84+A/7Leh+Fvh9F4c8Za9rKwyPJJPp1lrUtrK7HYqvNcWjRykgISsYkKDzTuDsiMlofsNfBgeJLfxB4b8ZeJ9OjsbuK9sNOW9t7q2t7qJlZJwt5BMzuCv8Ay0ZxhmGMMRXo48D6gYUSfW7hGA5NvOyKfwZmx+dWItCv7WPB1CaTORv8xG4/AY/SqxGbZg8TKrTrW9NvL+tzpni8TKV+ay7LY8a8C/B28+G3x48TeAfA3xL1WyGt6P8A8JMNb1C1tbiSK/lup0n2xeUkYQl1kZVReSoBx8teyeD/AIga3e+ILzwR4vszb6paxJLbarZ2rmx1SA4BlhDEmNlbh4WLGMsuGkVlc4moeB/Gf/Cb2HjG08Y2f2O3t5raexl0ZnklikaJsB1mUIwMXBKP948evT207W6oJL/hjhsKcgjocYA7/Xr7ZwxuNlioJ1rTbjvs4tPv1ukr779GY1q1Wslzu9jbkkTcN1y59WVcD+fH0qBblTKJVklBA/vZGPcA+3vVaBkEvlG6Vhn5dyMNp9wF479cfWn+ZmXYEV2IwiLECX9Bg/55614yp6+6zm5exdGqAfvnZgf7yoef5VJa+IorC7S6srryJkbfHPCSjq3rlaoSQxI+0TKjscBFRgM/8BBOe3eobgLb4/fxrnr+7JB59+tO8o7i6alg3lk43JcxiQnIAUjI7c9PzxSNfw7irT7nC8pk8DOM4z046/zqnJBKW850G3or+T146dMjmmRtPgQxRLkDk+WOBn6Z7+lC12BK+wkZnJ+zTXkwdfWQ9M5xx2Pp/OpkmaNW/fkBRwqSEEn1HPX/ABqGNI7eF4Xt1JbqRIOD1B65oKqFWJ/LAbhfmHB+ua9OjFVIvm3OlJTWpK7O0iSJcBSvQljnPGORyKWTUr/yGQTy7WbMuJCVZh3NU0t1gnNw00a7SCHLdM/U45p0l1p7TZW6RJzkFsAqe/r1z2pSpX80S4E4mvrhzI95wx3EmR+TjHTOOlRNcNckXSPIzE8vhlJA9QxPFVpS0brA8kcXGccY6Hpj2/8A1UxreCSNDC0TSZDMZkV8qMg/xD+v0rKdGMLWZLhbYmliMchnW5JDnIXc3yHoQRjgdfXr0qKK2ud+5rkdfkEbEg+o6VKstpJshQ26kSYcMN2B06gcD39j7U24igac4lhj+b5Sv3fyBP64pRhGWj0YKKYqpfgrNdbn2/dYE8ZzyQeufy9qcksrthnBxgEnOfpwDmq9tePau5lZNquePvB+cdzUkt1Y30Tm52hE+bCR4DYPYd8eg/KidBwV5LTuDhy7isweVWihkO0HoxAHamJHdokix3TuuPl847ivGOrA8/5xzT2jeNo7iF4cFMlpBghewxt/mRUZ1ew8wxRsjYA4dcH+v86caalG26GoqSEF7p9wTbXU43ImXdmweO5zjA6e1WES3gQCByQR94Sj68c85pjzRXO8tcxqsi9PJBPXpkj1+nWqLyPp+WttQQRjhldRhR6+/fqDUSwdKbtTlZ9mCoRk9Hb1HwuY1wZIS5XaMbRsHXkZ96kjkdFceYwQn92AykDPHQdOQe+efpX4/R/8FJ/21InDxfGVVKjA2+G9NAH4fZqsR/8ABTz9uSIlo/jftJGDjw1pnP8A5LV9hDgzOYfbh98v/kSdUz9eI5jLh3u3jYHCuWXI7cY5/Wq8mnQQxs9vdQkoMuhkCr19PrX5JN/wVD/bpddrfHEYz/0LGl//ACNUa/8ABTr9uNJBKnxwIYNkEeG9N6/+A1dP+qGavXngn6yt/wCklqXU/WxryWYDzLqQkcEYGAP8KIJy8KsJAoU8Kzg4bnpjp3/OvyUk/wCCnf7cMr+ZJ8akLZzu/wCEW0vJ/wDJamyf8FN/24JRh/jaOTnjw1pg/lbUv9Tsw6SgvnL/AORBtdD9bY3kaRA17Jh2AkliIJX/AGgpwOB71Yjui0ShbmScNk4aQHqOCMDjP41+RMX/AAUz/bdhOY/jUBg558NaYefxtqli/wCCoH7c0LbovjeAc/8AQsaX/wDI1Zz4MzRvScPvl/8AIkuzP11WN5JPLjlXDcESr7fTmnm51C0LQrfcjgIzcbe3QcdPpxX5FD/gqT+3YGLj44Lk9c+FtK5/8lac/wDwVN/bvckt8clOev8AxS2lf/ItOHB+cR+3Br1l/wDIjUmj9bvtMsiqJJmyV+dXOTn2IGDzT7m3huYWVWjZ2biKRmyB26DK9/XpX5Dt/wAFPP242JJ+Nw5OT/xTOmf/ACNT1/4Kift0o/mL8cufU+GdMP8A7bUVOC8xlrCcE/WX/wAiD5d1oz9ahG9ozokgdCoAUZ/LO3mmr5wAR5FJJxtbIyP5j61+TC/8FR/27EDAfHQ/MCDnw1ph6/W2qJv+CnX7cbtvb4385z/yLemf/I1SuDc1nG1SdP1vL/5EfNf4j//Z",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [53,51,64,68] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [42,46,54,66] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iuuk+BPxWignun8Jt5dsivPILyEqgYqo539yw4/wADUsH7PfxhurG41O18GvLBaRrJcSRXkDbFYAgkB89Dk/3ec4walzhHdibS3OMorpT8IfiGoy3h8DnveQ//ABdMb4T/ABASQRNoGGY4A+1Rf/F0+aPcZztFdZH8D/ijMwSLwxuLHjF9Bzxn+/US/Bv4kM6xjw6MuPlBvIRn/wAfpc8O4HMUV1afBH4nySPEvhkZjI35voABkZHJfHeluPgd8UbUZn8MAfLni+gPH4PRzwXUG0tzk6K6RPhJ8QJLw6euhL5yjJT7bDx+O/FWIPgd8UrnmHwqxBQMCbyEAgsFHV/Uim5RW7HZnJ0V1ifA74qSSiFPCUhcsFC/aYs5P/A/1qeb9n34wQStC/gyQukRkZI7uFyEGMthXPAzk+g5pc8L2uDTW5xlFddH8CvinNEJ4fDKsrYwV1C3PUZ/56VyNNSi9mI+89T0rw39gvbDwlGk9vcpAdoBUxgZbaA3up68/L61Ss/Bmu23iWe+05o7KFAzXtqQWEmEIb5SPUsOBnnjtX0X4G+BtlH4Tn+zWE63cMLoFmtcyyyeU7iJGHKEHzCrdsgYPBbTs/hrpfjPxBFayaIlpdEqCfKLPbO2I3ZRggqGKudwxxjjrXgfW7Jp6pDd1KzR8WyfDnV1tZtY0+0kbToABM/kv5cK/wAJOAduc4HvSW3w4a40qPxVc3NxGZZCHt5rZgrDA2sr9CD+fBr7N1z9km68N388ltI+oaBKvlTX8NjKY2lTksQw/iOGC44CgY71zPjT9mbVL+1S0tfBN09rDCzx+UywCMlQxRgQu751OCvJzkZ6VssZGp8LsdkKEJSdj5ffw1fPYpHY2yoqAlGjBbYfc+pyag0/w2Gf7ZdosiqHUuyDhl7D09a+lPCH7NWdPv8A7X4Vu7hoY2j837a0anDrn5mQMTjjAGSenQ12Gmfs7arBpd74f0a0mhivJlFva3pSRC+wjjecAZkxux/B6HFR9cpwum7hHDKMmmz5H0rwbpnjiCSxtp4op44JpJIJIiZCyKXVFPcsF7etPtfCFyNHk0dYz9ouWHmNLEQEUdMZHpj8vavrq0/Ya1PS9Ut71tGEtukG+8nu7fe1kIXZAIyvzEsVDZ6EOOTxWvrP7Lnhe6lWwvrm5Elk+2S4gLBnAOdrKBjJUj5xxyOvZPELnt8yK2Fj7ko7dj4o0H4C6hrWrzHTJklgaNXudQbCxRqejnBz/ifeuhj+G17Y6c9vdpNdw2115Md3DCTHJHn5HVjjHzkAluodcZxX19J+zZ4AsSw05rlglqGtpLwshnBfCuCSMSKWGVPHGcDOKhsvgJ4b0SAyRa5Z3FvLGXNpLIBnJO0NjgOpB6ZU9cnGa0+sYib+F/cCUXUslofJ9r4Q1aPU7nTotHHmxDyYmZTukdmKFSSOn8WfQe1aA8EeK7DS4tU07TGS6tJnWDbbEszjac4zhgPmABB6Y9Qfqzw58GvB+qXV/JFqOnWerX8ryQItyk8TcNhdipkv6ZIwSOBya3dD+CnhyTQo9O1rxHYS3HmCOaK1W4EjOeryfKFI4yCpH3uA3OMXiZ+0acdV3NEk4nyPbfByXV9D+2JYiNoX8q+iWMICzBj5qtwdoyeOnIH8OT+fdfuFB8BNOvpnSfxtbTpcSQAm1snzBFGnl7dp4JKqxw7LnZyRkmvw9r0MDUlU5m/L9Tmqxcep/RMngy31KW8uZbaLNrLHLF9mfEjSMg2uevJB5z/eB71Ti+FEdncR66byNr8qyvblT8rEAqx2A/LzjHUnPGACfefEGj6HYac2ieGxNGkcMThbuAEswwpJCBguQMAknAxkjsmo3yaf5eqTaJEH3+VcmFyuI2wxYttxnoAGGBgeuK+VdeLloj03RgpJvc86g8P67L8OJfDVz4LvhY3d4WcMp+WUYVZhkHg5IGDk7ckY65Y+HfjfwhphsbeOKeC5vTJDZeYJZcoA3zYXCr0YKTncMjjJr3W2n0rwPZX+teJZBqUF06vZRanqexLVW2gopVlwSWBG4H7q8HJqPTjo+k3102u21s8sW1xG8o3sOCHPI+VenOV6nHNS2la2t+nU1cJuXvrba3Y+afjL4x8D/BPwxDd+I9JF7NfXojGmRRIJJHlcAMFJ27QdmWJ4PQAnJ8Jk/bDF9MNQ8IfDW0hgVCkP9ryGd2JORIAuzYSMewz+WT+0Avjr9oH4365dQeE/Ecelx3LLpMqafNnyEOFcfLjOMsAB8uSccVxpsovD7DQIdPns5LYqskd5a4kYAYBO4d/6c19Lgsto06adWN5Pv0+RwVZ+9aLPWPh78avHGsyXE/irUFt7K3tRLHbQyOoBUjrtkGMj5cknBI9SKqaXN4v8SXKXUN7NBFMzSOZS7LtOCTzjcTnv3+uByc1/pvh/w6F1rUGiudSZWaGE7XiRcYLAg/xDPccHrniPS/Ht5YaSiQzboSzGOYNwT/EAuMg54yO2c8EivSShD4UkY3k3ds9H1/wmI43ltdXLyRqS6LAkZVVXDblXlQXJOWAwo244FcP4j8Ra/oE5EmqzSyu+Y3O7JB48xSg5JORn6mmQfEkXEE2mwSkqUTKR4XLD09O3pjPTHXm/E2uTLK6w2sck4DMrhSC5AwCvHseoyf50ptFWZ2vgPxrbaRqNtqMTxpOkbxsJHOXU8EbzkD25yO3OK9f8OeK9C+Kumy6h4VtI/tWmOh1VFgKmVXOxVPU5A39DnP4mvlO0+INnqksOmahapbOQRK0m0dWHdQfY8ZOB9APtD/gmz4b8Har4Q1qW4tWmu11ESOSY1BiOzaGMgY8lSuwDLBzjkCvOzTlWFdRRvJWN6CkpaMW58CeKLvx3aSaNoanShahdUu54vs7RAZO1ULNliGxkk4JDECv566/qb8Q+D5fD2o2+ieJoZLOVovtMFtIypJNFsYnYuwkqTtOSOSwUOud9fyyVy5HWqVYz5la1v1IxkOVRfe/6H9YE+j+GF0GeDzWNtAxEtvGXUjGSI+SMbTt6dMDHAxVZ/Fbx6/baUiwXVraSSK2mi6LBZChALLyF+8CHxxjIPNYvijxZHOsJuTJIbiWWJbOfTmCRRpGcsZEVSxChOrLtyST8vNzwnq1pe20mpTwyRXwnR5EliWVrc+WJASzAMSQVKrztHB5r51yjH4rno1a8ObkbY/VdV13VVu9TOmQmJWja3VemM4UqByxwSSc4G3I6HPxp+0D+0prXxL8W32g6O1rd6PbXCRWyiLZ5ygAvICCMjcWCHJGzBC5JY/Qf7YHxe+IHgH4MeKPF+n6Pp4sryxntILm3uWWW3jMqW7yDHzA7HZxnGGBOcBc/H7eJPD2p6Laahoi2UMW4Zk80M64QZ38g9QSMg/e617WQQw1VvEJWcdLPpon+R51fEwrrlhfTc7uzu/EFn4AsdT8F6usNxDPJFcwov/HrMNpLBzgnMbJ97PO4dq8w+JvhD43fFH4g6TpXhvVLk3j2oNrctdi2hkldwBFNgckPnIOdy4wBggangPxh4hvtFuNG0jU7K586/nntYtjqY5gigrIwHKkbCuAcZOSegv2ep/EWPwFbaxHqT6ndJfwz38kWkmKOB/MEabARuIWRym5sBs9+K+lq16mkW9DGjRhzNpanyh4h0X4yX/xl1b4f2sF74t8QWepyW2o3nhuzlngDr8rKmxVyqsWUkIF+XIJBBPp/7CX7M3jT9q7xpr1lpXi2XTNI0i2ibVpha+cVaQsV8tCwAOIpGz6IwPWvvz9jX4C+Nf2YNE1nwR4u0TTmg1nWbq/h1DTrgu0sG5ZEEwYAgnLhQMn5JOxRnz/2F/gPqnwo8dfGPxprHwx1LRLDXPiJNdeH5TbCPTbmzinuGiNuQu0rEXYsBhVWSL+HBryKuY3p1Iw3ilZ6O/f/AIY7KeHi3G73PMdR/wCCPumXE15fxftQ6wltYNi7sm8MxiVFCZJ87zAhznAATgnB6cu+IX/BLz4e6T+zb4m0jwR4613VvERSK40nU9VmEQY7wywKI1QbW2qp3bvmcEkEYH1zY6d4QuNQurC+0KZrm+2C4iELyPLH5bjBbAK5ePOeh2cFckNnWl14V02xudNs9Otwpm8rMpKeY8TuiKmD+8XaGkORwyIcHduXzvr+JUkpS2s9kdkqOGWltT8qP2T/ANl+7+NnjTWvhlrni9tE1jTtMe70/wDtC3/ijkCSRyBiGyCQNoBYYY4IBx6/8AfGXxf/AGGPipPYeMvC89zZ3/8AoDSq7Jb3akMySQSSgIx25OxsMQzKQDkV9aeGPgd8NPCvxKuPiTY6RLa6l4huXhZfLaVvMluPOYnaq7pGk8rO04OMfKAA2t458D+BvEngC/0iTw7OTFGLvTraxnkklt7tZjJFKGUh22ybXZhjcR83G7O9TM41pW5LwktV/wAFHNCEoQ5lujvBrsGu2UVpreoxS2800cVuHuTJFJJ94bcsAf3Y3AZJIVj0OB/KtX9JHgbSPEut2em6VceHbmCCDThC9xDalJbq1DhYU+YFV27XICngKcYOQP5t63yePK6itbb9THHznOMHJd/0P6l59Zn1iwvNUuPEVpZS6TbBrOwml/e3Mb/LuAHzKqYXLYwCw5BIzzt/rGtW2nXdrd3tx9svZ0vW1PTJyWW5VDwWXDL95SGOOC3tWro66Jqrz2WueH54YPs7KrfZyBKUCjcwchkRgX67sHPUnNV/Bfw+8P3ml6fqWkaayXtxa2rXamVmKlCxbez7duQHXPBAYjGBx877CpUg3UXy7afidE6LrK77Wf3HknjX4vaF8WPhh4y0HxjNZWpsNE1FYrd3JSZBEzqqqd3zZx15PHJIJr8/X8Y6f4TQ2emxXF3A0L3F5HsG6JERzlSTwMAA9T0NfqT8bvBOjeE/gnr/AI1bw/Atxo3hjULmONYf3k+20ly0rHlmVFbGC2C6rwuAPzM1v4M+LY/2PNe/aP0SKWOxufFlvo12PKUMumhGPmKThmWS58uMleMxkHPNe3kmGhhMPO32pLd9bWPOjg6mHk7u7etzovg5+158GfA+jweI7TT9Vl1TTXdfOCxi3dZMth1b5xIrYHmA8qoUKANx9T0v/goZoXj3VoPh/wDBr4bQSzeJbQafK2oQiMLN+52SCJMq5EgLYYHcQuc4xXjfxH/Yph+GPwf+HlnDfQ3evfEGYtqEMJyYJ3ED2sCgZyVjlbd3zMvGCpb1TUv2OtN/Z9/bh+GmifDJxpsPiW0e6t5GuDJ5d1a5uZiu9k2qybEGGHDEA54r1JOjUs9/it/27udUeZLSx+iela1Yab4UstDW8S4ijJt5pmlI83bghRI3JQABOBgb0TB3Crmp/Ejwxa6Tb2lx9lNrZ2yxyyPtizbAsJJMDbuYExAnbjZxg7VC+X67rGi6Do7WGveIEvY4TJLPpmnx20F9PC4Xy22K6qoI3Fgx+bA24ZSDk2rfC3VnutR0fxHqLaVI8N1b6dq88ls7qNqs6rPEryRuhRVCK2dso+QI2z5aMb3kzvVShSS5rs9rg8UfDbV7WS78L2cN9qk7GUzPaN8m4llchiCBvf5egG44wc7eb13SbQ3f/Em1KxTzJQLgvMA5LRqG++C0ZzKrKpBGSMDjnhLb4h6N4PS00y406S8guhaPJd29lJEJFd3XcXIZhtVIiyHCnB2kfOEv6p430bxQ2nxWyXEd00cBs7a6jEi+aibUlZ4xtZvlViFBBc4Acck5faaRvY15YVG0rnT+DPHGh6J4o1KGx1XTpzDtlOn2kkm+JJUV5Zp1LsVBy+3eCGCvs4zt0rbxn4avpftk8pEUakrb2dmvlRtnacMQAWIPI7YxnIrz2b4e+HbCeLxfDpfnag1wsMupWSyxfaNrEAyx4LFdrtw2VG0FsjaKzYZNe1Wa70PWNaL6bNbEw2n2SO0lsXaRpIgJIljbBikDkMG+5j+8WccMnazdvuMnSkrJHoY8XaPf6TbWdnZWlvLCFMVvExjxDHuM0mcDClX+XqOm4rx5n8sdf0lwfEHxfo/j7VG1jQ9P01LKwNzZoEhmuJYFjck5Wdtw3SNkLkASRKcOGCfzaV72VRUJTiv7v6nnY7mtG+2v6H9Ruianrl+Xtb2xNokdjcyfbLpJViZQjHzCFwyNujQLnggFjhSSKuuax41t5EZtNjkjWzJIikwh3TDP3QApIaTOQvBDA/MCvx1p/wDwctfsLsm7Vfgx8UFTyJozYwaFprI25mdP3h1FSoD7TgLnBIyRnfFaf8HIn7A1sxI+FPxf2rdiUA6HpRLqOQpI1BdvX+EDoMk8551hcS38Oh2vF0r3UkfZ0154t8VeHTpXifRWlsJIFtpIWGMxMrRrLty3zBTvO3J+9hRuAX5xPwI8b6n+wzffsq6z4RvLHUpkjDSpAZVEg1KS8QgHGAEKjIyDljkjbXmsP/Bxj+wKysb74YfF5w8jSmH+w9Owrvhnwy6ovy7lxtZSCHJ+XAWtZf8Ag5d/YMsr8XWj/CP4vQJbwwtZp/Y2l/LKoUEAf2hhVGxccNnuBWsIYujFRUOqfzWxDxGHnL3mux3eu/ATxfrHjb4Uy+IPAT3Fn8NNIjm1uWMyJFPcLBDFFK2ejCaKL5T3ONv389p8fPhV4t+MOu+A/iF4TgFtrXhLxBJeLcN5u97WRR9otsOQp3hUOGwGDnPRmPlWj/8AB0f+wrZaLJomo/Bf4rzxSTpKRFoWmRqGCqpZQdRJU8Fx8x+YAZx0xZf+DlT/AIJ9y6tHqB+CnxWEReR7i1/4R7TMByFVShGpDHAOT1GRjpWlsUpRkoWav+N7/mV7bCpNKR9Y3KxabcG28Rtbp5unQywQLZ7D5UfAGCDkhpDncV+64UEjNSala3WuaJYwrZ3ztclI5ovI3PtBDMRltpIIDZyBxgnJGPjaL/g40/YB8y5W9+E/xduI52d4Vl0TTT9ncxRopX/iZc4MYI6YwMe0+o/8HIn7AV3ZNZWnwa+LUO5Askp0fTWaQMyeZn/iY7VDAPwAecc8muaWFrJXUGbRxeGj9o+2rayvtSb7fJpk/wDoV8v2WWa13Iu6YhWQdQAdxGOMrnjvJZeGf7SeJryyt4FR1nllulCy+ZlmRcrt2lQy8+rc7uVr4s0r/g5m/YZ0vVoNVt/gp8VEWIBTaHStOdMeYzFudQHO3ZgY4OcEd2Q/8HL/AOxAbyKfUfhJ8VbhFd5JR/YemozOSMBSuo/KBgE9QxUZAyTWc8JiErxgS8ZQWqaPs+/03WLjWbl9Kmt44DukilhumSMgyYMbEnsCuc5GI1B4yBgeFvh1L4XnbUPDoF1eLMWaFI/3ckaliPkLrny8KzMB87Dje2AvyTbf8HIf7AVm+6L4R/Fl5DcBzcS+HNL3hMD92ANSxgEfiB9Astz/AMHJn/BP54ill8F/ivbKbsuLeDQ9NEQjJyVwdSPXnpjtjFV9UxG3KH1rCr7Wp9deIPh9b6r4guda1DR9NnvpVYzPHbqwRAcElTgKSuBkHGxfQYH8w1ftjF/wci/sOW5vLaL4TfFbyLqI7mfRdNZ3YldwYHUMbSN3fsvHFfidXo5fRnS5lKNtv1PMxkqUlHkff9Aooor0TiCiiigAooooAKKKKACiiigAooooAKKKKAP/2Q==",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPQPhV+zh45+L3hu68V+H9T0q0tLW4eAtqNxIpkkURkquyN8cSpy2AcnH3Tjbf8AYz+Ksdo1/Lq2iLAhAkmFzMyqW3FckRHqEYj1A9jX0N/wTJ+A8fxP+Ces+KF8TWMM1n4sNvHpt7nE2YrViwOcKApclnUJtViWDBVb6Ev/ANjTxdLcT6lC101nKrta3Uh2tJKhZX+V/mlIYqTxubnIGRXlV8bKlVceZfcUqNaS5lt6H5z6v+yr490bUBZXHiHQ5E5LXUM85iChc7s+SCR9ATnirOjfsg/EPW7uW1t/FPhuMQoskk0t/KI1jOMyFhEQoGed2CDxjNfoJD+w14j8Q3E6Wfh+4SDT7XbJbXurRKH2+XGJGd3jWHdK7MI2JYEAAsQcacH7DHjjSYrTX7zV4bS3tLhbS+u7VohNGkhA6PNGU2ZbcGIXdnlSQzZvM042UtS1QnKKZ+e9z+w18X4lcWms+H7qWJ2WW2gvpRIuAxzh4lyCFOMZz16c1RuP2PfiXZsyXmu6FEYpClz5lzOvkHgjdmHuDxjPQ5wQRX6DaJ+yja6HLe2/hjxrpJkiecA32owtEoRmkUR+YwAeRdvKs7b1AVi+AZL/APZD0yTWru3ufHdrAwVGfSoZY5HsVwiZcRgNsG5edp4TJ3Do4Y3EuVrX+TuZulWTb6H5zH9lr4mPqg0a1k0+e4ZN0aRySjf6Y3RjqOcnA7ZyCKwfjB8IfE3wU8Ux+EPFl3ZzXclkl1mxeRlVWLAKS6Idw2nOAQOmc5A/U3RP2YNVvbKTU/BvinT4LS6dkh1C1t0kt2dUQZZ41IdgxCbskeZ8uV8sqPhD/gpj8M9Z+Ffx703w/rV8tw0/hWG5hcYz5Zurpee+SUZskAndnABArpw+LdapyPcqVKpBXZ870UUV3kBRRRQAUUUUAfsJ/wAG++jy3/7Fvi+b+wbO5RviXcg3N1bbzHjT9PXaGxhQfNBO487AF5OD+gui6HaeHLqKHT7ye31J3c3stpfm3imhkKERqoXEanBcZLgbGIUDJb4F/wCDexpYf2JfF0qXEqo/xNvIpoWnxHNGdN08soXs3yjcQfu5BBGa+5/DPhzQ4LQXzT3MMEavGRC37pwsbrszITyM53LjZ8pLV83jKUHXlK/XsfQYWzw8b9jxH/gpTq+q/Dnwbong7R9cbTZ9cM8k2v2t5H9rjtrUw4gSTZ5gDGdcFiMeWylWLk18n2nxr+H/AIftpNP1TxNDqM1rC4a+vrp28ydmwzCRziQ8hM9D5YK8ZNfopp3gXwvq2q2+uTeDdC1G905Xt9M1e+sEuL+DeyFhDI0DGAB3yfKYH5iuFG6uWuv2avhpb/HCL9o7SroXHieHV7u+vLi602PzJ4jYDT0hXypE/dxmNJed5V1YHPmEnfCYmhhqXLbXXXa7M62GdWfMnofB2s/GTwxqF2/jKyeRdNguxbXN3ZBljillSQxK7lCN2EdgpwSIm29zWno/xN8U+B9aHxe1LRGv/DutRyWt1qaWYKyXMQVja5XcTMyFGCNgsfn52lh9/fHz4PaJ8cPCeufDPXfETNZ6l5U0l3b2qh1lWQkEAkuJBtyUII5blgCW4d/2J/gjrmsXHii/1m5ivXj1FZ7y1eFGuJ715pWlkEsTf6n7U5ixtY/us+YIQF6oY+HLqn/XmZvBO+mqJPhjoieIvgx4Y1K70+eFpo/tiWdlGqSSwMXki5CMDlWiGPlyCofnIb8tv+DgfSrPRv219EsLKKVUHw9tmJmuYpizHUdRJbfF8rA5zkcHtxiv2Tl06007T7WQ/uWhYIPsUeFYAh1whBWNcBlGMDKg4yDX41/8HALQSftneH5bZbhUf4bWbKt1HtdQb/UMA88nGOf/ANZ58ElLFufe5eNSjg7LyPhqiiivbPECiiigAooooA+8f+CXP/BUH4AfsTfAbWPhd8V/CvjK+1DUPF8+qwTeHNOtZYlhe2s4wrGa6iJbfbscbSowpy2cL9NR/wDBf79hJ5/Kn+F/xTW3ltzbXONA01zJAVKsjD+0VLghjkFsEfKRyTX46UVzTwtKpLmZ0xxdaEVFbI/ZLRv+Dhb9iXSzGi/DP4rKixPFKF0jTmMqE4VCTqG4LtwpXccjjpiuis/+Dk79ie0hOnx/DX4vpaGYuYU0vTeflCYx9vwMoMZAyMnk54/Euis3gMO+/wB5ax2IS3/A/alf+DjX9hyK2igt/hl8WIxbwhY1i0WxUMQpHfVW2YOwgjJyoPGMGtqn/Bxb+xFPe3Gp2Xwq+KDTzQNGgm0LTwIiVADAjUjnAyMemPoPxfop/UaF+v3j+v4nufsXH/wcO/sjrfDUT8P/AIpq/mxlkTS9OIYIeDlr0/N+BHJyDXwT/wAFTv2zvhz+3N+0Ppfxa+F/h/W9N03T/CcWlG3163him8xby8uCQsMsi7NtyoB3A5U5Hc/NVFaU8NSpS5omdXFVq0eWTCiiiug5gooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD//Z",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [29,30,98,66] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [35,46,60,61] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9brTwLoOgWTXlldzQo4CkJl2mdiAqqvdiSAAOSTivFvjf8aJfg142k8MeLv2bPigdOYRM3i7TPDSXOkQoxG+aSdJsosfO5dvmfI21G4z3/jrxX4qHwpitPDHiS40zWfFXiOLwxod7A8qvaM1vJeXs6tGu6KVbC3uBBJu2iZ13DhaZ4A/Yc+HuhWCn4c6A/hBnnSSW78D3s+gyzlTnbM9g8LTR5wTHJuRiBlTgY6qMq0rtPY83G4/DYOpGnKLd10PJvCX7aX7PGp2kN7p/xb0Wy8+6aK2TxHO2mXExQAtsgvFikdefvBdp7E4r0az+Kfgf4maK/iXwZrGm6xYJJ5Mt3pGpR3UccoAYoWQkBsMDtJyAQa3k/ZQ8O/Ez436x8Lfj7p+lfErSNQ8KS6nr+oa7oNjZ6jpUslzHDp1vDc6fb20jwzJHqu7c0zp9ljy0YcCX80dX/aU/4JW+Kv2iYPC/wd+LnjP4aXWmazLN4MmGlrqnh6w02V/OkvYbSTc8U0qKsiQrbSOmIi5CEtFqsS5zty6o6IOEqamnZPvofeNzc2t4SzSYjzwG61Ru7XTJSTEvOeSDXzl8HNZ+OEnw1vNd8A/HPwx8TdH8K6LPeXl/4S1xtVvWilbybafVrG4zf2k24iYW6um5I3BEZWRUrfAD/gop8GvjZrM3h/RvGmnXC2ZSG/1K3mNukM5Tdh4JyJEQn5VZWkywOduDj0KFSM0uT+vXqvmcdaE4ybkfTttOun23zTAhukY606fxNFHD+5mcMOxxVPwzYaZ4m05NTt/ENvPaShvIurOdJo5SrFWAdGIyGBUjsQR2rU03wJ/aupR2EVz8kgOZdmSMD0J5qKsabk+ZmlKVRRVloYtz4nvpxtBbnuBV7Q/EQWZFvLdw6n7/AGNWfF3gS78KaiLSZzLGVBjnMe0Nnt354rLUXFpIC0IcZ4//AFVpDk9n7uxm+fn947BvE0EhV44zIw4yK1bfV7drQTkE5JAXNcXFPqMkQNvppUEAhscGtxYNVwIoIlYAZ4YAc9a5KiSsdcG2df4aJaNmdgu8jv0rrLDw8L/T5PLAy2OSK8y07V9Ts0NvPCmAwKneP8mui0n4nanpq+XKsbR+u7GB+tcVR1IvQ3ik9zsfg/4Y+F/iv9nzwzpfx01Pwvr7PrF1rGh3F8Y1a0lN1NLZywGTbJBd28E8Seam2WNwSGB5roV/Z+uYbS3T4d/tK/ELRNMceZFbQ6tZauJt3zFvtOr2t5cEEHgCXaABtAr+fQ/8FhP+CxPxV+J3iD45eGvGFp8MvCXiC5W70/SL74f2N1aWVokcSW6i4urGSZ1dAjNMMRM7yMqxodiftN/wS+/bwl/bZ+Cc7+Kr7wXpHjvRNSgXxBD4Du/tGl3cMiwzpNbeazMUZJRbO25wJo5VVyVwviupOlK6evkduJprEzlOa3dz0L9rb4efELwL+w98UPDH7JfhO91LxvqXhG+j0gNqby6hfXslqLYXD3VzJ5k9wkKoEaRy37iJBwqqP5Zfid8Hf2gP2ZPifq99+0v8K/EnhHV7zSNVbw/aaxYz20lreTbgkiBlUbThl3oCDlSMAAj+tzxTo8Hjzwrqvg/4keBbiKwyxS40+cT8ReXJDcW5jxMkyuQ0ZWMPHLblkORE729W8C/C7x/4Ob4WeNvD2meJ9Kjs4Ir3SPEsK6h5sYA8s3CXG8uxKZ3SAkspJyQa3oYvkkYSpR5bNH8sf/BOvw/d/sVeLfh//wAFGfif8UbDRIrLVGuPB3gi11K6h1jxNBbyW8FyUEdo8ENjPFNd2zSzyLvMF2gDOgz90fCv9kf9m/4e3HjzwL4k+Ib2ln4N13z7TUbu+0x7HUNA1BvtmlaoQkZiijubeZCqswbcrZVS20ff37W3/BAP9gD9qfQdO03TvD2t+AbnRvtH9jHwhqzrZWiTTSTtAljP5lvBAZ5pZTHbrDl5GOeTXx1/wVy/4J8eMPhv4++AngH4efGPQJNZ8WaLZeA7H+0dLa1n1q9t2liinnMCMSiJcabYRNI7yJG372RlV5R6GCxUqGJc1J6+lkc+YUKeNwipWScevV+vp0O1+GHh7RP2a59Hi0XbB4Y8U4ju4dPaEWlpqTBWW5BVI8o6BwWVEyEBbOI0X6DkXVY7ZFs7lVRHwWUkMGHUV+afjD9j3/gpX+za6eA/iRbaBpljFqb3Qinub5bG58sJH50LIjRM2ZI1LgkfvEUgEYr7D+Afx38YX/hGKy+LFzpa6rDMU86w1J7hLpMDbKzPDEVc85XDAYB3sScezXhVxMVVp697HlYO+EvRquy6Hu6eKr/Up8eIb1bgKAMSDPT1zWtb/ETw7YKlubWIBMgYhHpxivLNU8TabfwrdwWZfzI9wljn+VgehGDWO1+Lh/MjjEePWQkmuBUXPfQ9F1ow21PU9a8S2eq6gJtPHL5LKFwD71JbHUJI3zcRoQOAWPP5V5QfFl7ps4CvnaOCmDWjpfxQjglMuo2dzOpU4WGZYyG7HJVsj2x+NVKhNRXKTGtBv3j0B7XUZQWupB5affZCcgYzSf2bGZl+yajIgP3lnOT747Vylj8SZrnw1qd1a6TLJPCIttzNLtSEFySiheXkZVzlvlCJN8pO0jn5vir4gAISWJc/jWEadeTdjR1qKsfE1n4C+Evgb4c6j4STUNE+IPibxW8lxpviKNtQg1XS9Ysbe0v/ABFpH7ySOyCWFvMknnykIyzOGnjKhI/EvgT+0xYf8EpP+CkFp4w8eXDaBpV7NJpfxNsdK0lLy9t47e/WeRYWSbZue5tUB2MYmBlJVhhj9eeIf2sfF2v/ALKM/wAD/Hfw3/4SKwi8Bar4XtY7fVEttKayunt3a8mggjF1cX6pC6JMJkUiXLpLIXkb8wfG91pWvftF2Pif9ov4QeI08OWlqYtHsdWsXtP7Sut4O5i+1XiXcWK+YPm27iVLrXzWG5Zya3TWp7VVNRVz+jH9m7/gsB+yR+0ICPhn+0f4J8U3MyQTR6NLeP4e1g+aqgRRWOqbFmYNnJWfBwcZyoP0Vqfxg+GUMkemfEY/2FJ9qj8qPxTZG3hadMSoIp5B5ErqQGBjdiCueor+Uj4rfEnWNT8X2+jfATSdY0zTUnEtl4asIvJzKxLGJbePzIJYG+U+U0ZU8jAUndofAH/go9/wUn/Zh+JqXPhT44eN9G8OWWpW9zr2jaZDFNpkWMARi1EbWkMjbNrKI+GyWRiCp2WGnJXi7eTMJKCf6n9ZsBszZrfaRqcssRka4xFcrKJ9wY7A0hOFycgKVAwACBkV4V+1d+3f8Dv2GhDrv7T/AMfPDOg2+oaTD9nTUJcfvo5iks1tp0Mct7csWubUOsckwREDsIFV5JfyP+Fn/BeDxz4bmt7L4lfs42sbzac0uk6t4RaTw7qT3JZWivpIfIk069dBuID2RUttOMLtPzL8YvDvxT/4KfftjeJvjj8SNP1TXNR1i6Fj4R0RNRXFto9uFS2LTGbajHzASoZEM8zlVJmCK6UZwlepovJkuCfw6n74fAL/AIKM/sgft02Vx4Z+CHxx8C/EQ78XPhZrSXT9QmEYEjPHY6mivdIuAcqqqCv3wenzL/wUw+AHwx/ZO8A2Xx68H6vb2Nnq+vxadDo2ltIGlmkSWRhHbzsxjKhGL5lwu0KETpX4+vLrX7NOg6tr3wavbCy1bRdSlghvoIYWv9H1C2cI0cF/EfNhdZoSNySj5+Fw2MfoD8Qv2yPgV+3/AP8ABKXwh8VviRo+o2vxL8KfEY6bNaWOtSWBXURax3lzqCQW7eUiut1G2VVf3jNgLhkr0aGLr4eXNCVr7P8AzRhWw9KpG0lfyOG8F/t6+HI2nsYtfuY7q3083t1psljLLKluZ3gEuIkdWBeJh8pLAYyBmu60D9oC+8Z+G7bxbpXiO6Wwu1Y28tzCLdyAxU5UqpHI43AHHULnFfCvjD4s6F8K/iXZfCT4afAe28T64NIxNfeHvHsjFEZ23x71jL5UNmRdqFGfBAbJrrNQ8YeGdT+y3fg7ULK4sprKORbix1C4ug7sNzlpZ+ZGDEgsCVO3IJzXZjatbFUk+dKX926fz2X5nNhqdLDzfuXXnZ/d1PsVfHur3e4x+KbuTEnJXUHO0+nDcfSpE8V64Wz/AG9ejtzduf618j+G9cDyeW/iQ6eAufMPmEMewwgNdXYfFnx5o12bSx8TRakGAVSqmRSSe2QCT2rxZ0MReym3956UatLrBH0xbeOfFtvaS21r4p1KKGU5lijv5QHO10GQG5+WR1yezsOhNRHWNRlyZdQuWBHIaZzn9a5HwB4l1LxDo6Xuu2DWU4z5kLwSoe+D86gc4zwTjI+ldLbsGUfMeTwPb8682VWrGTTbv6nbGnTaukeXadrun3itaI92fNYhBcWbLGpwOCxTAxkZ5NXI9QsjpUyLZ2t5cBiUYHgr2GFY4PuR+HasyK7glBjU7eNuAeozn/GhrfTpZftS26CUg/Pj5sccc/7o474qnSiyVJov6DpzayrnU7SwstknIu5GChRuyykLnsp6KcH1GKTXNB0+ErqFyfs8k0YeExk7cEFs4A6HOCeQMDpzUVrem2OYI4x8245gQ579wc9+tM022isXuFiGIJxzbRQqqJ1ztAxgHI44AA49KwlQUnc0jVdjAl8JvBcR32n3joZSwjaSBQk5HuAFLcHgbTwSc816l/wTZtPg63xh8ZfD34r6b4GkR3s9TuLLxh4TS/hn0u3a5ubyOziSWOQ3/wC9haBESdS6GdoZGt0ZOT0zWLiNZoHkuI42ODFNyO/IPPX09u3eprHhD4f+LCv/AAlHhqG8O5c3SN5c20Z+UuPmK5JOM9RVUoewk76phUftIpHkn7e2tt4evry5Yvb2s3hrTLu2e7t4ra5LXEDXlxLNawlY7aZrm5nkFvgBVkjUhsGST85dS17xp4C1y81bwF4pnt4dVYy3UcMLssLCViqMGUgkdQwz8r4JBLKP06+If7DXwt+LMcqR/EjxJp6uHaO1hu4NgY5xvDxEypzypYEjIzzkeXWv/BOixPiM6B4n+I7XVn50s9jDYaaLWZ2YRmUxxElFAJQfuw4wuDswBXpUcbh6cOV/iv8Ahzknh6spXR8Q/CD4pfGLwb8RT4g8CeNLi21S8eS2/tB7ZXaWOVwZHYSK3XarEkHGM9RmvqbQde0p7WKCFEt4kQCOO3ULGijoFA6ADoAMCvVrX/gn1op1qe70bxosdq5draztrBRLGpz5atuc+Yqjbk5Vmx2zmut0n9iTwXaxWPk69cyXdu0bXkM4AS6XdyNnDRhgGAIZse+K1ea4OO7/AAM/qVeTukeQ6beTHH2XUy4B5XcG/D2re0/Vr+3CybT8vIKDmvW9Z/ZW+HsB+2wfa9KKEBlt5zLHgP8AMcSZZcjKglgAecHpWzovwb+GFnp0UmpeH7/ck5j813klZx5uwOUjPQ5B6DC8sAAxGTzTDNbP7ivqNa/Q5/4R/Ev4nalqsWkWkb6pACPPNwhJiUk5ZpOo/wCBZ6YHava7PUbhWDBwD7Hmqulaa2i2iwaOsQt4Pl2QY+THYr1HfNaSXMV1tNxENxGQ/r+IrzK1eNWd1FWO2nScI2b1PFbbVWXIO3GOo+tW4dT3oF6Z645xz/nn/GubW5y24kbsHB3dT6fX2PNSpcELsK8gZAAwc/57V6DWpw3udJFeu6Blce2e/NWI7+ZVC784OO/pXNw3jJwSTnoSeO3f/Jq1HqTOQQ+eccn2qeUtSsjoRfHglh1A/wDr1It0rjcME59awEv8JnOc8nH+f1qWO+Uth/Xr64/z+tS4j5zoYL2RW698CrcepiXalzDHOqyK4WZdwDAgg89CCAQexrmY9TXqrMuT0IqzBfpwwbJ9BUSpp7mkZnRQ3TNLHOkisyOpJnGXI+QcOBzwGOGBySBlRWxpniuORTaXFtGjNGGaCdM8cE8dHA3AHaSBwPauPt9QDNgtir1vfBT2IyMq3IOKwqUIyVmaxqtO6OxtJPMURtYSSx5/cyoBKnfauOGU4HsvzAZrPuLi7gv3FjYoYtpaBopN6TJvcqSxICOUVSVbCgtgSNjilpd68dzDLpeprZyCUmeOdWkilUkFsfOCr8cMdwA4xzW1q2sabgW+rWk8UknMeoWaAojDG0uOcYxncVKrjkjvwypVKTvHU6ozhNalWzj06W9YySTadebyBIpOGOQob5gCThVx69iRzWtK2oRyZ1S2+1omPLnt8lguTzjgk8gkHPtk9cm70rSIo59V8NL5iajI7zmzlQFpeQZSrHyy5JyScBjyxJApulazp1zdLZ6RqKRz28W6ayVyskeCQm6FsEJgsP4QQAQT8pEatXWg72ep4FFfPE+XUnnaBnOPYf4H8qsRXChVi3hcfLkHp1P5c9P5VlG4KqSyBhgbu34HOcD8x9Kd5x37/OYEEBtx5z75P8+P9rtX03KmeJdo3hPt6nqOVPUcd8/1pVuFC/dx656Ae/8An8ayIL6QABwVYk5HoB2/LtUwu3JLhsr2PbHUfn+VRysfMaqaltHXuMgnke31qxFeK4AZsFR0B/z7VhLMz7uSMZB+vp/n9KmhkcEqHOexJzz2+vH/ANapaC5vwzpt2l/vHrnBP+f8aeLsqQ24KP8AaPA/w61j2txIDnd1PUew6j/P51YiuRIB5r4yoPXj0/z/AI1LRS2NmC/Ktzxnj9cVah1J1/hzn0NYiuxJ8qQg44BHP+f/AK1TRSyocSHJ9f61LiilKx0MOpFsHbn6GtTTfEU1rF5TAOnOI2PT3H+cVykN1g5yOvPPX/P+FXILksOu0H3zWcoJmkZu+h0ca6VdXseo2081leqQfPgk2iQD+F1+64xx8wOATjBOacuoy2xjh8e6LDeQgt5er6fGV8jdnJK7i8IwACwYrgHcVBxWHHdgYHmH8qvWeszw42TkjsD2rCVFM2jUZ4nDclH3kYxlz7A9x+Ppke4pyXCqfLICkDAAPQn6fz6H0NUGkAY/vP8AaOeCPT05/I+5pxkfAAOArA5HGGP4cH27+h617KSZ51zS8xWUrHnaQcLgAKAcnjt9OfcCnQ3KZBOeWOMHsQOn+fpjpWYlwu0KMDIwTjA69D6H/IqeO4Q4YgFw+cHgYxjn3/n6mk0F0y+JlTlhwVGR3x7Y7f5x3qzHNsO0n5lyrbueScAH8RjOePXtWTDesgXJIOR1/n/9fr9KsQ3cZQMWweC3qMHjP+fpUtXC5qx3DEle56DB56Z/z+lWYZ0AAzg8n+n9ev61lR3IyyEdeOO3Of8AI/l1qcXTYJI4OCR6/kf8+p6Vm42KTsaqyKuRGeRyAcjp+H+fTvU0d4fusSQAMZ/z6f8A1ietZaXOBgruLHGRzzn1Hp9OvbvUy3IbOTzzz29M/j+vvUuJV0atvcHO5Xxj39/8/lmrCTTRAFH9jk/59v8APNZMVwwOXOQPlP4f5H+eKsQ37IAwJwe2OPX/AD/TrUWGnqaonkZMkAcDhRT4b10GCxUH2P8AntWbHqcbHl8HHQHp/wDWPH51IbyRcHO4HnNTYpNo/9k=",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9JfHGqieE+VIMngDNcVZTyxzCOQHLHvTviV8L9P8A2nvAlt448KfCD4w6X4TF7cReEfE/w++JNlZaxrNmYwItYNnerDbC3m5aHfPvMZEhiVZCp82f4R6l8N5LW18Lfts6n4egstUeK7sPjv4WutPtGZ8hY21m5jlgu5PkmkEdvdokg8tUMQzn1KGMpU4crujgqKNWfuyT8rnr2n3TLIttIAQx610Xh3Sppbx0tHYuPuqGyM14bd+Hv+CkfgGbTPFeqfs2+HPH/hm8mcLqXgTVSDLEVDwTx+VLeFonBGHZFGfvbFw1aXhD/go/+zr4bng0344/Cvxx8NdUFxcW91d6tpRu7S3khYB1aW2LuG+aMFWiUqZFyMFWNTxcXrF3Lhh5J6nuYg1XSZHt9TuXUTJg5Y9Og/wrClt7gTtFGCfmOKtab8dfgD8TTYP4I+KWl6tJqmnR3+mxJdBLiW0kUMk3kvtl2MPmViuCpBBIINS6tHp9rctcWNzuUHgE8mrw9ddRVqN0R2/hHUr6RYU2q7/89GwBWdqvhu90q9+y3yAHnaVbII9a3dB8XxW99BushsU/OWbJIzzj3qbxDqOkXkr/AGlGQ/8ALORk6D8K19tJSs0Z+xg43TMSRdPtLNUKoAoySR3rn9Rh0eTLBlyetXbtjeExo42Dv61SutJtHT/WfMB60oQk3dsVSpFKyRTsbS1mu1hiKkhutd3oqafY28YWNAy964S30429yHgcls8VrLfyI6pNKFYdcmqr8yikgoON7s7PU9ViliMbAbWGDx1rKkWwt1BjtgCTxisW5197Ndyyqwx1BrOuPGW8HLfTNctNVb6HVJ0+p9l/D74r/Cz4ktLp3w8+IGjarcWkKSXlhZX8bXNmrEgCaDPmQHIKlXVSCCCAQRVH4pyeE/D1g8Vl4Is9c8SX9tKNE0AEo9/KoAG91R/JhDyRiSdkKR+YpOSVB1dZ8O/Bz4y20UPi7whomvrb72gt9b0mOZ4h91mVJk3KDwMgDPFa3hLwL4L8C2stp4M8LWGmJO4e5+xWyxtMwG0M5Ay7YAGWJOBXj+1jW0dhQwdOnvr6nwf/AMFTPjhH/wAEqv8AgmRoXw0+E/iKbTtfvbmPTYNZ8N2UdhIrlmu9Rv4oI1aO0W4uD5GI9q27amnlFAi4/LnQ/wDgvp8Y7v4V3niP41/DHw143sU8QLa6boni/wAO2l5BdX0UAdr2SWAWlxcMI0hjmaVpRtMBKsTx+kv/AAXc/wCCYX7RH/BRvxb4Sg+A3xa8OOfDWgTLqPgHWtYa2nKzXcTfboBtdCW8oIXcJgQbVdvMdR+N37Q3/BMD9u34D+ENI8DfGP8AZZ8T6BpWiXWoXE/iK004X1nKkiEk3E9r5kRZfIcbzIPk2HG3DNrTdFJprX+up0OEnZpn2t+xZ+2l/wAE5/2xbD/hVc/h/X/gRr/iDxrY6Do+mQasfEml6vf6qZmtkFs8cb21qk1msbKiBFkmtpJZtzyyNjeAf25v2kvhf+0N45+GviHwJZX2heF/EmoaELGLWyJEktHghiRElEccKqkc5ZyqO7yjdGCMD428bfs2aR+yH8MfDOt+LNRi1S61++trvV/Dt1GI2nVUul82HClmjgZ5IS4lCNKxBVipWL7s1Xx18JvEHizwn+1/4u0y2vvC/wAd/DQe3n1/RtPt57nxfp9ybG/Fvp1u8otftciyX808rrGou7ZC4KEDrwlZe3Uamsemv9Mxx1KccG6lF+/2s9tPRa/ofVP7OPx+8O/GzRJtYSwu9D1G2kzNoepSxNN5Z+7KjRsySIemQcg43Ku5c+janrv25tl1dZXHQV8hr4j8CReG9L+Lnwums7OTTYLbUW0tYEgYWtyqMvmxZV4so3mDpkM+Ad4Ne7aL4q03xFoVv4i02eVobuLfEJUKkdiOQM4IIyOCQcZFehiaCUlUpv3X+B5mAxcq0HCoveX4nV3l9HG8kVs3+6SapnUZ4yC6hx7d6w4NXCttlmJGa3INK1CbTv7Xgt2ktx96RccfUdfxrSm0laTKqXbvFD49Sn8wiFMYGSQOaWex1iRvMltpQDyGZDWtoEmgPpkiz2uZgAys3YjpVi11+W9kEEkfAwC3bFROqk2ktjSnTbSuzmZLW5ZSyK7AHBwDUMunrw0iNn3r0vwRqXhjTtaaK+dUeXI8x3wo+ufoPyql4+0TTLzVnvNGuVl34LIjAqOMZB/Lj1NZxxEHU5bW8zSdCooXvc8k/wCCUH/BTz49/Hk6P8Lf2zfHHgHxBc+JbGB/Afjvw3cw2ep3t5MdQlEFxYMsLhgtlcxqUtYADZuNtx++li/Qzw9rvi268M6Rrmnpp+uJqDQvNdQTm2CWz4PmIpEgkZVOSCy7iDjbkLX8zH7Ufwy8Q/sF/tBwatd6hqGl23h7xPZyeKbfwjeBlmt5YiFntlmVV/e2ly5jEqKCtwyyJiV1r9sv+CcH/BQuz/aE/ZR8IeJ/CEnhbVPEeryXmoXngOy8e20+uabA9/PMbZbed4/OEVuyxq7Sg/KpYEhlHyHvWU1rf8LHtzgtkfXcdj4Vv/FFn4p1bwdNa6yY5I7e4ubLe8CAkHM0e+OPcB/fBYEA+g3rK+07VrKPUNOu4bm3mQPDNDIHR1PIII4I9xXJn42+CtOVT4yGoeHCZTEz+INOktoVkGfl+0MPIbODgrIQccE1vWY8MeJI4fEWmyWl2HhdLbUbSRWPlvjcEkQ5wdq5weqj0FXDEW6/eYyg+p4v+1B/wTE/Yc/a90me0+MX7P8Aocmoy2f2eDxFpNqtlqNuBt2FZ4QrNt2LtV9ygZG0qzA/KP8AwUD/AOCX/wAIv2bf+CX+tfDP4K+InsdH8N65N4jvdW8QWMV1qGRpwijtoHtLVWAmvrXTGlJAUKJGdvLQIP0ZksL61t9ukay8ZjtPKgS8Xz41cD5ZHJIkc9M5k+YZ7ndWfrmraxBDp+sOLuJFljYadaNDvvXkjdTBKJFO1VLLJmNw2Y+TsDK/TCvC91uLV6PY/Ebwb/wR4/brm+Dngv4+6F8W5PEuj+KfBGmarHo9j4ejuJNNW6SKRLdo/MjmlZFmGdnyAKxOAua634UeL/it8PbW70D4j6jZ6zLFNPLNHBoR0u8kk2lgER7iWOVi4EIVjAEWMZYhct+mekf8FDP2SPEV7Z6ZoH7aHwMe8upUhi0q2+JVhcySSE4EaMky5YnAA2deOaufHb4IfDX9oWceFvHvgTRoPEMlvutJ9TtmWacopwsF5AysVXLHY6v3OzAOPWoZivhqK6+5nDUwcebnhoz5K+HmgeFvErG4vPE0RABKLE4zwRkkHnH+NekaPaad4dBg0O7kmiDlikwzkYA7AelfCn7XvxEf9hr9om/+CGqalczGyht5lnt5VuIoo5CoG58q2VBViNg4bhc8V0vwE/b/ALbxzr83hXT/ABNBqosNebRdTe3jdmtb1WAaNmxg4Jxn7vIwegrqqU4VVz06qt2bszKnOVN8s4W8z7NsNPsZpnae3VGeNlOfUnOayJtIhsbswTqQZGCqysMZ9a423+JN87MVaXcDxtFFx4w1G+l8xWfIPBYgVyqFbm1Onnp9DobvTYreZpfNZtpwTml0/V7O0k3yXBJHGCeKxl8TTwoEvbUuGHIVutZWq65pDAmPS5EJ6lZaq1SWjJcopXR+MH/BQjT/AIQ+DbjUfgz+zbquu6zoV/42lXwrJrF4brUb9Hnk2yHbHE+JGkOxGjLhWEbNI6s7cnq/7I1r8Ftej0zTfG9tealp9/Apu9QlmitRK6D95ugkiaBSZEILvhMjeSPvfT9z+yL4D/4TOX4g+HNe1XR/Ecdu0dnqJltroQq67MLFIrCP5cZ27JCm5c4Zs89q/wCzl8VfEF4pvPj/AGV9bFI45538J28M8ZRztQLzlQGfBLKVLfdbJr5ZYhKmop27nuezXNdq5yfw/wD+C0f7Z/7HXh9fCnw/+NGvrq+kancW8WnJ4tXWPD8VoqLtZY7sXS3HmO7nMbxiNY1wzNIfL+/P2Sf+Ctv7RfxF+Hnhn4p/GH9mL4f3F3q1nJd6le+GtWvvDGsXLl5FWaSW1DpMJV2zfMFGH6c7q/NDXf8Agmh4s07WYTFrPhy5O9vLjvryZT6KWiKOgJBBwScZ4zxnsj8Nf2xtIa4uofiVcFY9qhxqMp3DnO0hB0wByQOeM1tOeEqRtGSMlGqpXcT9iLD/AIKTeEviL4Em8C3fxj+I/wANpta0W5tbq68XeD7bxGtm8ibCtrcaRIs6yqHcxzTqy5VSw42N8Ef8F1f+CiPxK/b5+LGl/sUfAvx3at4B8P2cereN9W0cSLpuqPPIlzZh2kQPMlvA1uQCyJNcMz+UpgjKfNE5/a80zT3uYPiCZ57V8tawaxMtypJ4JDAIM9Rlu1dz+xj4At9O+J+g6Pr3wQbxdeX+rXF3deDdJBWTVng06S6ihIt1dpE/chpI0ALR+auUJLBUo06bcotMU4OTs42PDvDH7K3g6CLbZ+NBquppJiS3uPMiRyQNqArg7vmB4PORxX11/wAE3v8AgpvN+z/44i/ZH+O/ifVtM+G6a/Z3/hCK58QlLrQLlbhmuPs8zCKMo4aOVo5CqF98sSM7lZfW/Hv7L11D4m0j4GarYeMfh3p/jHxB4U1DxbqPxh1cHSNHmkt2txpNncB4FlubK1uES1QKFuJ7W/b5LdVjf8uv28ntj9j1GBXEzxxzK6IF/eLErsQwGQAZGyoOPmBIyQT0UZutKz3M5Wir9D9LP+Cx3wF8H6L+2nqlofjL4p8RzX0UF3r9h9gieUK7CU28Tpz8sYLF9h2jqp2Et86fAP4l/Abw/wDErVJPhbrWrPrVprI1PXbC10nyEuLy3lRWd1kRY5pNwywU73VZGyQrMPj/AMd/8FPfj98S7m48RePtcm1LxLeWSwX/AIgk2+ZMRH5TSbQo2uUx0IXduIABCjqv2Wfi34X8Y+C/EHh7XdNvf+Eovtc/tKTV44Y18yzLWrG3MgkDJukScuoQhllxu5OPSw8pU42aV/Q5asFLqz9gPD37Q2lT6Zb3kui30TzW6SSQTpGHjJAO1trkZGcGr8X7RWjxNui0e55GCDs5/Wvzrj+M+tPtS71/UkVD8glldsHtjaTVy08caldEyrrEsoJyD5zZ/U1lKri5P4l9wRhh4r4T9Bp/2ibBxtTSbngcAlf8apy/HrT5xg6RJk+sgFfD2geNNZ84tD4wmsGXB3SySkN7fIrfqO9bEPxh8bafPlPE63aL1Zosq3/faq38qh18ctIyX3Iv2eGe8T1FriK5jeW8iClCTw6hgQcZIByBwCDx0zwDT5E0cXUd8zZMKbnTeRuJBzlQcPgnOOcHnrzWU13dJPJM8kaxRyHyyoyVU/wlifu+/tTWspLiB9Pup0EMsTLJHDAFdCGyGDMTggY6DB9hXhOB6fM7G9ZSQRyJdWMkMfmJhnVCpcEggYyD2zj2zQkemrqEkd6k7sys0LsWGzJ5JK4Unqf1xWMlqLMkwXMjhh8vmsW2kd+R+VVZb7xjDuNnc2TnKjE8bjvnjB/z61PsYyK9o0X/APhGPDWsX50+4TzJ1+bbFLnnOQWyMjOegIzx7GqGj+H/AIq/B34p6L8Wfg/qVvp2q6Pci9SRpmhlWdCihVIXLpJEZI3DOPkG0Z3tie4v205/7Vu3nkukP7wW8SlIjkABdxLHk89Bx61R1PULvX5lvtC126jjlVWkRZZNj/e+8hBVjnORwwOCTxglOlKnK8WEpqSs9Rv7Sf7QN23wM1jwL4x/Z4s00vUvF2oeNtc1vXL6bWUttbvoRbXV7E8hEUKmJpEiW7NxJAbiSSOUOsTw/nZ8QvEqfGbxVql5BZSTW9hYYtYXlREeVZQGZg5BIEbNhF3NuVeNu+v01sr+wsdESW8e4huIgFaZJQItpbkvnlcD0PPeq+tLob3Jv7qwjvpGVYje2hBZk6KA45Ydtp4wSMdq6qWJdK/umMqClsz8k7n4OeKrm0l/s9oobS7kSWa3TKxkgMU3YLcgMeCBgnkA16b8G/AOq/D7RJYbtALy5uM3BTooXIVR0PHJOR1Y+gr9C7H4T+AZlm1z/hA9NiEjFZ5105WbkgkNhcjsc/Q1K3wS+Hsup2eqT+CrBrm3YCKW1tEwuRgM2MB9oxgtkjAwOBjb+1FHRxM3g3Jbnxzo+p666bZYzIg4wVyf8a6PS7pZIwslkyj1Q/0NfVurfCrwlqRi1DXtCguvs0m+O8KEvEdxY5zyAW5I6HvmtyPQdG1KVbuSG1mIUHzii5yBwTn0Wsnm0bfB+I1l7/mPlCzlnChLe5zns4q/by3o/wBahIz/AAt/Q19K3nwr8AG8lmufBmmmVlAkJtFwMc524wCc8kYJ75q/D4T8MXUxuW0Cy+07gRMtsgckAYO7GeMU1msH9lj+oSvucMb2w8IaxPoGuaqmpS3kBe2kiuV8tevGUUZIP8LbWwM8g5pYNUuAVN9LuVGXmLgFehGDnAPtWNcLBcgPPAshUFVJAOG9vQ9fzqWO46bm4B5z0x6fnU8uhPN2OivdVtYbWa5ijmLxMALVXDvMvT5Gwqhu+1scdCTxRHqSyYPPIIY4IIGcjryO/FYIuyz7ckgLhs1Kt/8APnd1x830pWQ+fU3EuIjhc4UEtyO/pQ2xQSB1Ocqay0vFkYKDjqVHt3FPN0SVZDwT2pcpXMa8Wp6jE26HUJkyMMA5yQRjB9RUOiw/2LDNHb3c5jmYkx9dgP8ACDnJHsTVNL05Bzn0Of8AP+RU66hxkn261LiUpXZd0rUvImYQTXEXX904wDz1H+e9aFrqDx3H2rzWcnqGc1jG6VxjPbH0pRMc5DHFTKEXuUpNHYWt7p2rWrWl3dPGzIUSQfLIgI5w4/wHarV3p95bWrywgXLoGkjKKqscZbbnIUnGRk4Hr0542C7ZTl26Vp2utuIhbynemeh/nXNPD63ibRrdzSvbd9Whe1nKlymDFM7RsvXBV1+ZTleGGCNuQcjNWbb7ZGqvcJGYd/ziVRlRuxkOnTjJwRyeMgc1iaVaQQX+/T7r/Q5BmXTJz+7BCsAYmyDCclc4yu0EbMnNWrbWHtr0RxTsjYb9zNGcSKGZfkblX+4xxncBjIGaylSa2LjM8gF64Jw3UZYDv7+4/Wnx3u8hlfIPTHPHoD3+lUFmbcDkFwfkYcbvb6+xpokCEvCRtP8ACeBn+h9q9m2p5fNqagnZR98bR0IPA/wp63PbI988fn6fXpWUl68cn73JGOWx8y/X1FSrdKSsY6H7uO3+6f6Ghod0aiXZ3Z3kYHzZHI96lF64P3gecn396yo52HyZw2OCOBn09j+lSrKpzz05K4xg+vt/KpaGma8d9uGTjGanS8TOSxyf1rFSZ1+YnIIyM/1/xqWK5IGGPPv6UrDTNlb0FSAw6fKf8/5+lTJet1LE4HNY6TAjIbknvUouG5XJBHWlZj5mbK3iZwQRU0d2V5Vs8YrES9cDaMYPWnpflV5PPtU8qGpu5vRX565/EVajv4pIvInRZE3BtjjowIIPsQQCD2IFYMV8uM+vcVYgvVPB/OocbmkZn//Z",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [41,41,57,59] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [41,49,62,71] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD65/4T+zmGNr+xJqCfxMtycx3BUezGsf8As1FHDD/vik+wsPuyEfRa7FZanJKSZpnUp3PNw5/4Gact5O3Sd/8Avo1RjV85JI+tSh9p6/rWkZLqYytcsvPOVOZn/wC+jURkkbq5P1NM87PGf1pDJnvj8armiZWkx0hOOtMpHlCj72fbNQy3YU4Vc/RqfMh2bJiwHU05XjA5P6VmS30itj5un96mHUHHUn/vuk6iGo6mqZ0AJUdKge9Qnlse2azTqoUkF+vrJTftsTtnzVGT03007q5fIzQluQw+WYjnsTUXnE9ZD+dVfPXPDg/RqUSgjl8fjTvcg1WnUHANRyXoQ7cn8MVVef1zTDICcnNcvNobqNi9DdeexC56dMU93wfmrNjuJLc7o2wTx0p0uo3En/LQ/wDfIo5hOKZe81Bzmo2ugScE1TE5cc59+KDME9afNoOMNCd7lsnLfpUbTgnjOajaZHHINQkgDJpczDkRLJtY59u9QyruU460GZQcEGm+caOYIw1uV3tJHYnI4NN+ysrdR7c1Ya4HI5/Ko5LoKMDOfpTUmUkEYkQ8sMYp+8jq1Qpcsxw5JH0psl2oOFyPwp8zTDkTLbXSnqR+VI10oGQR+VZMl8inJl6+xqN9SXOfM4+hrJMf2TVN9kYJH5GmverjGR+RrHGoc8sPyNIdSi6lx+Rp3QrM2RfIB94fkaR7/GNpHvwaxW1K3AybmME9AWxVWbxFYoWU38I25zukx/WgdmdGNRUjgjP0NDXqk5BH5GuHu/ifoNnq0WhxXdvPdykYhS7QEL/exn9K15fEmmwxCSTUIVJOMFufy60D5XY23ufcZ+lRG5XsR+VYU3jDQoj+91q1HHQTA/yNVbn4ieGLX/Wa9aH2SXcfyXJpNgk0dI9yMZJH5UxrwYPI6ehrmrbxz4f1FWkt9bt8A8732f8AoWKpa58UfBPh5FfVvEduoZtoKSg8/hmmh2bOvF+qjDEY+hpr3cRG4P8Aoa8x1X9pX4R6c5jk8SPIwYApBGXxxnPFUE/at+FEnypqV6D6SWW0f+hUD5ZM8FuP+ConjpoyLf4UaYJMHaW1CVgp7ZGOfpWNF/wUn+N8t4Gl8J6P5JbPlCGUE+wbd/SusX4cw2oEa6bYR9lAgRc/41jfEH4S+KvEXhmfSfCHjC30C+cqYr6O3jYrg5KkZGQe9BCaMe6/4Ke+N9MZ31TUvD8dwsuDpP2Ccuw56ODgfnxXNeJP+CsHj+/1YaXbeHJLUSSDbcWkGUGeg5Ydx6HrXzp8btJ+Jvwm8TnQfiXpiX7yoTBqtqP3dyM8nO0bT0O3tWNo3hfxn4h0+bWx8KfE91Y2zlXvNN095AhABw2xW24yD071D3NFHS59MXn7aHxV8ZXT6fNp93dnDM0UNwVbGckkKG4/lUFh+0v40mt7lPDOlxS3CxbpxJe5ERwcb/l45z164PpXhHgPwF8cvEVy0/w0+H/iCUDISdbS5Eij+6SIxk+oqr8QvAXx4+HDf2l8RfDOr6Ks0hRJdRtr2FJWB+6S0YUnJHU4OaaKSvoel3X7RnxYttfk1LUPsstzjZG0GSIwcdHXr/Tp2oT9qT42HxFNo15q1xabLZJo1F9s3KeMgFc49+a+drbxlfGTzUmtsM5TcZ5ME56cKeeK0PEnjG/1/Vob90t1kgsktzHDI5JAOQx3AHv+tJ3uach9P6b8T/ih4r07+1bfxzoGktD8xjvb90aUf98tn/gO36eti2+LP7SF/Ds07WNFdC22N7e+jDN6Y3YP6V8tnxnqhsvspWC4TAwqzSlcZ6YMQz6/eH+ODFfavBrQ1mwvYYXR8oVR9yHGMDYpH5807u4+WNj6xtfEf7RfifWGsZdYV5GYj5NRjOOcY4IyPrxWq3gL9oS+iEN1eAoeuNRVd35Gvlv4d/EjxP8ADjXz4r064S5ut5ctcSTbVGc9DjNesQ/8FC/GWktFc6v4Js5rRFJmaKR4iw9QzAgd+xqr62MfeR6Wnwi+MB5ku1Ru+7U2J/8AHQatXXwY+L2qH/Stft0A4x9rcn8wDWl+y1+1JpP7UXi1/Bfh/wCHGq2t6kQJeG4W4jZscDIAxkY5IHJH4/XXhf8AYz+Jmvotxd6XHpVueWudZvEtkUep3HP6U9FqzN17Ox5nPqXgcJ5kawSZBJ2pkj8+lZd/rHw/HMkFoz5GUnXpx+NRTaJa2+BE0UeeoVufyqJrKxRcNqA3d1Ccip0Rg9Dh/i74I8O/GHQ18OT2Gm20aTmWKWC3JlgOCu5CCMHBrk/hD+zFY/BnxXH4v8I/FPVxdRkf6NIgWOUDPDqDh15PBr2i30y02ZEkn5j/AAq42jaLIu8wIMcZIAFTa70KjWvoek+CP2+v2ifh94fTRtEvPDcKxLhZv7AUbfwD4/SsX4h/t2ftQeNIyi/Fa0sRIhDx2ejQNubsQZEYrznHPfnNcY2maFEjBPJz7sKjOmaccMLeBvTZzRyst1Ulocn4t+IXxr8SWNxpviL4tX97ZXRzPYyabA0bHHUqI+vvjvXlV18G/Ct1ftfT+DY7hiCPNbSLba2SCTtEOc57n39a+g1isofkjgCHoSoqWFLREG53pWa3FGs9j5i1P9mD4aavctK3hK8Mr9re+eMev3Q2Ktad+xT8J7rH9o6HrpJ7vqrAqMdAOcivpHOlK4VbzcfQMCak8vRcZe7dSezED+lBSqVLnz3D+w78CQCz6frOV52nWXB+nC113hz9nD9mLQoFhuPgbaaoyL9/U7ma8ZT6/vJQM/hj2r1qP/hH2ISWdX7DcQcVKV0CAfLdAA/wbhigJTk2c74Jv/CHwz3x/DfwPLoEbsGMekQxQDIGM8c5/HvXYp+0L8RjAsb+I9buAnC295dJIpHrtZSD+NZM0ugyNsEUQUchiODVmI+HAcyeSPpRfQz5Fe5hNcqxAyM9+KrXLgSls81e0jUdEhQx391BIS2UbygSPqamv/8AhGpx5tvcYZmGdsQIxj0zVvXQbVxlroL6hH5sVyF9iKkh8HXdydi3KkGnWMv2hzbWcs6EDccwOgx+IFX4bDVhzLfyoc9Y12/40WSMnBkcPg6SBdr3Sg46YqtPolwkmz7THgMQPlNaPn3unq0807SqnU3M2Pbsp/lVC48UW88vlW0toJNxBXcTlvT5lH6U7o0UdNSKTS2jGJGzz95ehpq2IztGcfUVdgv7h48zWltIyjLAXCg/gCKeL6HG+exSHPYkHH5Coe47Gc2nbW3MCD2GRSLbDPzg1JceJdDDZWcHjsBUR8RaYTlYWI/vBOKQybyrNV3TyFQBnNVbi10q9kVYr7d83JVgcfkKnt9RsLyTEbMOR/B0z+NWpAgXCIrsPusVzzQBUj0KyKiOO+OR/EVOD+lTR+HYAnNwznPVeB+oqS3nljb/AEiKMjHQRhafLq8MAxsXPpv/APrUAchCsOcJCDjGcdqtRSzQjMBaM/7NWNL0KOz3HUdStZSXz+63DA/XNXLlPDsEYdHMjk4KITgD160PUz1cio2pauvS+nPvvNMi1G7f70zk+hapmvdK2biCnPVz/wDXq3BoWnMPPivWdQcHaB1p30NDMuNRliAMyMwx0ZutOGu6Ksa/atL8wgdCnT1wcVY1C/0/TQU+ys5HHzAc4P1qifFenZxNpS4HdRyP1pASL4s0OJ8Q6AVx0O0k/mRmtCHxJb3sIcaXIwPPzggenXFZMni/w3GPn025XnmQ22VP4gmmzeMdBaMLZTK5B/1bEoQPX7p/yaALVxFFI26LwxGwx/z1KfoBRHNodoN19aNAo+8puSR+R96NM1k3g3faIXG4jMDhh09fWm3+kG5fzZLxWGOhtF3DnoGJNADh4j8HxNi21CCPn5983J+mAcVMmveHrkAxa0w9DHNkH+VY03h5SxKaYW5OWwPm9+tQS6Rc22JYvDzOo5LJNtIHrjkUrgdOttZ6kgY38rxnlWaTqelPGjQ20RKMQM/xCsHSb+2jPlG11WKQKd3kv8uM9iFroBYwKu9LyfHoQDTA/9k=",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9OPEV3q11K9qVkSQtjyjnNYinVbS42So67TyGyD+Rrubzxlp0u9f7PiL54m2jcBn1rK17V9GvLdZZrLEvAWXf9e3Q1smiWjMt/EV28X2JVYkDk7qkjigvWDXFqCx67gDmiCxtrvD2smGYYwBz+lLLaXdqfLCNx0Yg81o2l8Jnqya7t7K1tlUxLnHACjiuf1aV1bfHnbkAKOlXdQeeEBnJLEjg0W4iZd8xUE9QacZtO5Mop6HOXMOqRl3gAYM2QqtjH4mqyWGpmZJYowXZiHZ5Pu9fz6dq6+/s9OvoEX7asRXukm3P+PT+dUVs109xLDqEcg6A78k5rZVrdDJ0U9iGLSbpLbzJV4xySOtZ93p0NzGYo52VyeSO1alzfXEfIumYE9CeB+tZd+UdiwkySe1ZqpJmiikrHE+KtJ8S2U7+beN9lLjy3DkbuPTPFYFxp+vwSB7S/ZiRkrG7HaOOv516JdXpiISaMlc8Go9T8KjUDGNNnWJxkyER/fyO+K7KWKtozlq4ZS1RwNuvjK6lWBVlYuCVB3EnFXJ/CnjG6T5LNyoPdwCPwJzXcf6TorJ5iZ2DaGA68V0+l6hoep2wYkIQoLIcUpYy2yFDBxe7OI0bXtTumjtZtYRBJwyKeme+TzXeaN4TtJNOhvpdVllP3juYFc1wWneAdHtAs0dxMHVe5GCfXpmug0yeSxtRZrNuVfVq817HoKVjtbM6fp0iNCuZE5BGMHirf9p3+oM0cbqi46uxwMVwNxq9zaxmaJd2OAATVR/EeospLQuAc9GNSF7nbappOpXltLLDeW52HuT2rkr+a5t5WjnYZBwcE1j3/jbVrWFraCxmbPcM39Kr2WvX14A15abM9mJz+taQ0IkkalxdtKPLD4+hpsLXXmfugSMe9VDqCIc+SmRVm31mQDfGvbpnpVt2MknfVkk82qE7RGT7gGqkuoy2zFZIuR1q4dRup15lIB7BjVCcQI5knnzk9yP60uYqxWk1iF0MUwJ5yORxS23iE2uI45G4Hd6Zc3WmKC2yNj6ErVNtZ0KKHdKqq3flRTTQJS7nR2viW0dd1wiscd8GkuPEFu6/6OFT8QP5Vydx4l0tBut9r57B1GPyqi2rxPnEHfrv5/lT5ebYHJR3O9VGnj3b8A+vUUyWxITd5rdKrzXoQHaTx71WfULppt5mym3ARiSB+tc6ncdgvLfUgWEVzwPugk1HBHfEAXEq/gT/AFolukYktgZ9DxUMl1GB97p6GmnqVdlkwrn5pOaQqin72azpL2I5Gf1qs1yFJIk4z/equYlpGtdO0al4gD9apSeJGsyUksnc9tjYFUX1NVJBkH/fVVL7Ulc7Rj6hqXM2M0JPFEk77RbSJz65x/KmT6lubY8+T7vWHJepuJDY/Gq1zexEY3559aaaJeprSX8pYg7MZ7Hmqdy8Mi/vAG5+tZzahEnQA/U1HJqoB+4Pzp81hNF2RrVMFVA/Kn+YEjBC8N0NYtxqsbZBK/TNVn1hAcgZx0GarmsLli9zG1H9vv8AZlt9Pjv4PibHd+cqtDbWlrM07hmZVOxlGwFlK7n2qCPmZcEjkV/4Kb/ANtLvNTdNZkWzYeZHDYZfByfuswIxjkn5euCcHHkuneBvhrZxtd2vhXRoHuB+9eGCE+Znrk7BuzTbnwF8NTmRNE0ZH6gC2jBJ/wCAoT+OK5lyo10PWLP/AIKT/CLWbWS+07wr4maCMgPJJZQxhSVJXJaYAA44OccH0Iqna/8ABTj4E6lbSS2Wj+JJNlw0QC2tuQ+1NzMpE53IAQSwyACv95c+WR+H/A9qrraaNZHbkHZEnPHPVAfbpUhHhC3TKWIjIGWw+0A/gwp8yH7p1cn/AAVg+CSaydNuPDWtsnlnbJbRiQlv7mMjngnrjHNSzf8ABUb4SyjOmeEdembacRSWrK27rghQ3buD+fWvn79ob4Xy/EfT21L4T+OdX8OeJVEEJvbPXLm2trm3RyxjkVHZcjexWQR7twXJIrzO7/4J+WPjmGDxF8Uf2jtVOtOpN5LF4YivlPI2oHN1bs2PmJkIBOQNvGTSasNKLPpXXP8AgsJ4Ti1e4stI+E2qPFFHt3X10YB5gYhzuWNyFHAGQMnOQOKgj/4K2TXqw2ulfAC81C7mjV1h0zXftGAzFVDBISUZipwrBSccDpn5E1L/AIJ8a3pU1xH4b+PU0gnj8qXztGkgWVNyttKi6kAGVB78qDWDF+wh8VdP1y31zT/iTax3djciazv4zcrJDIpyrpt6MDyDknIzT0HaB9yeEf8Agp9q3iljJd/s3a/DAyHy7q2uWnVnHVeYkHB46n+lWdf/AOCgHxImuzD4V/ZxvTDgETahqyxtnAzlAuOucYbpj6V8l/Dn9kTxR4OltGX9pnxTZ2fmM+oaRoenS2oYkKNySPKyZ+VRuaLoo+lfVdp8V9J0ASPpPhXQbhZIvLV9d0ZbyWMHqQodY8nkZMZI4III3UaWIk0noGqft1/GlkjbRv2eIiGjzKtz4hjBR9x4HAyNuPTnPTjOfqf7cv7RUlyTY/ALSoISPlW48QLKy8DqVK55z2/lmrsnxk8LjDR/Arw87sPmlWG+5PqAt2APyqjP8ToJoUtLb4Q6WGQkmZI71SwJzyGujn2+XgfnRzWZPNc4nx3/AMFE/wBqnRbpdN0L9nGK7uD80k0FpdT2+0gbQJI3yX4fKhSAFGTzgVLP9vz9q/W47TTrr4HSWM9/cxRJcx+FNUaOAOQN7vkoEBzltx45APGeln1cSxRFtHaKVeJSkrjPHo27H+eaSx8QGCTy7rwzPIiryZDIS2eQTgrj8O3rVXiS5rZHaWllqs7iW/0lYULYPm3oVc9j8oz+VaM+izfZdwTT1AX5XMkzj9OvPsfyriRrdxqoEcIuto+5IqZHHodwAqeO8QR+RPqzxSA/duJFyffhzXMmizfvrO+srdpI5rKR9uY4ogQzH2D49+o7VRF54l2Kl74cM0fUCPyg/wCOBVMzK0eyLxLCCeqCHcSfdlBP61GbfXZLdmtfEiMofaRBbgMPb5sHGCODz9e9AXftl3HLu/4QwhWB4lkDEn6AH/IpLwXEsa48M4L4+RLfA/lVS08P6/532mbWHlyv3XBX8fQH8Kdf2OqQ28n228JizyXu3Cr+QGPzoAlTSLkxsZtMijPJ2KgZgM+3FNXwsL9DMrrGMfdEfzVjqllqE0aprVowgILBJ2Zsg9DlyMde2a0Rc60pEdtqkbxLysKxbQo9ipqrohqxeTwdbQ2qTLdbieFSRdvr2IzUQ061MptINUMcgP3VRlH0z0rJ1e61a+Lo881qytmN0uymf++TkVl26eO4JjLeatHdRHPzTXcpYfT5gefx/rQ2hWN+9s7pw6t50jhsBoslsf5xVG+mlhRYB9slbOAFIOPrkjH51nXC+JDM++ZlBPLPuIz+YqEp4u3GVIYJAT0VJAT/ADqiXG5qyaVCVUvcuC4Jy7hfT6k9ajaw03yi9tePI/H7tXy49yqqx/z1rPtm8XyMyTRXbg9IxCEX8Dgf0pZZdbVQGsZ4wepaRfl/8eoDlVzoZtI02G9aQaBqDnp/x8jZn8ZKkttNRJBdW/heFcN9+a4GR743GoT4lt9NlP2nWA3rEyMWPtzx/nrWTr3xC0hwYGsZnBYAiOVVJ+gBJH865zY6d9QhDGOX7Paon35OgB9vXrVeTxNoNujv/aN7M8ecGFWA/DPGPqa5bS/G/hGKXdcadf27DILTSPg5+h9/SrVz428OqjG3vrVIWTAS43liT6k+vvVbgaR8deGFJllunMxbmKSTDnt349OAf61Q1L4k2U04s7Xw6JAeCJ7mNQfccGq9rqWnSL9rTTLKUNkh1KnP04pJdZs5JixhWEgcGWEBRjpzuqgJTqnmxqx8N+WuMiMXUar+hFWtP1K6XJitYoXIyUL5B/FayJNcG8yXWuwLk4VY42YY7dGNNu9bvZrUnQdTt5ZQQN8sbAAfQ5oJeh11rdg5kk0wZPLHy8nP9ahvL/UpYDFDPbW69y9qqn6ZXFcRHqnj0yM7Q28u3gKj7QffBb+lZ19f+I4ZWlu31BJGOfLJM0Y/AY7e9AWR1Ms/iWFmnuLm2lXPHm3EqjB6HIY/pj+lNgki1LP9oT2yBhkxx3jShj7q/T865+0stfni+2S6q0qFAfKMs0WztnHmED8h1oGk3Bm+135s2XoFK7hz9fpV30Isa99d6BabRqXiFrUqSFWK6k2g/T7vToO2e1U4L7wtb3DLF4yvg7HLyea2D+nvUYmu7aVYI4ElQDEaIZHA49gx/wD1VVju766umtrqwkMRJKGNQqg/UqT7f4dKLoZbtfGv2p1jl0WeXjhRtO7jvuXA+v680+58Ry2v7+Tw3aQJ1DS3EeQPwrl4LnWNYmDSrcI5GCYm2Lj6nJz7VJe6KCQH0Sa8k2j5pbrIPtycj8BWBakdBd+O/DTWym/u7fjG6KI+Zg/lzUcfiXwbqSqIpLMgdEltsH9RWTZ2EFvCBP4et7dgvO9A2Px7/nTku4oGKR2lmwB+9tjAH/sxP6UCuaraxp0UgWxto5tvIig2gf5/Kl1HXdZubb/RfDikDG37RMgC479TWRFqGoR3DTx2FqFIIDxw4bHsQarXX2W7mabU7m6wT8yeewA/AEVXMFy9/wAJZr1vIy3YsyFXAQSY2+2R1pE8YNMojmELMTkqWcj81U1mhPD6ti2ilhUfdkKlgT78Z/Wo5redzvj8RuI8cJE/l4H8/wA6OYTZqnxDrQP7i0slTsAzE/0/lUba140vHzYfZU7ksADj/gRrJia1gcvJrFxAehZpEcH86guNO8PSnfJ4jkk38nZEQT9eKd0JXOgsdau4rkza/rGlybQQFjZd+764GKjm8W3l1MRELaGNT983RXcPqBWDJFaW8XmWWp3E2ONqxEkfoKo6jr12U+zajY/aEB+UyxGMj/vnH+RTA7L7Zps8avITMp6M0qMgP+c9qjmjltp/tAigEJ4XYCp/NWH6CuMtNX0x32W0Is5MfeFwefbLcVbjlstm2S4jJ7rFdKob68HNAtz/2Q==",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [11,49,100,67] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [33,52,71,60] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPvZ/wDg2I/4LjocN+xD/wCZK8M//LKq91/wbPf8FuLNlW5/Yo2l32L/AMXH8NnnsONR/D6kDqa/ri/tdlUxPAFIHUnk96ydbEOo201hqdhFcQTxmOaKWMMkisMMrA8EEcEdOa1eHr30R828+iu34n8kt3/wbgf8ForG6SzuP2Lpd8kTyJs8feH2UhcZG5dQI3fNkLncwDEA7Thlj/wbkf8ABZbVLKHUtM/Y+iuba4iWW3uLf4keG3SVGAKurDUSGUgggjgg1/V3Zi8+H11a2njK++16VqeoxwaPqt5y0LysBHaXD5+Zi52RTHBkykbkzFXn4b9rn4hfFz4A/DlPHPwa+FeleKtRfxHomnxeGry++wvdm+1KO1YRzs3lq8j3EUYZ8LC7eY4kQ4rlqSqQWljuo4+tWdkl9z/zP5aNR/4IAf8ABWjR9eufDWtfsvWVjeWkWmPOl98SvDkK/wDEwupbOxVXfUQrvNcQvCiKSxfauMuu7aH/AAbd/wDBaMkr/wAMYsCpwd3xC8OjtnvqFfuT+3Xon7UHjDwJ8fdQ1Hwb4d8P6pD8GfCniCcad46uJLjQodPv9a1CIwTR2Ci6nE1tcHhokQpEySNu+T8rPEvx5+LXijVorLxvr13rF1cCVcy6/JfyTyJiVV5D4R2dY8Lzndk4XA78Dgq2OoupGSVvLyv3HXzGVCai0eESf8G3/wDwWfiXfJ+xsAB3/wCFieHP/ljWZqP/AAb4f8FetJBOofskrHg4OfiB4fP8r+vrX9kTSfFrftEfCu41eTTo4X8feG555I7gtKI/t1pkjEJAyEyfmxy5JIYk/tL47Rb5Gj+1eWCfvFK5sbRxOBlFTtrf8PmzOhmdStFtxsfzCX//AARD/wCCn+mNtvv2ZlQg4/5HbRD/ACvazZP+COP/AAUehYpJ+zqoIPOfGGj/APyZX9GPi/4cWtyrTRa8jNuyVcda5K7+FPhhmb7fq0hbPCxgKP1zXJGu3uafXq3Zf18z+fK4/wCCRP8AwULtVLXHwBjQDqW8YaPj/wBK6ryf8EnP+CgESh3+AJAIz/yNGlf/ACVX7+ap8Nvhy8y2uoWaXkduwlC3aq67+QpAI6jk+o4rn9P1H4eyXWq6Jp+iQRpoupLZlFUYy1vDccDHAxOBj2rRVb9B/Xatun4/5n4Pp/wSm/b7lbZF8AJGPoviTTD/AO3NWoP+CRn/AAUQuTiD9nK4bPp4j0z/AOSa/d628S6JZ7hY2MaDsVAyal1Lx1otjZi5v7yG3BkRA00ioCzsEVckgZZiqj1JA71rdkf2hV7L+vmfqdJNNMP3jZPrVe48xUxnpWq+gXyjAKFsj5QelVn05LW9httTuokebOyLz1BbHXbnrjI/T1r1XjMPFaM+HWXY+U/egzNn02O/tZLHV4RNayqY57WZAySRsMMpDZBBBIwQRzjBrw3/AIKR+JPiXa/Ay08JfDGw0y5utT8f+FotE1jX3uPsljcprlk8K3hgVpBF56x5l4Bj8xSwm8kT+4+M9b0DwT4d1HxNrD3AtdMglnuSYtuI4xuZsttUgKCc5xgfhXyJ/wAFOfi5NrH7Gvxg0Sw0dLS48N61pNlY3cV5mWR0Okao05hZQI1T7UiH5mO4JkfMK4a0qdf30/Q9fL/reFqez5dLq/l/VzD+N/gj9q/xJ4Z+NXw/8Q694LuPGWo/s06fDeaZ4d8IajdDUgw8Rp9i0/zL9JTOJHlQTOkpkEkJMKsjCb8ovCn7Ef7cHhjWdJufG37F3iaw0y2123WTUNU8DXUIna4eK3S03SxFXM0hjiQFSweXCld7Z/e7Qhq2jftNazDqN/BcfafhxoUIgWF0mnNrfaqWkR3kbCr9oRXRtxbzQd42lXj/AGrx401T4UC3+H3hr+0NVtvF/hvULHTpLgRR3kttrVjP5TuFbyV3R8ttOF+YdGUFDG1sHSnThFNS63en4npe0w9acHOVpaaf0j8Uvh5/wSf/AOCqWsa5YeItJ/ZRfT47S9gukmnOj2FxEI7nzlKGWWN0ZT2j2/KACMACv2zu/wBnu1vS4XxPNCAuWMlscg44HLc122q/FrSfC2nHXvHVzb6BYh3MjapeRRhGyxB3BiCHUFgM7sEZA5CxeI/E+oX1i8emX7+RcDhhECrd/lbFefmGY4vHOEZQUeXt1vbe7fY6KUcJRTd279/6R4F46+Ak9jvdPE1nIwY53MRjp+teT+OPCdppisk2sKWizvMa5xjrzxXvHi/4c+J9Sb/Q7hJTI54VXZvywK8M/aC+H3xA+HWhv428Qa9pdlo2nOkmoi8jZ1cO4VcMjZjKkh8lGGOu0AsOWDtpJj5faK8EeY3+lrHOljLdRxXV7IWjhaRQ8rBc4AzliEXt2XNcpofwb8TQ6x4l1GVFihvdbScSTTKBtFjaxk8ngDZz+dQeAP2P9T0j4rQ/tGj7Wl/P8Rdf0u/W+uraG2iWP+0DI4O0yKwigU4csDyQFU5PcS/GPwd8Gvih4qstXt9Lhn0/SLfUQ2oawXvb3zluInhWFo0EcitZIQgLK2VOFLHEvF0qC9+SXzPUhkuIxc0sHGVRWV/d2fVfL8SppPwWvd7Nd+JLaxgjH7y+mhJQffHCsU3YdQCMqGR9yucYr0DRPhHavdnT9P0WJWt0kjTVtR0/5lLE7lA+V2G5EyMoCApDHFYlx+0JD/wr28+M+n/DnUYbHTY7ua51OZIQZVt0y/klZCHRvKG0p8jNzkcmrF/+394U8DeMH134i28SHS7WeW4s9PixLdOLYMFjkldITnzB82TyHCq7p5ZpY2FVvladt0mRWyfHYanGdWm4Kfwtq1+9r9j5c8Vf8FoPj34h/ZH1X4G+KviZ4h8SfErxTc2ph+INteQ6N/YLpqdo8cMUGn2MSlJoNylzOz5WYFUXyxL816r+35+174q8G6ZpfgD9rb4nS6lqVxBY3GhTeO72b7RLdtcxNHt87DKDCmzcpfFwuWOEx4D8afiX8T/Cfi3W9PtPh94ak0/+0WtZIpGDeXLtWVoxEJDiNGI2kLsO1eWxitvw34m+E3i/SLXSJfgbHJr1lbrLNHYStbx3EX2vzd5ke5GcwyIm0xMcqx3bGCR54jC1KtSNT2nLGJ9lkGdZdlOFcKmH55uTa0XZK2uu6Nz9qK48V6V400jX/GmladpNpqWkNcxWXiTUr4QrdJprS3ShWme6R2vPMMKzMFkkkj3ny2Y174P29vDnwE/4JmP+y54V8PWur6DrnxF8R2ml694aupYzq6wPJ5sl4kk75jEd7pBhA3qTYEFnIWUeLX3iLwrZ3dl4X8O/sqRobW3kMl74ingljRosOjMtuEkbJaKMlp2JSQE72yx7X9o74TeKPj/+z78GPB/wgtvDWmy+HtJ1j+2pLpLiAzXc1+dzyNDDMCwEKoGkZSQqqowu1fRp1ofV404u6u3dPTr/AJs8PNsVDH1vauPK0lFLvpq9/Jb3vc67w7/wXv8A2i4PjRF8Y7XQr7TL3+wdQ0y41LVfFizxRxXElpMSEk0+ZYwGtMrGkbfNMQgX7p+rP2I/+DilPjj8QtU+F/7RHwOvr3bBbXHh2+8G3InmvpLaeFkMsN01smWfMnmIYeqp5PdPzX/4Y+/aZs47fTNcvvAeorM7iS4lurgxWwxuDPuhQ4JAUbQTmTkYyV6D4SfBL4gfs267q3xB1z4h+EFu5NFkjzFcTOfPNxBPEQGSFU/ewR5w2doIAGQRn7Okr2PH5HNrmjsfpO//AAWC/a20vxZDfePj8JE0C3uLFtRi8MrqN7qNtbzNCZPNWS4jU7IZJHbgA4H8J3j74+GP7Q3gP4teCrS48GeLrPVY7eFZrkLc27z2/m5cRTJA2IyvKDPJEeSWOSfwM+OVzqvwu8Crr/jvX5r+C91HTv7Ru7fWjClvHIYVk228sKyABoEeMZDHzJy3l8ivR/GPw3+IHjfVvDus6N490DRZIrGWxu/EOjNe3sBeaGymW5zbITN5e5kKNGAyStKhZmCJz8nNZSsb4qlSqtqmrL0/M/ZT4sftHeHvhf8ADBviPpGnQeIYLm3SbT7XS9SiSXU4mUSf6Oz5WXEQaXCZZ1Q7QxwK/NOT/gsD+zpoXhLxV8Kfiv8AESbU9G8RW+rC0fwd4ZkuLu3e/kupbhZvtZaOT5r2WNTFN9yKNvMJd8fFmhftS/Hy9vdZ1k+K/E8viK5gsvCltpmrWtydQ0nTI0EtxBp8KxyR20cMlvPmCUh5ILi3ZSJY2mj+Vrf4uWWg+I9T8MQ+FY7qSS1ntY2v/wB01tLhhkK2du0/NkkN8uOM5rrp4KHsudat/wDAOKlCVKXLbRbH6ffHz/gvP8HvFur2Gj/Crwv4m0vQ9O11tRmbVbFR9vd3EkgmihmDRpI8k6yhZWd1JwyeY6DgPDf7Rn7KOq2Ok+GPhB8NLnxlr/i3wjo+gabqN9Lqsca+JFSVrtljV1NwFmu7Rdp8tGaBtuAd7/nHqfimXRWjudd0cRxajaia3CXSuZYS7xllIBx88bjPYrX0r+yJqMWl/BjTvim1xpun+H/AvjRb/TrrxNe7YL3WHWC5mtx5Xlytut9PjUQqWd8y+Ud+THlVwUKcXOK1Z3e3qezUO17er1PoH4+/EP8AaC/ZkXS9N+OvjHT9Rs7GWSDRdJutKstcsbaWGKLzbYRvHMYkhE9sjDzFLDKq5Klx5fc/Fq++PBuvAWm6RcahdwsNSa60fwPpmneWqRxxTowsbTzo1V5IyAbjy8kMULyZr0b4FfG3xd8d/H3ijxVaaBpvj+6XwDrGn+EdMtIzbf2VqdyLZIbtxeSo0kCAfPcLunIkYZkkXc0Pwg+AX7T9l+0TrfiPxnqyWVp4c0fTI9Xu9DuEu/8ASDaW1x9m8t5MKgdpZSWRgpB2qA5ccXJCnR95pPsjsp18ZiVF1HeT0u0vzt/wx4fJ8Cde+LfiTUPiDra3eiRahcmSOBRE6gAY++0mT06FR0znnA6Oz/Zu8I+EdYh8QW/xM1SwvpLEQIbGaIs8XliPosb4BC4z0PI9RXbfBm80+80TUvsPhGWR9LvXkllh0xpGto0jRt5fBZFUHnkAdevNdR4a1fSPEmmx+ItH8QWUOjtdGA6pNZsbUSABmQSIcO4U7tiBnIyQprSpUqax6HJF2d0ed+EfhdoFrrcOs6tq/iLUJbWKX7JHqmmafJHE7xeV52GiALqACpbcMjkMCwNbxv8ADH4Vad4ii8Wy+CLi+v7ofabe41C4kvonjYPFJ5tqkXlLJvBZdpZQoR/vN8nrU3xX+GehwyWtgx1OcDab66tXhhVsMC0cIJZ8MFdXlIBU7XhBFfLH7Vng3xj8WPjNH470HXxNo50oQ3WnT6xdW+bna6BokjjaOFVXyMKoC/u8bcdShfmtsh+0lHaVm+3Y9B8O2OoaVCth4St7bTZUhmiE6+F7pSd4+8WCgZUgEYIGQMgiq/xo+CWj+J/B914z8b2lhe6pb6bFEt7G9zC5SJgzGRR8rsUDAEgHoMnC4+TNY/Zw+O+r6k8olt4IQzeVFDeSsEUkkDJG5vqST0/CbTP2WfjrBcJcJrMEMq5McyXM27kYPRe4JH0NdvLD+YyjOcJXjJn3DoPhL4e61q1z4x1b4TaqmqppzLZXOoX4k8krk+XGqXDiMuu5BtUAsU3EBQy8149+C/izxr4mt/E/gjxtrvhOKCT7U9lFKssc91i3Te481leMx2sCtCV2MYULZwQ3AeDtN+OmnxR/a/GOoTlcZaS7nfJB77s5H4V6P8S9G1S9tNK8beCfiRJbXurwu/iDw3DBeommXKsQWjJj2eVJ99UVm2Zx8oIVcHzc25KfK7o8I8S/E3xT8PfEupavr2p3HiWLRo7l782WrpbSx3UD/YkkfzUmDRtPcoHtlUZhjeFTGAJU868H/tG+GjeXV58Qvgp4P1m+1LV7i+m8QagmoLdq0hLGL9xdxx+XuLHOwv8AOcuQAB6r4g/Z68ZLoPjJfDdxZ3N140sBDdTXwmJglN9aXbTo3lMQx+zbODjEzV4tf/sR/Gy1JbZYS4bDFLhuPf5lH+TXoUa1KNJR0BrmPXvjr42/Yt0Lwtcp8Ff+Ed8Qa1czQKLt9O1a1FunlTmRkWWUKTv8n75fOTgDmqX7GXg61+PvjLU/hv4v0VtX0Kz0SXVzpVtqM4gjuBNFCJgqSAh1S4Meck4AJztBHnFh+xj8YFXddQaTICBhJ7mQAn0+UV6X+zV8Dvjt+z/44ufHvhDxPaaTqMkHlW13YTOs1svmpJ+6l274mzGoEiFXAyN2GOZqVouk4p6+oR93U+sbL9m74ffBDW5ILH4Y+IPC3itbdYNUnn1K4jle34aJHiZRIOinczHdhf7oru/AXxR1r4e3DvpOoG5Mm0yRardXE0blc43I0m1xyflYEHJyOa4LwF8f/wBonQrnVr658XLBPrrxrqMiTtdLcREqZkuTdLJc3SuV3GM3Ma7uenA+gf2X/AXhf9qL9onQNH1/XfDs9vJqQjg8NCCXRZLq0SJpbhxFZ2M6ysqrIyCa+ViyYyFYLXk1IX1lqVzy6M//2Q==",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAor+lfU/8AgzW/4JlWFo/mftBfHSGSaVobSeTxBo7RpIwPlbwNJHGcL95dzYAKllFc7ov/AAaKf8Ezbm9Xwvrnxl+PNprkMObu1HiPSPJkIzl4pDo4DRuAzp3IWRfvwzCNXurnL9coW3P5yqK/o51b/gz8/wCCclrcRTaf8bfjfJAAwuon8S6OJByuHVv7KAwvO5SMkHIOV2v5Zef8Guf7Atn+2/D+zRL8WfjINEl+FEniYXf9vaV9qN6uqLaeVv8A7N2eV5ZZsbM7hndjio9rEIYyhPZn4M0V/RdN/wAGiH/BOGMgD40/HA8cn/hI9H/+VVNT/g0N/wCCdckuF+NfxsAKHYreJNI3O3HAA0rnA3MemACc8VPt6Y1i6LP506K/owi/4NCP+CdJG6f41fG5AF3Mf+Ek0fC8cjP9l9j396dL/wAGgv8AwToA/c/Gr43E+/iTR/8A5VUniaS3KWJpM/nNor+i0f8ABoj/AME44T/pnxs+NyjPG3xJo/8A8qqjm/4NHP8Agm3EN3/C7fjeRj/oY9H/APlVU/W6I/rFM/nWor+g7Wf+DUT/AIJx6du8n40fGtgOm7xFpH/yrriPE/8AwbJf8E+dEdkg+L3xhO3/AJ6a/pR/lpgqliabJeJpR3Pwoor9n9Y/4N2/2FrBiYPir8Vio7vrWmn+Wn1z17/wQH/YrtnIT4nfE8jPfWNP/wDkCqVaD2I+u0D+k251axvrV7Oa1jkjljMcsMgDK4IIIIPBBHauZ1iziudTjnvLFJViBW1uXXdPAWILDLZ3IxVM54yq7gQMrenMcMm63cOpBxnqKr3V0dgEjZI4HtXrxwsI6o+DeZV9pPU5zTdVuNN1CPw/fb7iZbIyRL5pknnRWUFo85aYAttbJ8wHZu3+Yrn5p1HxFZ/Dz/gsN4d8P6i7PpviT4GXFho7LsEOnTjV2l8okYCxloWjXliJZVjAxtC/Ulxo2nmdL02pleC5W4tlZyDFKAVLxt1jYqzA44OWB++xPyf43+Ifi/WP+C1GlaDqPhxdJgHwYmtdMupDDcW+t27XQuJTKuQ8P3JIeBvDQpIQ0TmM8mIw/K1ZaM9fAYmnWUrvWzPsoaCbmNhFbxuQ207fWpbzwPPcWXlSBM43D5dwJHtkZ/Hj2PStPRVuNPs0g1KUmSYlojLFtZDjcYnIJBYDoe4xyxBZkutTC3HlQXI3O2E35AB+teLUU07RR6MbUmuc878T6yNB8caB4Mn1bT7b+2bO8mAuv9ZcyQNbDyYgWTczJK7ZAbAjyAQCa1JCIIPL3MccAsOW9/8APeuH/aE8J3d38Wvg7r0d5bSTt8Rb+1imjcsyFvDuss6g9stAMjrlAOMc9He6P4me9+yG6UlcgM0hI9x7c/zqXTU4+ZtNuKTJLyaAg+awA71h6rfW+1likOAOla934C8aGEMbVHJH8M6H+tctq+i+ILYnfbLnnI3jIrOMYLZheqkm0YHiO5R1JSUcL1xXmnivw/canM8n26IBvU16BrdrrMTmOTT1wR0L1x3iHT7kORLYOpHJw/ArVaGTuzzrWvhnOyMwvomzk9a5W5+GDmQi6vYQM8gZrv8AVoNRJdE3KB/eNcp4lvtQ0qx+0x6Nd30jzLGsFqYwx3HrmRlGAMk85wOlaQutmTyn37rHiHQ9BhjuNa1WG1imLCOad9qHbG0jfMeBhEZueyn0qr4d1aHxLJc6pY6hbXNisqx2c1s4dXHlozNuBIbliOOm31r8hvGn7Tv7WvifwPdQ6h+0r8QYF1C/nnvJ49Ka4iHnxlTEjWcW1IiWChVcRohbYpyAffv+CCuu/EKXUfir8KPGnjK91Wy8Dw6LDodtLqLzwWK3LX4mSIMT5aEWkH7sBQhDDarF69ulmcK9TkSPlauA9hBt9j9DxbCVtu4D3NfIH7SWkrb/APBWz4B3duJoZtU8Ia7ZPdW4AZBDa3k6tkgggMeQcgg4IIJB+1INFt7iya4S4cuvVdnAr4a/ad+Mvwwg/wCCwHwI8G3OtvFP4Vs9VtdfvJE2wwXWp6fNFY2oOdzSO7wg4UoBcRDdkvtVbE05rlvrc7MswmJhUc1H7MvyPtJPG4167l8Ha/Zmzu/IIEqTlVuoMgefEwwSVyAwBDxswzw0bvHb3c8wOm3jiWSN/wB3cFQoJz0wCcMB17EYYEjOI9U0q31W0NtLLLC4O6C5gIElvJggSISCNwBIwQVYFlYMrMpq5hggt7TxHfRw3ToUlmjUpBcYUsSoYkDKhn8tmLKFfllUu2Lp0lsgji6uIXvvY89/ai8CeIPFPxQ+D1pea/DZWMXjq7Mr21pBNc+cfD2sbCouIpI9uFkBBUk7gRtKBq4PW/8AgoB+wJ+zbr938AfE3x5g0fUfDlwtpfae3hS/JilYoxy1rZ+SWLTKSU4JbJ7mvL/g18PPBmnftAfEjWfiT488czsnx5Ftb+HtN8c6jFHpY1DSozDciG0kV4GkuNR8prkscpHsZkUy+Z+c3/BWnRPCPg/9vf4m+HvDV7qsscNzpgsXvvF8lzOtydHsJ2lke5neeUiTcdzFgOFBXaFFZfgY4qtKnUdla+ne6PYqVoxpxUXf1P1L1/8A4LW/sH6NaltD8b+ItfeJtjJpWhPHj7vIN0YQRhh+fIFfTXwy1zwP8Xfhh4d+LHhbSrh7DxRoVnq+mSXoKSCC5gSeLeoYhW2OMgE4Oa/mo8S6Jd6D4hXTvHlqttfXek2fk+ZqSEIViKGYlLgL8xQklmO59xAwwz/Q3+xH4rt7z9ir4Ox2LBYR8LvD4GCeCNOgBHJPQjHU9K5s0yqGEpRqUm3dmmHxTUmqtl2PSLnwemDG2hWczHqWjVifaqHiPRPCWm2gt9T8N2gQcqHtguOO3etLWtbAhLC+MDJwAp5NcN4uudc18CEXbT/LhA82OPxrwowqyd72R3uvTh7q1ZyHjBPhmwkifQoFUZ4QBf5V5L4sHg/+0Yk0vQUKwb5RK8xO1ipReCMchn5z279u88VeCPFauxi0z73Q5zn8RxXgH7Q3iPXvhP8ACDxB8crHTbbVLfTltAqJeBYzHJcJAjM6hsLukdgQDuGMZrrgo9zJKtVmoxjufmbr3xB8Hz+MJfFM/wAatO8P3FvDFYQLY3bSsYYoBbMwZSuN6IW/4HjrzX6Jf8G0ur+GrnXvjuvhbxNb6raJB4Vj+1wcLv8A+JwxBGTjG4jnrgHuK/Hr4fHV/B+gW9qf2cdfv7545UuWuPDSvt3TMy7JWjLEiMgfMvUelfRn/BLj/goP8UP2Hovijdv8HIbifxvFYmENbX0EFlc2nmIo8uzjLNlZm3J5kJ4yHHIO8MPGEr8xzwyv2M/aKV3/AJn9IE2uNFbM9gizIJApCkcHIB7++fpX5o/t6/Gzw3oH/BaX4C+FL74FxX17PFYrdassjs96t5Pc2ls4gLGEpaSb5/NZfMDIcMgjUn4n+LP/AAV1/an8f3E+r3H7QXi3Qru38yWw0zw/p91p0MTgiRFMcMYE6qwVf3vmEj5WJyQcbUP26v2x/wBoq9sfjvr3xdk1nxJ4B12x/wCEXkvLW2t0tJj5kxcWkESQ/NJEg3SAs4UBtoGBPtYUXeWtz08Bl2KrNyVkkrPXu1Ffi16H9ApvYX2DVr0RiFP3ju4+7n36fWq3ibUPClrD5N1a+daoguJrqUt5QCncPnGEByAeT069Qa/CKy/4LRf8FAtW+GWtfGrT/j74btLnStbstPbQJ/Bls08wuIppBIsi22zBNvJgFsgRvuZW8sTP+Fn/AAUY/bU/aGkt9T+Lnji28ReG9U8OXV7dW1pdw2NmmpQvYSCMLbhtpSOWAeXIgHmCZkbPmKusHKvB1Iy0QYzhjFZVJLExjdtrvqkn+qPtDxZqX7EHi+/+InxB0vTfhXrZvP2ifCTR6xLNpU1+NOefwyL0xyoJPPgklfUPNYuq5a4aVmdpTXYftDf8ER/2Jv2lPjRq/wAcfEd/490WfWVthcaP4UurC3s7UQW8VupiiNm2wFIkJG5gSxK8EA/mH4Z8dRfDjRh4fPhC8mttZu9H1MnStKa5tbV4NQIkDLCgAMhg+Vf42+Vc9a9l8P8A7Xn7Qvwq0ZNb/Z6uPHXhi6RLwr4dg8B6l9mWWfbmV7aVHszIzKrGQqWxngk8UsViMPVvSbXS6OV4JTgnp8z6X+H3/BFj9kPx58bviBH421Lxf4l8P+FPEtjoujC41WO2ulT+xrG9k8+SKFfOLSXZRVAi8tIjyxavrS3dP2f9f8Efs/8Awe8BmXwzZeCr82Wk3Orv58cdjNpkEapLKHLER3TnazAN6rgZ+D/jR/wVH8W2Hh3+y/gza+N/CfiPxf4li1zWfFfiHwTDHE0Fvo1tYTRi18y4aNnmtmnKru8mERDc+8svimlftKftA6Dqn/Cw/EP7XF3rNy+qL/YLy6hPJC0cu6a4sgkLNmGdo49wISMmKMnBVQM62NrTtCtUb6pas3WWKpSdR8q8rav8D9vPD+hWerW76ndCN7Tyt8ReUguSARwB05659K57UNOiku5o7GOMLEfmYuTXyJ+zl/wVI/Zrj+Dj33xL+PHh/RJLO5nku7Wx064+zxq1xMqsjpE0btIY5JdsTN9/JC5wPqG81SaKUjyiW/ik3Hn9K5kqik5X0ZwVaVOEVBwt5i+KXXw94dn1rVbG/v7JFKvYaTAslxclgVCRK0ijdkhuc5CkY5BHi/jh7Oz+KFr8AtB+G02kaTqenaV4i0P7PeQfYg+m63FeX4ESR74pGa7t5GkZys25QirsbPkf7ZP7YOqvJrPwWuPCmreHpY9OFxMo1mz+13oVppFERtmuAhH2QvtY+YyNjEeNw8y0n4z+EPA3wG8RfGa28deJ/FWt3eg6jaWmsanEsL6fPqawqYA0ju8cKPbK0Q2hnZnbhWCqmrXlI7sNSjGjaO7Pzp0rw548tdvl/EXWJUDBjHcai8gbnoc9R7d6Tw14S+Ieg2Ulp4d+It7aK05MyeYXDScAt82SMgD8Mdetdz4j0EaToF5qthczrJBavKifKckKSBymf84qhqVrqlpbpJod1JcTm4hLwpCrsULqGYgLnhcnp0FXd9TubszMj0j4vSR/N8Vb3rktsXp+VXtDPhq3+HPxDH/Cy7S7uL/W9L8yTyWhmjc2t8fO2tg4bzRg5GWjdeNuTlal4j1m9v3t9P1lEWIhbiNnSHADgOF3YLHGeFyeK5nV77RBD4g0u61OK1j1q30mQKsMmRLbRSb0IC4w0kzAHpkEnHWhwUl7xVPE1KbcYO19H96f5pEnh/Uvhl4i8Kaf8O7j9ouCTw9aXKziz1Sxtbd7N5fPVgu8yP5i+Y77ULEGQjCN8wyPAfhG++G+rXA+FfxMn8QTizfTtPuL26ZbLGLaSYRqDuCCVFUMF2uscZYBWCnN8afETQbjRzoWn6DAqpdJNbW8tmqx2+2RXwcO3mZ2hTwuR1z0rvdJ8L+JPiJ4J0bxJ8Pbax0C8gluZWubqe8uEnSSOZCSEt3ClWEHGSMRE/eODcZqVJwlHlT3XdHZVzPF1anPUn7R62ulo3u/UzfjH8TbCb4PfDXxT4Z1G+07X9P8Qa1YzzSWULCJLcWk1uI0AJSUnULoyneysWj2gbCznhz9q39rXx/8RfDUcnii81jTbTxFaT3FtcaBCLZ8TIu+UJGARH8rqCfklVZFIdUZburXE3wst7a2+K/xQk0HVUhjeOzi8Q/ZYrlfLK/blhVYpmWVViCO5GVtzuTLAjLu/wBor4TxWEtrq3x8nbzDiE6ZruoRiOQg4ZmSY5GTznII6+o1jJW0R5735ebR2b06/wDAOu1P9pcWejJr2kaXdWM2i6WdJltXskt7a1e8tyYprO1+ZIreO3tz5dtlAQiF5ZZZmdr19+0F4Vi+E1/4k0jxlpmsa1NeWw0eK/sVRkkHkxS74ztAlIE8yA4Vzv2khDXFWHiT4sfHqC08IR6HptvokLxW9hrml+ObaK8ktkZ2RI5fmaFJJGLyLKcLvbaVyTT/ABJ8JvEHw2t7y/8ACvhvVddsNYWS71xfEmuw3q2ksEsUyTpujDPIyJImSWYBiQy4JK5YuSvuEppw9nfRf5md8Uv2v/HVj43fwppi+HtAhtrBLW50zUvC+n3JZgv75pxcW7KrvIZHaMAAF9oBxk/ob/wRT+MP7Zn7fnxn1e0/aN+N2ra58PpLGeBtOtdQhtNwIYvMGtwkyiFvIw7Fkfe8Tht5z+TE3xk+AfxZ/aXl8YeOfhZL4Y0bVPEVqbf+wNYdV0ezB8tgEeGUysqCN1YBSGVyQ+8Bf6Q/gV8HvgD8DP2TPG/7LfwqhtZNX/4Q22i11mMK31+t/JdW8d5dMFALvLFeeWWBRSrqECDadcW6VBJW3MFTv8j8wvjJ/wAFKPgBovxD8R/CPVfhX4J1eSy1Oe01O8jj1rWbd2jkbewvBc4nDvnc0a7HYlsuDuq58Av2hvCv7bEzfsbfAf4beDdLstcTzfEOraPo2pxXGlWKSeZPdRvdTMFny/lI4GY5LpHXbjI1f2vf2NvDWsWGveKvGfhW18Gavp91Nquo6xp2g2RhmlKtIftEiW7maM79xVTySMqSNteMfAX4n+DPgj42v/iL4B/al8N/D1L/AE1dDWHQ/CV5dSfZxKWLtu03aZW8sfPtyc5J64xpxpyIm3Z8p5RqHxH1lbaS28bancWerQ6jc2rhLn7E7WsluTb3CIuwfK5xvAOQQTwAKz7T4mDXJSmp3t3fwNYIY/OaQLHdEKZ3US9PmAjyBt+Q4JHJ4SKwCwrpFlZLJdIZrZpogG3uyB4JhjI5YYPpnHvXZeHrjwh4WubS68fa4dOhjs543srKDzbwO9y8yHytwx8jKP3jJ146U9Ejq3Lc08UOq2IgQgSGRFy24nK569+lV/E/w68SarNBruqXlpomlTINmq61OYo3VZdjtEgBluNrH5hCjle4pNQ+O0EudI+FHw3t7AA5GrazDFfXqgqVIQsgigGORtQyIekpFbXhf4H+JPGt83i/4oa5dT3Fywmla8uWmuJ2PeR3JOcdySayd27vRES5b6s5XR/CXhjXNcitvCXg3UPFF58n2ifVHa1sIjyrAxxN5ki4KssnmxnqDGR19u+FPhbxv4Iihk1Pxu48uzFtbaXYQJFBCm7f8qgf6zOcyD5zlssQTWpo9hovhmzTTtDsoow3CxxJy5x3PU/U1q2hS3xPcyq07Dkg8L/sr7fzrKVS6IlN3tE5rxl8B/AfxA8WxfEPxha3smuQWRtINQttYuYZooSXJUNHIMZ82QEjkh2UkgkViXX7I/wL1mYvrXhW7v3Y/NJqGtXc7H6l5TmvQZdTi3bA3TjpUttdR8ENnPaslVnHZicpxe5l+C/gb8MfBV5a3mjeEBELZ18r7NcPHKqjsknzGM443AHHoelaHjf4QfCO91PWfDnhDRr+Hw/f+fDZtdotveG1kBUxyPCxw2xipZWGRk4XOBs2WqwKp3nnHFe3fs56f8PPjl4H1z9nfVNL0y28VXO7UfBviBrMJN58aEyW0syfO0ZVchCrAAyt95IwBVZp3uVFXPgiz/4Jo/DfRds2meI/ELMu0+fIttLIxViQ2Xgba3OMrjOBnNfUnxG/4K4+E/g5oHiDWfGPgjxfpd/4h+Hui+FRYmzt5Lq81TRtRubyzu0cyqDZyx31wJDnzFcqvlY2u+f4gtvEvgbxJe+CfGeny2WpafO0V3bTEZVh3yMhgeoIJBBBBIINcr448FeA/iBFFH4v8J6bqqwsTEuo2McwjJHJXeDjIA6elW6iqte01Q4ycXqfOd1/wUm8bftL+MV+Flh4dvfD9z4k1iFDq0Ot/OR56O0ZHlrtVwCpO/gHHIyak8WeCZtS0PTrSwntJ1t4mgWOOQmZvnd9xEmC/wAzFRjOMAelev6B8Kfg98OPG+k/EW2+HOjWv9javbX8s1tp8MTCOKZXcbsDA2qwPPQmvlr4YfGOX4hzX3h3TrK6jvbGAyXDK+9Jow6x7snnOXzgg4AJzxXUpqS9xaItWex//9k=",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [38,56,55,70] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [57,53,73,66] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr6E/Yb/4Jo/tF/wDBQPw78QfFfwOu/D1vY/DXTbO71+TXL2dHlN08ohhgit4ZpJHK29xIzFVjRIG3OpZFf57r9Uf+DaL9pr4Gfs4aF+0Rqfxq+Huqa7C2ieGr+NdM023nYQx39xaGMNPdQKrm51CxlUE4It3YsDGscudWXJTbvb1KiouWp474k/4N+P2ptD8XeKfBWk/tCfCDXbzwZrKaT4ifRNU1qSK0vN22eFnfSkCmAtD5hbA/0iPYZPm28tN/wQ2/bcj8QppMMfhq6sWnhhbXNPury5t43kRGG+OG1a4UAsUZzFtBQnJTa7f0HftXeBPgl4/+EHjX9oDwX8LNV0zV/DnxH1q21+5AEkGrTwagbCW9ZIyUYZt4oy8qiQLCI23pHG1fHlt8RvB1zZPO2mwm2TEEllZSxWwRMN5aLCkewwoBgIEKRqoVdgZa7KEKNekpRuejHC0uXXrs+x8L+Hv+DWD/AIKL65ofhjxXe/FT4HaTpHiO3W6n1XVviOY4NHtZ5Gi025uitszNHqEiqlr9nEzM8ipIsLB1Xhte/wCCCPxQ8P6zBocv/BQb9mG8lu9efRrJtK8c6tdie9SPe0YEOksyLkNGJHVUaRfLVixUN9k/8FDP2xvEHxq+Bd1+zv8ADP8AaQ1Pwh4x1DxQmo+Jta8O6lPZLqWjpp97a3dvf+Q0Ut8Z3nst5cTEwWTDaWSGGb5q8Mfs8fHXQ/2hfh/471b9pHxxp/j/AMOXkbvr3iTVtWtdRWO8v7nUpUs9yx3NqkllLd3DMXVJ5NQlwsbO0knNKtRp1VHe+n5dLp9fvOiGUOcZPXRX9V90tt35L0v8k/tF/sEfGX9l/wAFXnjb4j674cnhsvFi6BNa6Nez3UgmaO4kSYuIREkbC1mCq8izNtyIyoZh4jX7Gf8ABffUv2e0/YC8KaR8ErPT7Sa4+LFvf6tBaahOtzc3E1vrc811ewm0ghnnd7hQJ1aWRETy3lkDR7PxzoSmvi3PLxFJUZ8qCiiimYBRRRQAUUUUAFfpj/wbuR+K20v44Dwx4Gi1YTweGIb26nX5LSEXl1cPliwALR28hX5XbeiEAgMD+Z1fV3/BLv8A4KX6D/wTp1jxZc+KP2cYfiRp/iuTTWn02fxS+lCH7J9q/jS3lZiwuT02gFBkNnA4cyp162CnCirydvLqr/ctRrc/pV+C/i3WfH/wRN98RtM1WS78YfbLrVbfV1LrEZZXXYi7gfIKqpUZyVbIIyMfDPxr/Y9+MPwyhk8aeHtE1bWdHW8mt5prXTZTLbMmMmVDEpeI/MVnjBjdV3MIi2weIy/8HfnheYbG/wCCaEiIo2xxxfGchUXsoB0c4A7elTr/AMHhPhd9Nl0m7/4Jp3UsE8bJIo+NpQ4IIyGXRgVPJwQQR1GK6MLCpg6cIweySd+tj2I4nCqCjKV7eTPn1/gt4t8I+KPGnxL8H6n45Ora5eXM9otj4lghtrmCV/lhVw4JCPK9yiyIADBCodWjWRtn4W+Dvip4F1TwZ4mm12612Qa1dP4nHiNimpQuLEwm/adbydbj7SZ3QqWeRFgCAxxsVk5L9oP/AILwfB74u65c+LPh9+wHc+DtVvdRlutQnj+K7XsN2ZNzMJIW01FDb2Lb02E5IbdwRwNl/wAFi9BNyj6v+y/PJEGzIll45ELEexaxcA9OSDXSqeFnLmkrPQv69TgrRnf5P/I7r/gr94juNY/Zq0K2lgVFTxvakFUUZxZ3voOevU8/lX5x19C/taft3Q/tQfDuw8Aw/CuXQvsWsR373T+IBdiQrHPHtCfZ49vEo5yeVPHzfL89VVaUZTvE8rETVSpdBRRRWRgFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/9k=",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr6l/4Jt/8ExNd/wCCjHh74sa1oXxn0zwjJ8L/AAxa6x5Oqaa0yaoZrgxmASCRBEwRJCvDtJJ5car85dPlqv1k/wCDXT9q34ifsxQ/tGah4D+GUfiLd4a8M6pMGmuEKNBq/wBi8tTEMEmHU7iUAspLWqj7pcrjXmqdGUr2t1te3y6lwSctTzvxd/wQg+EGnT3UHhD9uvVrzyLXSL+I618I1sWksb7SbHUzMYU1aadXhj1G1SSMRHDsw3DA3TaX/wAG4nxNuIdNv9V/ao8MRQTo0epQ2OkPeXaXTXE0VvBawxzf6U02y3RVLRStNdRxxxyKVmb9W/2tdA+K37Vv7Edx+05png2w8BeLPEviGUeL/D+u+DTf6hFbwKmmyRATbAIWi05JMTxsqrczAAko1fPngL4s/EZdOtrPXLHTNU1OzjmkmuNP0qW2LIqltwQTPIqpGoJXzCmUZgqhto76CoYiipxPRWGpcqTj53/Sx8q6z/wbNWPg/VxL4o/b40nUdBTwla3H9seCPBUerPqOvvqNpp8+l6fE2pQi7himvbeNZ2eKe4mmit4LSSdmiTK/4h+PgDq+j6feeDf2+/GV9qGoaJfamdAuv2fTDqNjDbSbDLcWqa1JOtuw+drqNJIbddouXt5JreObY/bX8OeDP2tP2lH8a/F2W68Q634V8P8AhzTJ9DurxYpJ9Eku9SkvbqHKx73gUWyRbrqH5pETy5o5H2T/ALCX7Kf7MPgr9oLRfjj4c8RasumeHIoJLrwxf/Z7i+lvbacW09vJNbTxxeVtia5G2KXP220aRsToy8jqwU+RLX53/r5HSsrhOF1f7+2/9J+du/xR+25+wjpn7IPw++GXxB0b41r4xtviNpt1dxtH4XuNOitRFDZTDypJnP2pGW9VTIqqFeKRecZr54r9M/8Ag4t8dWPjZPgvPBrM1xeGz1i51qOTRrSPfeyw6VvuJL2KWSfUp2RIoWnuz5/l2sKyEyeYa/Mymk4qz/H/AIB5WKhCnXcYbadb9PRBRRRTOcKKKKACiiigAr9Nv+Dc+TxibL45aR4a1LSIrfWbDw3p15b6oYgbhjeXNyiKZflZWW1kidBhispZcMgI/MmvZf2Pf+Cgf7Xf7A+t6p4i/ZN+Lh8KXmtPbNqch0GwvxOYBMIsrewTKNouJugGd/OcDHHmGHqYrCSpU2k3bV9rq/4Xt5jW5/V14Y8E+JdN+E2h/CvxjpdhcixtGe8iWdIxPPIsizl/LEfmxsZ5P3bAodwyCQDXxx+0v/wTt+Mfg9bnx18E9AGt2DM8kukW8hE9qu1SDHuYmdNwk+XPmqPLUCZiz1+RF3/wcgf8Fm75t1x+2FDn/Y+Gvhpc/wDfOnCm/wDER3/wWY2urftgwuJFKv5nw28NtuBGCDnTvTiuihCWGUfZvZW9bdz1YY3CxgocrsvQ9l+K/wCyf4i8aweO28T+HCdZ13xDpSmzXVfKksra2tby31C3eeezmlgleRNN+VY9wEMylkGRL0vwu+FutfDfxPpWtaaxijtNCmt7u3vbiOfyrx5kCyQMttEdotooYcsc7URFVFT5vin4k/8ABXb/AIKD/FzWIvEXj746Wd5qEUYjF/B4G0S2nkQZ2rJJBZo0ijc2A5IGTjFc7cf8FIf2zrtAlx8YI2AJIP8AwjOmZ5x3+zZ7V0Q9ip88o63uDzCCTSvb0R7h/wAFmNf1rXm+HD6zdrIYxrAiRAAqAmyJwAAACcnAHr618PV3nxy/aY+NH7R9xpVz8YfFNtqb6Lam3077LodlYiNCsasWFrDGJHYRJud9zMQSSSSTwdKpKMp3R51aftKjkFFFFQZBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/9k=",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [48,53,63,70] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [48,51,62,69] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDZXqPrUi9R9ajCNkcVKqNuHFfl5+kD0+8Kmg++fpUUcbFwMVPFGyNk+lAroeAT0p8aNzxSJ1qSPvRZg2rCbG9KcoIGDS0UEBS7WPagKTyBUio2Bx2oGtwUHI4PWpArHjFKEIINOHBpNpbhKUUEEbiUErVlTtOW4qJJURgxPFLLdROuAT19KxnKN9zpw9CrWheEW15HLDrUqcsBTVj5HPepkhwwO7v6VuYNodGhDgmpaRI/mHNSCIk4DULcgROtSR96RYSDktTlXb3qpNWGk2LShCRmhV3DOasQ2hkjDb8fhWfNEfLIhUYGKlXoPpUn2E/89B+VKLQjjf8ApSc4LdgoSfQSm719KaZ88bf1oh2yyrGzbQxwW9KyqTjLY9TAZc8XGTa2Hj96di9T60ksLRLuYjGe1Qy6lY2WorayXC45y+enBrM1f4g6JZl4ZZFwgzu8wc1hKMpPQ+mwGAlhqTjFdRqx8jnvVhY+RzUaoMjk9amXqPrXefBjkj+brUirtOc01PvCn0AFKq7u9CgE81DfXRsI/OONgHzE1MtYmtGDnUUUT5KcCtXSobGSyV7i6Ktk5UAetedap8WdJTW00LT5kNw8QYK3PUkevtWB8QPiz41+Hkj6tq9lbtpwQFRHC2/pzzu/pWVmj6PA5PWb56iXKe4LpMEih47hip6HFSaro+l6bbJMNQcsyAlSAMHFeJfCX9tXwB49s59OtbhI7q1+XyXPzKfQ1W8aftTWFmWjnhFwFJG22U5H6monFs9WGVUUm2j0+a+sEjZkuMkKSASOtc1rXxFtdIspXuZrZZEjJUeb3ryK58dftF+M4mtvAXw6EXmqVU3sTE88Dow9az9J/Y8/aD8cXkU3xE8WRaZKzj/RoiV3e3JNSotHK8dgMBJx118jO+NP7ZvhLwvrMWk6TdpPcyBvMaRyEjIBJGR9MV4b4i/bZ1XxTqc+gaFpaz3JiZ4lhZzvI4x+tfV/h7/gmr8EtOtrgeN5tW1C+uGBZ2vIygIIPH7v29a9F8FfsqfAHwL5L6H8NNO8+AgpdTQhpDjsSMcfhWsVpqceIzynz/u27GsvUfWpF6j61GvUfWp1Vdw471ufMCp94U+jA9KRyQOKBpXYkrsgBU4rmPiF4gmsoYtNE2DcI3G0c4x/jW/qrvHpFzMjEMkeVYHkV8ofGH4jeM7TxLHM/iW78uAuFXzTgDIoS5tDrwkGq6Ok8TeFLvw943h+IU3iYW6w2yqbRgCXw7Nu5+uPwrG/aA/aR1jxJ4PV9Atw6QDFy32dGDAcdxxXl3jb4weIfGV3HbQrJdsluI/NdiSMMTj9c/jWVaw/E3+zWsIfCmpT20ud4hB8tge1DpOx9nQx9KFJQaOI8D3erWPxObx94XnYDW5fMns4wDj+HGO3TtX2/wDsvfCPRtV0y58S+LtE86SeQyqs0r/JuOcYBx3rxT9m79m6/wBV8QR6s+im0djuS3dMNF7e1fb/AIZ8P2nh3RINLhtUjZIEWfauN7hQCT+NRKEm7tnn5pmcadFKn1LsUUcQAtx5YHTyzt/lTyDMvlTO7huCzuS34E8j8Keyrjp0pnTpU+zZ8c6lSc25u5NGot4TFGTj/aYsfzNKjtnr2qlqeojTbF7yVvlQjOfcgf1ra8FeD9e8ZuG0WIysYy2z245/Wt6eHlON7hucQvUfWp6YAc8ipF+8PrUlEdxepp8Ru3AIXsffiqN54gTUYhBEoUht2V4rkPj9pmp6leWr6bp89wFxuMERfH5CtfwBaXVvo6R3FtIjBfuuhB/Whuw07O5fd5Z7aW1MjHzVx1rx34w/soal8QrU6jZXTxeUxDeW5Gd3Pb6V71p0bK7EoRx6VegBGciiMtTeliPZT5rXPA/hV+x94f8ABdxat4jZXkZRJh1zlTxk59wa+gNM8LeF9JsY7HSdLtjAi/LiBevft60VYtyBEMmrc7l18fKtCyVh9rpWmWcnn2umW8TnkvHCqk/iBTnOXJJzz1pBjtRWc5WOKU5z+JklJhfQUtIxAUk1HtPIkwfifoXiHxH4E1DRPCWsQ6fqNwiLbXk6grGfMUnP1UEfU15d8Hvg3+1P8Nri4i1f4/NOk+WjWC5dWXkdCDwPavbYWUygBgfxqxHK8VzDGEJE0ojYgdAe9duHqe4w5uU5qlwfQ0g6ipK5jRkMyO8ZVVJNNtYJUl3PGQMelWU+8KfQTzMIAQTkdqmQ4zUadfwqWJGbO0UkrCcnYUAsMhT+VTQqwTkGiGNwvI71KoIHNMhO4KMLzS4PpShSeQKkVGwOO1JxUigwfQ0143dCiqSSOBUtLG6xuHc4AOTU8iAp2bpFqKQSNhznCn6Go/H3i2y+HvgrVPiJqLqLfQbJ76VW6MFGMfmwpywSTeIIruMZQbskn/ZNeR/8FFviLcfDf9j7xbrtnGsjXVr9h2McZ8zP+FdNFWVkY1JcrPRl6j60+mhMHOacBk4rE6nsKn3hT6bt2/NmlQ7zjpQtzMfEpYnFWrSNsMcjtUMEfJ57VZthtBGappJASKCBg0tFKq7hnNSS9ByfdFPDgDFNAwMU4JkZzUTk0LmY6myAlCB6U6mXM0dvA08pwqjLH0FRzyDmZAbW7kIS0K+ZuBAJ6gHJH1IyK+LP+CtHxIk+JqWP7MXwwM93rWp3cEl1YpEcWyqSGaUjOB8w6A9a+zvD3i/wrrepzR6FrCXhs7wwFou0ioWB/AjpR/wrr4dv4pf4hTeCbB/ENwhW61RoQWYZBwPQcD8q6aFRxfN2M5rmZ//Z",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDYRVDdKkwPQUxTg5p6DeMivzCzP0QeiJkHaKnjUHOF/So442JAyKsRIUzkjmkAsacD5f0qdRzyKYnQYqYAk4FACYA6Cn7F9KTYfUVKiHcORQAkcec4Q03UNTs9E06XWLxkEVujOxkbCkqM7efpU3mxWyGSdwq92PQV5D+0D8Tbc6b/AMIzokzMTeYuWUjaVzgjr6VlJSb0OzCYerWqLkjfUzPFvjSbxZrksr6oXs4/mhh83KofUV5J8bvifc6JYT6No+q4V8eakEoO75R1xVrW/E40nT3ljcpvBBJ7188/Fvxle3urT/ZZTIdy/KvX7oq8NTqKp7yPp8Q6NKF9Eec+JTqHinXn0iwEt9eyKUjhgBkkDHphVyc1+mn/AAT7+BrfAn4HWbXmlta6xqjm5u5ZYCk4VkRdjZAI+4Tg+tfOn/BPj9km/wDGfimb4yeJ9KVdMhk/dGVSHdyRtIyMdq++IYlt18mJcRrxEPRcDiu11FB2vY+dxlaEq2j6HDVLB90/WmKpByRUqdPxrnex5xNF95anqCL7y1Zj71ACp0FTp1/CmJ90VJB98/SnbS4D1UEcipQoHIFIrADk1neKvFFl4e0yaaSb94qfKFGepA/rUSlym1Cj7eooXsYXxk8YR+HvDbaejbZ7lSYmHbH/AOuvmDVdXuxdXF7dzlyHZ5CfxJrrfiJ4rh1Ca7nu5cDf8nHUV4d8Q/HCxTR6YNQSIzOIoTnnJOBgevNJT1PqcJhPqCbvfT0KfxN+JZkga1aX5EJKgAccVpfsafsvar+0b42l8V6ypt/D8Tfv7hmP73HynGOmCCPwrv8A9kr9hfVPFzDxj8RdVlh06efzBDIPnlGcj5euPevtbRtE0/w/pcOi6PZiC1tk8uGMHoo7/j1/GuqVT2aueVjcdz0kuXqS6Ho2meF9Bh8N+H7KO1soP9XBEuB+PrU9NVSDkinVy1KvPK9jxKk+eVziFGTipEQY6nrUafeFTRqSOB3rZ7DJo4lADZPSpY+9MQfKB7VJGDzwagCRPuinxsVbIpi8LzWZ4p8YaP4Qt92qXsUUki/Ish5x60Nu2g1GUnZIseIfEtvoVsXkK7+oDdMV5R8TfHNtHC8/2kt8v3WPHWrOq+KtE8d2k89p4nVpYmKtEkx4Ud68q8WfbPFfiCTwT4bWfUNUKELY2zkyZwTu9MDG4+wNYSUz6nDYbD06MZuNmedfFbx9qGr6nBoHhywa4v7yUpDHGpK4zznnOa9m/Zs/YF06a7t/H/xoL3FxFJHf2thcOu1HUiQR4xnGRjGc16B+zn+yP4T+Hmk23ir4gxDVNfmYSzGRA/2Ujoqbs7OvOPSvaroQXMpmEJI3ZTzBlh6fjXRTjHkV9zz8XjqntZKM9P8AgEOn21tYWyWltboojXbGQMFU7LxxgVZU5GTUSK2enapUIaeO0B/eS52L6/4UrTlozwp1ZSVmxygE4Nc58Ufij4N+EPhp/FfjTW4LS0jzu81sH61y/wAZ/wBozwx8HjF4P0yybxN4gvpVjstI0+6JnBOR5jFeiqcZBPevIPiR+x/8U/2k9Ln8Sfte/FmHw1oCp5dl4d0y6CskQ+YTTZIDZLspHP3BXTSoQa95GXOu57kn3hViD7p+tRIi7hxViBF2HjvWDaaOgkTtU0femIq8cVKAB0FJK4Cxjc6qe5FfL37bWq+Ib74iweGNK1lrJEsmk8wJvyAQMYyPX17V9PSXEdqhuZGAWMbmyew5r4v/AGw9f8Q3njtvGNheP9mwYElWNSgU84zjH8NOPxHoYVclWEmfOfh79pPxN4M8aaj4Ru72aQsSnnqxA69cc/zr65/4J72994z8dan481mE+eI8Rs3O0FSvX3B/Wvn34S/sf+N/jt4obWfBOlpCZnxJfyoSpfqeW+XuK+7f2U/2fdU+Bvh+5tNavFmuZgBI4xzg+1bzS0seljMXD2PLbVnqqxeUSN2c+1PEecc9acFQ/fP5mud+Kvi7xj4L8Jfbfh78Np/E+qPLi3t4rpYkDfwq+7+HOASO3eseV8x8s04uxsazregeFbCTXPFOqrZafApa6vHAIiUd8EjNfOf/AA0/4y/ah+MUvwK/ZhRW8OFsa543MmY4cKD8iFRjHI+/1BriviN+zd+3Z+2F4ntNE+MniWw8HeDo7nzrjTLBwZlHQruX7+RxgkivqD4O/An4Z/BH4azfC74e+H/semXcYTUCSRNdEE5cuDuXJyflI612KPs9WZSg2j4Y1j4z/EvVvEVz8Jv2FfhDPfzWr+Xq3xEvi0k923QvvZMDr0BOfWvX/hj/AME1PGnjY2XjH9rX42eItcujiT+wklMMHqCxDnPJYYx2r6y8KeHtA8HadDovhXRLTT7WBCscVrbKnHuQMt9TmtEDBJLE5OfmYn+dV9ahFWsR7KR59HGxcAEVYiiZVwSOtIsSqdwJqaFQykn1rzjtTbYqoQAakClulIo6CpY0HPJqo7A20U9Q083ttNbMRtljZDn0IxWT4Y+FXgq2hXT9Z0eC7gcYuIpoBIpX1Abv0/WujKDBpbYbJCR6U9tTWOIqRtYfpWiaJ4as2tfCemQWapIfIjhhEahcDGQuea0Fl5BYEnviq8RLLk+tTUe0kwqYipVtzEhkD9AePWpI+Cp+lQBivSpY3JKilzO9zmk7yLO8eho3j0NMorT2s5aMkmjYI2TUqOHGRUFSwfcP1rKTuwOPXGeacCCOKiDknHFPVioxxVl3RIvUfWpUIGcmoASME0/zPapeuw07lhWXb1pl0yr5cY+9I+FwOpCk/hwDTUc4HFTpIpjkjaMEumFb+4cjkfhkfjSsxXRQ8IeKdC8UabJf6HfGeKO4aJ2MTph1xkYYA9xW2OnFcd4Mi0vw94z1XwXDKFFzIupxjH3Vf5XUD0Xywc/7VdidufkbK9j6iizC6HR96crDcBnvTFbb2oBw273qlsS9ywpAPNPBB5FQRyFyQRUofAximTLYmqWD7h+tQh8nGKekhQYAoIOMDKTww/A1IhJHJqtD/rBU6ttGMUnsaEwIwBmlqNTkg1JSjsNOw9PuipYd27nPSok+6KnTr+FWldiOT8e2zaJ4o0fx7ZW5Z4pvsN75S8tFMcDfj+Ec9eOtduktvxHHKhwMAKwrC8RaY2qqLYSBUKEuCOrj7h/A5p3hvURfhXEZBjGDk9TiqcEgN7IPQ0VHHJ14pwfJxioegEiHB64qVWG37361BTg+BjFApbE6Pz979alRgRy361XTr+FSp0/Gmlcg/9k=",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [38,36,77,69] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [41,38,61,65] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD8oF/4Ix/8FKWief8A4ZwAVPvE+MtGGPzvKfYf8EWv+CmGpwG5sv2at8YP3z4x0ZR+t4M1/QPZvYa9aqLF1bzE2ko3TP1rhb3wQfCN2lotlPeqbozNcyzFVh5A4GSOMZ4r8wp8cZhUXwwT9Jf/ACR9xPhjBxekpW9V/kfhfd/8EYf+ClljIsdz+zU6luhHi7R2H5i7xSRf8EZP+ClkzbU/Znl+reKtIAP4m7xX79aS2h3jeS+ttPIyggOxPH1Pua0PDvhUaWJLiFmnjMmcSWxwD14J747iofHOZRWsIX9Jf/JFrhfL39uX3r/I/AH/AIcjf8FPwu4/sxkDGcnxnoo/9vKhH/BFb/gpiThv2bFX/f8AGmir/O8r+g3xNP8AarQs8o37SAvC9utcLq/iHT9O0a4bxHqkcc8aH7Ng8SHB4GBz0+tb4fi/OMQtIQ+6X/yRhVyDK6Ts5S+9f/In4Uan/wAEYf8AgpVo9qLzUv2bxHGTgN/wmWjHn8Lw1iTf8Epv297cAz/ApEz0DeLNJB/9Kq/dHWovE/iPwSb2G9twF+aKGX5WbHYDGTXjN9YeI9ev1tZTHAYHJd5QVDDpjgHB/A10U+Ks2crShD5KX/yRwV8owcH7rl96/wAj8g7z/gmh+2zYKz3XwYRQrYbHifTDg/hc1HZ/8E2v20r+TyrT4Nq7Yzj/AISXTR/O5r9ZvE3he9vLgx6DaXZkJ/eiRkZSR1KkY4+tYs3wo8ZaVEdat7pJkkH7wNbkeWPfbn359q1fEubx1cIW9Jf/ACRyf2bS5rXf4f5H5bN/wTV/bWRijfBlQR2/4SbTP/kmli/4JofttTyeTD8FNzdgPEem/wDyTX6p2ng3U9SWOSO2kYMMh8gCu/8Ah54GlgltprlXbyzhiyAqRnn/APXmud8W5tFXcIfdL/5I2oZRSqys2/w/yPx0H/BL79ugzLb/APCjSHYcKfEumD+dzWL8VP2Af2uPgn4Bv/if8TvhI2maFphi+3X/APblhMI/MlSJPlinZ2y8iDgHGcngE1+8HiD4M3utxJrGl6dNIjKuSjDHfPU5r5q/4Kz/AA7n8K/8E7fiDPNbqjouksymUlhnVrIdOg/X+tdeA4oxuJxNOnUUEpSS0T6tL+Zm2IyOjRpTkm9E306L0PvbTdFj0h45NMhCqjD5VI28H9KXXb6S/umh8pWAjbfHt3BhnoasrfRi0320kcm7qUfgcfWs63sxfagbq3BMgTBPpznpX5XHmTufaPlkuVGd4OgnF6W0S3FgwcGVoo1YOMjgg9PqMHiurtvFmq2ds8N4I0xJ8pbo3HUdKyItS07QWLxXIaRuHVjt/mKyNb1rQ2t0n1jUWUfaFSJYVLkuxAXhVJxk9egHJ45rRL27tJGdvYptM3fGccniS1iuIrkW8sB3L8oZWH04/n3rw/4zwazbavE6bJIVbcrQqdr8c8tznr+n4+vWMjeJEFzps3nQNF+6njZWV1PQjA5BGCCOCDWEPD2tac5t7lEkBY5KjC4+pIr06GKlQp8m5xzoe2fPYzfC1tB5dtPZtMEeEZV5PMUfL02uCB+VT+MPBuk6qsqRzrH5znzkTAGCOeOMfhXSRLFYkzwSw2428xoF5/z9KwZZ7Us9y0YUSNkhnwDWSrVXK8WbwoxUffRQ0L4Q+HreMwaPeOwmhKShGzgEH1J960vCvwcbR4DoX2sXMYYuI7lEwT1ycZP5f41q6ZeRWsUKGMBHGMEE49OfxrVsoYbO7e9tJt8snYkYFTUxuMas2XDCYa90ipqHwi8FW9pItto4jkePiP7yI3svSufsvA1rpkMUEyyRbXwuwAKeT0zmujuteuIbySO7gZiAcBF6/kDXP6hc6n4gDDQdLvDMr/6qbcAAOCdp4H4Gq9tXnStLYnkpU6vunp3hW00//hHliN1sj2lXX+77ZNfJ3/Bcx/D0f/BL/wCKFtYyI0yrogVlc5P/ABO7DOfXivorwpf+ItLsYrLWrARHYSzkj+Q+lfLf/Bb27sr7/gmt8S5I7lTKp0bcig9P7ZsR/WqyVt5vh03/AMvIf+lIWZaYCq0vsy/I+o7PwpLCzNFA6nbznvUUl9LoGjSxID5snCOxHy8emOemPxrR0Pxzazv5V5GmAOSjYNZ/jLU9N1Ka3+xXkDxqxLJ5gJHPsa86HNze8i3PTQ4HVNM8QQXLX8MRb7QD5hPJJJJyc/WqvjT4beLfGHga80TwvqsNrfCISwS3NsZEaVeUQ7XUqCw+9zjrg9K7bxVdQajZLZKEAA+8nJX9a5BtN8U/ELxXp3gG51e58OeEfsbXfiHxLpkf2q7ugp2jTraFcGOWQMCZndERSWDblEb+ph1U9pGSdvM4qk4KDUlfyOX+EvxR+Iumfs1SfFXxIqHVvCV//ZusW63yTG903T7gx3d+BGzFflccFQzbC+NoBPp7eO7XxRpsd3pmsR3FndRLPbzxoCHjYZVhjsQQai8W/DdvGH7TvgC2/Ze8O6Z8Pfh7o+kXo+JN7qNraC88QL5AhiU8OzOqA7MNvMkrE/cGavxK8L2vg3xdqet6RrrSafJcSOYdTk2SQxhsLkDIDHgFRnngV2YxUKqTgrN3f/AM8FGquZN9vuILlbS/aJJi5Azll4zx9Ks3/iSyhxDaQqqxnB8wb19O4rkIPiXrEcw1PTfDZeADCF3Iznp0HX/Coo/HMmqQSQ3Xhe9gZm3HkMp5J4OBXNHD1d0dcpSekkd3oWpXt7dTNNudNoMISMBce2B0xW9ZSWtogM00YLD5tz4I/WvOl+Jc2nadDHH4cvLhioGIgpwB9SKl1XUpvEWjrqsFlImWHmeYpHln+6fQ8etS8LVnL3tBOrGitEehRXllFqqXR0BLp2zsZp+Dx1xg11dvPfxxJcrZxRlxyPvEA9s5zXgnhX+17TWlleQMiAgKnJHFelXXi2+sPDYulj3hCpHr1rixGGcJpJG1Gupq7L/jWHxNPqUdxpcYlU4E0LKF2r0yCep56V8kf8Fp/CmrWX/BNT4k6zdKiqRozSIW+YZ1mxHYY64719Kx/GKdZVjnijUbQcvJgivm3/gtT4xtdf8A+CZfxEWNy8ko0bcQcgY1myNd+TU5RzXD3Vvfh/6UjDH1YvAVbO/uy/I928W61ayJBawv5arHgso+bPTOemazNIsvNhWG9uHCeaCs8fLduDn8617rQvC018mn2t60jrkMsTeZjnuTnB9s9q17iwXR9PSC3tdyAZZTFhjge1Ye0jFcqRz3ctTKNtbCZ00/Uoj8vzLO4BPPsaj0HRvGBna1gvBFBuB5jK5GccEDnip7Xw1BfSjVIZRb7gcQlwjH5vp/niuysbWz0+xRRcOTKBtMjA4OB9KyrYj3eVGsIuTuRWGh6lDFDqdrEj3FlcpLBLIwUq68hgSeCD3/AC71Sk+H97r8dtqPj2yeQajrk9zJPCnnRuY0BWHcP4iWdiOTiPjocdHBpvhjwzbWmv8AjawOqtNcFrXS2maJWjUcyMc5KknaMcEq/OQKi8ZfFLVvjh8RPCWmQ+GrHw9ZeG9UiutNGjRmJ0VHDyRyOMBonVdrptwQSOATm6Ff3bS2FaVOacFqU/CNh4M8Ta7/AMI3a+Br/W5IroeRb6VLFEkJZGKhy0iABjGVwNx+Ycc8ewfE79nz4D6R4Sex1rw5f6HfyQoz773cEB/jG5yCOOuR19QcfPmrfECW08fN4s+F9+NDjtNTe5tP7LtIo90hjeLeylDuAVm25HGQeuMQ+MrH4ifFK4kuvif8bvEmo2TsHS3utSiiVzzjLwxpI2OPvPg7VODgY9Whi8JRpRjUWpyYpY6pXl7OVkXbz4Vab4v8VRx/CPxTbajp0PmJd2zXaNPuA4ZFGGZQeCcYGep7WIbqT4J3suop4Jh8QaY/lx6ppF5u2zFVcqyEKSGG5uocHGCpyBXmnhP9gv8AZZ8efE7TdZ8ZeK/E/h23tmPlat4V1+NLmC5aXcly8t1HM2FJIO0qVULt+4FP0BqPwh8R/AnwlH4f+Kfi2+8aWbzGKz8Z2yIL64tlZntjctgxzuI3RDMpDSlS7kkgLGKxNC8alGWnVWtY6cNKXs3Sr6vuea+EvCFnq+kprdpai3iuYllgWVjuRGGdp4xkA/pW7qMttaaILC1jaTZGA7DH9Khn8Pa3ovhSz05L9bq1sXFmLy2l2iRQMRFh/eKgZAzg9etX9P8ACl3HpqmV2245JBJOfwrx6ldud2dMaajBJI5b/hHNKvistzDBiQ5kaZckD05OP0r5r/4LK6Bb6d/wTU+JM1iYzAq6MECcY/4nNj0xxivri98CWlxPEYLtU3lQwcDOc9hivmb/AILZeEk0b/gl/wDEqaO6Z/L/ALF3DZgc61Yj+or0srrp5phlf7cP/SkcWLhJYOq+nLL8j6X07wiNKDvdSxs7J8rNJxnnjBXj86p3ATUWeyj1KAPGhJ3vkenrWYvjOPXiLeSIjnhjL0/nVK406Sa5adI9oQceX1bnPpXkLnbu9zSUoKOhZ0XTdT1K/W0WZHbH3QG9R061sCxtrbXbVPFUjfYoHBmjgVtzqDyoPbOOtZvw+8XQaLdzyakIggGVMrAHOR0yfarUl5peo3Ul3a3kk0kjkmPJVVBOeuCCOfWk5Tb1FGUOU2fEfja38S65PrV68EMfyx21uqErDEowqLtBwAP1JqDXNUurLw/dapoU8FtPJB5UbRgb8NgH9PSuR1mWWKLbbWJ3ZOfLP+AqlaRa5dwmB7eV+eB8xwPyq0vZyuHtG0cLr+nfEOB449EnWaeebEwWMkKP73PQetWbrXPGNlELW40yaYRnawR2JU/1H09q7iXQLyz1DypEyoX76qSe3tVm1he0nWCa2MhIJ/er/n1r0Hj1y6q5hGjzPc8b034g+JdK8Rto7R30SXEmxSSSgOcjhhwOe1fR3xM+JvijQfgp4Z+E8GoXE8u17jVGViNgLbkiGBwATnjHT8+c02bw7a6kL668Pq8qMWVSigbumenap77V9Y8QX8jzaXmJDujMUbHA6e9ctbEqpNOMTWnBQVmxnwp1jxENenstV84aVekSXMMjuql1HyvzxuH8uK7fxh4kh0awVbLy5Ig4AkV+GBz3HFcn/wAJQ9vaNYrppYOuSF65HP8AjXK6h4ts5r5dHL3CIzjzF8wBV/CuRx9pLmaO6NWlSja532j65ca5dI7WciInKtzgkeh/Gvl3/gtprUg/4Jw/E7SzJKRImjZUyfKMa1YHp+FfQ/8AwkqWrB9Pj4W34RW4Jx7V8k/8Fgdd1PVv+CenxNa6hUKZNKGcNkAaxY+telk9NvN8P5VIf+lI5MbVpPBVdNeWX5HBad/wcA/sTW8zT3Hwy+KCk8BIdE03+f2/+laUP/Bw9+xKmC/wv+KZOf8AoC6aeP8AwPr8aKK/S/8AUjI+a9pf+BHx39s43uvuP1xm/wCC9X7G8+rT3Mvw3+Jht3cmMf2Pp+4AnPI+3Y7+tXvD/wDwcA/sbaRJIs3w1+JrRsQV26NpxI/8n6/ICitXwbkrVrS/8CBZzjU919x+y93/AMHDn7E10VB+G/xWCr6aJpoP/pwqHwn/AMHD37Gmg6xNeXnwx+KDwSghQmkacWHOehvwP1r8bqKh8FZG1ZqX/gQf2xjb7r7j9o9U/wCDiv8AYW1GZv8Ai0fxRVWPzP8A2Dpm4/8AlQ/rVCf/AIOFv2HkZVs/hT8UWVenm6JpgI/K/NfjXRR/qVkdrWl/4EH9sY3uvuP2bvf+Dh/9hm7shB/wqn4pCTA+YaDpg/X+0Kr2v/BxN+xvabVT4TfEtgox82k6dz+H26vxsoo/1KyO20v/AAIP7ZxvdfcfshqH/BxD+x9fWbWqfDb4oQ5OcR6Tp4H0/wCP+sSD/gvB+wwJ/tdz8KPidJIWLOTpNgck98/2h/SvyKoq1wbkiVkpf+BC/tjG33X3H7CL/wAF/wD9iWF0ktvhn8Ul8sjCf2Np2Men/H/Xjn7fH/BYH9mj9qf9lfxj8Efh/wCC/Hdnq/iH7B9im1jS7KK1j8m/trh97R3kjcpCwGEPzEZwMkfm9RW2H4UyjC1o1acXeLTWvVO6IqZpi6sHGTVnpsFFFFfSHnBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/2Q==",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiv1j/AOCIvhS88afsGeKtAjsF8iX4nXpkujcFDuGnaaQmAOencjGfrXn5nj1luF9s431S3tv950YbDyxVTkjvY/Jyiv3l1H9n7x9o+q2nh3S7u2vbWVBiS4cJJGwUk5AJ3AEAbsc59eK1P+Gd/FF7Kltq+rC2t5EEaG5BGOM5KZABOABkg8j6V8+uLOaaiqO/97/7U6P7NxF9nb0PwGor94b34eT+EtUit7nT7grBGwW9tJWXPLDAVSQw/wCA59+ldL4T+EvjTxNd2+t2a77GeNnWS6ZFlJ44AIbB4HPTqK3r8Rzoaukrd+f/AO1HSy6tVlyq/wBx/PzRX9COpfDfxR4X8K6nFLeSztJLGqh3+RT8xIPIwfr+lfmx/wAFrbG+srv4cf2heCSVl1ffGAw8sj7EMDPBBGCCOOvfNVlvEc8wxioexsnfXmvsm/5ULE5dUw1Nyl+X/BPhWiiivpzzwooooAKKKKACv2D/AODf2bxWv7F3ia30ZYUt3+J16WnlkxtYadpucD6Y5x3r8fK/Yn/g3u1qGy/Y38TWN3cKsTfEy+cozLz/AMS7TQflIyePSvl+L3JZM3FXfNE9fJOX68uZ2Vmfb2m/2h4baa8uTBdK6ZP2yfLR9c7HYE4J68dqzdT+K86a+1kPBkdxZ2+nWptTa3KyTrLLLIgRovvndGjyJtVspbXTsQIgTfk1vwvrNz9riuori1gVlmWCLIVjxjKg4+hrT0bxNYeDFgttKtYWt49SN/aWzorD7Y9q9m05DDBmNpJJbeb98RMVDAYA/LqclOf7yN3Y+vc+Ve69CO9+IWjPpsdlcWVpbRyQgrHdyIhLE8ABsb85GMetWPDnjHVLvThZG2hvLeAefJNYQyRmCI4GSUJwoOPm9x0zWt4D8R/Drwf4vk8e+MPAV1r628UNzeT3WniWC23J9nEHzusCnz5EcBiWaJHKK7K4Et58RdP1fQteu/A2q23gvxbd5Og6p4WsW+zad+48uNZVZ181Uf52ChUmHylFGd1/V6MKd5PW/wA/U2+sc0+VX23ei9DD12LTtZ89G0W2Szb5WjS2ySOh529OvWvyv/4OGdP03T7b4OxabaJGufEKkiYSNx/ZgC5xkKB0Uk4yQMd/1qu9G0xZptMu74LEuRbzukkXnRnI8xQ4GVyD8wypweTX5V/8HImmadpTfBu3sLxJju8RlmRcYH/Esx069+a9ThWo/wC3qUNftf8ApEjgzyKeWzlddPzR+X9FFFfsR8EFFFFABRRRQAV+s3/BCmCWf9jjxABaNJGvxNvCzQhPMX/iX6d03fQdOa/JmvX/AIAft5/tYfst+EZvAnwI+Kx0HSrjVX1Ka1Gh2NzuuXjijZ99xA7fchjG3O0bcgZJJ8fPMDicxwDo0GlK6et0tPRP8jqwdanQrc0728j96oJrYyyKNDktFUZNsYcFyMEYbPJ7/n61PfWmteILKNLa6uYoz8xyg2swbksNmM9ehzX4jwf8Fh/+CjVtKZ4f2idrtnLf8IjpHfr/AMulSt/wWT/4KSuY2f8AaSdjEDsLeE9IOP8AyU5r4r/VDPFK/PT++X/yB7CzXB8trS/D/M/cC5sPGsvgG80jTPEiwi8vI2aUqs5ZUSVMYdWU/wCuJBI+THr0xLL4d+IrK4tY4dXsLOZLOOKUWtlLKLuVBgzN5spxI5OW2sEBA2oor8V/+Hxn/BR0W4tF/aKCxDOETwho6jn6WlOs/wDgsj/wUhsDmz/aOMZPUr4R0fP/AKSU4cI57CNlOn98v/kC/wC18He9pfh/mftZrVt8S7/xKdU1vxSrwWluIxZiDa6gRLHhHGSQTGH2k7Q5dhgu5b84v+DhrWDq1n8Gd9qkbxx6/v2rtJJ/s0cgHGeP1r5wf/gsj/wUhkJL/tHEksCWPhHR85Hv9kry/wDaL/bC/aL/AGsX0mT4/wDxDGvtoRuDpRGj2dp5Hn+V5v8Ax7Qx7t3kx/ezjbxjJz6mT8OZjgcxhiKzg1G+zd9U1/Kur7mGMzShiMLKlBO7tvbun3PM6KKK+4PBCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP//Z",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [26,29,94,75] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [41,50,68,69] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDudQ0zxPc6Q/j9vC91Bo91fvDHfx2LraCY5cwo+NuQP4QcgCsoaigOQwzXylF8ff2z7jRU8OP408NiwSYzJaf8I/dmISkAFwv20DdjjPXAAqvJ8VP2uwf3HiXwlj0fwtdf/J1fmVajeV0195+k05O2qPry31WBTl5MV3Pxy8feJtWl0fwr4z+Hdj4au9C0xIPs1voK2M86MqlZZxtDOxUKQzdjkfeJPwcvxR/a4YEN4j8KsOwXwxcqfz+2n+VS3Hxa/aznzLd+J/DTSH7zSeHbp/1N7XK6bSa5l95vo5qTWx9ST6pExz5gwateHND8Q+M9S/sfwh4fvtVvPKeX7Lp1o88mxBuZtqAnaByT0Ar5Dk+Lf7VROJPEvhYcnlfDFwB/6WmoW+Mn7WFtk2/irw1GxyrMvhy45U9sfbB/OnClrrJfeXKV1on9x9gJ8Sr3TvBN74FgstJNre3AmmuptDtZLxWBQ4S6aMzRL8g+VHVTlsj52zwniTxhomiRxyaxqsFss8ohgM0wXzJG+6i5+8x7Acmvmu8+L/7UbIAfFfhssD85HhicAj2H201l3vxa/aYnBD+IfDYOOv8Awjc/X/wMrX2blb3lp/XYyi3C9o/1959H3ni7SkDMlwzMoyUVTmuh+CP7WF78C/Gs+u+BZtGl1dtP8toNV0mC8aGKRiBIscytsJMbAOAOjLkgkV8cDxt+0RyYtf8ADqMw+cw+HJk3fXF3yKltfGH7Qcb+Zd6ppUoBztj0WRB/6PJ/WunDp4aopwmk1t/VjCspV4OEo6P+u59GeJ/F93r+q3WtX0y+bdzvNIQqoNzEk4VQAoyegAA7Co/Bngz4gfFHV7jRPhz4Q1LXbq2sZLy6t9MtHneG3TG+ZwgOyNdy5Y4AyOeRXzdqfjj41vl5b2zT/rlYuP8A0KQ15r8U/jR8fPCGl3utWXjCaBYYf9XBaRheo65Un071vTovEVfjTv5/8AwqVXQp6Rdl/Xc+otX8UQW0rRSXABU4PzVB4a+Np+FniCHx1pN9YJc6cGkSXU7CC7gjG0gs8dwjxsACTllODyMEAj87Zv2lvjpr15HbTePLp1uZlGFghBOSBwQmR+Fe3/DD4Q3vjWeK61m2n1O7HzRzancNcSL0B2mQsVHI6YHPvXTicungkp1Zpemv+Rz4bHRxjahHbufW9/4h8JxpE+j/ABI1WApDGl0t18CdbmXzBEoeVTHcqQjyCRghXKKyKWchnMlhreh3IaKb42iGcJuhST9nrxGokORlSWugBhSTkemO+R5dZ3vhYftYap+zP8TPhr4Xsb2C8uYbPUPDOkCOK6kKtJBKAFQLHKrIwQxoVLhTGjZVeo/aO/ai8dfss/tpeJvhh8Utfuv+EV0LxUlwy22i2hku9Jlu428m3/dLyIpGUM0n3o2G4MMV347K6bT9lZs87C5hiLr2lz0zwWnhe/1yyj1z45aaLRrpPtUA+EWsWc0sQYGRY2nvCA+zdg7WwecEAirHiPw14f8AD8u/xJ+0d4PtUcM8MZ8NSRvKibA+xWviWILLnAONw612GrQaN4r+KNnovh2LwzqkA8Siy8P3sN7L5czyytawOskbssocSDaVB37wVHIrhfj/AOA/HvxXN94d/Z78U6Po/jbw6vifw74ga7S4tvKvLO/0iYLaGRUlHnW5jkSfy3QxXBUhC2+P5+pl2LoqLqwUYvq2vx3a+49OjmMK8nClJuS6WGxeGPhLe3dvLP8AtT+HRBctEIIoRbQTSbgDt2SyMY3OQNp3HOeO1dH45/Z/+Hvw58Wad4c8b+JPipfjUtMttUgHgvwpHqKvZzxpLG4nhsZoo1aNw25ySFDFVdl2H5j+Af7T37TPjOX4UQfFf4MeH9c8Ha38Qk8ODx3NoV1bT3k5nWKMGYbbcyL5h2K0SySLazbvnVpK/QT45+Ivhd+zH8Lr7xF4r+AXifX9O1FL3RtTj8IaTDOLdntXklW7DkJHE0aNuaVJEUH51KnDfb5PwphK+XVcVXklyX7dFfy3Pis64uzHBZvQwFKm5Opbp0bt+C1Pnnwt+zd8NfjF4ouvCHwY+MXj7V9TKSSWelQvpMs7Io3BcDTFDNtxluF7nArxbxXqPwe034yaj8A9L8X/ABdHiDRNXvrbVpbz/hGj5SxOkSRS21vBK9vMsm5ZAHlAaUL8ghkc+7/HH4gL8MP2j7D9qP8AZ/1rxFf6RB4hmn146RckpLqMLRx31nDPbmPy2vtl3CwTYTcSSbVGQB45+xd4M0rxn+3Ynj7/AIRWLS9G8ReF7zU9B01rfbJaWMuoKIlkGzczM5llD7pRIsiurlWWvkcO6dfCTr8q00Strfzv2Pt8ZDE4TEwpNvVXv5GN4o8B+KYrbXm8P/Fm50uXQ7KG6ktdXFjc3axSNFGrTRx2iQ26maWNC8k6qizROQd6qfK9E+Inxu1nTotSTxh9ltzKyPPcW1nh1BILqvkglRjkgnqPWvqb4i/Frxj8fNaf4jfs623i7wyuh63JorSjwdDfzR3AjiBmZJbiW1eBY7qGdkCq7rHhd43k9b+xdpFj4f8A2ctAvLSCNTeXmoXLSCNVaQvfTkE464Xaoz0CgdABXsZXlTxcGqkEnbt/wDwczzh4NKze/c+R/Ha/E/wrc2Tat44vUh1DS9IuoY7qyt7VhLe3V1bBCXtycFrYuCqMNrcGQbXaDWdI+EF9Yx3Pjb9pTXNDuJfOiudJ/wCEVGpHKO8e5JYbVFZHChgdn8Xfivrn4q/C7wJ8cf2tPD8Pj4291oUPgfQNQvdO8x0fVUZdeiWJGRlIw8yS7gwx5XoSR8dfET9hX9on4XfG27+F0/g+8h0y8Z5fCOuXMli1vqEJkwiG4uLu1gFwFyWh8wSDbuEZQh6WCwuEq4uVJ+61bZL0/wCCdeIq42OAWIWsWcj8CPgtonjtNOW8u5ZP7U+Il7ppmyYHkih09plztClDmNScAHGeOTXTeGJv2RtB+H2man4y8VeLtRv10tJ9WT+2fDl20c3kAyRRRXTtMieYp2oqeac7WycBey/Z++G/in4X3fhnwz47a3/tOz+LGqTXwt4p41Uy+HpJ1Gy4jjlTCuvDqpHp3r5h+BP7PV/+0B8QYPDun+I7mwtpbkf2lqsmjmSK0UAvMRiUByiKxGSm47QdgYsu9Kg8RjKlOUtI/wCbX+R59TFOjhoTit/+Af0Gaz+xl+zZ4x+D/gv4a/G74Z6VH8QfDdpp0lr8XLfRtNjli1mL940e0oouLMyM22wZDC0LoqIGSNl+Lvi/+y18Hv2hh4y1q51Dwl4t+I3iHxO0/h9dF1S4YtFJFeQz27PPGkEFunnvfq8RzLNHuJO9RX0h4/8A2nf2lbH412NvpPw10fUbJdSt4LfU9b0C6ufJjkKmRLeZJYUiX5pBlxIFAUknaxb03xxrvw6+GX7IT/ss/B3SJtB1GDRFuH1TTtNt7IGKxeKRzK0ThjKYIUhEh3M7AF3+81duae0nh1UnJRUldWer9e1/M97JMZl2EU4Qo+0lpFNqyi0076rVaWdt1omtyt4Z/Z++CvwX8J+HtB8P+GXlv/DWi2sWnXljchrxLexWNfNiW7nYhU+U/KzOu8bN0hTd89/Em/1DVPiBa/E34h6klxo9hrHiKTTZtP8AFCI1zbv/AGTDZKUdbiV2ZbW5mcTJhniALLkbfpX4HeA/B+seDdO1W51/xC+ofY57a/W38d6hLCJwjQStGUuTGYyQXQpxtZSuM141+1b8IvD+kaO9zo0ruZfELIsOpTeYxR4Qxk8x2d5GMgb5mJ4ZRhWLl/j1iHiaqpyb7an03BdPD/25DC1kuWrJJtaNWd9O12l8iHWvD3wP8ZfADUPEGoanCW8UxPLd6vZysL2yv4r22FpNFGkbF7zyod4nJf7M9op+YKGV/wAYIPA/xN+CUmleOPHCaJ4enu5L271Gws3vUktZFkdgI4yokB3s/wAu3J5G5ioOB8Af2fPh741+H/iWHxv4kurW40a1WaytNBt1dXMokSR3t1gdrjDADCqpO8r/ABDHpukfs3/A7w38MmvdG8E6Z4d1DUNN06PVbjQ9PdULQKqqqxy7GAVWkjUsodVbkdq+zytypZHicLUV3UV4tO1reR4/iZg/qPHuCrwr8/1eTUk4JPlmo8qi1o7Rb2Ss79WcB8FfhxrPhW40v4CC4gvbS50bUtX1zWpNNQ2WtXMk6yXqRklAczX2SrB9ka+W6gkEfO3in4c+Cf2FvEHg34yeArfRLbxF4y8P2+jHwtq/i0zad4bMDi71W98+AyqEl8q2EUQlMcc19MEjdPKgX1O3+JnxY+B3jjVLTSJ7u9tBeyltKsS0skvzkZWMAq4LYGGICk7tw5zyn7R/wF8I/HTxRpHjhvDEllcQ+G47WO20rMbWwS5upGDiNmjd97yEuuflKqfmQmvmcJVqwdSVePu6H6Bx3lmJw+WUJRivZJRVOUUuXVXbel1zJap9dmeR6t+2P8cP2O/EMV98XY9bk03Vdav/AO3orvweY/7SdfKkiniec2xWVUEsKISi4nkco5gVJNr4K6V+3n4e8GWPhXwd+zSNZ0bS9AutRVbbbJdGBX3vHuS4bddZk+W1VDcNxtjbGa8d/wCCoutfFDWr7wvd/GNoNQnF5e/Zv7V0mK2MEI+zzEB0iUFnFuiAFgzfOig5cj5W+HX7S/xK8CCaPT/jV4z0p/sCWml3vhzXJo2sgjxfKESRSyiFHRVV0wdo+7kV9Dls6kMKnS31vf1Px3PauHzLNZ1sRG17Oy1WyXW2nl0P1s+AesacniLQPG/jDw34h8Pa6Ph1YaDd6Tr2nTWeo28+n3FyJsxOVZEdpVdSQGIXO1dxrurrWPFPjTxX/YGh2x/sy5ilM0uo6rGOVKkOwuVMRP3m+ckAouN3SvjH/gm98avhL8T/ANoK28D+If2kviV4h1698JandWMnjrw7DFDcajb2bXZRbr7TPIWZUvECyDLl41EmURX+1/Fn7F/xs/aJ8Dap4F8O+HdX8OyXmm3EFprV1FJaJazN8qyGZ8NsEip5kcZLvGrJtIJFfL18HjoZqrptzd1y3dle2v6n7fwzmvD3+p81hmk6cXGSq2Scmr99U9lr2R+bnxY+Ptv+z34+1PwF8d9cvdT8Y6H421DUL+bSLWJ1uY7jSBb2s6YKRBHEiMQCCqsCVJUrXgv7KXj/AMV/D3xdN4o8G/HHTfDV9ZK8tqk9rdvKzSqIpHAjtZU+4xByfpk1x934r1Hxv8RL/W/GGrXWr32oWKQCbUdRcmZyUiXzJy6sirHu+beBhQpypKn0L9nn4WeCb3WtW8X/ABENrpXh/wAPBl1iFJZmvr8mMrHb2Dbyk0krxsyyF2iQhnkRo0VJPrqWFVFSnfV7n4HXmq2I5acfdu7Lsj9nfibYfHe+0HwbqmnTeH3l06aBvESC1mSNrpFXf9nUS5ij/wBZt3l/lYDr81dJqvhnxB8Vr3Qb7TdEgvbS4vfser2klo0zMku7y42JxGhSdDhSrbwFYMuGU+r+OvhM9lZ2NzNMlu+qRTywWVxMqzzwwIrPcrF97yR5iKZD8u6WJc5kQNykumeA4/CV3oereIdQimnlhmtdPsdNuFjVjI8ReS4dfLf5EkJjjJKnyWYDIr5rGUI4bFzdTRb379v8j6XD4v22EjGmrvb07nmHws0H9uHStcPhvS9Q+Gun3UMsi3Fnf+FdQURSpuDo6rfgoRtK4wMd8Hkdd8G7/wDaY8LftTeE/EXxN8UeCZbG2nu5zDouhXcTMVt5Dt3yXbgAttBypypYDBINehfs++E7bxR4ztLKzlvi9xdhS13KZJGZ8qWZ3JLE9yTyTknmj4qadpngD4gvNHMJWtZCV3xHad2QwA64xkZ9foa+YjjJe1VTopb2+Z2RpUnU9lJK9tj0rxB8ap/jNo/iDSfGkFotjp11bJZR2kvlTOzeZ5zxh2YSyxwl5QoUkeSX2ttOPmCTQf24JVGg6r46+GQghdYrx7Xwpf8AmEIRuKeddlQxwcF0IHBKHG2u0sJrDQNYu7m1nupND1qdku3kmIa080bXRgPvxsCy5I4HBPJz63H4G0608RWXhzSdPFzHJpEM6/ZlysR8hZCD9ASCenB7V+g5TWePo8s221o/O7Z87mVCGCrxlFKz1V1tZI+dPBXwis9Ak1PW/i5oHhfXtZu47mLTpYbKSJkjBjljMxkkcFjIzgzIo2jhYwMA818a7rWvG9ppOofAO+8MaA0Cz2mq2Gt+G5ZJLjkgMiQTpGgA3Ane7HeoHCAn2L406amm6ja22nqq3M7SReUzYyMAnGfoK8y0/T/h/pV1LHoeuazc60rxvq8V74ZvYLKGVo1ZooLloRDcMFaNTtkIDRyjO4GNeDN8fjKUKuDpxjyQit0rq2unVvyPVwtNVqFOtUqzvNvTmfLfbWO3z/E+H/22v2df2jfjlDY2+seLfDTtYJcm0/szw5LAS88LxOHdriQ7Srt64LE7Tk5+QYf+Cd/xq0i982+GmTGJt0cEErASHIBDMASo255AJ4xxncP178ZNpmto3nPAXVv3bRqARz9OK4XWfhToHiKykkl1eW2uIgGj8sja3zAnIwe2RxivlKPEmZ0I8kLW9Ed1TJMBVfNUWvrb8j87fgX+zX+018HPjX4c+IngjSftWo6dq8X2ewtL8u94Hby5LVQLUsTKjvFwC37zjnFfs/8AH39rb9of4ffsa622kQQeGfGmleHZxa6g+jxPPBfqGCMYpg8JR3IP+rIKSEr1FfMPgPQb/wCFvjyw8eeBtRmt9X0+ST7NcxSNld8bRSAY6ZR3BI5+Y17V4y0vU/iF8OJbrx+I0stdeSWwWC/SWcmNtrmRclkO7ldwGSpOCBz6GC4gxmLbfM1NdlZW836kyynBUIKHKuV93fXyv5I/CXxF+z18SbG5aS20hrtz/rhH8pQcdd5HHX/PTnZ08W+FUeOVdR05y2A2XiLEZGQeM9OCPwr9WPEPws8KXPiHVIbHSQlvHezfY0u1VpBF5jbFbll3KmwMQQSwbgZxXL618EPDkh82Sza2kQZjmgXIz05xk/nTo8YVadXkrU726p/1c56vDlCS5qc2rn7D/tF3Nhot3pHhLTIHlvo7WU6klxD5bQEHZ5Zy2D9w9geMc8V5XHo51TRFjUDyjcMJY1OQCDyD71638cg2pfFHWtY03ddJI7mIuFV+ckRjoo5+gye1efHVEtSvhyeHbIWHmyh/uknOP161zcQ4t1Mwq9Ip2Xy0DKKThgoJb2u/nqdH+zBZx+Hfixo72iOi/aVLMgGU+YYIzxxx14wTWp+1J4Gs7/4r3Gkzi0tpb68mFrdXEUhjUtK+0ExqzbO27bgDJOACas/CLRX/AOEns72KZT++3JIBkrhCQevIGM+lXP2wNP1FviVc2w1NJNs5eMBfuBjvCqeww+Mf7P0NeZT9hLKm5bKa/L/gA/aSzNcr15WeaLL8M/DU+qWHhm6OpXkRW0itbzTpYreOdIdsrOZFImUtzlTtO444wa7L9n/xtd2PxJtL7xTaWlvBPatZzCyjwkcbKyFwAMcK54AGdq8cYPnX2TVtTuTcyyq8kcv72N1xkY4bPfoeP1rofDN/caRew3rrmNWBkCD5l56j6HBr6TJc2isRCMUoxutv83qc2YZfKVCXM3KTX9aHQftVeF7HQ7Ca/urWFrkst1ps0AVm4wRIM/dyrbW74c+teMfDzRr/AOJXjK48PaJpYL3u282IgI3crIR0yfunHVixxknB+nfjVp2l+LPA3hrx2uk2t1bx3sGlz6QhkaS63KCyrtKtknAVQc5cYJ5rnLD4U6H8D7+fxva61Z6fcXEC3NvosseDiJfNeFVLuxcBd+RIcHORgAj2s5wVXHZhNxaUEltvbv8AfdHBl2Np4fLlTkrzvp63PmHX/BVlZSzxvoa3NtPL80oXa8b55HXg/wA+OawtW8O6abRI7i1RlVNiuqgOuPQnOPpXr3lprVjfa/BAkbTXY4BJRskk8Hpnnjk9896TxN4asrnQVjn05GUDIkU4OfU+tfnkqTWp9THENpJ7ngGk+F/DsPiRU1Wyd4HGYpGQodxOMZBALe2ea2tB0+2vdZbwXqHjDQdHtrsj+yG8S61Z2Ml/ctKkSW1ss8iSTyMWfHlhkHlsrFXZFfrD4KWZZLeWITKQdpXow9Dx/n3qvDCfDdivh+2tl8iUlnhdwxHb7p64HHsOBXRg8RhMPO9ZO3k7fozWvTrVaf7qST81c8++KPw88OeGtfXQ9Msrua5s4NusyT2JiUXW98qmRiWPYYiJFZgxJIOOBxz+FdOkldpND3oQSFhfnP8Aukevoa9ie11C71FHNuWtm+WJvL4HOMevFT+NvA8+gSrcSaMbgGPLTWOGKjGRuHB6HqMgdyKxq1cFXrynFWXYxSxNKKjKV2fRt/qV/rfjG/uw5FlbDy9v96XOS3Tt0rnNQiivfEnlQWm+SdQ8jhhwFGBwf8811Xh7S5X0I3AhYmf97K5OSWbuT7gfpWEkFtpvim5vLi/hiEkXlQwSMFJOE6ZPPOfzrmzWvKvLm7iwsY0k12Rq+GvF76E6FYSDESUkV85wuCMfl3/CrnijxEnjLxTJrGqzmZ7ybCKYsYwNqjjvgCsJtOutQP2jS7L5FckiNe2MEkD6jr6Ums6XdwxQTqZAy5dREMMTkcg9sHn8K8yMq6pOP2S+SjKpzLRmRq63uieK2MZAikOCjn5S4PAOO2M8j1qA+LbfU9SfVtFlkW0Wd4JI0GUJ7DkE+n06Z61Y1FvP06N55vMaK44Y53fQknmktvBzWsN2to21bw+ase3OXzkN175OR34rpweJ9jNWNqlOMleRqeNta1DxH8O18HPq2p2sM2+OS60fVriwukUqVIS4tnjmhbDdUYHpg15tF8KvAmkQReV438aapd6dHhI/E3jrVtYkiVm3EBr65lYrnnGceg5rstDe7uNNuIZ5kimhOJ4ZFwEcHgk59sfhTNWt3vYY9StTG5tjul8s5DJ/Fz6da9fG51isRO3M7WStd9DnoYHD0Fsr3Ofs/MttKl0+BpHgZgxVRgj0IBrS8Q/EDQ5bDSvD4tzDdfYisz+SQtwwJJIbcRnbg4G3v8tE1gFT7ZYYkhPJAPbvRceFYLrDLHvVSGjR4+FPXuODn+VXhHOUHG1ya0KfMpGHaXcljN501vvtpGyjR9Vz/L6VZ13RdF1fTRNdgrn7k6Lkr+GatyaFcKmw/d9Rg4PpzWbqvhbVHVUXcCDmNl44/Pp7U54NziONfkehyBTxD4X1aKFljkt2I2zpICjfN0dGAA4/iB3e3erHizUb261ZdQ0mZ7T5Aot2O9MAdVJ/l/k9FPBc6ev9n30Cyo6ZIMef0NZk2hwSBliOI/4Qrcr9M9vavIqYdw0R0xnGclJrU+uvhv4Bt/EPw8vNdi1G3V9LdVlhlXLOjLtXHTHzHOeeFIxzmvEfGbPe+M7e0hUYQtLkrngnjnpwEFfyYUV99X4OjWpQiq1mt3y7/wDk2h8VRz+dKpKThdPpfb8D+vP4capJeS3mnjTbiNIpmRZprdkD8jJUsBuXpgjIODzxXW/Ezw7baBLp0dpcxzmeyEjMgwFY9VJ9QMH8RX8b9FYrgr9y4Ovv15Nv/Ji3xD+9U1S/8m/4B/W5qttDaMNrE72y2ex9q0/DNrdXOg6lq5yW0t42DzL8iq4Yjdj3XHOOD1r+RCisaXAipyvLEX/7c/8AtjapxO5qypW/7e/4B/XFrHhjS7+9u/EGgatMI5xgbQhR4uxIwcNxzhuD+OceCF7SVltrhtjEgcjDL0I/Gv5NaK1jwTyt/wC0f+Sf/bB/rNdWdL/yb/gH9ZSaPf6SOYT5Dn5H2na30PT8K3l0wx2zLZTgtsyq4B4r+ReivVwnDUMKrOpf5W/U56vEEqv/AC7/AB/4B/Wde2ckscriXbKQc4Odp9cGu5+FHgfRdd+G/iHXfEWpslxbolvZG3ZQ6sTy5U9hwRwRwQff+Piiuj+woc1+f8P+CZyzyUocqhb5/wDAP6pvEenyeHtRaxvr17yGNv3WoTBcsDzg7QAMZI/Con0+2aFbhIyBjcDzX8r1FeVPg/nbbr/+S/8A2x1x4l5Ypey/8m/4B//Z",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDXtNQDEOCODxzXbX4+Kvxvk1DxpYeCJNQi0OwVtWufDnheKC3soB5jiScWkSxpwsh3uMkIecLx8HWvxe/ajVcf8Jd4c4PH/FMzf/JdbOm/HH9q6zgeG28Y6CglTbIqeHbhQ49Di95HsQa/O5UpWab09T9Eum7pa+h9WpfKpzvB+pqZL9MZz9ea+SE+Lf7WO8sfEvhbHO0N4XuD/K9FSH4rftX4/d+KPDX4+Gpz/wC3debUoSvuvvO2nNdmffnw4+JHx18B/B/xS/gbR78eENa22PiTVF0PzbbdjasTXBjIibEwwAynLr3Iry+5v1di28/QmvlVfih+1IgIk8TaBhm3ME8PT4J/8C6iuvi7+1AoO3xN4eB/unw3N/P7XWcoNpLn28/yHC0ZSdt32/M+p3vEPWQVa1jQ/E2gaLp/ibVtBvrOw1YStpF9cWzxxXoiYLIYXIAk2MyhtpO0sM4yK+Pofi5+1erhr3xp4ZCB8kReE58kccZN7x37Uy/+Mf7U7bxH4z8PiIZ2K3hqY49M/wCl1pGmv5l+P+QpOUmrL+vvPrPx98SvFfxA1g+IvG3ie91a+MKRfab+5aWQIowq5Yk4Hp7n1rgtQ8d6Gmu/8I6biZrryTKwjtpGjQAqMNIF2Kx3AhCQxGSAQCR86XXxZ/ah8pd3jLw5u/5abfDE2Dzxj/S+OPrUEXxV/aCRi17r+jSk9DHociY5zn/j4PPSq9i5yvKa+9/5ApuMbRg9PT/M90134kzaXfPaxeDdVuQjACWFrcK4xnIDzK35gV2fw+/bD+KXg7wTrnwo8CeL9d0nStVRf7a0wJJFFN5sQBAfHlyZQ7HMbMONpPGK+R38WfGae7e/GsWSTS486WHSAHfAAGSznOAAPwFNl8R/Gx7Yg+MruOQ9GhsrcD8mib37114Zyws70qiT73f+Ry1ouurVIXXy/wAz6A1DUt5LvIBn/aqz4S8B+KviANTk8MnTyuk6ZLf3pvtZtbQCGPG7YZ5E81+RiNNzt/Cpr5X1fUPjnIxnHxU1qLjG2O0scf8Aj1sa8u+LnxV+P/g3Q7nVIfitrTiJlBEltabfmYL/AAwDHJzW1HB/WKqj7RO/RXX6GNfESo03Llf4f5n2zpnwlivwH0/9prw+yvgoZPh3dL8pHXm/wPocH2rUT4P6pawCRf2kfDLFOP8AkRJTu+bg4Go5wB1Hfk5HSmfAUfs3eP8Awj4f1/R73XbCC38L2X25/EfihYv7RvEtZlvpY9lz5kgW4EHHk7tkxYbiNq/O3j74/aZ47l+IifASPxFavoEd5qmkXEviW8dZNOS6G5zHLcEIY4XHyHfuCs3yY2H7avkuHdGNWLi1La1/n93U+LoZ3inXlSkpJx3vZen37o+l9P8AhPrd5dx2tx+0t4PgR5QjTS+ALoJGDnLEjUjwACTgE4BwDUsfwv1SNh5/7SHhFGbG0N4HnGPqDqWf5V8Jfsoftg/FHwR4o/4QnRms9WttUWQix18yS29vIoaQyRhXQoxwwOGAbfltxCkfYmhfG4+L/Dmi+F9X+H3hifXde8PXF1cCLxbJpgMn22/gW3gTyLlvMEFosx3SBsOWC7VJHyOPyqvTq8tKHNfax9LhsyTpc05NHa+Kvh1ovh3Q7DWP+GvvATiewkudTjuvCjwDTilxLFsZn1IZyiJJu4GJR0xWPY+FPAc+v3/hrxJ+2N4GsNQsrfcunnwHeyTXErqRDGrLfCFQXK7i8ilE3MA5ARtDQ/hZrHxC+D2u/DzxZ4R0PSLdfh9frHqtr40jvriZkgeNm+yeRFKAArMzAHZmLIxKhPw/+0J4s13RPitPf6hH5L6xplpfBbaXYrholUEY6D92cD0/KvOhg6ntnTqQ5ZJXtp+h6NLEe0pc0Z3Xc+1z+zt48vdY1XSB+0H4ItrnQtAk1zVtOn8IOlxb6ak8Vu92yPqyt5YlljQsFIBbngHHGeP/AAhD4KupPDes/HmzfVJI4LiAaX8ItTvYltpDKquWgvJFO5omUNnGY3B56evf8Ev7XQPHfwJfxR4cW7sL+/ubmx8UDTr+VRfmSRJ5BJhhvjlYpLsOVzt44GOZ/a8/bo+GPwa/a71T4d6pb389jo3gu1stalkhjlD3luLi9ijiILOCUu2gHCgTSZcbIyW+/XCODhkscbdc0krK3f8AyPzyHGeNrcS1Ms5HaF7vyX+d123PN/GPws1XwD8PIfiv48+NkOn+Hp5hDDqWo/Dq606KWUqzCNDcXHzOVR22AEkKTiuQ8Nt4M+JDXGpfD/4xa3eWgkIsYbXw3EXmXcygiR4wjgFWGfkz1xyK91/amufjZ8bP2KvGGkeKvHWuah4ZXw54cntPD/g7xut/YtfxFJ9Te7S0kuIpESRU8hPtMqAB3dWl+zGFP+CXvwQ8Mf8ACrlvlthKsdui2zS25RgBd3qnIb5geBkHpivjcThlhcH7ScYuTk1Zdl8r/wBeR9pTxVWddxu7JXPl34jN8VPBFhc3SfEeCOW1j3rb2s9hf/a1BiDCOSG3EaSDzN4Rid8YLoWVWNYlz4u/aBtdIbXNa8QXmj2gsJLq2e9062c30as6ZhBtV3DfHIm8EqGjdScqVrD/AGgH8bfC34zzWHjLw7Le3tx/p1hc2IZkngkTzg8XbaqkgjopRh0WvurVvCGj+D/2f9c1TUfhRYQ69c+AJ11zTdIsokmnl+xsZbZXiVt2X3KMbhnBANezgsopYnD8yim/RHm5lmc8HUinJ6+fpr+J8aanr/xV0fxFd+HfiHrGqaBNb+IrnTVs9XOnW7lY7ZZxJJKttIihoyHzGJFAlTBYfOZdE0T9m/4qmy07xP8AtZ6noUF4IjqiRaGmqzWyttLgL9jtFMiAsNocqzp8sm1tw88/bB+J7/tH/Eaw8Xa74ZuNDvdSuo9YkjeAtbXENxp9jDCIAcN5eyyg+ck582QgEBQdD4U/s/eM/Gmqabp/ha2m1G51CxtLqO20XSL3UJ1jniSXLQ20DyKqCSJWkZRHukUByc46sLktPm5pe6/JL8zlxOa1YxUVrc/WX9nn/gn7e/s4f8E2msPizcaPpWqWdhq9346j1C6heG3s3W4SG6jWW3fzGIAiYFkULdSsHKx+VN8gfsYf8E6NJ+Efh3QvjF+1hrOqJe+NrC5utG8H2mo+VYapoxIQfbAoDXCSMYp/I3eWY2h80PvaNf1w+JnivR/F0niS7k1/w74u0Dxv4Tg8P2GlWupw3Gn623mXiSRkplVixcrG772BORhPLYSeRf8ABSD9ni3n+GXg/wCOWq+Mb298TLrQsruwsSJLBYZYpZHW2OEcBGhjQyMcv97anCh4iviKXNRw20bt36X3t5s/Q+C8HkuJ4gw1LMKSn7R2XW/uuya6pNKzbstdNT5cvf2Mf2Dl0xbnRPgRZeGXguWuX1rw5PcLc5MZRly7ygoQSfKCbA2CFyBjtPh9+zqvneAfAWg6WPEPgmLTdVubfxLb+HXuUsnFzqDxeZNsKG5TzNm0bShneMj5iT514Z1ey8U6zF4JgF3HczXCwSOuolo0Ytty0Y+YAAgkbufm6Zr6a+EfhfxLpa6R8M9P8aRrL4TvLjSnu5tEkkErL9rBuVbnYrqAT5hC7ivzMxVW+ZqY2pSqJOT169mfpXHeV5Dw7RhPC4aKqSUlay5eVq17a+8pNNHlP7Qvw2039no3nxb8WaPbx6l4mvr+306/Taii0ZrfJnj2KTM8dnEQS0mIo1XIIfd8haL8FPgp+0DqketeONKnaTTlgtIZrW+I/dIgby2AJVsFmBIwQSQSe33t/wAFBPAtr8a/hlZ+NNRe8e00ZIUstFEClUcsitNMyyf3GZcBSMnGfmr4x8GeCbbwFd39pBfQw6ddSLJBBeXKx+QwXDAPIwU9BjJz25PNcLniKlf21/8ANrzOjgnKcBnmBo1K9GDVK8Jrltd8sbNryVtV1Ppr9hH4T/C/4P65qngn4X61qmmWesXVtqV7ps2uO9tBHbROHePdlgXRyS0zvGCF+4CCPzd8T/sj/tBfG/8AbM+JXhWGa00/WtM8TXmq6peTiVYwLmYyiUOwyy/vkYsx3kOWIJ3V+lX7HXgDWfBq6l8VtS1GOa11ScaZcaW1qSyW0ZdXlEgJyGZhlSFG2POSdte8eF7D4G+HLqaXSrHRk1NoILPV9Sa3ia+uvLgjijM/lrvkPlRJ8xH3Yx2FfXZfmWPlSjg5/ClzR+b3Pz7ivhzhOrxRXrYKHI4tQna6TcVqknoum29r9T4d+Kfjz4zTfszaXq3xk0yxsPEFhfSPqbHR5raa/vpJrpJ2RnXbNHcSS39xJPnbJIZCquJiy2P2X/2rvAnw0+GWqeKNR0Cd7LT9Sjstbn06GKCOz1C5JmstPhhZYzcyT7ryUyRfuoVRFkKAhz7V8RPil8SdE+2DSJbDVmtm1XSJbPU9Nkby9PvbmGSDa8UkZUQLbkfMGzvJ+UsGX4p+M/7P/wAR/i74su/HeuXWnq2p3EN1NpSwTQ28Lx28cMbquZMybI1G44PXBAOB5tWtg6uLftW+W222p4eMxEaOUPL6FJP95zc+l3Fr4ej0fm15WP0V+Cvxu8MeIPBXhX4r+JvCOjz3Hifw5a3bNHpvnopuYPO2IZ41do9rkBpFVnAUlV4Red+IVl8MR8ZIbbxBbyeGdA1PRsw6rBexBP7Ue5CRxJFIGYqUcSEIu1FQ7jGCK4L9nfwx8QB+zv4Bt9c8Nxte2ttcWmm2cNwhwtp5kELuOQqqoQ5+ckryPm4n/aHsfi9YfELwvpdpq/2Hw6dG1DVtZs7l/NF/c2WoWENsocx5ZsXzSLGSu47ziTylc65bj8RQq1FTfu3Z9lisiyKtkGDxcYxUo+zblpdO6Tvo+r1TPiD/AIK0fAe/8RftueG/CHwYsrm7fX/DohFzqF2sgkuIZ7kyyGSNAAqx7GK7WKgd8gVzPxJ+KvxD+Bfja70LxPpOnT67YaXDp2keILWLVbI6tpiyzbZD5OoxCJSWk+URsW3MjEbBn9PPA3wc8FSw6V4p8XWFtqOuwpKY7y+SHNo0kJbarBQ7K8sUQZAeM7u3P41ftLfEfxt4l+I9xpXj7TxZX3heN9DazNw0zwC3mlDI8rMTK4dny+fm6+9e19YxMoxcla+/qfB8RZZglOWKlK86jvbZLTXb/gH603Hx8+Eum/EvVLS88Ma3aXq381vdLoHgPU5LaCUMqSiForRhsd4wcx4jcoHA5ye68IfsUfE/xrY6xF4e+GNh4ijPiVzc3cWqW8MayfZrWVRtmkRiQrId2Mc8E81veFvBctvfB3s22LlmDr0BIJJ/KtHwD+2R8Q/BHwwkey8LaBaXN3qlxiweZ5rmGGGRrSF3McuNzx26nI3KSpCngivGpzw9Oh7eu359W9l8zTKc1x2T5tGtg4RlKOylflWjXRp9e5Xl/YE/aK025i1jUvgvDdTxlJUk/wCEh00FQuCApWYBPujjjn6mvEbT/goFpJ11/FcP7N3xat5I/OFxZt4IYy3LSSGQMhEpTC7nB3spO7jdivrTwP8AtE/tC6dYCPxfB4ce9juXS4tpbWd1QFtwVSs6jIBClsEHaTgda4C58LXVhrwtLmxMbW52SRuMEk9OPrXz+cY3BpxVFN976a/1c+gzXiHOOJ5QlmKpx5E+XkUtVK173lLsrWsed6l8YNQ+LPwZk1zRfhF4w00a1qDadHaeKvD7Wp08KPtBuLoKXWOA+UEWQFlaSaKPKljt8M0L4a6jZW11qHiTWr/UZEybew0uH7GEbGdm5Mqw6nLSZ9Ac19w/FjwXf23ge28Q30draRR237y4vndIthXy3QssiYDqdjZJDA4IYEqfNfEXifxN8Nvh9p2taH4Jitbe71KzuGk0kI8C2Ruo3nvDJb7k8hIjJK0hO3CnJ5Br2eHsvjmFGblJRSfr09V/XodmVeJNLgzAPDww7qynK+krW0St8L7Hl3hLXbX4R+A73wNdeCNX1tNUvvP0qfw/aKTY3jhw1xdDzI9sYbYXxuzzlTuryzxz8A9d+Jv7U/jP4ir4/NrY2Vvp3kad/ZwlSWQ2uyVS28fMPLRgRgjf0bt9tXHj7SfGnhK/0XTZbXXLrStOGovb6Q7X3n2fnRwTHEAK/wDLVRtLg5YcYBI5RfAS2Oo2Or614Ql059cMLGJbYoxfbGpkbazK3cAZYAowzwa9itLF5RiadTBVbtJrmST0bWmt10Pj80zPBcW4qvisThfZe0cW4OT+JRtzLSL166bng8Px1WwgiMf7OHxFgvINNaykvo/sNk5B8tnIZL4HLtCjYB4IBznFQWPi9viXq1t4Zk+CXiuwOq6rEk2rXh04Q2is21pZH+1s5RQdzFQzEKeCeD9IfEXwZpmleFmuYiJG3qG8xdvBPY+ucc1xWh6TpItpYr63Ij4/dlcDjnHHFfHZliVQrOMl57hhcKqlNTWy0Ppf9m/4U/BrXLB/EGv6HdaqNP0z7FZadFqjmOzggklSN18h9+51VX3FixAQ46ivOf8AgoTpn7KXxK/Y217w9o+rNo00zwTabHDr8kj6gnnrE4VblnEqBHaQ7M42Kc7SQfnX4vmxuBbaHPbslvLats3R5BjyVKjHHtj0rsvjpY2Fz+zL4M0Sy0aK8t7yOIXZkVNixi0mJyGPPIHy8nt1xXXgs8oRoOnSoqLS+Lrfvt3OqthcbJrnxU/Zt/BdqNu1r2/A+IvhL+y94X+OGqXus6Z44vbKw0u5n0iG10yyjiQPHBaySzM0ofzFm848RqiBkkAOCET4m+OvhrUofix4qh0Xwvdx2EXiO+WzWHT5EjWIXDhAowcLtxgZOK/V34eeA9L8IeD9O8d2GqfY0vPFktjf6BDaCNXga3RvtCtHtAUHChPvHGScAZ8d+JXwU8L3fiPUr+08OQeRLqEzBPs65ALk4BPU498+1b1eKsXRgliHzrpsvyRxyyPB1daPuv5v82fpZB4V1DSte1HSJrxZZbecxBY8/MQSOc9B/n6rpHwk0K2ttP8AEuraQJ5rLVGvtPlIBj82CRJmiKDhlG5SQQchiK7Xwh4X1DxV4l1bUJ5oZ7y7DSEldiRnkkfKMA8447D1rL8N+ELvTniutb1WK2toJme6nlbCRwHh2OSP4SepH612XvQg+W6d/TQ8yMkpyvKzRT0z4c3vijxHHq9g6iAal+8WIjJLkZxkgDAP8veqHjTw9bx/EW81W1vLm4gE2Lae6c73iBwmdx4+XHHQdq66yvfCaahc2Pg7X3u9KGoiS0u1jIDBUZskEAjBjA+vTPFc/eztrF6HkhkAlx9OOn6V8hm8Uq7WzbPVw0m4prZI7n9tPwlAv7G1pqukzPEq6K87uzpsdYpI5i2VPHysw+bBG3kDFfFP7H3w68HfEj4WePfHnirTJLjUWgOn2lveQkSWccKx3i454Dy+SxXp+4U96/Qv4nx22t/spW2jXNjLGfss9oXJ3rFlImBIzyCrA49iO1fKnw9uI0stW8KWsJt5rhHBj2FiGKlGzjrg44+tddSjGE4yi9OWOnnZCyuvJ4apTtrzfhczv2cJJPCOs6/rVqjOJ9GGmTxqcZWWeObJ45x9m/X2rrfhTpt5qV9rfiTxdeanr+p6t4ult9E09JVt7HwrpdtYJFDF5LXTs4cyTT+dHGnmXFwwdCsIc1vAPhyPQZZFkmieS7gRn2Jj7hOT1/267LwfqcmmXlraWjsEufEFub6NDtMioCuDjttkcfRjXv5Xj44WnTw8u7v82cma4V4ivKtDe2n3FXxzotjdeBdTttUtFme0gj+zTbwVIMp3BhjJJ3KAcgAAg5JBHk934Nis7O4SGSe3lRRiKTOUOM4PpXtXxn0+/wBE1uSx01WjQNieM4OefQf56VW0200K4+E2sT6hFBa6pFe27xanPMq7lIf92c8ndjOcfwYyc4ry8/p0pZhOL0a/4ceArVaeCjNapnzJ4k0SC7bTotVuBNbRSSeezDmMEdh7kA/ia9K8G6onh/4IXNt4X1HR57i2unt7Vtf0k30EcEq7ZFaESRscxvMgKupAkPUblKeIrX4Z2Fwo8XeHvEtpqvnSrbaXoehG7GooIo2EvnSNDbWmJGmUpJI2ViVtymTYuncfCnXNO+G+qa/pVuDpUFxC91ehggUF2iCx5PzHzMAgZxjmuPBYerSftIWenk7eq6fM7qmJjVSpyuvw+48D8SaZIzPq2v6fHqNomoG4utO8G6Wunl41GWS1iuJmWJmUbVEkhAYgk4FcnqGoeFNW1e7ufD2mapotjdXLvY6ZraAz28DMTHFMyM6l1UgMckZB5Ne3X/hCzvIrbUdNj82aKdZAzsVyVOQw4ypyBzjHHQ1j+JvAejXs8+o3TuZ5JmYgRA5yScf5zXmYuhXndJLV38/+GO6lVpU0t9ND66+Cvi7wrpvjNovEk040iezljE1oSJRKUJ3cg4BYAfkScA1g/HbWtNuYH0aAyEXk4jWGC5mh87n7pMTKSvTgnHTNYmhJAkq3CRugHzLjtWZqE7+KPiFG16JPI0yElQOhkbA/kf0r2Hm1b6gqLdrPQ8f6hR+tOpqW7/4mWehaV/wrC1+FerzanqMpuU8Q2qQiysUUAFHZphLuOGwqo68jOOo2PB7yyNHHqsMblMH5QegFUfEd0yeHZ9OsgVM1wixydwcj/A1VvZ2glCvE4iQZSQsPmIH518tj8dVrzin9lW2+evmepRw1KnTdup754u+Jvh+T4DWXhSMo8jXyEr1yvkYJ/X+VfP1t8OdeuPE+p+MNE08yW9tbCeQL95iCu4Rr/EQAHI6/iwB1bXxCz2flebuX7yDPQ4H+AribL9sTx1oni8fDPSvAZtLY2rx2ussBIJGct+88srgOpYAbi4JAyuBtr1suxdHGV0sXPljGNlZbvocXsMRg4N4aPM29fQ09Cu1ttSN/hmjjtXC8dQWUA/pVjw14tsrDx3pfjOyvGMEN/DLNBPGQgKSDIYY6EDnHUH3ra+OXw3/4VJ4f8Nax4b1eXUrHVYkGomaOPKFAWEiFOm4THjn7uec8cHLNpVtrv2SdiUfDqqD7yk9j+dLHPEYPHxjPRxs/yaO+h7HGYZzhqndfoz1j9ozxovi74hXmraJHCsc537EOF3Y/r19fqa8/uNY8QnQm0S4uWEDtv+ziT5CxGCcdOlWfEUrz/LbTDesYEbsC27A4Jz1rlBNqUrNcxy+RPEdtzHGuQ3PB56jH5VlneZLFYyVWP2icvwMaGGjTfQ6+0vrYy6bZyP8AuvJELNIcLCcnHXoP5fTph+Lf2fYfBfjHVPEXhXVX0S51CUS+I7O3srdP7UYlmR538vzH2l2K/PgbjkGooNUkkhFwoLMMCXaSOOxHoatWer+LL/UbqfUb61ubd5g0LRpskT+8pCjaR6YxjGMHjEYLHzSsm0/IdXCWl5Gdp3hEy+YDdNkZLIgAx71z/i3wjqdvcrfLCXiQ8vHIwbPTJGcH6EV3V3Z2tlMl9p5KEnld2B+H+FNvtRt4mjMcbjzFywKgp9M5z+GK66im1cyUuVnVT3tvp9vJch2ZWUhIycKMcVhaTbtpenSX12rSyXE2dwYAnI9+P/118wt/wXG/4JZkGIftPLtAGB/whGtkE9zj7FUh/wCC5f8AwSwnmiif9p3ZErnJbwTreAPoLI1xVcszbnsqE/8AwGX+RMMfgOT+LH/wJf5n1Vq0VvYaXHd3SiQ27FwrHqeMcnpzjmk0HSF8VXifaG8pJI8iNnzsJHT3xXyf4z/4Lj/8Eu9Rha10n9p9XRyqt/xQ+tj5ep62Y7inWf8AwXA/4Jf2N5YPp/7WcMcEDYull8Ea9vccbSpFiRkYOc9c1ksqzXd4af8A4DL/ACD6/gWv4sV/28v8z7Tk+Fa2lhceVcmVY48mRU29vqa8v1Lwo1vqEa3Eqyu+7y2ZBmNj3XdnHb2rjtP/AODgX/gjovgzV9MvP2rwb+5hxZynwDr+VwpJAIsOC2AvPHzZOMZrymP/AILj/wDBLtwXm/ac+Yk8N4K1s45/68q68TluaU4wdOhO7/uS0/AxwuY4NuXPVj/4Ev8AM9g8CP8AtSan8bfE158YPi1JqXg+eQr4U8Kx70tNKUEbQsRdhkIAu45bqSSWYt3nif4d31zoZ12ydYp9NcShWTAMeOevGO/f7uO9fLl3/wAFuf8AglvKRcQftPFZgVO4eCta6g9ebL2rtvEH/BfP/gk6mqR22i/tRGSxlhBkMfgfXUEbhScsGssk7i4GOAGHTGAqmAzzGN1qtGfN/hld/garMcvw9oU6kbeqPaZJo57e1uYcbZIgzKT80ZxyOPQ0zVNGs0VNesZIjLnbcRrxn3x3r568Q/8ABcj/AIJQ3Uhn0/8Aaaikkl++58Da4pX8TY1l23/Bbn/glmZgk/7T4CMdrk+Ctb+768WXauGWUZvKN/q8/wDwCX+RvHMsBv7WP/gS/wAz6Xi0aMSR3tqdgz+8AGePeu0Ph+3bSIzAI1+XPI6V8bw/8Ft/+CV2nagscP7Uhngz80g8Ea2OPobLNdDc/wDBd3/gk/c2Itf+Goyjoo2MPBGuY+mfsWa97JcmxvvOrRkvWLX5o5cZmeDfLy1Yv5o+k3063VyJAAOj56H860/EPgO20zw5/baGMWwXe8jH7q4zn0x718jf8Py/+CVU8Zhuf2nQy5HD+CdcIPOf+fLrmvU9P/4OIv8AgkBYfBv/AIQNP2qFN1JcNJIG8Aa8wxgDAJscDPfr90dMZPtrLMQ004PRdmeZWzGgmnGaevdH/9k=",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [44,21,63,81] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [31,21,58,99] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD86NW+G/8AwjPgm+16Lwy1ncyTl7RILpby2uIlc+bNbyRs4MC4kiQiSbJt5XaQDaK/dD/g1M1yLUf2EvG2m7wssHxTuJXhJAZQ+m6eA2M5wfLIBxg7TgnBx+E2jDWvCcw1Xw1rU1g1lN9sii2BojKoGHMb5RmG0DOM446V+3n/AAa++JdV1bwV8UdBuoorexWDw9q1vYhUBS6uP7SjnlUAb1Vlt4doZiNoGAMsWuEuZM6ZQ5ND9XKR40kXZIoIyDg+vaozDPGoS3nAO5c+YpfjPPcHJGQDnjg4PQ4mu33i7QPCF/ql5q9o1xZzS3QubLw3c3f+hrOXEK2kMrTTTi3xHmNiXlHmLEARBTMjZtbR7KLyIbh5EVAI1ncswwoAG85Y9MktuJJPPauavPjr8HNN+J1l8FdR+JuhweLtR3/YPDcuqRLe3OyFp38uEtufbEhkIAJVMMQAQaX4jfFHSvAuv+DvCF1b3TXnjnxNJomkzwW6yRW88em32pM82ZEYRmHT5kBXc294xtwWZdTw74H8IeGNF0jQdB8KaVY2mg6eljo1pYadHBDYW6xrGIYI1GIYwiKoReAqgdAKenUDXorM1zStXu4II9A8RyaY0VzE8hW2jmWSJXUvHhx8u5AyggjaWzg4wYtJvns7+08P6u2py332KQpeTQFobhUEPmO0kKLCrlpAFV1jdtkpRNiOQWA2KyfEPjzwP4RvrDS/FfjLStMutVuBb6XbahqEcMl5KWVRHErsDIxZlGFycsB3FapyRlTQOcZpAcb8Yv2ivgP+z5YQaj8bvi/4d8Kpd29zPYprerRW8l2luqvMYY2IeYoGTIQMcugxllB7IMGAI7ivn/8A4KJ/sJWX7fXwn0X4bN8Qk8KXei+JItUh1waEt9IYlhlR7YKZYiquXjZiG/5YrkHgjuPEGqXP7Pf7M9nf/Ezx3qmvXfg3wzavrXiC1s9t1q8tnCjTzmFS+DN5UjNGCxw7AEnBoV3KxbjHlVnqfPfxA/4LofsZ/Dyw1S2uNC+IOueIdG8W3+g3/hXw34FvZrqOW2uZ4d/mzpDbnckPm7BKZFV8MoKsB9d+EPFWheO/Cel+N/C2ox3emazp0F9pt3CcrNbzRrJG4PcFWBH1r+bX45ftB+FfEXxNvPFdx4jiv/F2pePLnxalnpjXcsS2V7qF3dAQK4SLL6dqNyikkMrGJXx5f7v9ev2M/wDgo7+zZ8N/+CefwasE12/1zVtL+GWi6Veadp9qd0dza2CQSF5XIj2+bCVJVnb5gdp5x6OJwip01KEWk+rd73V+yOeM71HG+x+KfjT/AIJtftgatEun6t8F7CwW8iVbiXTPFFnJHBKHBAZHlUqMLzs38AkZ6V9wf8ENNI1T9hf9o3xJf/H7w/4m8N+H734cx6fYXFnoVzqen3l2t+shaSe3hkZJQC+xVOwpIwY7lUD3iPxHp58Xyad5odY40EZljcuvRjhixB+90CADHLdBUXxN8f8Aw60qe30nW7q5kuYIhfSC1uCHgtjNHEzsqsGIJY7cA5MZAxg15kVy7HdKzd5H3f4N/ay+DHxK8H6x4z8Ba/eS2uh6jFY6m2taFe6V9mlcKwZlvoYW8sI4kMgBTaCc8V6VGS67j37Zr83fDP7Sd34L8PeIPCWmeFoNfsrj4u6Na29nd3UdnFPe3lt4ctrW2nllDJsxNdu8QUGQKiBhkh/sOH9rv4ceCfD1mvxU1K8sr9w/nKbISFFWZosu0BaPKurRsVON8b4AFaKMnsYSjY8r/a+b4h+Kv+Clv7LPw006/vJPCEN74m8T+IbC3Plql3YaTJBZ3HmxosgAk1Hy3j80xuJUV4wD+895l+P3hSH4uav8HY9H1qbUdE0ax1LULi10xp4o47uS6jgG2ItMdxtJsSeUIiY3QSGSOVE8MH7R3wi+NH/BRHwVo3w38TTvqHh74Oa/fagP7PeJwt9rfh6C2RvMiJ2yNazozAHahYgg4ZfSfjr4m+Dv7GHg/wAZ/tRa9fT6VDqO668R3BtJb77fqBggtrMsXcGFVECQRxCSGDfcEEq8m4u2tmCszWu/2m9Ibx/Z/DPTvAGvnVdUuEGiw6jZfYzqVskhS9u4o5cSpb2f7szSzJEhNzapE0sl1BHJ6c8ayIVYZBHKnoRXxb+xM8Hxg/Z9+Ffxc+EPxwjn1j4beH9J8FeJpdV0DXdV0yedNKto5DbWktxZhJvNu42k1JoWkEYkiZ1iEmPrb4geLrXwR4ffUDcRRzyZjslnGUaXaSqkZBOSMAZGSQMjNEkk7IGuxuBGXhWOPQ1ha38Ufhr4Z1I6P4j8faPp94BuNpe6lFFLjjkKzAkfMORxzX56/tO/8FA/2p9B1/UvDHh/xHYQpLDbrb2dqfJe2ljigM5ZkCy5djNhDLGMpt3gAsPPvDnxystV8b2Vt4111pbq9mNxqV14ru7a3MblI2ijnHlbmkeR2ZUUlw4XftRwTz1Kjhsjto4NVH70j9Irz9rv9nKysdV1C5+KNmqaNex2l+vkTeYsrhWUImzdMNrBiYwwC85xXwL+3V/wW3htoZvDfwk+AMuraJp/iyz0yTW9bthdLc3h84TWJtoiQHMYUhWlXfFONwCuRXlfji/8R2nhMyTeGbbXpNZ8XXIk0TxVP+7vQ+mOqWkoiVormKNJJQI1Vo5BBgyAxs9fMvir4yfFDxj4K8Z65rfw2RNF0jxr/bGkNFLOiwXRawaa1Ubo3z5j3hSNoyFWUbt2IwdKU1KNzPFUI4atyx10TIf2Xf2bvA3xXttP8d+MrXwjLcx2FsuqNBZwXSXGlKbW2gjht4DHFbmNFG5/KkEu3e24TKV9e8Q+D/hB8OZdN8IfD/w5Hrul6edPZo7meFbUMsWpRvewxwRi2WXfOkrLGsLM7ISEAXb51+yfGviPwdY6n43+KkNp4ZvfC9ytpc6ZKon0fUFugm1EuC8NtG63do5BgRWbcWXkF78/jqDT/iJqWq6dpEVzaRz2kqQarDJeQwtE9wyTW0bukbS5FswKyx7doYncx29Dq1JpJybONQjdvqfIPgz9vz9qfwpaN4k8T/F3Wb+QKqWOm3etaiUnkYF/nCXSEIFVwGUnJUjjkj6z/ZF1zxd+094i8e/EH4sfti23wv1/wBFoNhpd3baZ9pl12K6S5uCoju73cUgDHdICQTcEbRwG8DuP2cPDvj7Vf+EXl1jWdE0mVo4NNsdPuoLpZ8/IrSAoJF2yMFwXLHa7BR+7Ndh4q/Z++I/gTS764fxroRVdsd7dR6dNb3NwEQAuC10Q5Ea4XYiDEK5BOQ3nQrU5M66anNN7/wDDHpOnTXX7NUuh6LefGHV/F3hWfxhH4r1OGxtViF3fW+iwyWtnLFLNcRSmObyY8lMKTIMAoSPr/wCPupaLH4rtPFMdzpGoHw/8IdF07V9T0a23w6fHHqOqm4UMq7o4trRtkn51RJCWJDH8mvHniX4h6rrEk8tlKljoWtOmrIlt5tvA0hePEjqCAzuoUEkE8AdDXpF7+1J4m8NQWvhDwzok15pE+nLZSveXRtrZ41mjjRZSqzMCZPOYD5iPK2ZZYwVuri5Yai6lOPM1sla76dXb8So4ZV3acuVd/wDhj6Hu/wBt7S/hp+2/e/tD/CDXtEvWl+GVvoGkJ4n8NS3dm0ov/t0CSjehWSC4hguVdGwpTg7hmvpP9uP/AILB/sTftc/sW6j4Kj8Q61/bOraYmrW+jR3H2aDTb+xne6svtJC5nDz29u727EK0AaSNkYRO/wCdngTxB+0N8Ifj7f8AxTl+GzPqOqW6xXl8fiF9qRYtihEMM1quVSLESqcgJuT7uK2fil/wUe+EPiW51z4dfHb9kzwT4rt9HnY39tceBdN0+7jdblrZxHPYeTIrLKeSSjMGB57edWzmth5r2uHnrrdcrtfo9U9PuOilgqNaH7upHTvdfofdf7Iv/BSv4CeA/wBhfXfgf4E1vWdInh8T3+iz6zYyRf8ACQNBeXE4GoRMg8r7bBavbKj4dTNB8ygDaNz9qP8A4La+D/G/wutdV+GNzd6NrVrcPm1ls97yo4dSBN8qquwYOEYnJIKkYH5v/Dz9sL/gnp4UVtc+FHgLx38J5BD5ep2HhLxJdzw6lltwWVboXUigOEfbHLGhMSZDbFC8tqHxJ/Zv+Kv9sa9N8cG0u/vbmSa1tta0ogE7SFSWdJN0kjth3m8oElm+Su7C46GKj8Li13Vv6+RzVKDoW5pJ+jv/AMMen+Nf2jb7VfFUHi/T/DNtCQs8LzywGaWYP5ixGUDcGMqeW7LJ8spTr85Wtnwd+2V4d8GalqF7OuuzJeaNbpDp9n9ihR7xJrlpFYSRMqxyJLES5V3+Rk2kBcebW3wN1DW287wL8TvCXinTBMxnt9J1eO2uZY1AbBjuxEjFxxtWQ5yQGU7WG7D8Wvjf4N+HfiTxzBq8k91o15DEulay0sTwt5FvFIyss2IozkS7WXcuzBILNWkuVyt1Lp1akFzI77w/+23p1p4e0Hxlqum3a6xoGvXc+m7dtyb1HthG1v5ZCRwAoCuIRHFhMZRz8/heuftAaxB4WudL0PTXskuvERu5LmW6YSW1+k6HegbzCmTC24qy8sRz1rS8CfEK51n4Sa18VvH/AMNNK1ZJb0z21laH7OJklmCmXzo1LIqTTsAed3lKrBlY58d+Jfi/WdL8F654Su9KsdPe38Qakrk6ZHHdGRL2dfLdlUOmC024BsN8qsCFXHVLDujQU776/ectXFLEVG3utDv/AIYePPiNrvgWw8P6VqNxPcQwRO39jaUj3QiTCpCUCuu0IMZCA4G4ncWNdb8NPFvijR/Ges6D8XfBNnfw3FmsN3Z+MNZgsIE2vDuBiuZEjDvFcAbduWOwlWBzXnPgGPxnrfgyPwGLPVpItRiW60Q2dnOklhMqqYjbySNtbcwWPYVfIBIzkbu206O70WOX4V2+l6pqWp6Ndfbpre4t4LXUdKhOwi7MkCGaAKogkL/LkOGyS4J86vWxMGlSg5f16r8zajDCOF6jd+yt+f8AwCz8ev2o4v2a9e0HTNY8PeD/ABXoMZUx6r4SuZpxbyw3aSzWJuZpmxcK6Kzgx9JztYiQkeA+P/8AgpR8QvFHiPUrrTtE26Xd38k9np2oazdP9lVnchUaGSIoAjsny4O1jgg4I+cPiX44n8VeI5tWjtI7OGSRzBYwTSPHboWJEaGV2cgZPLMxOTkmubbUJVXAmP1FdUYxmk2tTim9dH9x9QaT8eP2fPiN4Iex+L+heL9L8VW8l1fWvifw5qVtcQXN4I3eAS288QlXdIFR5ftD4ErSbG27D2cPibUPh14f0P4eftR+K/Gt5DqFnDq2hmPxZb65YQ2b+YsUtl5MzRRozpiRFw5MRQshUY+KBrMsbfLcMD2INdPoPxO1g6amj3txPdQQIBawhQ7wgNI2yNj8yIWlkZlU7SW3EEgGscXQU6PuPla6q36pnscPyy55lGGPb9m9G72t2fU+79a/bH/Zyn1G4h8K6Hq8enPFLIqXeuPYyG6ldnlJSKymCKXZ3BEhO58DYFArxXx34w+GWp+KNX8X+BfES3D6rZi1vX8QW1xK8TF+SJAGyoRE2nBcMhbLBgqeMaP8RNO1Vf8AhG4LZnubqBbdF1C2y1rhtxETb8J3XJGMMeFOCNfTvAniu5nmtLfSWMqHBV2VP1YgH8K8aunCyxNXR9Hyr9F8z9DWScKVIuWGr7W+2nut7brqteqNewjSxgMEfjzTrmYowAt4rkIoILA7nhXnczk+54q94M0bTzEl3qdxpXmFnyjX8CFVXythO9h/016c5HuK5afTZvDs/wBk8QXtlZzMm4RXGoQqxXJG7BbpkEZ9jWtp/hi7v9NS8tDE8c8YaG5SeNkIPRvvZI+grVYmPImpq3c8yrw/w8ptQrt280/0On1uztGdtP8ADEmkRSG28m2vIZYA6yhlKujK2VY8sCORwDzmvYvC/wAZ726+Gtx4H0C+vz4nluLcxyyE3KLcxJBncHDByDFuUlWxgEEEA187pfaBpGtWnhvW9bhS/ldNiqj4JZsDLIpVPxI4weK+tH/Yy+HFz4Q+1apDcaPq/krLrF8t4zwq5QiVQZAYwgfncqpwo5wzLXZSqRnLmb+dj5rH4TC4aEVQm5PW6fT7jz3wZ8T/AImXHinTfA2t/FWHRLXVNR1O4vtau4gYUxAkvlEFQFzMpIAGc3CYXhRXkXxXvLix8V61Y3OsR6n9rvdTZdXltE8y+8y8LG4WRc5EhZpMhmXoAcAV9I+H/wBi7SNP862vPidqsP8Aae6JV0ew8oXDqXDmeNzJvi+6NxG0/eyAy42vEX7G15448L29nqXxA1y7sbW5lmh0yW4tl8qdy3mkEW3UszgkSMOoycCt/aSdW/tG42SS6Jq+vz0XyPHdBtaKzPGv2ZvjF8ePEXji30zQvGM8Wy3s442jsLcRwxmS37FQrIGeIMGBLD5SGVmDWfE/xf8AH+s+LNS+Imo/tBCz1XU1k0q+n04CDdp+FiP7mFBshcRoCAMseqnJNeheDPhp8X/gbp0uleBdb0g2eoq0Umn+JtBs9XtJ4Ind4UkWePBmjlllZJAA0XmOq43MW53wp4F8Z/Bzwh4jm8LeBvC9x428R6lDe2/jU6QPtmgPDKJANM3TiO2ZgWjLCPciyEoytHA0W8a02uXZEqlapr/wx8B3V1NJOWbPXiq8kuT97g17F8VP2Uviv4B33FzpkOoQLkhrNxvx/uH7xxzhN2K8gvrdLGd7a8tnikRiskbphlbuCDyDWEK0KqvF3HVwqpvV29URB1Lbc81LbymGZWB4zzz2qB1tdoZJO3TPNVwSW+93qrsxVKzPp3Qf2M/i74q8MW/i7SPHEn2HV7aOaC2sJmkco6g5kDyrjqc8nk8cV08f7B/xklji1R/i/eedsG2K4g+bjHDbbjn8896+hPgzf6Ja/AXwj4bujqUottAtMyw6vLaPu8oHBNvsYj5iOT2Gcnmt6fXNEl0uLRLvwrY6na26sIV17zL+Rdw2v+8ndmOQAOT25zWE4qo/eSfqkehTp+zV43XzZ8uX/wCwDqqM2p+O/iLDBHIgV726uUQZOflDOxwRzx0966XRf+CdtrA2narF491K90W6Cra3djNJMJCzbVK/Z4iChByX3AKASTgHHvtv4z8QWdubPS54bOEIEiitLOFFiQDARcJwAOnpUL6/rU9stpfa3cTxqchLi4LgEd8E4zTUY8qXQfIubm6nGeD/ANiH4bfDHxjput2tjerewAyrq8WrCL7P23YacOOM8qjD+VeseHo/CWhTXFrbapJPp6jfGTNN5k0hOW/dtEqgf7XmHJ9K5Uag55acn6U2TW44cAyqvsW5p2Hyrod1ZeN7HSbO5sLOx823ldvs6xRLC0Gc/Py8iu4Y7hlQMjoRxWZd+J9Tkijt576SRI0277qZ2MmRhg6o6xtxkD5cDsK5OTxFvG1ZR7c1Vn1WeZSsJLZ7BsCmtwaTOo1TxJZSwpHfankQr+6hkcBUHTCopwBx2FZtxrFlt8yC7hyOhDEHPtg1hLaXMh33moeWvUrH/iaWS9srK3K2spDHq+cn9aq4cibOs+Ofw1+EGmeGJ9al1ax8KWaDE05eOCzBPQMjkRjP+ztPvXwx8ZfhL4G+IOovd/D3x7ouoXSAAXVhdAxyc/dcZyDjHPP419O/twXdl46+C13o1xrsNvtlViXTcWOeFHvnFfC9r8PZNAcarp2tSWk8B3pcRSlSpHfIrx8qo3h7Rtm+aVl7RU+Uk1L4Aa1oDNbatq+mG4DYljS4cGL67lUe3BOO9eh/sk/BTwnefEae88cR6VqMFnaF7O3mkjmjllzjOxuu0ZPI4ODXn+i+G/iN8YdVNnpVxLJGh23GoTsSCe3Pc/416Ba/sdfHjwULfxr8PtYh1K7gYSNawSeXKCOeATh/pnNetOtShKzZw0qcpaqN0fX8d/bRRrHEPlVQFCrwB6CkbU3A+VQOO5rzP4bfFh/EfhaBvEel3Fjqlv8AutQtpothWQcEgHsa3P8AhLradtsNzGnuwJNOzep03ijrZNTjVA8txg+nSoX1+1CEQy7j2wM1zcV1b3T8XnnEnpuP8qvQWiHl4UH0xS2AuS61fXDAKpHPXkD9KVZLyU/vI0z7uf8ACmI9vDgBR/WnG8UDkgDvxRfQaRahhgRhJLsPsCamlvbO3izG4HoM9Kw9Q8Q6fZIzS3KL7E1zuteILfU8R2l26nP3kDYo3B2R0+p66hjKpd9+oNZyXNzdyL5dy3JABIBJz2A71laVol7fyCBHuJpD9yNDyfc54A9zW3d3LeAdIkv729i+3eWCFmfbDApcIDJIBhRuYDPc8VUYuTJlOx+cGr/GH4ua/ALbXvil4jvYw24R3euXEig+uGc1mTeLPFVwhjuPE2oSKeqveuQfzNZ9FaqMUrJHkOUm7tmzpPxE+IGgReRoXjrWbJAchLTU5Yxn6KwrTg+Pfx0tcfZvjR4sjx02eI7ofykrk6KThB9ClOa2bOmvPjX8ZdRnNzqHxb8TzyMBukm164Zj+Jeo/wDhb3xZAwPih4i/8Hc//wAXXO0U0klZE80n1Omj+NXxkiXbF8WvEyj0XXrgf+z04fHD41L934v+KB9PEFz/APF1y9FFkPml3Op/4Xn8bf8AosXir/wobn/4ug/HL41nr8YPFJ+viC5/+LrlqKLIOaXc6OX4x/F2c5n+KniR/wDf1y4P/s9C/GL4uIQU+KfiMY6Y1y4/+LrnKKdkHNLudVbfHT422btJafGLxVEzDDNH4huVJHvh6q6p8Wfiprmf7a+JfiC83MGb7VrM8mSOh+ZzzXP0UC5n3P/Z",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iitXT/AAT4m1Wyi1Gw04SQzZ8tvtEYzgkHgtkcg0AZVFdPP8GviVa3jafc+GikyAFo2uoQRkZ/v+hzXqPw3/4Jh/t8fGXThqnwb/Zi8ReMYxII5k8JCHU5LZypYLPHbSO8BIWTAkC5MUoHMUgVpNjUZPZHg9FfUlv/AMETP+Cr0l9pGm6h+wn490uXXvENpoek/wBvacmnLcX1yHMUYa6eNQpEblpCRGgGXZcivWh/wa6f8F1SMj9hv/zJvhj/AOWdDi1uhuEo7o+AaK+/v+IXT/gur/0Y1/5kzwx/8s6P+IXT/gur/wBGNf8AmTPDH/yzosxWZ8A0V9/f8Qun/BdX/oxr/wAyZ4Y/+WdIf+DXX/guov3v2HAPr8TfDH/yzoswsz4Cor7+H/Brr/wXVP8AzY1/5kzwx/8ALKj/AIhdP+C6v/RjX/mTPDH/AMs6LMLM+AaK+ovjH/wRl/4KN/s//DG/+L/xi+BmlaFomnHWfONz8SPDzXkw0m7NnqTQWaX7XN0tvONsjQxuACrZ2MrH5dpNNA01uFfQHwQsdL1z4daFocngiW7u7y7aztb6W/8AIgWSWeVRlioAbkEFm2jZkgjcD8/17f8AA7xNqTeH/DmgW+oOGs9R+1WUYAJjlSaRgy/Tcxwcj2OOJk5JaF07c2p6vfXnwwm8d+V4u0fXNFu3EVnqNzq1214VhYNFNdqyxxkMoVVjXynVg7HKlFz2nwj+IHxp/Y5+INh8Zv2cPiyL6xiMMi3drBuimcojy2U8UnySNtdo5IwSWjcqwUTbD5Fqvxdl+JsV7c+K7KOWYQbpLqKRk2K80fm+VGxaGBpPl5SMAFFIAwQ2n8Po9O0i8udQ8G+PYLPVppFGkC6uDBDICyr9nmjk3RhWYglpJ2i2KTIOq0ozlH4kbe69Y/5M/ZD9k/8A4OIfhL+1LP4D+D37d3g06I+iCTU9W8Ww38SJqeq20StZzw+WsDaZM8yy/vFlEaklSyo5Mf69/C/4U+B/Cd3H4/8AB3ibxNqa6hYbYZNY+Imq6tZ/Z5NkhkhW6uJYzkqpWTaG2khWCsQf5IrDRxd3j+IfidotoZWikhS40RobYI+JJTNLbbFKn/SI8L+4ClOVLJItf05f8EUfEUXiL/gll8G9Qtde1rVki8Oy2f2vW50ecGC9uIDGu12CwRmMxwpnKQRxKQGUqN4yjJNoJyqciUj6nO7HBANMuYZZ4hHFdyQkOrF4gpJAYEr8wIwQCp74JwQcEcpP8Zfh8/jYfDvwpr9jrniNZ9mp6DpGuWT3emQKV8y7nt5J0dYo2miDlFZ8zxDadwrYutfvPDdjZDxJaXF5JKYILi+0jTJJI/PkkhhB8lDJLGjPKWLfOkUaO8siqpanYxNYxqZBIS2QpH3jjnHbp26/40KqoMIoAyTwO9Gc9Pzrw74vfEr9r/SvDXxusfB3wet4p9K0W2j+CGu2d1DcPrWo3NjsJubdnbyUtr8qXkkCIYWLbSI2ZhJykkNK57lXJ/Hrxtqvw1+B3jP4jaDc2EN9oHhTUdSsptVhaS1SaC2klRplV42aMMo3KHQlcgMvUfHf7A//AAWU8K/GT9nXUviZ+1X418EW3ilPFd9puk6B8O7O/ZbqG10u1vXwt38+8h7mXc5SNY42GSYJXrwD9s3/AIL1al8UvAut/Cn9nH4d6da6frscmiX2peJVlknktb2KVA8SKY/s06xDLCRJkV5APn8t1JiL4OMp1VpFNv0SuaYaH1itCMerSPz2/aq+OnjH9of4d/Gzxb481O31SKa08X3Nr4feEXUOlmaOa+3xbXYJEtzd3UisT5aTGNkLu5Ffj/X6f+KNX1/TvgZ8UPDx8QTSLqfg3Wr7ULXVIozf+Y2mzrItyVjXcPMtcpIrFJNm5chd7/mBXl5fmFHMqcqlNNJO2tt7J9G+525vgquBrRhNp3V9PUK9g/ZdAuviB4cieKV0geaS68tCfLtlEjzSNz8qJGHYkDAAJOACa8fr6a/Zr+A3ivxT8El+Jun+Db9dK82ez1HxM+mztZ2kQkInEkwUoiiKT5sZOGGQeK77OWiV/Q8qMlCSbMjwb4X8I6n8PPEN3pGp3b3SWqeddX8S20EGHlk2AK8hkLLHGQ3yAHcpVwQw1PAvhPwtczaLo9l4rhvZLu9EerXcOpCztBH+9cgXN5FH5DFdikFJMbCQX3iNfVPir8JfAvjLwFe+O/BfiTwoJdWa2TVPDfhe28hbFjCN1wLWGUqIo3iy8h2gSTIAuJdg88tfg34U07wI2k3PjSUXSzCfzpIgka4WUD5cnplSxLA9AFHLVi6ii7O6HXrUcNNQqNbf1sfqH+zT+yh/wTgb9mDwLrfxXj08z634U0q91qW/8fXtrFPf3FnG1wTF9sEQKuWUrsUqEA28ZP17+xt+2r8IP2TPC9v8F/hR8VNb1TwPpOtW+n+GvCmn2Wn3caSahrdv5pgdUW5lzLJelBNMAyPO6LIkcJr8b9G/ZZ0y2i1LXdbvLjRNRAhtJtK1c+VNpE5t1aLfEYwwOyMvufykCTAFmZ4xJ7VL8VPi98KPDGu+PPAMHhfW47aCfR9D8JeJ9JttZhitFuZ3BitLmWSOOOX7TcXLgQDzXllbdlw1Y1cfCg0+W/zS8tL2T/4B30abxMbxWno/8tD90vDXxY8C/Ev9srwP8MPh7qUDeHfCnhfxBrOk+bPc+VFfRXGj2aFYpI4iGW21fUbaMLJJEiyrhdyBE9X+Cf7RPgH9oi41jxZ8K7tL7RvCus6n4f1XUP7VJDXkH2WRGhjjLxXEMkUgkWdnVlUoFUiZyv8ANJ4Q/wCCjPib4R6rfeM/BHwg8OaD4n0sXGn6XrXg7XdS0s6ckr3LoYLaGQWoUNl0ja38vcSREgwK2vBf7fWoab4Ov9Dt7PxVpmrar4kvfEGv+PdP8Utcz3M2pwQi8Vsm1WV5FFuHadnbZG65YsTW1DG08RHm5XH1t+jZlUoezny3T9L/AKpH7WfEX/gr1pF/8R7z4Y/C/S9N0q0gnltT4p16SWRmf5IlkjtFjBUCd2AaVgGVEYAiRRXxH+3J+3t+1f4/1t/hn49+Jnl6LJoBa4ttB8SzaZDsnh01Lm0ultFifUDIsty6MAnl5C7MF9/wx4I+IOpz6FrHiTw94qnisp4tRt5o9UFzA9zGIZpWe8S0u9hDPbqjRgyfMrlWfkvk/Hvx1aTeD/C91qGrWRttQsUit/NFy8du48ktEgUbt6IxJZ2cujjbggA7xleXNf5f5GlWVONJQUbO+/6H0t43+NeraN8PfFVjpvjQjV7e0hj8QX3hdvLie8l0yC3luLgW1uDNCSdhili2SD59qIQK+dtV8ZaxqPirR9G1HxZPfTx+KNKiuDLYGK1hzPOrIqqUJY4bc21c5XDMFwmLqvxO8K6Dp+r3Gk3mgXGpanoNhcW+oQWLzQWBd4HVIVuEZvPKrHLJHKXj2CaItktbvxHiX4xeITa6R4l1fxBJr4gurO5SSa3NpHMlr5kURCIiLKSVn3TcnzBIzbmkcm5fvKclUVulnZ3X3/mYwvCcXF+fa39f8Mer65HYa98GvjvfXPiA61FpHgS8bQr8TIvyz6beq7OsGI2YqqAg7grKQpONx/K+v0Fh+PsGm/Ab4t2us+BNS83xH4SuLDzdHtd1nYSrb3sKiV5pQyhs5GNxOx8Divz6rmo0aNCny04qK8kl+RWNqVatXmnLm+d/z1Cvp/wT8bfjV4z/AGQPDnwDs9BubjwnoV5cJHZ6Qlw1zczS3VxdGdwkmXVWOwKF8tSoYASZZ/mCv0B/YBN/ov7PuhavNc3Wo2k8syDSLBVVoN17OpmkMswVk+XkKF4zw5BNdNLFVMJLnhu9Dljh4Yl8svU8q+GOjfFOLxxphu/hZq8FvfazbG4trzRngjkQyKXyGjJjj2Z3Mq4Ck8HhW98h0344fDrx8PFXhH9nLwJ4pjt7oS6dYa01zFHZjy2x5wguLdpEPzIy7nSVWYMiqxA9cv8AXrTU9Ei1ez8Uz2DL5UjaeZIXWUAkGCQxpMwV9w3OgYqqZUryS7w7f/DnwhYC58PWWm2V1cSBtQtNNhYxhyAS6sY4yxBHTCBgzZHIIwxOLni7cytbtp+Wp3UcDTorR39dfzOA+PHxZ/bI+Mn9q6xZfCvSPCumO8dpc+HtJv725g1FEuGZLma3eadZwnmklJDgiI/uwWKt8haDoXizXElOseEdcs4Id4E0Gi3E4kmDf6shYztYDOfm6jken31N418OTaBb6RqljFqciyl7h5bERx5BZkZEkkmw4YqdzFuQT34pQeNbfTNRn1S3VZfOZtpvYIN1vGX3LAjRxxnylIGA+5uMljXG6SlDlu/W92vvue3l+a5llXMsLU5VK11aNnbbp+R8N6h4e8VJKj+EPB/iDV2YkTqNFnhMB7DlWyT9BwK7jw58KPjTKI5/CPw88S+fKinbIgt1U5XLMwcuMD0Unjp3r6vtPiDf6eD9gu9il3YBnM3LHJ5kLHHoM4A4AAqha+LYtDtfsem3hsrfnba2hEMQ9QqJhQPYCpjhkrXk3b019bJfhY6K3EGb11ac9NOiVv687lDwH+zn8OdY+Gmm+MfFlrdXGsXelC5TVLjUJrdjJtYxAbZZVYFAoVlR94UHaCSp0fF37M/wnudO0zQdR8Q390mnqZrS3ilhnijlbl5HlZS6FwkakROMY5BB4pjxhNIfK0+BioxhscfkTTZ9buHiMl7dhF9A+OK6VpbyPEklUk21uYWr/BCysNWGpHxKl/bJbR2a2eq6NBKiW6wC3xGsQUQyNEq5mAMgZQwfJYt5V+0x+xf8c/E3j698QSah4W8MQ25VNN0iPTW0xlLFnkDQRRkoyuSoLbm2BFJATC9d8af2jLf4QaGLvRFiOoTE/ZZHYs8IQglx84IbOFGQRgsRhlBHmHiD44eIPENsZri/d3z+9cEnk9AufvE5HzcAL33Z28OKxmJpyUKSXqzalhcNOH7z7kV/iL450Dw14L8Y+GLH9nPQ9fln0/VbK38S6hqN5eXmgZWWSTEqvbQyTKJRvme3ZXaICHahkEnx3XrPjD4gX0T61p9vqPmQ3tpc+ZtO4FnDAjjvyBz0xXk1ejSlKSdzyK8lKV7hXaeD/wBob4xeAtCg8NeEvGTWlja7vIgFlA+3c5c8uhJ+ZieT3ri6K13MU2tj0yP9sP8AaNiOU+Ixz6nSbQ/+0qlX9s/9pdTkfEtvx0mzP/tGvLqKVkUqlRdWep/8Nq/tNYx/wsv/AMo1l/8AGaQftpftMD/mpWfc6PZn/wBo15bRRZB7Wr/M/vPUJP2z/wBpeUgv8TX46Y0q0H8oqav7ZP7SK/d+I34/2PZ//Ga8xoosg9pU/mf3nqY/bW/aaAwPiZge2jWX/wAZqG8/bF/aOv08u8+I3mLnO06RZ4/9E15lRRZB7Wp/M/vOs8ZfHD4n/ECKCHxb4jS6W33eTt0+3iI3YyMxxqSOBwf61Wuvi14/vGDS66owMARWUKAcY6KgGTnk9+prnKKl06ct0gVWotpP7yxcape3XE0q45+VI1UDPXAAGKr0UVZAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/2Q==",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [23,38,72,67] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [37,39,65,54] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD0TxBf3WpanEsV7JcBbbkLIXAORVCbULjTmET6e77hnJiJp+p+Ko1P2aw0gQTK2WZR1Hp/Km2WqTXkZkuwQwOBx2r8xtY/RuUn8OJd3OovetYyIj8jMZA6YpkCpdXK2yThS7YBDcim3ni2TR4grybYx92qumz/AGe/iuZ4ZVRXBZjEeBTTuTL3TQ13SY5okTUvEFu5VgFW+u2wOD0wc5qXSLHSdJ0m4V7mwLu4KGGQnt/t8/lWTq0FprOpKSGePfkbUJOa0dZ8KXM0dsdLg+UR/P5h2c/jQ1cSdy3oHiDwdZaRepqVuxux92RVyT6YP0qpp3i60kuo5FtUaNXBZioOBnvT7Hw9ZQWqRak6rMM71Bzjnjke2Ky/ESaT4b8A69qETnz4dKuZIAEJywjYj9a6aUFKUV6Eym4ps/Iv/gon4jg139obWLyFUYy3Lf6SuCXCkjG7vivCrGbaS3m4IIwd3Nd3+0frU2v+L5L65z5pu5sgj/arztAR1r7nCr2EORanzOOj7Z+0Z11h8QL610qHSbjUppI4CxjjeclVySeATx1qG68Zi9V7eQ58wFcsfXiuZa1nZoVhjMrznEcUI3v1xyByKRGMcojljdHWTYyOpBBzjoa6vaM8+L9mdLpmp6hBdrNp+oTJNGh8t4ZSGUexByK/af8A4IkvHe/CezIZZoxZTNwdwEpHJ/3jgZ78V+IVtezWEwmgB3n5Rj3r9nf+DeO/u9a+B97vK40qYyXWWA2KwfH1+6fyrkx/vYa510al4HrOpX2ljxDNDBYLIgQkSB+vI9qZL4o0/S28k6EH3Ddnzsf+y1Q0G3t5Inmlux54jJNsT8yjI5Pt/jVKS9WaZ/tOmyzlThWiOAB6V8C4qx9i9jc1D4hS3AstGt/D9gqTA7ZJod7Lyep4zUUHieYzKtt4iBk3fIFswOfqSaxWuLxrmG6t/Bk0gt/9S7XgXPPcY9a1tWWfT9O0iFLG3W/1K2LKRFx5nbFKKRD13NSLVfEd/II5NbLBDuw8Ckfpj1o8R6n4l1O9tLS3RZAsZBdW2459KzdPHidc21tZxS3m3lGbYAPX88Up8N/EFrkXfiSAWrj/AI9ltpOGX1P41VkQ9GRanoPi5L11AB4H8fsKd4rsbGHSJtMubtZPtFs0cg24+8pBHWp7iyu2lJvb6fzeN2JMduP0rMvdMtNRnRr5pWVWGQr4JFa0m1Uj6oifws/F79q+yl074x6por2Bt0tLyURtnPmhmznGOP1rz3RtGv8AxDrNt4d0W3ee+u5AlvAi/e9Tmv0G/wCCkf8AwT18UeMPirpXjD4G6bc6kmoBIrnTomDy+Y5+8ScBV7E9siqHwN/4Jl/FD9k74tp4v/aLOlWV3ZQQz22mRy+Y8aSAkbiRjPA6V9dGrNPc8KcVKNmH7Ff/AATk+IvgrX9L+JvjfxVDa2rDzPsE9mjbeenLfj0714p/wUU/ZG8QfAj4yj4i21wL3wz4kkne3vY7YRLHcMzHZjcc8nrx9K/VDwh4/wBC1bw5bywaVaTXB3DbcRblwGIHGfTFeB/8FPvgj4i+KH7KEnjWONxbeF783SRQ/LGiA73yPYA4qKmJrRqRSe4U8LRnCTa2Pyx0y2SC8WWSPzVGcr0x71+nn/BBf4t6RpPhjx/8HNJ1Nnu7q3tZvtxGz7P/AMfPyhOd2c9dw6e9fmjp+lveXaQ280SHOSZ3IXA6jgV+sH/BJr4D/Ciz/Z+k+OmiW15F4leb7NfSIWSCRBu2/KVG4jLc57+9dGZSccKrHBR+F+p6Xe+KNOluGuYdStNPuX4kupIlLSL/AHCep5wfwrPvvifofhIiDU/EJmMo8wSWoMagdOcYyeOtS6x8FdJg1gzP4iiu1ByY1lBI98Z/zms/xd4M8EQSW95NFJcxRxiNrc2kgDNk+q/rXx8o6bH0jqxtubvg74h6L4ln/wCEhtZUnt7TrHIwbzvqD970/Ct3TfG9xrOr2QvrbTnWFwsMp2FoB/sn+H8K5q1+H+kzaJBPY/DCPS4mU7LoSyEuMnnbHnFa3hj4f3N3pU0Om+CZFnZCImbC4PY8kVk12HCa7jh/buseOp49IvDIYrZpNry5XAdRx781svqHjzWYyEkjgWzPlufN2jJ55rn7X4Z+N/7XgtpLk6UVlzLOZkOV6FeCc9QfwqXxt+zN8S7l3vfDHxBnkjmmWSS2kJiEuO4L4Bqowk1sTOoubc6PU9C1FfDsF/qepiOeXdmQTY3YYgYOeeAKoRvBGFN34ntEjXHmP9h5UdznH61zfxh+HHxak8IaPo+lCZ3s1YTJHIpC5ct1zg9c8ZrAuPhZ8Q9M0qPVdV8TXIjYAfZZomR5D/d2sAcHpnGK6I0amj5X9xHtI9zutft/Dd7p0z6L4pS4vXTbE0UOxx3+916gcVh+Kbu//aS0i0+F/wAV7sjxJpyeVoWoXUm6W8Tj5ZJG5bbtUKCeNxxVTRZYdMigGoXEcJjmDOryAEDntmuy8QfBXW9c8Mz/ABQk0h5rcTRJpT2t3Ek+9s/vlywIC4GQcE54zXqUG1VTZz1HFw0MXw5+xB8dfC/wy1D4s3+oMD4du1aWxtpjsmiXttBwwwOffNbGs+JfAv7QXw2v/gHoNoZNL1zT5Ib/AMzCMbmaMq0eT0AZiB2FeqaP+0nqXgL4Q6/4V+L90ulTw6EYRvhZhKWTKMCgIYspUnHcnPNfMv7M0Gq+ILjUV8LwC5vHDy2sQkVS7NkpjcQOTj+tddWUZWsRS91u5R/4Juf8Ex/2M/Anx11DUP2xrB9cNpdP/YuklDHaqvYScbZT+ea/YLxP+zl+z98TvgvF8Mfgt4R0Lw3p8EDTaLb6Dp6WoimwOGCKMBsDP97bznFfnH410P4kXWgw+Jk8OzNcaPIj3Kh1zGQeeM/N+Ga+6/2AvirceNfCFhreozAeagiuM5ypGQAR17mtqL5qdpfiYV4x57xPz38RftW6bpmvz2Wv/CTRdKube6aIqANwYHAz7Hr+FReKf2o/G/iG1t4/Dg0W2hjIO2GwQgn33A8184ftW+EPFnjL9pDxjrum67/o0utsbBomxCY13A4HrnHf1rjB4T+NNqiw6Tr1sIwOchjz/wB9V85OLcTSMlc+09K/ak8QBVbXpLGVtoDRiFVxjjsMVi6h+1H43aXdZW1vDED86BBkj618a3ut/H3SLp9O8uxn8o481oZCW4z2f3qxe/tB/GO2s5Jf+ENs32JnatrJk/8Aj9ZKnJGikkfUs/x88aXWo/bPKtnH92dM7fce/wDjU+sfHfxlrPkl9Qm/dJt2s+QPpjoK+SdO/a3162OzxD4R+ztt+95LAE+nLVq6f+1/opRvt+mFWz8u1SOPzreHuxsyZO7PqHS/2g/iDpuLV9Wtnt0+5FJFlhnk5P1zX2P/AME07zRvjX41n+IfxG06z1e6ULHbxXkIZIyCACFPHFflE/x80TxFAL/SZNs0mcxOeBjj+lfVX/BKH9u7w38O/i7J4O8WX1pDpTyoLaYgiTzCw6ktgjPtXqwqR9ml5GL1Z+vvjf8AY8/Z9+JkHmeJfhzph3tn9xZpHggHkFRX52ft3/C+T9k34sw+E/BniG4uNP1K0F5b2kxPl22DgKB+NfpX8Nvj/wDDT4gaLFeaP4otWyu7AkHpzX5df8Fbf2h/C3j79o2JfCuq2t3a6XZG08yPJO9SN2efWsKk4QhcnDqr7ZqWx4P+0P4n8WfHj4at4a8S6pEuoRoVtbm2j27R/DuHVsDFeb/8EzPi/H4G/bI8KfDn4ovNZWujalENVurldsWoRecv+rzwW2jhc85xXQaf4vsvO/tJnDM3VG+7xx0rJ8aeEvDHj7zpvEekxzLJCyxKhMZiJHDoykMGHUHPBrGni6MXqddSnKS0P1o8SaH8Nv2ptG1zUf2V/FWkQNZWcsN9DdANIzlT/ADnt1r5/wD+Cf3xhvPAHiy/+Fnj4fYrmLU/K+1tKPLJVmBIXtnI718LfsyeHtS/Zg8dN4t+D3jvxDp5mjkFxp8upmS3m3DBLAjcT/wKvSLLxHq+q+I5PFWoarPHOLrz5JIX25Zjk9c8cV108bQcTNUZo4ea/wDDmtJ9mv1ESK5kDRjksev55rN1O20m0mVNGmZoyuWLetdpZ2HhLUpDDptoIXVdxY9x6fypt/4FhvJRJbDeAuCQR1rw3i9Njrjg1fc5O0s7aW3WSS2ViepK9aZJZ2KoWW2iBA4IQV0cui3OnObJYTiPgcj606+8GWdidl3Iise3mA/yqVim+g5YS3U4DW/hp4X8dRix1O0hTY/m+YIxkkAjH/j1ZFx+yh4Hv2DQ3QjCjBAUDNepWmn6bpEhuY5uWXbwCff+lWG/0qI3MALInDNjGPzo+svsR9W8zxeT9jXSFvWu9N8TTwBsYEb4xwKp6X+xb478PaiutaL8RrSKWKUSx7eCSDkA17Sf3x8yPlT0NXDbzCPcU4C+tdMcc1FLlF9VV9yh4S8c/tRfDzw9/ZeifGaW1cDarW106kAj2NeZ33gH4xtq934k1zX49Ua4lMsjBiTuPUtnqT/SvV44pJm2Rrk46Uy8g16AqNOsi4Od/wA6jH5ms6uKc4WsXGhyu9zzqwPi4Wqj+wYRjI+5710NvcXsUSSTq/yqC6AHHuK6BbfUpBvvrfZL/EpYHH5GtS3tNQtVS7jgOYwHX5h25rl9oaezOTttbSefyYbcxPj7wXBqw2peJIkMekL5qv8A64O35f1ro9asjrenmaNd14WGIs44789KyI9NvdIz/aEBj8z7nIOcdemfUVtTqtR2D2fmXR4d1SwPm21yhY8HbnpV/S9bu9Dha31G1kmZ23KyHoOmOa3bZ7OxZpJ+dy7UDdM1G9ve6jGztZRCbOIVVTgr6nn1rhjJydmdK3KsXirwrJGHvkMcp++jAZFYWv6DYarIJ9OnmjlHKGVsgH8K1pbbSbaQwa5oDm7X/XGIYXPbGc9sUrWMMal1ZuOQCacny7FNJ7mJ4e0C9sL1ptYukniMRVUTOQ2Rzz7A/nW1JaW81o9vZp5e7rmq95FqssajSDAHD5kNwCRs74wRznFT295aWabL27jeQ/e8k8D+dRzyFyRKNv4buYYhG1whIJ5GfXNNku5CjQ/ZHzjbnitZLiKZfNgOUPQmq1v4r057pLd9LkAMgUsV4HOM1opysHJEz7ATxz7jbMflNaUIuHt5LgWz4TGR61oy6tp0a7rGFGfPR+Rj8Kik8Z/2fC1tPpSOJu8aHjH4+9ZupOwckTG3m8P2gIUycbW6jHFX31XS/shhW+VpPLwIwOS2OlVX1fSZmMh0+7XPZcY/lWla2emERzJpsQJwwLKc/wD66IzkxqEWUtC8671AQ+QyZUnc3StS/wBKgOz7Wofrtx26VatdizApCoOOoFJqdxZxbPtjlc527Tj0rVTkth+ziUdQVXiXeM7XyPY4NRjxXJpUiiSUlwvyNkcCtpfDl4YRrjw/PKdhG8d+fX2pwGnWERfWNIaU5yHBHA9Kyuuhs0rbGS/iG+8UuUs7krMfvyADJrBi8Vw+IplfTR5aA/Mq962b+/02e7eWxXy4ifkTHTioDeeH5h5VpobpK3COexoWpm0VbjLR7STg8HmodP0XS0DutkmWbLHnmrc+hSakggnjIAO4fX/JqrceA4nYFQOncgVpFKxJp2tvDDAsUUYVRnAH1q9Lquiz27WosI9zoVztHUjFclN4V1O2lMNrZs0a/dYMOf1q9H4NW1C3jIQY8Ofw5pvYLMviytITvigAPTIp1u7R30cSY2t94Y61Hp6Nci4ggG52t2CqO/StHStH1KPwoYHtSHTO5cjjNYpahZmq1rbA4ECdB/DXNeJJLqK/itrKZozJMFG33IFO02yl02zGo20e64LNuj7jBOK1PtkrQeasUnnFMhfLP3sdM/WrsNbmT9l1uwZbia/kK7gCCfWtHXrS0ubO0kutNurg/PzbHGPu9f8APrVaPWb+9uhp1zEVYjOCfSpJrXVS6x2N+LdiCSD/ABY+np/WgG9T/9k=",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+rWhc63Zj/p6j/9CFVataF/yHLP/r7j/wDQhQ9hrc9rfagyTj3NfU3/AATu/ZW8P/E7Urj4oeOdIe90+wZTpseSIzODzu7P649q+aNB0e41nX7LT4LUziWcI0S98mv1t/Zs+HWifCv4L6J4e0fTfs/maXbTXUf/AE8GNd5/E5rwszr8lOLUran0GXUYzqO8eh0EunC5WSOS0PlSQiIwBMRqg6AL0Ffk9+1J8O5vhr8avEXhl7GSJG1eVogyEAopwu3PbB7da/X2Cf5D8nf1r5p/bg+Anwu+Ll9b3KS+Xq87CY3UQbasYVgV3Y55ZTj2rkwlapOtHXQrNcM6ai4Rtc/M94USXY4IORwetd58AvgX4/8Ajl44Twn4I0F7sDH26Q5VbZD0kZugxg8HrXvvwo/4Je+Lvij42g8KaBrAvY3cEtHauXkBb7gOeD2Br9GdP/4J4+E/+Ce/wz8MfD61tFj8R6vYG81l3YPKiHG2N3B+f7zY6bcEV6mKq+yXM3ZHJg6KqPktdnnvwB+Dth8BvhHpPgXRdWa/MQLXEpQjbJj5uO4znFdZPNd7izIQcf3a0HV7Yb7W3L4OFjB6CoWneSUPc2pTkbkLdRXwOJqurJybuz7CMWoox7y/ujCYCRtcYb5ajsROXSB7X92BjJj7Y45rphHpF3wNO27f9vP9KhaPT3kNvBcuHyQEMBwMds5rmux2ZX0nS7PzPtxjxIDtGDgY69PxroEsNHB/caqZjjlTHtwPXNZK2l5ENsFuZR3Ycc+lWtPhvHmIntTGNvDE55yOKltMpXP5wq1fA0Uc/jbR4ZUDK+q26srDIIMi8Gsqtj4eKH8f6Gp6HWLUH/v6tfrj2PzVbn6BfCuLwp4H1ptbPw+0q7kjKNEJbGIlCCeRkcV9U/DT9rXwnr1zbad4rsZNKJTaJGBaPIU9kBwMjA+or5k0zSbZS+HfoO4/wr3z4M/AT4f/ABk8HPpx1q7s9St4Y2uJcK8SLxg7Qu4knA+93r5zF0o4iKUuh9HgqjpTbR9NfCXR7H4yeL9J8IeD7tLue9ucpHbN8zLgdfQfXFfpp4J/ZD+BMfg/T9F1D4baRqH2eL531PTIZgG/4Ep5xnn618U/8Ec/2OIvg98QPE3j/UPEE2pXKWUEFlciPYtvG7HlVYE7+vzZxyOOK/TPS9Ph0+IWsLsVHOWIzW2GwtOlGMk3oXjcROvFKXQ5fwX8DvhH8Opo7zwp8M/D+lyRcm6sNHghcDOeqqDXwB+3V8SJPi98abjWrC2UW1mGtIWVuoQgdD9P1r7Q/bU/aGsPgB8Jrm5heP8AtTV4pLTSVmUlfOKnOdpB4BBHPWvzIufFOq3k0k906yPLM8rM4JOWOT36VyZtip2VPozXKqEZSdV7oIfDFyXEi6lKpPOBIeKr31g1ncGCaUytgHe5yf1qaTxJfQR+YkURPup/xot5W1p1u7oBWZgpEfAx+Oa+NbufQblR7qfTuYbJZN/XOOPzqZdUeaILHOkchA+SRCyKe4xir+o+GpJwgsGY4zu3mq1no1jDeKuoyyKqkiQoQMHB9R60gLWlReJbi3Z7K9sSgcg/udvOB6inpDqNukjX7nBjITMgb5u3Q8d+aSSysEbGl3tx5ePmy4+9+A+lU4BIjktcSPx0c5FQ1YD+b+tj4dkL8QNCY9tYtf8A0atY9bHw9BPj7QwB/wAxi2/9GrX689j80W5+hEeoQoSSrfkK7P4X/GzxD4A1i2bTJNsAbD564II/rXBGKVfvRsPqK1PCXhXXfGmv2Phbw1YNcXupXSWttGFJy7nb26kZzj1FePTi5M9mMlFn7wf8Eb4pfiD8DJvinf2zxxanqQS0Eww7CJUy2BkbSScc9j0r7I1SfTtP0+XVNXuEht7SMzSTyMAsYUH5iT2/xrzz9ib9nzR/2bf2aPB/wn0+3kEukaPEt0z7uZnUSSdTz8zH8cjtivEv+ClX7UNvo+kD9m3wJcv/AGxqgB1O7Zgqx2+1s7j/AA/OU9Kus/ZUXJ9BKftqiij5D/4KPfESD9rj4rXOu6JrVwun6ORb6NHOgVSFRVkztLcGQOQfQj6V4F8I/GU9xrN74E1EMZrIKYnQfJgZzyefTtXqkXhbWzYi61m4ieRFIlMCqEYLwMbR6Ac1zVv4B8H+G9al8SaPpQgu7hSJ5zcSNu/BmIH4CvmsZVVeaaPawcHSg0zpbWx0tI0nhJSQoCWk4HI5rO1gJ9tMYmQgqPnB4FTRwPqUS2f2kIpUEMSB0960tP8AAdrdWW+5uFkQ5D4k6r3GQa8KSuete6MXTtLCXAu49RtpRFyyRuSx+nFbMhN7DhFKlwCA/BHfmm2nhXwNodz5mixRpL/GPtrvj0yGY+9TLd2V3cvKs8cIiLB0ZwPNPIyM+/PFZvQqOxDDpOolcw2jSjPLIRj6c1zOueEdU1W+Nxa6mLcY+8hO4+3Tp/hWs93qE0sjGeXAchNhKjH4VYs7e71CUwxXGwhd2SB/X60FSkfzjV03wVhiuPjJ4St503I/iawV1PcG4jBFczXV/Acbvjj4MXHXxXp3/pTHX61P4WfmkPiR+xGt/Czwnewefb6PHDHbxu8zAZ4xx/Kvob/gi1+xZo3jH4zXn7WHxW8MpF4V8MmSfR5rxtsbOqONwHRgAd2fasj4K/C2z+KXxA03wVq14ltYX97FFejAG9STxu/hHX869t/4K3fFbxl+zD8HPCP7JXwH0CbwR4T1O3EepeNRDiORFi8uOJdvdhjcffmvncJWqSk7s+hr0aaSsj9Ev2kPjx4Y+C/7O3iH4zNrEZs7bRvO050fAllcExKD23ZX8K/Jv4UX3jj45eIbbUlsbnVvEfiaYSXVxJOXIOcEgEfKvP54rjviD+3x8VviZ+y/F+wl488MXdlqOm6RDBP4tN8stnc2y5MMwHV3x/EDxgDtX2J/wQ8+EcGl+Gp/Heu6pFq19GWgW4eIfu0LKflU9OVHSuqtJTptSOaEXS1R6/8AB3/gmP4KtBFd/FDWL+7ndUaeCCcrAxPJTbnpjg+pzXYeOf8AgmB+zP4m0drPS9Gm028wRBfI5fy/+AZAb86+jYESOPYVAwxIAHqSaeWQ9f5V5/1fDW2M3jcSpe67H5R/tI/sd+Of2b/EDLdu1/ojD/RNWSDareisMnafxryCHX7uLKhysasdyg9u9fr3+0p4A0j4hfBnW9C1eKMxpaPOhdAdrICwIz0r8edc0o2Gr3NpaS744pmXJbrg14WLoU6cbxR7mX4upiJe8xlzrelWd292Lrd538OMYx/+utbT9X0PWo4tMgRUmlQYkBycgZ6e+K5u68NaI0H9oTXDbywWSPHAJ6YFfTP7FX7ArfE5ovF3jbVp9P0wzFoI7bDPMu0lfmP3B0yPTIrLD4R1nHTd7nZWxKpJ67dDxOXwr4ktbf7SdEuDAr7p7vZ+6jj7Et65zx9PWqVne6hZ3BurbQbuW3Zdqy+VjJ4P9K/Uf4zfAbwHoX7MHijw1pvhOzlaPw7OsEyxCMswThif73+1Xnv7JHwP8DeOPhd4m0jWdGhd2u08iV7VS0e+2iK7SRkcknj1r2o5DB/aPAnxDy4iMZLTqfxhV1nwE2H46eCxJIEX/hLNO3Of4R9qj5rk66j4IQLdfGjwhasxAk8UaepI6jNzGK+wn8DPCh8aP2O+PH7RUvw78I6j4b+H3iInUrzYj3NvH+9i2nIKEcqeTyPSuj1v/gpxpPxJ/ZGtvgb8WtN1HXtXyLO+g1GNWjAKhFuFc5IYvhuOR3rhPiL+zV4W1q2NxZ3t8t7Jna6AuSfoKxLT9g6XUdJgkbUL1biSJHaVoz97AJOM18rhqtKlJubsfVVI8yNfw38WPFHwZ+D+rfDP4gfDS18TpeacG8M+IodRV5NPz8qxTkZJjULnPXLmvv3/AIIB/tFaZrXhLXfB2rX8X220mLCMuFIUOg+765Ir4q+Hn7I9vpeh3WmeMvEF1cibMcUZUrtTAx3Oec1sfCX4CfGH9mnxvL48+Dni+Kwa7Gy8t7qbAkyysSGz1yg7etVWxeGcWoy1FDDKW7P3n+I3xU0H4deCJfFus3sUQb5LWOSQKZZCPlRQfvEnoByc034OeN7vxv4ZnvNT1C3nu7PUJbW5NvtAVkI4IHQ4Ir8tvBX7Q/xL1vxho/jP4zaQnie80q8gm0ezn8UhLWzljdSsgh8k72DKG5bk16h8NP29vE/wf1fxFa6d4Sl1ex1/U5b+4tLu82SWc0n39kiphlP042iuH6y09UZTy6KhaL1Psn9r34u6V8Pvg/rEVxexRy3Vq0UTNIAGLcED1NfkPquqXkN3cGGQfvJGcbhnkkmvZ/2hvjt43+P2rR6hrV01np8CKLXS0fcsfux43H3xXmMmn6fHlruHeQMls44rgrVXVVjpwuFrYWV5R0PPbT4xeD7zx3ovgO7v4ZL26v1jcR3C/KQV+8AeOtfrX8NPG9r4R8M/D/4J+C4A+p+J5h50mzItre1iEk8mf4t+zaPTzBX4JfHnwD4m+Fnxpj8b6Vpc7QG5F3FfRRHC8g4I/rX3l+zP/wAFSfCsup/DjXoNPu9T1/QND1OC4sdxUB5VjUMzY4UhGY+2ea9rLKKdGGvX9ThzDFKlUlNrRa/cj9bPicPDN74IuNB8W67HptnqKNZmSRwGffldig9Se2Oa5L9m/TtD0OHXdP0GSM2y6jGIysgbIWMIOe/yqK+V/hh4i+PP7bHjWHxpdavHHp1jO8L3IbZYaMNoJ+zgc3FyAwI3H5cryeg9a+Mnj74W/sUfCTUtE8Ia6+oeLfEI2Qm8vw13LK8bjz3jAxGF6YAHUV7so+xaZ8dGcsVVdS1o9PM/iwrr/wBn1PM+PXgiPAO7xfpowe/+lR1yFdV8CpGh+N3g2VOq+KtOI+ouY67KulKXoz06f8Rep/QDo+mfYZWlFsiNxtZMZ/Spr/xTqtnHIxgYhGxv3jJ5xnrmuN8N+MtXR5twifIX74Jx1966OHUZZ4VuJYYyXUMykHGT+NfljqSe7P0NQi+he02/vPFFswniMaB9v2jPzDgcevf9avWGoWN5MYrV8sFyR5ZHHHqKz7HxDY2UJiuIlRi2QIxgYq3baxawSF7q3jjUjAMS4OfxrKTb2K9ml0NdHsI7f/SUTIB3Epn+lUtU1ZpREmn3sgVAchSVA6VNCbbUrcTQs2yQEA559Khl0i2hICu/PqR/hSXtbbhyLsZ1xdeJBGWOoW23PG63Yn8eKzp5r64uxDdXW4uQpMSFVweOldto80eo2DJcWcI8shQVU5OOOeazvE9re2IW70+wtzGSATIhJHr0IrXma6jkm1qZeoeGrC+0uaw1ZE1BJIwqRXaeYoAzwA3Arzi9+Afgy81ZJdLS40dmZUu006QQrKgPKnYRlcZGPTivQrnxMLEKbrTpZg33fs/GPrnNUYFi8RwXV7ZmWJI5P32SNyEtjHT14renXnCKtJnLVw1Os2pJWe56T4L+Kvjj4a6BH4F+F/xO8QaPo0KjyxYayYFQ4AIC+WxA4B4wMk8euXqur6bf6o2v3Os393cSH5p9W1Se8uSfUvJn885rg3tJLRvLjv5yCM/M4/wqH7ddad+/jmMhPy4lOR+mPStfrk5faf3sxWXYSgrU4q3ofz2113wBQyfHfwTGFVi3i7TQFbof9Kj61yNdl+zqFP7QXgUP0/4TLTM/T7XFX6RW/hS9GfE0v4kfVH9D2m+JNLW3ihbT4rUxW6IxjP3yPrWX41jt9aWOOJGljdRu2DOO9c/rhumvTHEHMa/c2jj861PB+qrBZTxi8jDg4KsQSOeetfkzuj9IVkZ8+gR6QVgtpEKuu8gE8Hpg8deKx5rKS7Xy7WRZGByVUHp+VdNqIs4nNwXUK3LOX4zW/KEkQ+XBF8vLFIlGB+A6U0M80ku9b0iaCzkt2MMkgUBRzgnn+dbukabda9cf2d5kcEL/AOtFwSpb6YBrVvhZ3tyXyknkEMCp+5jnJxVO8aG9uIlt9Uht5RnZOXUBfrnj86p6bAbWnxSeH599pdQsYFKAK5JwOPSsvVvH15PNJOY2KKuGUAZIA5xWeh1eO4ZNNdLmfJBZm+V/U8ce9QyW1xZoZNVtUhkJztVjg/nT0ZDdyaTxPpWraVL5cjROV4inADH8ATXO2+reJrKVZTp0i26cLM2MYxgHr9Km1HwbaXFyms/2tEruTtj83BT6jP8AOrDwWcdtt1O6l8kACSSNic+hA6dcVUYxsIn0nxpDLN9hv45DMfmVkUbdv59cg0p06+1PWGuYLVwvlEYdeeo9Ky77/hErW2N9p1/d/aQdqssQY4+nSups/Fk2kTG3kkS5fbzNGikEenAxTkorYVkz/9k=",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [55,43,75,67] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [40,48,70,76] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/qBT/gnj+wysQkn/AGJ/hLIhUhRB4C0jcpyRlsQNgDHcc+uKqXX7AP7CGQ9p+xb8JVT7rb/h5phO4dePJ/zivcvD/wAd/A8+m6n4eh+HNhKb25e4W4FrIq2YJOEjyWeMBmC7h8vLNt5AqlFY3l7YNNbWJs8SYb5hIVO/s33cbQT3wMdMEV/K+KzPMqMlzVZq67tfhc/zzzGhmmGpQVHHVJ3WvvTTi/VpXTWqttt5vxqL9gP9hVCN37GHwjIxglvhxpnH/kCtDSP+CeP7D+sXyWVn+w38J55XOAqfDfSwAARyf3HA56kV6m9je2lw6zywiKI7WeOVGO4Ng5dHKNknjbkYAyRmtSH4+/D/AOEfwxvpYb6C98Qy7JAyRhlEZIVVUgkkbTvJxzuBxjFdOWYzM8xxXsY1ZO3aT/r+upvkOX5/mOYewq4ypCMU3L35X06JN7t6a7b9DE8I/wDBI79gYk3Hir9kH4MRp8rG3j+GumuSOSV3+SoU9OeehroU/wCCPn/BNO/lZ4f2LvhfbqXY7U+HmlMFXqPvWxOPxz7mtD4Z/tefCjW9Gn1XXvGVtp88IdxHfgKFThc7dwLZO07Rz1PA+71ehftS/CWB3hfxbFLCyAwXUcpTcSSGXawGSAATgD734H6qMMwovlbm7f4mftmW4bLKFCFKspNdXKc3L776dtLI8k8Xf8Ef/wBg/TYml8Ofsh/Bqd0UH7NP8ONMWQj0/wBQBnkHHFeY+IP+Cdn7DuiXLW+ofsS/CeCRQdyv8N9MXGCQT/x74I47V9fJ8cfAmvBIbXxDFcvIGWBSjuzPhlAAUEkHDYwfp2zn33/CL+J4ns7m9t541lYRhBlupPO5iSNuBnODz93Izy1qmMjK6qSX/bz/AMz5DivI/rac8rxU6T/ldSbj+Mrr72vI+PZP2Cv2EWk+zwfsX/CVpc8Rr8OdMLHp0HkZPettf+Cav7IUmlpqMH7BvwomiZirS2vw20qRoyBk7lWE4AB6nHpmvcfG3w5t/D+pxTpa25ghiCw3PlgNtJYgNtH3s5AZgTjAyMLio+q6r4ZvUuvD2rJcKFUtLAJFCvtIOPMVdzDJ5AI9CcccGJzvEUZqPNK63u3+Gp+URp5zl9epDMMXXVrJ8tR3XdqLb5l6Nd7o8Kvf2Af2D9GkeC+/Yo+FHnAj90/wy01So5+8DB8vPQdcdQOM0n/Yg/YIkuBFH+xV8IsEY/5Jxpi8/X7PxX0u/iu28Y6VJb3/AIXt7vVEjMcd+02CkabnI2jBJx0IILHA54U8Pcx6bbSloY0fIGSibR7g5HP+etKnnztepOV/KTOHN8VnWD5Z4XMJypS296pFp9ndu7Wl+VtarU8gP7Df7BHzI/7FnwkXnjd8N9LB/wDRFEn7BH7CzBjH+xb8JSMcFfh1pn/xivWSNNnuhMbQEjG4DIHHtmq3iG7n8iW4s4wLgEDCgICoHOAO/A/X1onnE6soxpVZK/eTt+Z4f9tcQte9jJvW38SX+f8AXfvQ0fxV4WSZNDj8EWX2l4R9llfzZkkkcYQ4iUHPz/KDkA4LcgZ2LfWtIj8Iah/amqwXWoTfutPtvJmEtsxkBVlZYxH95Fzk8KPlUtjHNePrrwqvw10qPTfGNo99FD5b28TP+5yxdklGxQ7szc7C+CD8zblzwUPim28N28kN215dQ3G1ZzDOYYpDE43I/wArllBK7gu3BIPB2mvDjhIY+DnFPmu1Z3fzTe2nmf0hDh6nUhfk187Pdb39PPR+Z6zp1zcC6utHmkgkumtEDSCUpEpyB8zStFK8aruc79xIbJBZTvgsNZ0zQtYTT7zUtPvvtF1uEOn6ek0QdshwrOFGMMRkHjhRxnHm0njjSbMg+HtWmV47eEJZJECHOCHBPzdNo4BwQV5JApuo/G3UfBOjRGzSFoZLfde2k8aS20qs/wAyMmcMpIILAKxBABGQaxw2VYypeMI6y0s/dd/x0/M548NTl8MbN/I9N1nw7pEfibTPFml+HbVdV0u/tr2znsxHERKJEli3jaS4wiL8+AMtgqCDVv8Aaz+EsnxltrP9oX4fwJaJf2oGu2+yQiOVTtDsoUurYATCphtikZLbn+Wn+P8AqrXouLO0htPk2CK3llKbc9GLuzMMZ4JrSuP2t/i1FbTaZZ+NbiO3uZA9xbpGm2VgGUZDAluD3zyFb7yqR9plOS8UZZFRpzT0t7z2+Wun3eVj38vyXNcDh5UFP3Xqr68rW1r306O1juPh98MfFGh/FKHRvGck/wDZ1jcMt5d6ddZTKjKJv3KUV5CiZ+Ugvx82K7rxNbfFj4JeL4tM0Y3F/pl/Gk+lXNxGWHlbs+Uz5KF4ywVjnH3WIUMBXiOn/tT+NrHQBpMd2rT/AGlCLp4IgIok5VIlCDYS5ZmbOTx0OSfrT9nv9o3wf8S/C1vFd63Ddays0r2+lX+mxzmOR1dSxzEynOck4xhcgDcVX3KrzijBTxsIyW2l2vWxni8FjIU+bEJdrpXXq1dfL5GLY/Gbx3Z2Sj4seFbqXTnR2N3ZypKY2JXaSqsF64U7jnDEeoNu11PRNcEmp6TqyXVi8pWC6jbZvYA/KIz8yt/ssoJHIGCDXHfGH9ouKy8T3Omaj8OtP06CSJg50NvIhvUYbN6IS8aISpbCKGDb1Zz8wrgrHxdpC6+3iL4TasdPuI4m36RfMAs6EgbELMwkJBztYg5XcuCFA+Sx+V1sXCUqlPke8Zr4Wu0lduO++qPiMyyGrma5qiWnwzV+VrtJN3Xr011a3+gdOjklSXTrPW5k+0REvGZCokIA4I6EcDr6Csy40/UbOU280CoC4VnkXjHrkdsHt61Fot9d69oNrq0ji2Wazie6+fBSUqjkFsAqVzggj5t2OlPudX0uG8NrBqtu4nUCWJmYck/IF/hOTlcDBzjvt3fnssXOEpRe6un/AF19T4HF5e7eznFpwut9PS2vXqu/zKF5ZGKZuAAuMhTnPJ/Lj3qlcAxzOqvgAnHHUfj0+vWta9ltQk0mxkZE3FpB94Y5f5eApOBwMA1RjubJgJlv4lySPLkxj6MRnB4J69AfTA5KmZXex87iMmnd8i0/r0PCtb1zSrye3ZNHiWBnjjupJjJGkRKb5WVjuO0MSAzDDYTITJA5fxZ4u8MaFArW8n21WgL2nlJujWTK/KxZATt4+Xd8xJO2PPzT63rC+IpYPBuia9penNHn7LHqeookTkoHYM8m1F6umWKJvRigJbK+SeIJtZ1JJb621ZLyOKRlURSnH7sbSxHTkIG9TnPUmv2HKMshiKqdWbSj0u7+XTRv16M/t+jl0Oa7PXfDvxR+HksCWV/oSqHYpJeSG485IyRxDHG+0uAM/OrL8zZwMAQfEO+srvw/bQW6IbKAFfNuLKBXUIHCgNESVBCEMDtyQpO5mNeHz69rji3uI5PnxmN0OMEe3rTJ/HGrS2zm+uhIJJTJIQAS7kAEluvZfToK96HDShi41qUr2fVt/cP+y6aqcyR6n4U0P4deKZnN7DNFBaI0ssekTF7ucE4RAsrFc7upAJ2AnGQC1LU/A3h/wRrM+lfEiTUEcwIbdtMK7opCoYo6yqMkK6kjIKkbSMk7fNbHxfBY6jaXB0tJjvHmRs5UOQRxkHOfrXT+KfiDpXiVW+xeEo9MiWVmhUuZWQFiAgkwG8tVOAOckscnPHbPL8yo4tclSXspJ311XZp3vv2W25NTAVPaXT0Na5TwXqTfZvCs1xHKygRJeSDLOAmcnouSHIHbKjccE12/w3+JXhnwXLZzf8IvPpWrwYM0slxK9rfxFz8rpkPGuAfnRmyVGFGDnw7T77yJWmucYZ9vyckZ74NenfCjxvp1jYJo17dxyxNdh/s2pRpJas5R1DMrq/zDcQG28ZHIGa6Mdhpww2kpTS83f79mvJpo5cXgeak42bR7drXiux+K1wGkhs4baFwwubiDzHaOVt5+YBs+XtcYUruyTg5JFO8+ClpozNcafrSNcQMCk1vdrsXJba5BzwSCuCeqtzgNjzPw946k8NyTeHh+9iYP5ZRvkK5PBLHIUccnkDtxXQeHviHf2elfZfKt44pYl+0xRyZzGjl9qkglcszEkYyTzXx2aUMwoVebDVEotfD/AJ/1b7j5arlGKoStS0j2PW9H8bajotnNYaytmwx/qpIpAxVsAKjRMeQCWyxyOcHkCtG+1LUWtbR/BepXFwPJDOLS2bdHiMZHIL5+9ubOCFGW5xXCN8T7DULW30vS1sVt552lYXV18xkO3axY/MMN0Yf3ucVfvDc/2dcajoviS1nS/Um5kuZJnkiYHJVnRR+8UsU3YIBYjd0r8/r4FwmpygotvVdH69j5fEZH7/NKFm/LT5ndNf3OoLa3l7rSpFfwO92zlkNvIudpK5G5jyxQbfzODh6nd3p1OUSQzQKg8t3+zhg4DIf+WYKjIPzFSSAM5zisrwh8SfBaWg0W5u/7Mu1G6GCaeFYpSxUeW8kmFLhiXDEooAycHIqHS/F1p4k1SNNJS20+7iQvdXrIgiZeCo2B9rN/DvG5ssznaBkeI8JiKFefNTaXe3To+zXpc8eeRtVJfu2vkfGUXxC8Qa/LHpx1fyITMEeEMI0y2QScY9SOnQ4Aq7Nqyaai6UNMijSSUzieb5J5lVMffIwR87kDJHIJB2qRwEXiq5iZI5bxZI96MJRCpYEY65wH4Hf0x61e8Sass1lb3ekWn2OKVWwgnZd7bm5wTz3X8M55r+n54KPOoqNon9MujLmNLxZ41TX5o5Gt0jECCNVjAXAH0xkgcZPzcDJPFYYvbaKQncGZjyGA6e2D71Vt2YJ5kj8IGLzZJIYgnHAP+c/Srltp02oXIj0yB7lowCyPAyYHd/Ye/PUc12QjRw8eSKsivZxRISiSm5mDbgR5ny7evA4OPWrX9uXSWy7rhsq/BMYBKgY69x7dxWXaRaprtybLToWmnkdY1jiBcs5OFUADknGBinTPdiOGO4t8LHuRSqAMW69BgnqOTn9MDRuLavuQ6SZ0+meJEkt10ye+OHXAlmAyCc8EgHP164+gFWIb+EBxIyhwP3bA9SO/06Vytl5kwB3kBnG5GXlcj/OK1keNY28yZfmB2HPTH0/Co5Ixbt1OadFJm/b6jcTRm6mlZ2jVVRS2FK+mB+dX4/FeqmZpjfujk/P5sxVhx+vH481xx1OJowjTtG2NuFwSSDwee3FWINZvdIz9ut4ZxICpjkGe2QR0wevNclfDxm7takSw6a2OuuPH8M00kd3ceY6H5JoyuHJJOePwHX8sc9J4e+KniyLT2tLKXzl2jhVXcqjOCrHlcex6MfXnx251+C4dXe1WN1IBjU4A59xV7w1rmn3+praX+ptbIrjEroSE/LrXm47KcLUoe/C6Wuqv93/AOatgKdSNpRTPd7zXIfFWnrPBdxxurbY4cZkVsckDBJ5zzx94AA4NYA1EafM4g1RlbrtglBUH6g9/bNY1kt49z/YzTRloo96Tqm4SKAuM7cEgAnnnuadqdnfPqVqgtRHcSqWkiiULGCOchhjHGMk4A7nHNfIUaNKi3T5vdeq9Dy/qEYO3Q8K8vUJLyaWO4M6NIQkjnAcD5QcduPXgCmR/2hI0iQWpkjVgrhBuAJ9cfjU1u1hK5sLS7VVeIBg53BDxxjjJzg8emT6Hf0nVdXjhnWx0+ExpB5ccU1uqNIPdQcEDBIzuyM4zwK/TKteUFdK/rofctWRgSzyaUiRi7w2MMBgKDyQMjPbH/wBatbQTqbfPoklxJezqpjZ7kIGQAltoOM8DJb/JZpmhnxPK8d3LGlxFEoMbkqpYlvnYclRnA44y3YDFdBo+jJcrLbLcSXV02UaZ3MZcqpbrIAA44HPBzu3cc8lfF04x5Xv1M58qWpm6dpF7DCmraXrDxEHzJo44MxqcfKrNkKOjdRgk9eprL8T+IpNWnjj0uDbDFCqM0j7irAljjoOpPTjr9a3NTk1aGGXQLXRpQqypvjeOXzW+TPPJQ4x1B7e5FcrPpGoWGoKbqNkmMZJimtyjg5IwQTwcj8wRVYeSnLnna/T0FGCbuWtHSfU7426NJvBAYsMlcdevQCti90u+huBaBggaQqrOvJ7Y9QRTPCLs/iZF0xZYbicFItkPmhj02bQMtngAAZz0ycY73W/E+i22nXF3qVnbm7to4RFp408sqAuwlUSPgoR5gbJUsQQQ2OvPiswqUq8YQje6/WwSpO+x5hqFzcx30trcxyA7+WZuc+469c1Yg1Sa4hMEzhyvYcAjHem67uvbc38Ss0nnOs0ygMpPBOCvAwSQPUEetYTXpmRV83egfJDEjPqfTNepG1WCdhOkkaEk6KrFmbc6nPzHjAwDxUNtqkKuNlyRL/CTnPFULq/gW5M0Um9MdG6gAVC+9riOFgHjlOVcg4TPrt5/n1qZRUtGJ0u57j8LvF/hfxNe21v408SW0FtFZSee9tbIk7SiNmTAYr8pchTtzhS2BkKDd8YXdtH4ysrnwV4hGqwSXIjupLx1RlLMvJLYzjJ+c45Uk4J58alvbSG0S0v9IiVZF8xJ4vlbJAATJ6jAz9Twetdr4b+JGm6bos+hXGjzW+pbT9kvEmEBVGz5kco/iUjBA455zjGPjMblboV/rNJOStbl0tZ9e5xVcJ+8549ttLep/9k=",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9vrPwr4ZEZt49KgCDhQsYGM/Snnwd4NDC0Ph+0LBdxzbgnH1xWePE1vJAsthJtdjkqzY/D06+lbWgXk18ZJ5lBxKyqcdADwPf696/Eac1dRaPOjhMBXVnTi/VJnH+Mfgd4O1WyeK005YZNnAhAUnnj+teK+Nfg9eaLeONHuTMI1LtCH/eIpHBK5HHX8q+qb3Ei4Mf3QMHHvXO+KNBg1CEbhIN27lSTtJ746Dr+g9KzxmEpvVHwHF/hnw7ndFzhSVOousVb8D47vre7tpTHexGJv8AprGcmqTyMUMiIeMYIPvXuPxX+D1mR9usSS4AG5lzt/8A115Hqdvd+U1vNZqfLOM7hkds4zXzeJi6LP5J4n4PzHh3HSoV9tXFrXmX6Mx7iaWWUs8jSEnOQuSaYZ7URlpYQrY4+Y7vpxxU/wBhcytgKAVCnDYIP0pklo1lH9oMisx4jJOT+PauX28VK7Pi50a+smvW5Vi8lo2ZGxz/ABU3hiMRlsnqKVkcsZckEE7h602R5FjU/Mc9FBxUurGWzOJQlZXInEQkwHVOOSTzTBC7Nh5Rgein+dL9rVEBnjc4+6rHoPpUa3zNMgJbaW+5nis5Te5P1OUld7CXUaAD5uAetRND5ikqRnsMVcZIpchtpIJJBb8hTVMLLhrXav8AeEnU1zvFcrOWeEUpO57l8OPi0uvaJFpr3URKxgw4IVwScY6+teveCvFVsYkj88sPm+fbX58eAPjPp+jRLM935UqIrBgDwQc/n0r3rwF+07ouqW1u9xqCQMluVdowCsjBvvA8Ef8A1q/T8TgalOd4o/0gwOY+yS5mfYC30E0RDHB6YrL8ReJdC0nTZrvU7+OGG3id55HP+qVRkk+gwCa+bdU/an02K4jttD1xZXhYb7kNtXJUe+O57HJx0rgvjH+0K/in4U+J4rtxBO2j5tFSXaDtjy2RgEkqv5t2rJUa1RpNHo4jPKXJZas+qLyXQ9eWS0TV4UlUxoWnLKpLElRyOvymvK/ip8DPEXhcT65YmS+tp/mlNsoYw/NngYyc59cV8tfAz9tvVL1LLSPF+oRXljpUcgjjurh2mkJBZQIwp3jOR8rZHJIAr6j+Anx11fX7KPTstcEjcY5Jl8oocljuY/Koz0BI4rhzDLHGDhUW/U+Pz7IMl4uwfssReM18Ml0b8uq7r8UeYX1tLGSJoXyScjO0p7EZH+RVaQSGBd772Bxu65H+frX0D8YvgVpWtaHJ458EWyecIhPc2kTBklBwSykd+c8cGvB76SBCLfzY7MygCKKXhX+nPPQE89/rj4bMsJXwEkpap7Pv/wAFf8Mfy9xVwZmfC+YSw+KV01eMltJd0/lqnqvQoyQXcJGAy8EgsOuPQ/56VS1Ayb1nZn5O0kkFcjuSeRV67eRCBLHCpK53SPg+2PxrAur3xTPI0I8OOifMPOLMytwcEbfmPTqPWvNo1KtWfutJebt+Z8d9VUpWX4izSiNlkuEWXsUD89/Q5rLv7s2oc2hkLsSQZNpK57DAAP5VS1zVVWD7SY58K5jOJSjLgjgggjBLde5qhY+KDNcLbrDEA5C77gswXtk7eSPoPw7V9DhcJVlBVErpbnbSy1zhdI39Dmvp5TPun+RNzxBAxf3AHJx19qsNqus28v8AaF1aQva+ZhXRSAfTjPBrR8M6VZaLCdWt7mK6kugQ0kcZEajIOFHXPTrzx0HNdXqSeEtd8PwWclutrOGzJNawLlwOmQRz2rzp4vC1MS7xuu5zPBU8ROdpJOKT5ZaX1Wz2vbXU/NW38ceJdIvZbj7e++QbW3EnFaumfFzxdBH8mv3GTkf6wD+lY3xIg05fFE8OkRLHDG5QoM8MAA3X1Iz+JrEi3x9DX9C3pVIXsf2lyKSPQ7X4qeIonwdWmwWyRuGCffin6x8YvE17avZvdblkiMb5PbbjjHtXCQzsy5bH5VIHJIrHkpKWxj7LUvW2uXVk4kimZMdCGxX0L8C/2g/iwvg+/sdF0s3lrai3t90EjLME3b/LjCKSzv5eMHgjI7182yRtKUjU4JP9DW14T+I/iDwhANI0yWNEN35zZiyS23bgnIOPascZQpYmlZq5tS5qbvF2Z+sP7PP7WPhr4laR/amnxX1jNLHi50uQeY6y+YECEYADkgrx/eXpg1xXxs8LT2PxDkg0G0guNL1CH7fBBdDb5Ql+YorAEdcce4+tfFvwj+M/ibwZ8TIdQtoxbWWoi1ubmGWbMYLKhlcZbJDMWIXnqB2r7ZsPFek/F3w8WudVkglinKW8sURG5M8qVOQTjHUY68ivzXiXAvD4SdleO6vrY+X4/wAPUzvIFGy56bum+20ld99/kcpNaWVyJLS9/fCZsLFOpQnuQM8kcdR6VJDaJDEtvaReWIVwFOcbR0GcZ6etasrDY8NrFFdBeIZ3iMW2LcBjJBJ4BPBxwOeRVaPT7KSP+0PPw8ihoggUooyRkc5IIz37Dgd/x+c5JJc17an851cBJSaXz/rqZlm119pnlmu7hre4he2uo3KtCUcDht4PPHUep71lW3g/wlZXKtBoa+YzblZ2do/xzlR9OnSul1jw9LCLaeK8S8juB+7ltoS8SsMnJYAhSPduMjOMgVUV7eOdbS7eQZlC+XFIRuOcHp9ffA/OqWY4ujBxjJpPz0OSthMVh5qjUvG3fzILWzKH7HYW8bDedsFsQcHA/hHrjsKieeKJGDyhVkfb8xx8wHQH1/8Ar1qW39j6Vei88q4VGlw0UEikzHpgse+BgZ96XxFLoranIfClhcxWpiUfZ9QmJk34yzfLgYyRwSeg+lT9YlJSbkYTy2Kwzq86TTtbVt32aVtt738tD5a8U/DP4I/FDTjPYaM3hzV5bwNFNapKwnWSJCPMiYbVChd2VEIyz5DMRXiHxV+FXiT4Y6gE1GHzrKWUxQX8KnyzIu4NE3/POUbWzG2GGCcEc19O+JoPDngTXAmnSaVqdnJhkvUugJ4924Mn2cOFV9+OEJAUg9SVGgtn4S+KPw/vdG/4ReeSPUHd7uwtsyKjqgCyFlQuERmXB/gAG45K7/0nAcWZhlfLUnzTot6p3uk+zet10vof07SzDE4dqrq4PdP9D4ogn2kc456ZrofBXgzxN8QNah8P+EdGub+8m5WG1hLkAdWbA+VR3Y8Ada7/AOIX7JGseH7q5bwzqEl3DBIAEkiEbEMFYfMxKggOB0IGOSep7D4Tn/hW2njTp/h/daY0yLFNcz2MzfaZG3FNlwm7f0Y8BUwD1Ar7TH8WYV5c62AaqS6K6VvNps9ieY054dzoavomeQeNfA+teA9WfQNctPLniCsSkiupBHZkJU9xweCCOoIrmjcrZ30V08AkCOGZW6HBzg19h/EfTNF+Kvhc3viOa8e1S0mfR2v7eUTKeFBjQuxXG1TgLtkJYnAaMR/LfxE8Aal4K1V9KvXWZGUPb3MaEK6kA9+hGcEc4PqME58NcTxzen7Kv7tVbro/T/IwwGaPEXhUVpfh8hviP4inxV4ms9UTSYbK2sraCC3tITkIqYzzgZycnp3r6o/Zg8cXPiSNtPggSXy4BhDHv+ZTwwBHBGM+tfF0J8m9RZWwvmgP9M819W/s6eIPBOlNY27sthpVxA9qurXX3bi7Jx85P3VUEfMAdpCnByc9vFWHVfJ6kYR1s/yFnlJ1ctqQir3T/I+hbef7TZCCSUySxHZBC9m4VZFLMDGWyqYLLnAPbpnNPsYNVfZbm2smtzHu3LcGTA2kcktnOTyCAOmG6gY1xBqmnXEaaPpU01jboonkv49qFmLZjcP8xIA5AyRkdOAuzpn9lpZrqFzq9qJJJVjMCSMTE7kBUTIyWzn1P1r+acTJ0t9b/gfhVbCc99P8zZs/EWvaZp0ogSCPT9reZD9r2oW527gFI7HJzxjjNC6fql4Ea20a8berEvFA3ylRljnoo6YLY5IHGRnJI1K0lkfU1Mmk3JVLotcO5jAzyhA53A4IHzdORg4mvNWjubXyJvEXm2rRx+ZYzTTNEyg5QmOQgSEEKdwIIwT1GDNHEPa7aIdGFWNsRJtJaK637a7L0T66E0uiXUuir4iZQlucqLuVgGcnB5IAC9Rz0P4VmkmDR1+3XZcyPgEBAwBBPGAMgEHDHGcfXNgeOvEFzpkthq9vLJCoBigt598ZC8/KCFIG0AkEkHPUc1nXWq6Xe3y29lfrbokP7mC8WIDqc7A3X6ZwBTc4Sgrb9Tza+CoKdqV2rK9+/Vry/HueAweGvBF1dQT+KNdXShqTosWpF/PU7mO92JKIECmM7umVkyRwB1lzY+Cvgros+u31pqjabJJaxNA92lxncrkzExOqDJTbk7CGYJg/Nt+RNG+M/i7Q9IfQ9I8QOlo77jEzBwDgA4Dg45APGOg9BjTT9qL4oyaRF4Wv/GDz6XF5mzT3RREN53N8oAHXnHqSerHP7FiOCs3r2j7VOF9V5eXZn9J1csnNpp/I+idc+O89vewW3h+2sbe1RFK3Ur+ZMkjKZPkV2YDA/hy2OeTkAVfD3xD8H3Hitdb1/UNJtPKMii5+0ODKWMij9243FNrFyoRmJJ+Ybtw+ZvEPxLubslra4jhMqtlIDtUZGOAOBxwMdABjGKwU1q7uHMslwxIOcmQmu2jwJD2VnLl9NTOOT0lGy0PtW8jmuptN1bwxo+naheXN4Eh1LTtZuW3xNGMqI/N2J8jMmWGd0mGOAUrnfj5qun+FfhQ1r8TPA8EU0iNDpemXWnyQSo8gdlmt5WblfMV3ZgrKRLxj7lfLlh4vvrU7FkymDkGQ4/nXUfGf9obxp8YPCnh7w54mvPtEfh6OVbaR5nd33iMZYuSSQqBR2C8ADnOFHgevQzKjU9pzQi7t7NW17+hi8mUakWnomcTNOsszsnQscDHSvVfgz4n0zxD8P9e+HHiLUbv7cttHceGVWRfLDxu7yQtuPAYSOQAR85yQeMeNwTEuSe/oeldx8KfDGualr9nrtvYn7HaX0fnXUikRhs52Zx1wD9Otfo2NcHh25O1tfuPZr0o1abiz65+Avjjx34h+DcnijX79L2HR7w2kMl3dtHNFHHFEwMTDJfAfBQjaBsOBya7OfV4pd934X8PtIbr9xMscsrRxxqF24WRkUYVI1JXqcZJxzxXw9mUy22g6Xqltp0cXzLa2+mho4snOWyuZBu43Nkn2rozoWnSa9dadZapZyTwSbSkkDBQ+0ElGAbqAG4PTBIOOP5sztYavms6rSSk20lc/Ks0w9KpX57aM6Twza/FH4iXY8F+D9DNzd3ErSBWu4oy2UclizAbxwQQTk9OnSjo+i6lrN0uoXeyL7HADK4aE7gRuRwVG5lxk8ZOcg55Fdp8B/iBo3hD4kaP4l8W+GNQ8zQLWaG5vdOnSd5xI7OqyxyJG4CiVjvDEYUDH3q6jU/h1+x/4i1Ke2+HfxwvNHudZlWK3tL+xdLZIygxGhMce1ePvlid3BJPB9TC5Lh8blEqtGrCNVS2lJRbTS25uqd+o6fD6xuAVWhOHOpSTi5xi2rRcXFSa68yfmlY4DRpP7OmlW/D3sCoXt2veAsm3K+XhehPc8rkEDjAn1C38MeLrOWxtdsaTjKRllJ+UYyQw+XPIPBBHpnlvjnw5f/DHxD/wjjXg1SCSBjZaho+rwvBMgLbSy5Hz9NwUADd1PBPPtfW0dzHpus3Fuoc+ZHD5ckyTbSDgkgZ46hgeVOCQAa+Px2BxuBxMqddcsl6fn/kfL1sHVpzdOcbNPW/Rr+vmfl22pMkapG5B7nNRi8lB3CUk/Ws1nUyFS/OcYxU9vAZBhZAD75/wr+yYwSP6QcElcvDUHZhvzx3zU6apsAEZb35rML7G2E1LC5VvlPXipnGNtSeRdjesDPdMsMCuzu2FRVyWPoBXT6x8O/E2hy/ZNU0mZJfLDPE8DhlB4HGO+OD3ro/gb4HtNHu7bxl4ptGuYFJaKO2Ys0BwCsj7VfADY4ZQDzyOGr134i+M9O1zwZFp1yl9f6lFO26QQw/Z7bAQZJKl2Llpsj5FTjAOfl+GzLiGWHzJYahC66t7X7I46jadkfOMvha4s75ba+gezdHAmS4jdSozzkAFuMHoCfava/hRqGsa7Ho+iS+DEt9Mhkn/AHltOCrkRHPAPJLYOeowcnn5rPhiwsb21mm1/wAL2l9EltmOO5lkCRgj+ACZCvAA+TJ46E4NZ3h7UpPBk0934fgSBLuAwzW7jzYmUtno5JB4AyDmuHHZxPGYSdKEbS/DY5akpSi4nqNprOuabrf9oad4uk0rT1mMsJnWVIZXXjBVFYsRzgg46/NxXoXhb40eE/Gdjc2fjOSSCb7CFiU6vJ5WSACY2Zgy8hSEJJzkktivHNQ8R6XrCWpu7sCT7PtNzdTRrHBlfu43HA7DOSScYHfLhjtrhJZYb1JY4zueFCM8HcCMAbgSDjaTnBFfnVfK6eJh+9VpLZ9T53EZVSraPQ9b8dXHheRDdeH7y6a8iwYZ0Vc7dwBKskrHrnkjAwBwxwKHgDxp4n0CSKAoZ4TNj7G1sreYNoHyl8lTwOmB7dxzo+I3im2tbfQRofnWsUIZE/s1YIGi2qFImVPmPyJjB7H1bOt4TbwT448SQadrPir+wy+Y5Zr+ESRI23gZXAClsjLHA5JOOK4KuFlRwrhOPNHvuzx55X7KLT1O6jm1W0tp9Pulli0+KBd/lXG2KMMN3lR+WoCMQEDLznH1U2vC3jbw7p99cRHT7WZGwEs7mNkkTknDHYq4AIIJbPbvXEX/AJlpaop18ah5UYhjgm3R20ZxsBQllwc7cAgDg5yMtXLapDNc38rXtpGhQM9x9niYhcE5I25BGe65HNebSy6li0/aSsumn6M87+z4TWqPhFlsyd73G18fMuO9MbONySkjv81aeheELrWpDJlCrKWTnJbB5GBz616L4c8J+EdENg9v4fibVIoCJZ5r4TQyneSswjZV8txjbjcy4UMME4H9QYvNKOD3V32P2l6I4Dw74cu9WuEilcQRlsPLIQAvGe5FWtX0258Pak0VnfpPHby4jvbZiASOdw7j68dK63xPqGn6ZLGZoku2ki3ytHE8ewkA7RnA4J6gEdQDxUXh3x1o8LnT9SszNFdMIVgm+7Ep4DhwwZSuRxjBGc1xyzDEzp+0jC67Dsij4V8d+IdJud9hrl7byYJZ4rpl3dOo6Htwcg4Feq+H/i34mutVs9X8QGDVXt1VTJcq0cjKAMBmjK7+nJYMxBIyM5rGv/gb4I1e0vPEXhP4h2ay2lqri0W3ZLe7JLjbE0jiRpMKMgJt3MACM8P8JfD69k0m7vG1gm6stR+yHT2/1hcIrNuC5IUB1AbADMHA+7z87jcTk+Ng5SjZ+ad0cVWMZanv3hGz8OeLfC0NxottZWDMI5pB5x8hZiCHgcvI0mxtoIDEjjJB6jjda8G6FcWl9Jd63Hp0tngw217OspvFLlflKhQhHHXIbPVdvPI3PxGvfAmmSaRopuY5Qw81SwYeYoOHUY+UgnvnrjkVnWvxM8R+I7qOfWNfm/eptvd2SZIwMFML97t26DpmvlqOS4ynKU6VT3Htfc4nQk22eo2vheDwfrL6TJNDcwXKqlnqUeRGRNHldylfMQPE27Y6o209DmprvSVSeCzudNtpIkKor2DsNsCsSOWQsp75fn7vzcADntLjtbHxDpdzb6hcXuhxwuWdb357d2TaCUkCKMOUbC53AE7chs3dP16w1XWJ7iTV7wMsJihWCGI7SxwBIrFRtOBlkO4HBwcYrysVh6z6+pyyg07HofifU77QLFPsmr2F7ZtIkklnDP5qLtR1IkWMmTcJAMct94Fg2BXL65fQx3lssmgQ2KJkLcSykCVckAsTjIBJzzjGAemTY0HxBPpMcHhrxRZzi0uJxPDrTWMc0cG3AJMqxSXDKpGAiN2yFLGt/V4V1eaLTvGXhWe3sIIlknZIXEs6klgGVAdiFh8uAWyWyx2mvn4t4Gdp637HDVouLTkc7NeajblfLvIE8oBkiErLC/IOzcuSARnOA3PGD1qDVvFGuancfa4rAaZlRbmHT5GRNq89TgtkjcSep/CtHVfDcupSm80xUt7RIvONu06MY+cCMHduc8emcEnHFZJ0DRNDijF3C73Lzp5xEhij8kkZKvk4YjuVIAJODiumhUw0lzNanLUoxb2P/9k=",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [50,49,72,77] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [30,20,63,85] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAor7k1XwN8B9CnOk6X8KNFnSK4Lxzy6PbyO3QbGLJ8y8Z9ecgjoZvCfwN+FXiXxVrGnt4C8OB44Lae2RdKtxGAzXQaNfk6kmM7tvRR2ArH21o80lZHKsVFq9j4Vor9HPgr8APg7a/GDwrpWvfBvQNWt5PF+medaNoFk5liF3EZYiJQI3DorArJ8hViD/eH1Z4D/Zx/ZH+It3pd/B+yf8PbQWniBl1O2TwXp7RybrC5Yp/qiSod422sdoKJgAg11UYRrbPcl4uKV7H4b0V+3P7bvwO/Z8+Ffwe06Twx+xF8M4dNur+8N1rUfgTT1muJTEipCkkSJPCIOZiQxjYyIrKRlW+Lrv4d/Ay1vBZ3/wAI9CjNxGJh5ejRxlEdkYbNytj5CVGdwGcnJxgnTcJuI1i4tXsfC9FfZsPwm+HN5B5Vr4A8PEs5YSf2TAqgdhuK/XqR/Kp9P+DXwj1K6a3vvDvh+0lMoj8tdBiIQk4GRgH68gioklFXYnjIrofFdFfX/jH4beAbDxNbWOkeA/D9x5brLI1vo0BQ7fmZSoTlQu7II5wCcduX17wl4EvLZVXwDo9ptJknEGnxKysy8Z+XIHQBemQeFzzxrFp2fLuXHExl0PmiivoBPAfgqWFLefw3ZI/lLlrfTULueTnB6cY/A8A4qrcfDPw3bzpNd6BaHD4jgjtUXcCuVJGM8+hqliYdUWqy7HhNFe5WGi+FbPVI5LnwppSKHy3mabFIpXHdWX6nGAemDViLSPh3bXUqN4a0y4Msri3b+z4wCOcfLt4PPTpkDtQ8TbaI/a9kepWWrC1ZLrUL+5jmhCiaGWLaGyckEHrx0z7VueBtYB8b6pqGlXUccZ+zeWskyAYJlPAD9s9FzjPQVf8AGNl8PvEmuSXlhpF3o8s0iKLKRxxG2CWYlQSTknLEnGK1/BPhXwnb3mtXFtZXEsUF6iWaTIsu8JaQySbpAFIy5OML2HI5J65uPI+558OWzuaHinxNqUL6Zqnh2GVb3+1gdqoQ2Fgldj/uhQWPYbTnGDj0r9nL4veOvDWo6zpY0fU0uYLV7iCCBTiGRFtELbGRtwEVw5xhSBIrE8bW4rS9U8P6X418IeJtB1zULUx61LHO8kPltFJ9iu9yoA75XDqCSB9/ocE12Omagsfx7u5rC9vpLOaPUWspbmfcZg1toagnbGmQWGMcDhf7pzwyeJox/dwvpffqOMFy7m18Tvi38e9dTd418OalrGnW4eSCF9OM1taL8rNIU27VyFTdkAPtAbcAK8bsdZTxN44hvU+E/nSPLqAa3tNMKDzGnVVJVV6oMqB0U8DBAx9F2kdpdRiR7+UXyMRFJb2aO4UBOW3yggEk88nk4PXNL4E+AdZ8YQta6VqduL651/V4LazJn/1j6lcl2Zord9w+ViVOTtwAuQwrlhVxsrynT19QjQ7O54t8PNG0vx3o1naX9pa7IwWFtLE6i7KEJ8zrtbbkgDLdSeCRwfDr4Nve2n2zTPAF/wCIpdPuHkluLSye6VZQoYxuUUqF2gfKwJG4ngnNfVHwJ/Z98aeKbfx78NtA8HaHqmveHvF17DBPNrMcTwgvHPvMbSoQr+eFUEEfu2yRhQbvjH9jT43aZp50pvhTqMb+a1wGsNGjvES5cIrzK0XmAMVRATu3EIuTwMZ1cXWpaSi+V9uhf1WW1z4K+L/gL4i6Leo3irwHfaFdoqutte6JJaTTIxYeaFZQxX5SuRweg6ccN4omuYtOubJLFUKtGzLFCMztjnJxz8xzxwM4FfYetfsyeN/D3i64a/8A2edJvbOQPJI+tvqVsLYAAMWCXVvs6bgoXjGOQCT4Z8e/hVrGnwDxF4f8N6XAbi8ihay0a5llMUigbgyy3MsiKw3MXwVDKAuM89ClhqtuSSZf1aaaseP2FtYOo1V4JIpzGG8nACD5RxgdDwe2SevJNUdSknhu1tpAS8aFmiEx3HPTnv1HXt7V2LfCHxLoy27X72yDULYXXlxX0cjxZLALIE3BGxglCdwHXBIApr8ONZmvmuoJo9kpCBZQcEg+uDgnk5x+XUZvkVTVl+ynGdpHAW6Ot2q38bCBW3P5i7HfONyAgZwVBwOmfrVbStF1PWdUjTS7OeZFDySR2yElQB8ucf7WP8iu+sPhLrd84stUOwNK6wvtYupA7gDBAOcn0/Kuu8HfDp/DHiP7TZRRrFh1CMkhKqzhg2Bu3EdCVwdo+7gVVTF06dPTc3cowR9/an+x94Ntrs+KdsUl4rOouJ13Js6ZGDnLBsAngjHoa858OfAjQ28a+OrjRI7OWK08WW1pHHEXSIK2l2DTPsAAK72I6cEOO2K9gPxAuWSWWaJZIDtXaHAYhid31AXjI9R3IqPSfFejaXKtxp8McbSTM8yP0YkYO7HPQD34FfAU83xMItRqXuravbVHQ8Fg3flZ4v4s/Zp8TQeNPDk2k6darAup3U8jNasVhDWEyqWyg27iUwOecH+GtLT/AIC6xafEmLxTaRbbRrC6M0kh5SVhpiIjcYBb7M/TPCjkmvTLjxlc+IdTj0rTIZLu7mYiGGyt2ZmbAyAFGcZ59s16X4H/AGRv2gfGsA/tOyh0SCX/AFkmsPIX2jkMscYbdnoMlR6kDBPp4XOM7r2jQV7K22n3kOhhGuVHjGgfCXxDe3wihms0vppJE8nzsGSPdHs2gZ3EHdkAZ+YfhzfgT9lv4neE9WtLGz8S6tqEknjK61NVSVoWknP9qxiziZWXKfaIoPMQgKxuMsFBwPsWb9g228P+DbwWHxTgn8Vy24/sttW0GZ9NikyGZZLeCeOaTgMA63CYOGKkAo3yX8S/+Cx37Vs3jq28HfDf4R/DfWfDnhi6t10a48QPLaXF1LEi7pnXzguPMQMqFPlKRNuZ4wy/S4Wpmrpt4qUY36Lf+vRns8P8MVs6rP2CajFrmtGc2k30UIyfR22XmfR/7NP7D2ufC/4j+JPiDq/iiWz0HW9SNxHp95Ebu9SZHgOUmSSRUVWimi2b2bDEliQwP0j4o8U6Z4L0mfWpvEE1nZGICS9ubgQxINy5O52UHJwOeOa+G/hR/wAFtv2lP2Z/AFn8MPg98A/hhptlZ2ZS3tvDPhrV7xbQkhmIlQP5hJBJaQFiWLNycVmftk/8Ft/2vv2ufh3qnwWvvgh4UsLK5llit9R0+1vo3jzFNAZoo74xh2aKeQKZomCFkkRI544pY+2NajGOstT62p4c5+q/LTwspRe372Kdu7UqcbP+67NHbf8ABRTxf8SPGXwIul8Eag95bQyrdTSQTqJXt+5iZGYsOVJA6qa+CJPEmgeGLSK1mnK3U1rHN3bIZfl+Y8Hr09wa7v4Nfto+Hvgfd3PgP4j/AA28cafNr0cdrb6d4k0UR2ZuY5FVpzcMx+Ty5D5rLAxYLH2X5ud+OXwwuPicmseNvAHw41/RLOG9jtI5dbVY4/LjkZxcWoDsJ7WQONsiZBG3j15qsJV0ppWZ8pxFw3WymtaFRVKfScWt7JuLV7pxbs76Nq6ujzfUdba41s2V/FL9oOWkYgLtIIwOnHuK2/DOm3HiOUw+UyxcuccfKCR6gn/69clqOkz6BL4haO9kuYdOkj3XRjKrICvRB+uPY88gVb8C+I76OxXWJblPsjfu2ADM0RGOq7cehHPr+HnVYScHys+XqU5uNr6nV3moRWKEW9sskluxKSSAsccDIBPI/wAelUluLq0mXW9OJMss2JHjhPAIOdoxkdunGD1rmvHmtahrWsC60gFwyKTKkeQoU4xjPAxjn6knJJrq/hjFqQ8P7df0KSV1hRre3cFPtUbMGyCQVxuxzng5I6MRyyjKFPmIcJRp9z9EvhN+yYutafb6r8VPEHiK0hnhaSVNL0KFNsgDL5UfmTHzgSEy5Me3LDado3ek/D39mL4FeDiL650jxRqL3wWPU4dXs7O4SBFeN1aAkq28lMk5RsEpuKuwr0qW/tbGJmEaMw6AcsT+dZWp+INTvv3NvCYl6naBzXs0coy6hJShSV+9j0eZm3pHjL4cfDjSBpngjwXeWMyXEnl2tjottCiRtg5LJLubnja2cAfe5Oblz8bbKeG6WObXYwkm2z2aRAnmpk/NJ/pBKHG35V3DkjPc8lbw3ZAk+w/eGS7dfxzU0sWUxLY5GOW3dD+FegkoqyJLXif4+aD4O0rUPEmsT6zDp2nWUl5dXjaZDuEcab5C2ZiFAUPzk9B6nH89/wATf2l/EEuv3Ol+D9VjOlRMVheWyjlaTPJO6RNw5J6Y9a/efxl4J8M+O/D954V8U+Fvt2m6jaSWuoWssriO4hdSrxsARlWUkY9DXifg/wD4Ju/sefDHVLjxD8Nfg/rvhy/ubdree88PePdbtJZIiysUZorwEruRTt6ZUccVahRl8SvY9XL86zLKaNSnhKjh7Tlu07P3b2V+2p+O/gf9rD4m+Ft9jps1vAtxJGZphpVrIJVR1cCTzY2JXcMkZwQACCKXxF+1Xf3xlK+CdEF1JLk3MOiQ2zKNrD5WiAJGWyARjgf3QB+qOvf8Eq/2VpBFHosfjHSra33G200alDqVrASxZisGpW9ygyeTgcnr1Oeb8e/8Eqf2cfGejx6LqnirXbaOO5FwjWHg3w3ZSFwGADS2ekwyMnzZKFtpwMjgYmWFwUpqbirrrY6afEmb0qvtlU9/+ZpOW1tXbXTTU/NDwd8XB4x1MaZrlgxkCB4J2v2IQg/3SOeCe4xX7NR+FvAHhjwNpHw6uPEWgaiui6TBphkN9GftKxRLES2EKnO3JAJ5PXvXxp4r/wCCJfgLVtYXWvCn7Qr6Eka4MKeEWcSHJO8k3gCsc4wgVcAYUck/WV58NNGuk83Vtd0+WRsl3ht3izzz1dv50/ZU4SvAebcQ5hnWHpwxcuaUG9dFe9uyPm/9p/8AZd1OyOp6p4M0W1l0G8Akns/tQeeFXXCEHC5zuBBVcFSOOTXiHjPRvDPhf4Vf8IfpFq1vqNttkn+TDMVDZySBx8+Tj5c9Bxx9q+IvhR4WheSRtWtHiaJ43yFkZUdSpKq+RuAJIPUNggggGvmb46/Bq5+HGtW+vWl8t5ZkGawvYt376LBGefuOpHIJyrL9CeHE4SNR8ydra27s+f5XNo+e/AN1cxz7tat4JbffuRJ5lCyNxg4OBgdSSR0GPUer+CLuC6+yW9/BII0bfG8asI5FKKuAWyAwIO7vlRkc5rmPDHh3wxd6MbGyt4opDc4kbafkXnoSM4w2eBjjHIrvtK8M2ulwRRafpyXEav57RmM5hYFsAEgAMAAQVzwwBOc48HG1owvpqKX7tWaP1rjuDNKqBSBn+Lj/AD1q1H5e3dIzbhn/AJaYwP8ACuYuPFqovlvHtbblwq4x+Z4qC48YtKgTaMZOTk7iuBgcHA7fnX1ZR1N5qcCxCAk8N8wLAe2P8+9UHeaU5+0qrckAL0PXJ/LpXPv4rtkKjyA+2RsgPxnj9M8fhUb+MYNxQt5alh85YsW5HHH5+9OwjdbxJ9k2qkhOeQ+zGRTR4qlRN8wVuOfmB5xn/P1rlZvFtl5p2MMEfP6enH6VBJ4k0VzzeNuIO7aRxyeBz/nNO6Cx1UniiynjZXVGYdfaqV54osMANYo2CM4Uc1x9zrdud7jUMIMlQxyWz2wP5Cqsuro5Ehu4wB6oc8/5/lUjOnvde0aSBxNYsOOAB15571ny3HhS7iAfT3PdcoM5xj1rmrvV7R18v7QAxAOzB+v8qp2d+7gL56YDjOZcHinoJm1f6Z4MuS0U1jhXXBBiGa4jxh8Ovhjqmg3/AIe1Tw7ZT/a3ja21GRZPOs9pJYIFdUIcEht6v0BXaSSegmuvOUzRzo2BtI88fL/kCsvWIUuYfLyS49XB4H+etAr2Pk/4t/s623hzxC15oskFtcIPmUo/3hnIIK/zrE0rVtDfVktPEMUwltpOER/lO1MAgnA5IwB78da+ofFOh6F4i0VdCn8O2tveW5LpqIFy89wPnPlEB2iA+YYxGp+UZbru+e/ih8MIg9xusp43SRhj7rKwPIx1GMVw4vA08Wve0ZpzKS1R9ypr013MgmnCDb8xVcZGcADA/l6c881E+sGATR+Uo2AfM2FKkZ4wD14Pb+tMUvZ3MOQSVXltxK9eoxjaMAY+vXgVBbaQLtXK2o8uJ8uuc/L1AGckjg/QcV3kjG1d1geeFJWyWMaxr94A+wznt6nHGegqG+vWhZxvQBAobbjOBjsRz0H0/Cr+orM02xmKMmAkLKcFeQME9R07dj7Zz50tTt8uQMjEtgKQRnngjr156fzp6ARG6lEimSTJBw24H5uvvn2x9az7/U47dNrXLF8gNt4XOOT9c9uecVNNJKshRfuZwrSEH5s9hjkc88/nmszUJI2kMUsUJYfdbfjBGc5J9qmwFS48SaduRVic46SK5x7Y6/y/PmqVz4ksmG1rmaPPACzEc+nTrxUerNZmdooQoCnJ2KDjtz+dZV1Y2/nPJvXDdfkB9uf89qFYDSl8RW0eCt0ylkG0NIfn/Htxx+HtUKeJZtp23spXd8xZuOTgDj3H6Vlpo9rCQ8CKHL/MPLPIxnORz0B60R6XBICjXiLtjUs+0gE4POO30pAaUXii7V3J1BY3z8ykffOPcelB8VmMhTeqT0UPnafof8iufu9JmaRnju1yARgEjP49xjB+lVJNPlaQBW+43mF2TOBn3o0FY6LUvEiS/ML1T5ZBVeAVI75x+tYerwRfECzXSvCXgbW9S14bptSmguTdxvCCV3CBIN6YLRgu0jDk8DcNtSXSbzY6oxYucHD5A78nt3rn9W0fVbC+a5tZZIpFbKyRTHKnHOCDx+HrQCP/2Q==",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKK/R34dfHPxbo/hzRNA0zWLyBLHSYLOFowMmEoQ0TANlozyPm4+Yk4JFVLz4vzz6g00fiLzJHnYmEXJOFLZPAzjgZwSw49645YmqpWUPx/4Bg6zWyPztor9E/inD4X8dfD++1O5vRFqlnpty0XkorvKfLaQRuVCnHBPORgk4BOBymk3ng/w7p8FrBZR3eql8Ttc7AiEsrqqrz0IKlm689uBpSr+1hfld9rf8Ej6z7t7HwvRX6J6DpmlatAtzpl88d1BMVngQmIMQdpKjnbwFBxk/KG3Elq+z/wBlj4l6Jc3HhLXtR16y0zS/B3gmTw4+oLdYgiRhppT58cEi1k2qW3EQ5CKQ1ddCMK0rN2ZEsW19n8T8HaK/VP8Aahu/Gvjz4oa34v8AEWl6RqNxqV7Ndvd6HqI+zKhLMZkQSBYA4yNsmWAiBzyGbyKfwzrE+px215pt3cS3GXkFhBuIcEg5I+QHcRkdtwyfWbw7h9c/u/ifBNFfa/jkXCeKW060ZVDbRGnnCNlUggsFQgLsOVIY5wcHJ3NXnl7pf29/7Pn84/Ll3cs4GCQM8HIGB8oxwBnpXEsW3vH8f+AaRxPN0PmuivoKErpF7GLKA3Tq5OJAG3nIXIDDBJ7YBxt6cZq1o2sG/S4igtE82Dc885Xc2OABu29ASMfXJqniZLVRuvU09o7XsfOdFe46x9supIrYWMskgu43kRRhyNxUKD7jH598ZqS98LX1xdPJoWmXnzq8kCJAQ5WIEysVAygUxSZBIKhOgHXRVW0tC021ex9/698LfGPxY+E+n+GR4YhgurG0t47a9ks4t5WNFXBJP90EYA5J68EVlS/sbw+KJbWC70Gx0y5trKO2k1BIHgcyLFvEjhX2hmxtyUJO/PUCvsu2+Bf7O+oyfbNT1+F7YxPBc2CXRDA7gVfdngkJ1ycjA6Ag0JfA/wAGNHW+nsZdehExJMYvWAhWMFD5anJBKse20EZUAYz8XR4hqYeLjFJpu+t/uL/s2UErTR8I/Ez4ca/olpcaFrfhbUdMt0lhg829kSZ7i4u3jgXbMkeZV+8wCsQhV1xuJNZ/xT+DlppKWIvxfafqc9nFDG+lWTXMN8TK6IXcugD7Nu3an3QMruJNfd+o6V8Itb0WPPhb7SIL63nu31DWJSzywTRTMzBjyWaMbgfvjgqBkGPX9Z+GF7f3GoT+BLKO4mSQq4tASBtABDDG3O3HHTd19OiPFUY2koK2vX062IngJSjpNW/rqfA3gu1TRfCy6jqN9ffaFuLpL53tAI0aO4lDDcuWIIAOWAwSRg8V7V4S8P8AgO00a40bQtAtXh+1q0qxC5EaP5YLf6yVyvyswwVAYgdQAa9MvPhT8IJ/AereFNSa6a21CS/cyR3G14/tVxcTttYgD5TOQuVPCLknv3Hw+/Zo8S+P9Glufh18HLia1mPm/bZpVtYbhWAyySyNGJTgKMqWOAO1bR4gw2Mm4qnNv+7/AJIxeDlFO7Vz520r9nzwz8TfGeseGdDhgs7n+wLFtLFzfT/PNdSXyGQBTsXasav82FwOFLEgeseCv2IfiF8VPBVvD4E8LSSWOn6nfxW1yniC2SWUpdSWwAhnKSQxsttC6glixAO4g89j8Y9M8GfsFeMtI8Z/F3wPp2r2viDSoLfTT4N1Nbi/iu7KeaRg6ah5NutsIrlAWNwXLts8rY5kT0D4f/8ABYD/AIJ1HwfbfDzUPhh8YrPX4jBLq134Xt9EKTO+1pmH2q+uQuS7sYxJKFY7RLyWr1YxhUpq8pR0W71+7VHv4DhHN8fg44mlRvCTsnZ2ettLX6p+Z8aftW/sceBPhYr6fYfDDxVpV+ba3+yat4q8bWGy5nZEacLapZCSRVl3qrLKdyqG+TJRflB/hx4qsZLizvrQQoz71hEm7k4JwCeQSSenUH3x9s/tK/F74bftU6xqd54L8WaofE2ma3qcXgrSb7wrqFpPd6W3liH7Qwie1lvY9weY2xER8p9gEeCvyVrWq+ItN1K6n8U20ttNAVE6NhCN8skYLAD92f3fCnBwc4ApVZ1Utk132PNzHKsTlWJdCvCzsnv/AF/wOupxY+C/iy/v4LeELvICNPEGJRywGCB657djXTeEfgvpFjpcseqWIu5be68yC5ikwAR5YO5f4/8AV52hhy6jJ5B6jxB4jk0fQLQ6c032goqywIVDrk7gWK9z6+gGOxGr4Rt47yzj1eGaXz7u1EU1obUgMQxDKzEEK+QOMDAxyScDz62Nr+z10R5lSrUjS2sY1l8KvC3hQxX8p+3StALe4nkmVSpR1KkK0fysoAXO1sAZ3HLLVk/DfSQ0mpmxnlj+1Rgy3F2pYFCzBhJgFMjbnG0HaDxuaujtLgXNq02rwxNJGdk0Vu8aunzECXaWy5JJA46IpHUqaF20SW8hhujhHSe0lUAFmGAAQTgAbtpznqOmBtxhXqy3kRTxE4r3j7Jikk0CVUttUKRPnzZA4UPwpG7AzkbOvIJ56nJzNW8ci0jEV9rjlHkZIAkhZXUshGMgc9DjsT2r2Pwf+xT4MWzN1418faxqV1FqIElrYxC3triDHzSLNkSIxKqFQx/dOScgq3q3gn4QfBX4bypJ4S8AWFtLG1wq3uokXl1LDMmwRyPICshQZKyBFcM27IKx7PLocLYyo71qij6av+vvPXdV2smfLeheA/iL43lj0/w74UuxI7Yk1C7gaGJ+F+bLjLL8+CVBwcZ9a9f+GH7GZtbsa38WvGMOpJJpp2aTpvmxxQTOpIDzsFkcq/J2gBlG1SpO9fbb3xNHdTC6ufNuJhHHEJrucu22NAka5OThUVVAzgAADgYqjNqEt3lpMiP+LJ449vyr3cHw5luE1kud/wB7X8NjFaLQ53wn8MPht8K7syeBPCugR3SzNLFczw3F00DHP3JLiaRwOTgAmuuufG/xFuov33ibT5ATkjyZFB/DzOee9UZLzTrNQ4X5+cAdzjP92qt3rLJGzs/7sHPzDPboc/h/k4r24U4U4qMEkvID5i/4Kc/sk/Hr9uPwv4e07wX8UfD+kT+Hpblhb3qzKtwJhDkeYHcxgGAHhW3Ej7u3n41sf+CSX/BSTwXoN3pPhj48eGIba6QC6tLDxdeJ56g52sPs4DjOMbvRcYr9Vp/F1ocrcWERznBIGD+tY2p654cuID5ujWsmV5DL/nFatrls0n8johjMXCMYxqSSW1m9Nb6fNt+p+dP7Bn7Iv7XH7NXxx1LxF8bPg6+vaYdEnh0vVrDWrSXy7ppYgXAdjLzEJV+ZRgMR3Nep/tLfBXw145tH8Vv8PNS0y6t4o7nUbC5sI2h1CWKTKgNHtywX5tzYBCspDHh/qK/ufCLSqr6KqMxIzG5FYut6R4YvsZe/iZSHheK9cNGwOQQQQQQaicKdWLTWjJxGJxGLkpVpuTStdu7t6/M/LjxHout6t43u/EGmaWkcQgUSacsQCqQ5QLswePl3cDBHfivStAsCNN+zz6g1hO7D94EEvlktjBGMtxiPcCM8nPO2vYvjh+zB4fmurnxf4Fs9QhuLNN94sUTPGsZZV3Sc/KpZlXJ7lcHJFeZWWu6XpLnT9U0lo7xpCDHMg2A7c5TA6ZB5Jz3x0x87mWFxFNJ01eKMJw5o2iRah4aXWbdIw4M3mzSTQJHtiU+Wudq88EBCMLjGE/hJrk/F2lXmmXCj+1jNcRqsyAWXkvFFux84GDw7EbsDduB4ORXf6bqn2lZXW1SOVAY50iQnAJIJ5xkYz3z0Oe9c3r4t2jWe6VEeZ2SDbGSwJzw2R8pJRWKjGGGQMAGvLpVrTs1qc3sYy0a1P0yg8XtKwUTmMEcovPH1/wA9T603/hL5dwEB5OSJGkwTx7enPv2rjH1l3dZ4y2H4y8gwDxwccjj2Hfp3spqjQt9qaMs8cgYBgFVTnIwTkBhwenpjjkfcM6jqT4iRo3Z7z5sdVkB2k5xxnPpzxjiqw8XzzZktJpmJ439O5GB+PTp9a5y51CdmSGa5Z2RtphRd5ClsEYPy7e/XgZPrSR6oJoFmjjZBCwCLs3DknnHPGcZ70lYDXm8X3DKht5ZZCylm2tnKjjnHbvnqegzmqEnjXVp2DxmVVIyzO/zdeMAZ7fy75zUOp3C21uqLp0v7xF3F8lcHgcAZ7Y9T+GDl3dzELh5GcqjfKsrABSoJGdpz3GOmeD+D2Am1Px9qdhb/AGltW8nbktk9l98D16Vg6h8RxE7H7YsgHRng46DkDg+v5VBr2uQ+SQt1uLFvKCqXwRzn7w56fU1yd3qk8pLx2OTvJRCx2gjA9PTjB7dhSYHRXXxIincJFOswOMDYM9Oen48dufQ1EnxMb54pkjHzZQK2SAcjIOPwx7cVzLrGkIubyDaMlghmJCtz0yeOx/DjrVXV1tUZS2ngMAPLxJtwCeh6k4H5564oA39R8Z6TeOl1PaQXGxwXgnkcLKBglW2lTgjIOCDg8Eda8b+OXgrwpr1ufEXhuO7SAshknazMUVtdkFzDG3mybguMqzMHIGSorsbkRK5f7HM4VSockAE4JPbH+fxrCuW8PaTqD6jeeGYtVhCMrWl+0gTJ7nyZI2JB6YbB/mrXBaHhOq+Ldb0G4AvphO8eFXYiRi4TaBsbLhVKnLBuh+YEDdmta9ltfENnbm7vbSNZ0SaJrWUyK2BuzvUYUjAxyeNp6kmtD4zfCaXw/OLHVL+0MrRCRJdP1O3vIwCSMM9tI6Bsjld2QCvGGUnyyz8W3nhdm0y8leYFtsErMQABjajdsA8jPTjJAHHkYvLYKDnSX9eRtDkloz9JNR1w6fdwuqosfmhoIIpBcMmYuQRhigGwuAef3eSOpK2l/e35WS5guWV5GWNY4HUsFbBU4x1GNoyVwAexA/Gtv+CqH7eTgq3x24MRjIHhjSx8pGMf8evoB+VPj/4Ksft7xZEXx3Cg5yq+FtKA79vsvv8Ay9BXucrMLH7RJPA2yxlfzEjDjZbsFEIAOPm3EP8Au15I5OQAMVPZ/Zy7meORnAYt5TEqxQksB2Y42/KT1HJOCa/Fcf8ABVr9vkOkv/C+iWjIKMfC+lkjAIAz9l6AMQB0APFSP/wVj/4KAyRPDJ8fiyyEmQN4W0o7jzyf9F56n8z60uVjP2autesJpJklMkdzApC8kb8gB/l6Zwx6sM7V6kZrKmuEnkktLq+jhlR2VA+0jaOSCEB+Ygk9eM4yOlfjqv8AwVX/AG90OV+POOMADwvpeB9B9l46VFL/AMFSv27ZiGk+OSkrnaw8L6WCMgjqLX0NPlYH62agwe4aYgbmbaJRAVMmMqAfUnH6+grOcys0kaJGI/nQ4JJLKyh8EfxZBzjB6noa/Jo/8FMP22TL5/8AwuaPfjBI8L6Xz9f9G5pif8FKf21Y0KJ8ZlXP8Y8NaaG5zn5vs2RnPPPPelysD9YtVsEWFLkbIdqhvO3KDjBwM9QT3B5GOeopYLT7QhmkhZFdgVZwvGeAoBJ569SOBz1zX5OXH/BSr9ta7fzLj4zhiQN2fDem4bAwMj7Nzx698nqaP+HlP7auMD4zgc548N6b65/59vWlySA/U7XPDUelXG0RzFd5jUI2/B5CkMDnIHrjkHI4NZN5oqLatEk6pEFywkB+UYPJyCMgeuf1r8yn/wCCmH7bMjrI/wAZkZlOQT4Y0zrkn/n256mrGn/8FRP26dL0TUPDlp8cF+waoIvt1rL4X0uRJGiYtHIA9sdsiZdVkXDhJZUB2yOrPkkCtfU/Qaz0v4b63pOoPerNqjTQP/Z95pGpp5VvMrFdsoMLh8sV+USRkKr8kD5fF/iR4Es5BLDcmOP96Ic3I2AuRuVQSPmOO4zggjqCK+XLT/gpz+3DaaXFoS/G7zbGC/W8hsrvw1pk8KTBQhYJJbMuGVUDrjbII0Dhti4oeJv+Ch37W/i6O0i1n4iaWBZwLDH9i8FaPamRVVFBlMNohmfEakvJuYncxJLMSuWfc6VPCqpflly9uZX+/ltt5f5H/9k=",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [38,53,75,76] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [51,57,70,69] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAor7z/AODePw7+y54o/bL8WaX+1n4F8G+IdAPwuuX0uy8daCl9Ypfrq2lFZCZFKWzCH7QPOcquGaMk+Ztb9sPFH7KX/BKbQm0XxLF+yr8B9PW5jltY7a5+F2iXFpqAw0i3IkFs+yLLBfOI+VYnIEgXlOdGCvOajbu7BaTV0j+Vyiv6U9J+Gv8AwT61fXPC2jT/APBPP4G6bdJKt1Kq/CzTZLa8SQXIFrKXsy8jB3jVcFcmMfNhJCLv7W/wJ/4JLar8OtW8L+Af+CfHw00Pxbe6el3cPpfhKxjGnzPPPZSBSsKeQ8El1G4H/HuzRruSRY4w/HTzHBVaUqkJ3UdGNrl3P5n6K/cD4Zfsh/st63rdxa+N/gX8OHkXUoLXSpIvBukmC5WVkWR3S3RWjaJeQhLMfMbjcqEr4q/Z4/Y48MWN5rFz+zj8MLNLS2WWKKDwppt7I6szpIJlaJPICmFwHdQcEEAE7j5UeI8POpyRg2ylGLSdz8PqK/ZHTPhJ+x7J4tt7fxB+yl8Pb+xVBcy6a/h6yia4iG1oMyWPltHuWF1ZQ4L5c5y6svQ+BP2ePgb8ULmXwmf2Ofhvo/h69updSsdXsfhhDfLFG7STI811DbtdGzjtXd3Nu3loI134dUFdkM2hOPwO/Yz1tc/E2iv3lPg//gn78SPCGpy3v7Efwq0nWYo5orb/AIRL4c2V3aWR89nnvH3NAzFoola3gZ3CpcENsdNldf8ABH9mL4MeAPgnfeOb3/gnZ+zL4u8J2upQ23iKa78OWV5qVldyxH+z7pb2WVVhsJWS0Mzu1sDPJdQG2gUMydtHFU8RJxg7289fuFKTitj+euiiiukoKKKKAP0k/wCDXhVvf27/AB34efQvEl+NW+CepWbR+F/J89A2q6SxZ/N+XysKQ4/iDbTlWYH9Gf2o/hjefCLxPpsGreF9Q0ux1vUzZaYdX8qxhjeGB5Ps8Hl38iSyvHMr7JH3SYUKgwdv47f8EbPiNF8MP2oNb8QyXM8TSeBriCE29zJEzOb6xZVBjG4sSuFA/j2ntX6M/F79rTW7m2ttS1fxSonsJ7gaXMkFukKNLaMjsYYEeOPAMpWTudzMqlTt8LNpYepKNGpFt7ibrxd425Tr7b43eBLy7eDR7ay0u78LebpF3e6dcutrK10Z3meWcxoWztjdpmR5MRrulMYUzb/xj+Pnhr4y6zFdeMdUulgtfDb6WsdvpSwRtpxDpArSxKzTbSSN82JthkcOyEM3yf4D/aB1m08JT6dcNFoemy6dAuoQvZTJp2VguJFkBaUrIdl/MqgrgmYgDDs5wvi/8WptS+IN4miWXn6atoz2Eb66gntVgBcvvH7uTeiu4KIQwxjqK8GdCbqezWkRqbTTkle/9f1a57/4V8Y+F/DnjLS9f8VSXEuhWjOuotp+myNAVj/debDGsrxv5nDSGUoEVAck5RvH/iL8aryPxzJY3vim51/TtPnmuoRbSR7xcPInlBkjHlmNggVtm5jtiYMrbi3BeFNW1Lxv4fivtPutS1PWWEiSRafAZLq2JdpDFGBtTDQsDkAqymQrjLgP0fxhJ8EtG15P+EZvp9ZOmJeQaxarL5FtZNLG0UroMgRF3gjKTKNzTqTuXAPVQhOk7Ja+mv39inOXU9a+A3ijWvij44bR9f8Atxs2sGng07UNanhSeAxCFtqI/nI7SQhVOWkP7tiHbdKe+8d/Fey8Jwv4l8c+HpY9RvJILPT72CVxLqEETLNFE0nk4/dtHHDxIJN0nJMasI/Ff2BvFHxv+NWseI/CWj3F9Z6Jocttd6p43v3s9PTSLaWaWOKJ5ZIJyby6ZtlvAnmNNLH0EUU08fbfHL9kL4rx/CXx5+07pX7VmneJdb+FWo2GoeJ9COnX1jdW1vKyQafLa3JnmSVtttceaFMcyC2Ri0zFVbSOU46pKpVjpCNlvvfsRGpBV40ea05JtLvbe3oRaV4h8X+KvGZ0nwloOp6JdvFI1j4dtVMrXQlEMSx3Etyr+aEgcMZnADG4Vdm5Qye7fsCftM/B74X/ABXtPFvxt8S+IfDl9pd7dWUsulaVFBLhInHlbpTsmtyu8FYFDt8wgZsKF+T/AIORXfxA8UXqaTo1iM6VpianqWqWMcUUFxfWkl6II1kEjTK3KJOyyn50ZlWSVSva/FH4c+D2l8GfC+a1af8A4SHTV1KyisL+FINfaSa5tUd9QIt5fJJVCkaLJGvms5Kl5Lhc8HhqtKvzQV5Rs1u3o7fje2pTfvas/HKiiivsRBRRRQB9L/8ABKb4W/EH4uftPyeGPh7BZiRPD7zaneX08MaWVqbu1iMw86SNXcSSRKkQdZJXdY42Eroa/WG+/wCCXdp4gjfTPhr+09dgaiJpL61uvAENlG8W75VympysWbbgABdoVOCclvzC/wCCK3xA+FXw6/a8vNW+Nni240nwzP4TkjvzZPNFPeSJqFjPb263EKPJaI1xDD5twiNIkCzGPEhRl/d3wx4e+DXivw5p/jHwP4X0RrG82z2bJYBhcKQpyC8UUgI5J3or5bDKpytEcHhsRK81dmPtHKq6b2Pg/wAQ/wDBHf4tXkVlbeHf2gfDourW4cq8umTWrpOu6N3zE/GQgXI3kZUjBQEa/g7/AIJc/tEaJrFzr3j7xp4S1uJNOBvhcQzlLfVUkWNWjCCIyxNAWcTOSRIz/ut6CUfaC/Bz4Yazd3rX/wANtIKGQSN8xhaLAUbECkAA7SPl2kZHBzg4V3+zj4Agg1S6tPDbxMmx7OeHUZXESjy2MeXkwxdg5yd2d78gYI1llWCktUVyxi7nyx4G/wCCeHxQ+H2svrlrD4bm/wCJuI9N09dXvD9itTYyLHKoYbppBdNv+QIAYkxtWVli6T4r/wDBLD4x/G3xZpMniPxv4NSztRJBdmzW7sJ7pHCOgmWKxkR5C21ZJcOyqrbX+YFPomT4G+CBqSXMN/rej2scNmPKsNXuRIZy9wCis0rKwIVfkBG0RgkgZrZf4W20c0UNp8UPGsEguIl+xw6/JIlurwDDnzBJhgZCBuLYAIOQQRmspwKldJ39TRybPzL8cWPxu/4Is+MYrXTLvSbq91/xpp/iDwXeSmPUJtNk0+zvrNpJY7i38p32axIV/wBZsdAwIdFevefB3xC/ar/bi+EXj74meLfEHgjUtR+KGl+FZrtNXsfskl5e6B4ilkjWZLW1EbQvah4Swy5aKFSoUGReQ/4LDfC3Sz8PPC1/reta3qGo2njGxi0xtWvZJfItrmO8e5TcUwcyQ2zdcqGwFxyeo/4J3/Ab4szfDCYRfEzUdMla5srjw9Lb2Pn29vplxbpdKuGVHRhJevmTdsbe2Mjk7yw2HVBU7fPr94nia8a1OMXtfTys1+bR6f4a/Z98afs4297YR6/4d+zsl5eaN4R0+wuJXtESONbeze5e3jZUUwxxIwSV1AVCwRSGs/FjwJ8XviP+yV8JPiV8LfhD4cvk8JaDo32TwHqHhXT3s9dh1K5e2axjkuLcXFvh7K2eQxssdykwEeDgyb3xW8F/FaQweJ9Y/aHS9vf7KEb3raFbL50SksYvK3FY9u9yWGGJkAIUIuNv9mr9o8/DL9gnw/B4pttEnutL+CkWo+FLS+8QzWd1f6kt5q8UdrHbwyRPdO0kNnEqLJuY3G0YPll/PdGWCqRpUVdb6vbVO+2v9fK4RU7Qtvc/mfoooroJCiiigD6k/wCCSfjbVvAf7Reu6tpd9a2yzeCLi3uLi8uI4o4la9sijlnBIKyrEw2jOQM/JvNfst+yP8SPE/jj4fzaR4Eg8C6Gmk6zcGHQdOt2ZGhupTciRGSdyoaSWcDAcHyyRkYA/KX/AIIGeKtF8JftheJb7XdBudRim+Gt3DHbWnhy51STedS05lIhtkZx93G4jaM4J+YV+xHhf45+D9eki0W4HiaxGn7Y/N1v4b6lplpEWAIBmntY4ixHRd+cdsdcqLrRxyfN7vYPZQtz9T0fTdT+Is+t2tx4j0jQZWdBHdzaVqE0jTtkDekUqJgDGS3nZOMZ5Fc/4u8Sap4Stri+1T4R+J0SfHlHSWgu9yhCGyBJuYE4w2FA2/St3QJ7S4mZND1HTp9zGMLBKAuFYZKhMjOOoB/i/GrtydSQHbNMyCFoyFlJVR0bCnGc85/mMCvb90z2IfFTm4s47rTNGjtbLQpoNV1HVluLhVu4BZzsuxpcqCnnb2yCPmC5ypUw6b8RPhzbXS6refEPSXmcsks8uqQuuVVdkR2n72AchuQrKRkYy7wl4h8R6R4wbTp7gyWV3JFLPBLb42hCgUgIQQScNk/3voRu+INC+Etz4hvLDxN4cN7py2c50mea0guJJY57Z3h+dljZDhoiyrxlP9ncIsm2UtUeD/tufDXwv+0B8KtU8KeLdPe9sr6FLiw1TRJI2uLZ4bmPdcwibajyKpbMZaMyL5ke+PIZcn9hXR9c+Fnwpgt47sXkunXF9YaTNfGcLe2LM8EaiOaKOVEFvtWMGNNqgZEZU7O6+I3wM+GvjbRNKubrwBpWnW9oHgtk0y3+zSXTRiN3RjEgaRxvjf8AeNjPI6sKlP7Onw+j0bRIfDvi3UrCGATR2NpY6/cYlJfCFy7s4ZDFJjYdoCgkFjg83s3KtzN6Lp09RezjzqVtdvvt/kjC/aoh1DXfh/pum6LpV/BqH9om4kSKNFkPlBJxCGJIy5RIx1AEhYAZyPJ734efGKDwB8G/hX4w+HviK88NaT4ciuNf8P3Vxb20dzHBrt2Ht2C3YjhdobaI7lXIMiyruZAh7H4i6F44034z+GvCrfEjW3FrdC9tLbTjEksckZiOyfdGzXDNlRh+SpbIJ5X1DT9J8YX9kNR1mfxTfSx3Axc3GnrPM/zgqi+XbfLjOBtAYAZDbuawxGGjVlrK3yv1T7rsaxcVa8b/ADsfy7UUUVBIUUUUAfSn/BLf4p33ws+PHiGeGxubi01rwHfaZqkdnefZ5DbtPbTfLLjMbb4YwpBU7io3DPP6I+F/+Ch3xt1T4v2XiDxj44mtPCklzFGsL+TC0dsby2WX7TAIpDdytb2rqhXy2Rpg4ZBvjP5e/sR2d3e/FbUYbK7mgc+HZgZYJxGVVpoEOSeow2CMjIJ5FfUHhz4deLNV8TQeGpjq009lCLu9he2mJtLVkEz3JQj5YhCPNMnTYoYnFeVi8VUpYhQi7bC+rxqPmcbn6+22sfDrxRDbPqFjpV5JdpvS4WICVo2YhQrpyBk9Mjn6mrJTRIRFfeH/ABTqOmpyuyO9MkQwBhgkm4E/KBwBxX5vyN4dvNONhcX9qTK3lAyXChDGwIb5ccggj8M8HPEt58QvGWn6PB4d074r67b2kMRgtrax8RXMKxR4wAnluu1fTbjGAa9eGNRr7NvY/R1te15QDD4m0/UENykh+1oIp0GVG9NnG5cZB24GB9K2dS8beJvEd8b7UPBV28rfYrHTpNLuo7gzrsKrP5p2bSGtzuc42/LkjHy/BPwQ8U/tkfF3WoPBfw2+IUlpZ2kEKah4l1OwtmtdKgBcie7uZYX4IVsbt80hysSyysiN9OQ/EH4p2jafaeGr621E6PHFLd6hIgtheXCs5Zo7f7QzLFlgvlF5A7Bpdsfn+RHvDG05y5YK76+XzF7CVrs9dTxPb+IItK8PWMBRNM1FZtQ8PizYXjzXskCgrJIBh/LgUeXtYg4J+6wkt6Pa6B4u0eC5nu7nRtUhsr++m0253PJEbWUo8ch+Vt4Ywg7FKjJBGMGvA/FXjL4ualoi3D+D7nTFcp9j1WF7lXs1juDOnkOXbASUnDHc44G7PNc94t8RfFXxPrVt4l8XadYh/trXcs0VvDayXUzzyzSSu8YV5HLOQWZmAEajA2Grbi73FytNNG98U9SvPCvjV59Yv44NQtryEQ3FxO/myLPbQFHJfHzkfKCpOcA5H3a6fw1488ZT6XPp954p1IQBcrAbm4xMxKjYAoI6fN8xUYXHXAPMwWmoeJvinD8ZfGejadc6jptlBDo6yuJ7eBo/m8wxSAq7nn5iMKOMAgEbc/iWDULZNNnEbTQyFpnWGRWZyMqGJJGAOmMfeOc9ayVtkXa2p//Z",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAr+vrxX/wVW+CXxi8KeJPh7458G67aadf3P2eMXWlyQ6jpkZhkP2kxxmYs8dxBIqbAo5jLFPnK/wAgtf0T+NpPHHwX/ah16LQfijBr1ncTXkWo3MmonU7SW3u1V7qJ5X2tc28jCNoy+8qN/mFy0kjeZmWYf2fGM29Hpt/Vhc0oyVjM/at+Mln+1P8AEi5vvFWk33iK88PBIdL/AOJfBazu9vbrCs6bH3xK7Zn2SHcodYZN5TDec/B/4ceIfGtlqPhjxH4EnS0sIGk1WQxG2tHd7QoSBGZW2Nc7FGHLRbSMYJKWPGUvxCTx/d+HfDenywaOBbxQNbxADEcKICGIYK4WLIAYyJgDn5BT9S8exIstzJ4pncoY4lt9QQSwqy4YzB0CAIrbABs3Asx+bIx8Pi54jG1XK+rvZ9i4QqKd59TudI8GNbeI08FeBdNi1ODSIJ5Geyt4NlsIlLSpM2VlVnUgrKZCjFpFHmEFRSmXwbqXiCDww/h0yyxvDc280sn7uERSAKkZVsE4CqsZ2knADZVgs/gbxXef8Ia5uL+zaB7yT/SIbMhpJIvLIiRgoQLuzgknDHBUZyOG13xvr/h/Sr3TPDXiuxeaW/k1XVdRkhZZhMWS3EMXmFZFxuARRtQedIfvPg88aOLrxim5OUdG73T+X/ANZynNJM2I77SvDniK1ll1Uy6amrookB8n7G1xGIWn8qUyfNsdeNrDa7ZcDFJa+MfilqenwazZ6Il1Haq1xGL6yUpKGk4wWLmRT9mLAoArbRkBWVq8PPj3UfHDxaX4W1C3mwsN7davqGomeMwpLJEDE0jNh4ighycSFE4ACEJ3ltb2Wp29sLTxnpei620Zmv8AVNUswUuViSOOJf3cZdn3JKTM33nVV+8WY+q8G4WlN+8l8iKtRnaeGvEnhfxf4f0fXvGPhmaz1TTElt9R0e2tnZJc+bteGWNDIGQOpBHyBxKm4JNK7dX4D+PPwR0/xvr1rd+GrXXQNY0uWx8NavqMllp11bhFaRwMln8qN3KLIGw0rSFpAq+Z5HPb+LIvB+o6b4Y1Oy1HU3tpillbhU3xZEh8qYmKZmYqXVQqlmZA2XUqOi8C/Bf4bfDbVPDviLxX4l0+9XW9IttV8ReG/E+kwJdXUmwyeTBcQzQS2peSOBVlR43Md9IXBjRjL00FOvLmcldbaJ29fxM7RZ6tqP7ZR+FXx/m+Iltq2n6Pa67qFs/iOHwrpNra20ZfYLlYT5ky2+ZHjJSPcJpIkklVzIy17N4p+OfgXxx8Jtb8C/Dx9H8Ya34l06CxjNpoLWur3UTzRmEH/S2t2kW5eROQJn+zKzPLJjPxp8SPA/je81hvFHi69svE2nRajc2tv8PrzX3/ALT8P7Iw5kvCLe18wqGyJ0LswMp2ld4PQ/Bn9oW50dk1Oz8ILofj/TYi+heJU0630y10+1kAO37FYQhWm8wMPtDfvXSXy8gZZu2GKr0KclXnd9v8h8k+fXQ/BKiiivqBBX78x+LvAehRWeq6p4e1+0tJbryRBqMKRtFNDclJImRLeTaU2yKYwhZXKN904P4DV+vPib4tjUtcn8Qabp6X3mzO85VSs2x97y/vMMw3l927OckcV8zxBS9pUo/P/wBtIk7Ti/M9i8beMtUm1dfFPw6vYLaxtrf7WbdCDIJIoyfK2HYQ4eNSvlbSWIUbjkV53MfEet30PibwbqT3P2hDaT209qXljSUSRybXfKEr90gupBbC5ySOGufiu+o2Eem+H9UGnRxFI2sUuigKjDMy52tIeQNzZbtkgLVm1+J1zrnj3Ttca1vLqJL6B7i4NuquZ13CRkABVPnZByQhIAPXNeMqDhNOCt+RtOqqtROOh774Z8V+DV+D02neILaxtdafXI7ie7m037dFIEwBFK6uzINpkLEJIu51K55WvC/i74h0fT4tY1pdAUWUl2l1ZX8cIWK8FsjTfZbjd5kRV5TaxbI0yPMUF0V2BSLxylvpFjceCvEwF4t3PbPFqN85iMjsU2uXEKJtynRlUYUnHRvMNX+LHxM8YzaVodhr8VvEmp+ZDpthdFoQ5VS0ww7OzMiHaAQzNtwXOCfSoYibm/aJJLshRcvaWZ0viLxD4b8SXJ1jVvEjSzG1klv9OlsmaCYxlVadZrdkmQZkt4/KaNlAiOeQm7a8MfEL4S6nfyaVrGl6ta3zIrWyW8gVlYjZ5I80ORH8seAXL7mYbVxhuYsPgDreo6ja3wu4NHsoYxFBBbxpmM+UN7F1DGPJYHdJhu5z2v8AgX4LfYL/AEqfRVsL9bCOWK/1u8vZUhkmuNyRZ+zo8pYsUEYXHIzznFZYitRrXYlJTe5774J+Hug+HNNSXxJDYXM8shi0zT9bt4jcfaVSSQKjN8+1VUs0ShixEQ+bv0Glw+FIbfSNb8QeMtN1DWdIu5LfT1l8+C5hleEpa3Dy2skbQqsRiGwYTzLeJdpKPGZvhj8K4vGckfgf4bXmqS6xqemG6tPDdxo0t616222PBiiCxs6weeAyoDtcrHHHEDWD8S/hT4o8BeKtXk1W0tPD+qW2nyzy+FtXhgj1W4V7R5ku/s1xKDIFiZ3KgebG0W8KDgHw6cq3tdJPydtCoxqSlY6TxHqHhaTxpd3nxV8R+G9Kudcu9sFzp+pSQJBEzyFrAXdyVZEA8yLMhYBI0AYYFcD4r8TaDBFf6D8P7rSYr21uorTw1rl7fZS/LylWfzo4GEkalXYqGjLKR5UeFKL5H8NPiH8VfHNj43mm8SNImqXD3fia2sIAILe3lEglIjiVY1RclRHGBGuI0XaoUA0DVLXSRYW+i+N9EuLDQ4vP8PrHE8UcdzMjMYGMu1VwiBtvzq7Ft53qpHZNVpVn7WXN6af8EHWk3aeq7f1qflTRRRX6EQFfoH4g1jxPoerR6h4ktZovJlLi/t3Xy5ZVjAGPKbYz7wp5L5JIOQAlfn5X6MeCPhn4ln09PG/h7xDJqGp3EscaQR3Us00cryRwwr8oJaRpdkaqDvJbFePmyheDl5/oZVLXVzmj47sbDU4tEuvhvF9okuEaJllaWWSZpBhSWG5hsCqF7kAnK/JXrmswaf4Kjh1LQ5NRt/tlmr21l5wmJjcZG9lILAKfvbcFgevOPP8A4n/DH4kaFfQeI9f0+6S+1NpN8TXaSpCoWKSJBNC3P7tiRnGduG4BDO+E/jCOOyvdH1O7h1Cz1Ab7yGeeRJC5LBXkcHqrSEjjGCQcqMjyKlODinGWxqklZMt+OvDenWi30Nld7tTbfd+TEhkVgVjMoYYYKwA3ZJH3gMHPFj4V3el/CXwrHDrlhp8t/f36brt7O3mMSxoWbyyu5WKlozl1OPMPIG7b69onw4s/HC6VaweGrLQ9b0vQUktoLGKW4ubt2aOQTvuuBtZ1RWDAEFHYbGG0jyb9pv4c3el+D7LxDqnh3ULK4s9QFp5qQTCyKl5Q3CQ8ubhCu/zXVicEAqWaYclWTg+gWUbt9Cp+0V8XdN1zwi48MeKpI5ryNnntZdWhuDBIsZDSyMiL5bs0cf7tVRmDLtDfdbkv2f8A9pjx78D57nUdH+It3ZW+nTGQSWLBV1JGjeNYnEi5XcJZMkDI4YMHigZeL+Jmu+FNE1lJtN0tk08WzWJiuJFuA0oJErozIFeTLFwwQbAVHYMeC8X3/h0eHWNg1wEe5BLTkZY4zjAHGM+vOD06V7WXYOhJqEo3RK0Pr/UP+Czf7TunaLaWeg/tHeMtNgtIFgh0/wAP+JLmxhCZzl47V0WR89ZGDOe7Emtz47/8Fhf2ifjn8MfB/iX4lwWd3ZXWlXOjX63khuY9ce0kVhJPBICNyiaP7xclyWyAyovxV4A+FHwt1D4HeIviT4/8Z31rrj6va6f4P0ewaI+YuPNvLu6VlLLEiNAkQG3zXlkIbEDg95+xL8K7f9pT4r+D/wBke/1uG2h1f4nWCw3aw4uJLOaQQ3MkRbAUiIJJsZwWKgKpYc+3UxMKTToxUeXsYY3DTq+yjf3XJXXl/wAPY/Q7/gtr8L/2dv2Ov2ivhl4k8HWd1otv450dr7xL4J07UJDDpEonSSWe23+YLdZmkCLGiGOM2p2rjCL88eI9FbQfiBZaZ8QPEX9kw3aXEd3LHpEszvYxu8cc21gWZ5bmB4lOUi3Db5oKsF9a/wCC/wB4n1Tx7+3zrXimzsnmuPAsNl4am02O185ZBNpv9o2RIAO8maW4BGDkAAdCK4nwH+yr4j+L/wASLCTSfFNndavomqW+i+J2uvGNppIWW202RLiRTKQqiS6uJIhCAZJPKOMhg5+TxlKMpR7vTzue1mEqVPEOystj8kqKKK+oPOCv1Z8DfsxfEP4L/HTX/B76nrsmgS2M1np3iPwfCbiS5t5ipWFwIz5RKfKxKExTbCrqFEyflNX9NniL9oD4JX3hyWw8PfEWBrq6CBP3M0ZRtykj5lGeAR+PrWdTAwxqtJ7EuKbVz5k0X4OfEfS7y40vUPDeteIzPNeXmnanJYECwSSFhbQxIqSpO8bKDkjyjvRgPM3KvmfwF/Zp+Ing79n+5fxL+z/4+j8aarazQ21rqnheWwWBEZ0Eiysm9SVeNgrLl9pGFViV+zte+L/wfjh8zUPGNusoO2FHUrg54Un0yexweOeal0/43eBfGWkaRaap450uGWztWeO11G7iGyZsBQiB1G4gFCewduuMNnLIqThyqX4It2ufIvg7wl8Y7HTYb211jV9JvdJ0mFZYJLTy4prnykgjVZN53I37rcCoYAP025Hmv7TK+Npfhpd6JarK0MWnS281usoYpcNu2yhUUDDSMCT8o5LDOOf1A8H6R4Q1S0vJNO8VWd40hCme0uEZQCAVXAyo5ByATyOvauu8M6Fr/g6DTxo2u3KWM5j2bF324UOQwKk7GyM88Hn2FZLIlGTakvu/4InJNWsfj9+z/wDsyeEvjl4M8UeONSk8P6jENN8zxBr/AIt1vZcaeRHNcYtYWubVTNLiJxueaOFYVV0b7RGx+Tv2gfDXgvw34un8PeARfyaTFMwtJdUZPtVwSVyXWMBFORjanAAHJPNfv7+1vNpnh74D+OfHmq3Vq8mleDNTujGtrEtvdyRRNJseJeu8qMkhiSEBDDgfh5+xx8MJf2jf2qNLttXUvYaUf7Ru1k3sJCjjyocgELubbncQNqN1NduFy94ao5uV+yB2drG1+yr+wd8R/wBqr4oL8IrjxJB4XsvCsk6+KZJ7Se9bSoYkkMk5itldpy0ihFVDkiUuP3UUskfY/sJfDP4nfDn/AIKRfDf4SeOPC8ngrU9B+JNjqniSbX2azL6dptwL+ZQ8qqWieK1LJtBErBSu7K4/ST4ZfDjw54K8cf8ACbaP4R8PaZqZvopnvNK0GzikvZMKP3jrEPOCb5doffseMOCrqpG9+0r8Efhp+0B4vt/H/wAXrn+09X06zaHT9ahURXRiY4Ns08Yjl8j945CFtoywAAZs4Tw+OvaCjyu97t36WtZNetyotPERcvhTT/4H9I+B/Bfx9sNb/wCCmP7S3i74labf6npcnjPVNV06O+tWeW2n03V/K0zzQxxFHFFKVcH+CPYM8CvWP2dJPEUOtXFvfSazqVldaK5tNLv/ABFY6Y8V4JV8y6kVvNaRXYPE6TKCTv2BXww+m/hb+wH+xxb+OdY+NGp/Bi8n8Qahcedf6pB4ov0ku55CWmkkXzdjebtkEhAG8O4bdufM/wAVvh14IufF0XiPWPBVraz2eoS/2U9nJPLcQqsFupzJePOJGLuXGwIB5cTAZUMfPxWVYuVSNWCTcej2Fi6jxM7+dz+aaiiivXEFf0n+Nfgn4D07wq1/pXhy3s3trmLynZSQ6u4UFlfIcbtvzdRzzzx/NhX9TOs+E/DuqaGmj2WlQ3aysGXzgFQjByCsnA4+hrrwttfkTK5xlj+y98KvEvhS6im8FQSXv2d1trhr2b5pBGFQkKyhuQOD1xznrXB6T+yL4G+IfgvT9buJptEvFvWiuLfTLqQwSAE7TGs24ggYz85+8OnJPttvokWlwNDZWa28XkeUY7aQqI0/uhVwFGOeK4/UNNu/COg6F4c0bX1Nr5kkhMboylvNUtuYEjkYGCeBz/Fz0VJKC5gi2Yi/sg+GtN33R1W4u20+PdGY7+MQoBhgfLZXGd28kA8g4wcEmW8/YjiS3XxnbeNpILqa7jN3bXFmqvueVABuf5WA3c5XBxjb2r1GfwVdSxXWsSX8bW66XKPIkcZAJj/eqO5A4GCWy/TGQ1hPFGr+ILHyraRMwwxq4+bMsoZhubLYBY+WcDABPTnFJNPUdkeI/Ev4A+GdK8Iaz4T+OkOoeK/Duo6NcQT6Z4SmeCeLcuFnQPMC4iyWCIJHLKgEU6hon8R8F/8ABOH4CfCnx/P4r/ZE/aP0bxDoOo6Pb3T2lx4oKaxZTSsQtu9skUckIAaPAuCrZ3gncNtfaHxH8M3Wq2i6nHaoI4rchvmfOdx+6WY854/CvJP2evgX4Z8DfGPVfFPjvTrSMXcsMsN0+k+fdKi7pDGCrAqrlFBwpyVU7cDK+fiqOIliqdSFRqKveNtJdvNW8hwjBXb3KFh+z58YtKmTPiCFJ5grC8+3vdRlyFIC7ztA44bGAFAwaju9H/ak0Qm10/QZtSsGET290VtoouhK5DCJhwCBtUABe5JJ+j9W0FoYIL2x1i5MDhA1tHpqjZuYkdGb5QOMHAIU4IOK0NR0h4dBhufEuoQqhty8mUlMvAwqlfLULtGQD6chW4J6VLcqyseF+GfEX7XfgnSr3UdT+G2jzW8FublIbG6E1xI4ZEVRHFKzLgSFiu0cKxz1z518Svil8d/7Z07Vb3wBcX7Xtg93exS6FdBbOU3c9u0QCsPLG2GMlWyRknjofqyy1eaC4ksNZ02SS+cCAPLPhiS2CS2SoAGOOR8hyR0ry7x74g/sKymk1t2hg0+7u0luJpt+FOp3Lqd4GCCNvPIAcd8VrL3oCVlI/mOooorzxBX9TWq6Qtgvn2mtgiaIJDPFKCwU85UkY6EfTJ471/LLX9JVz+yzrPhu0kvvA3xW1XTbR8D7NGWDMCQeSjqGBywORk7j712YVX5iZHsV/oOjWukabqF5qOqRl4ftN/NHfJ+9RZHjYhWTapOzofl5wFHBrB+MfhfwJp3i/wAJSaUdTuBJdTIPOv4ipQMGibKRcMVlKngn5MdstP4l03xGvwd8NeFvB2u6U2vWtxJHey3UEJae2WSR0jDMkmSAydc5wejNka/w0+H0Nv4Z8OweMb21kvtP1eaG7vbu58uJwlw0Q8kkAtjy2cDhjlQcAYrerFONgiNtY47vS7m1u/EXnQyqY7aRoihYAfcKsW3A5XjAHHTsIPDelv4Yhlt4BFduwV4wxPLDG1Nu1fmIXdgEjjAziue8P+KvivoviWXw342+DRiNtY6lcyw6ZqqhPPtbaWaGINiUN5rpFCBktmTuRg4Nx+0hqXgrW1Txp8L9Y0rzIkf7NJFI8iK6qPnLxxqfncKGOFJ54Bp8qSQ9meuz+IhJcCyuTFbmRDGr28ZBZsYJwSM8cEZ5B4Jrl/DUHn+KtW0fTLVLi5a4tmlFxEVWKRRJsKkZBDJJyCDnjIxg1y9j+1v8PNZtX1bUk1KO0UxrKzWvzpuAEfyKx42YzjHXIHNSeGfjD8I/FvxSiuvDPiWGSQafcPK06SxIFWKRjIzTKo+RBknsMjkYJia7DtbQ9ZQtYWp0q7gAWS6BleWZfMUNzhAp3YwoOR6chc7RoajLb3GiO7X8LwxplpYcONykMqYYH7wBUAjGRzxXHaH4y+F2vFfDNhcaJqVzNPDOgjlRppYwkjE5Gcod4bgndhAM9TsvdeHtIibSbaC3tI7opvhiijHnDbhWI25PGDxz8/UZFZezu9CpO8RLXxPd+NMG4lY3Fz89/wCSQwTkEnYv3fm2nPIGc4rwb9qiLU9T+DOv6foLCXU77T/Js0eE5E0rDaTjg4LBicfwk9TXr2v+HbCO3h1pJ3tY/NE8k0csuGY7Rt9AMEcEkgEZ4PHlvxmtYJdS06ee4M8AisJhHFKcM32WNjwD82CSOnf3p2lyaCjZM/mnoooriEFf1EwarqpV49L1a4nhEZDwSlXfGcHgjJGCOeevX0/l2r+paHw9Lp8DW8V2HcJ+9BXluRz7du3brXXhXa5Mjj/Eus+ItJ1ex1mzdZ3gWaOSBUKoVkMXOAcDAjIzz99j1xXefD7xppfiOZNM1i1v5JodQW706O3AdWkaORGiBkeMLzKTu5HyHucVh65oOoyD7VPaecsqMkaxsA2QM9CR2NN8CWkmmeIbawm/cBLxUt2m4DfvCwJJ79OnrXTK7CJ7B4l0O88IeGbjxLqOs6Yo1i+T7Alqty9zGsYuPOEmIQqtkqvysytnritmSDx5qnjPwXqt75Go3FrKLO4FpcRzmzMl5IksbmFyAQrKpHQDKg5rk/EWp60nwcvbDxBYMJLfxFKlu+3GUfdJ04/iZgCeuRXF3sdnbaPp9zHqAkuYHLmBJI3WNydw3DJYbh5Y+YcgYHGCL0sFkmO1zwX8N4NRWfxb4L0rUbsRSxganYRzSRxlChIDqx+QZKnBCso56Vznxr+EHw68V6Fpl3F4X0e2P2ySDOmabFZs1qvlHaPJAz85kO7g/NkHOCvR2dq2h6hBe2k2JYm8zzLdwPn9VJxgflxTvG82pjxMzaneT38E9jY3MDXRW42pLZwSZ+bIBO4Zx14Jy2TWFSSSVi92Y/ir9mT4aeNjeSeF7bUdLTdbx240+4ckRm3CCLbcb9/lsqKH+Y4DHcdwJw/HP7CHhjwzq1vovg7xPrlkksVzLHLrVpZy3KyqckkwCADrhiSeMsMkk16T4O1rVPDXiGz1m51O5ubeW7LSRyqhSHjkhYwpUDHuDyTyoNXvGnie31uePxaNIu7wSzz24mgkSPcssi7QAYySd6OTg8jGACPmd43Jep4vb/AX4weF5IItL+Jt1d2yxl90usy+QrEOr/uxEHJyqMriaQLngfeB+fvi38ONV1v47zeGfFniu/j0uWysore1t7iQ7DFbRQtlZPlVztJDhTkNkk9K+6NZawsPDcupC6W7aOz3jTVdhIwaPzNySGQFlAzkFcNkcV8g+KtCTWvjbZ6/qUE1reWcJhitjP8AdWRG3scDk4hXB7FmHPWolUjKOhVmmf/Z",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [54,51,67,78] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [33,31,67,73] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iuwtvgP8TLuG0uINJsyl9OILZjrFqAZCCQrfvPkPH8WB0pJvgT8TbXxGnhO70W2hv5E3JDPqtsinrxvaQJng4Gck8DkgUPR2e50LCYqUeZU5WfWzschRXtPgr/AIJ6/tbfEPUrfSfCfw1tJ7i5sku445/FGm2+2BigWRzNcKEGXX7xHf0OOg+K3/BKj9uH4H+HrfxX8VvhpoOi6debPsd3c/EbQWS43syr5ey9JcHaTkZAUbzhSGqYTjOSjF3b0+fYt5fj4y5XSlf/AAv/ACPnaivbPhl/wTs/a++M9ubj4U/C638QBJ4oZU0rxPpszxPIqsnmKtwWjUhvvuAoIYEgqQOyuf8AgjX/AMFJrXzl/wCGabiaSAKZYLXxLpc0qhjgHy0ui2M98YHU8CrqJ0pcs1Z+ehU8uzCnLlnRkn2cWv0PmGivpmf/AII6/wDBSC1eKK6/ZpvImnYrCsmvacC59ADccng03Vv+CPX/AAUg0HT7jVtc/Zj1GztbSFpbm6udYsEjjRRksWM+MYFZupTSu2NZZmMnpSl9zPmiiurm+B/xTt72XT5/B9ykkEmyYkrtRs4wWzgc1pa7+zJ8a/DMtpDrvg9bdr+Ey2WdRt284AgbV2yHL8jCfePYVg8bg00nUjr5r/MHleZrehP/AMBf+RwVFekal+yL+0RpFzHa33w1ugZI/MEkU0UkaLzy0iMUTp3I7DqcVjWXwI+Kuo2N5qdl4VZ4LC4WC5k+1RALIxIVRlvmJI6DPb1Fa1K1GjTU6kkovq2ktdvvObD0K2Lq+yoRc5doq7+5anIUV6V4X/Y9/aa8Zoknhz4Ma7cI7YWUWLCPpn75G0fnXR6n/wAE7v2uNEtEvdc+HFhYROm5W1DxZplvx9JLlT3FcE88yWnPlliaafZzjf8AM7/7Dzv/AKBan/gEv8j6f/ap+OvhHT/jF4kvP2evgF4CsvD0uv2xh0ubSkZY4EtIgI/s7kxiKSQyswVPvqpDAhcUdM+Dtv8AE342ar4/+DtlaWem/wBksH8PX97ds9hujdyoa3j3vGh2oGIb5SXlIVWeuY+GvgLS/jl8SYvhVo3hHX5fHOlabLFrLQXNrDaxW0JPm/aPPKeU6PjJLggkrtJNfRXwk+GXxm+KI034a/BH4Hz+JdcuZJYBpTavb6PEiQiOSe6e8miClFIjOx5MnzPlGCFPRi6sq2JUJa83Xsfe8PYKc8BUrU4e5Czk20/h1230LnwXufg38FNDvfFvjj9pLwn4/wBT0m0ln0rwDcR3ccjauspWG02yRusyowWRVcKsrERsUUmQc3+1fY/8FJv2ip/DetePPhR8QNa1DToYrjU7d/B1tHZi7ikkKtFFYwIu3DtuyMkknvgbn7UvxN/a+/Z38UyfsqfFf4ZWNpp/iUJd2aabp2napBCs8wmcPqltct5TRzM27cAyAA42lSbU37XX7HMfxzk+OP8AwrD4rS6tLrkmpxQzaDaKqSNLvfaUvAHXOB86tjqADyPa4alLA4iUqUItp31s9bNfaa/AyxGPrZ1Vr1MfVXM9FK/I7J3um1K7a09DhPgpbftx+Bfi9q/jbV/gv4/8PWHiQH/hI4vD3gAurICGVUjnt5EUAjjHTJ5wTX6Jf8E+tf8A2iviR8J/D2sfF3RfGQ1y2v72W+l1i0g0+DUA9xKiLLHEm7McOxgGjjVmOQW+VhwH/BNz9s39n/QPG+ufFy1/Z28W6jpGi2Vlo8LeJILdlhvLy5SO2itYPNbc+FkY+Wu6OOJzhuRX1v4t/wCCsvhK7vL3wF4M+GVlF440K9gTX7TUjB/ZsIcBzB9ptpWf7SqMqspjGxgQQQAW9DiTMq+IpclSnG8VH4e0bpJa26/l2OHBuhHEezoycpSlJ80pRavK19kkkrP738pP7Jubm3tvB+naZrun2GrrMtpqmiaCbZ9MRG3P5slwTsLEEAiPJ3EgD7w+Ov22viV4N1D4la3pd/qmt6LqFnbiy1W30/WWjiu9gVgVd5VJUBU+RYkG4MxZjtYfbPw3/a70b41eGNX/AOEuufC8uo+HbqW61S20vUluINGsIU80vJLKFbdEAzOSAFw3IIKj4Y/4KQ/DXwH4W1nX/wBo74T/ALUupa1qNxdT6nr/AIflm028azz++CRuI/NijCsoRZUkJAHznoPzfNsJjcwyxulHRO71a/FH0uAdKFf2dVOTenuSSd9Oumlj57+Lvwh+FPha8sda8G+K7zUZLkg3MdmTcX88ziTzXvCXUAboztyAu1gwX5snjPin8JfBnhu38D+Kb2+dtM1fw/eS32n6bJLDdjVk1K7Vi6wQymFGtfs6lAFDfI4wCS/jPgP9ozxl8ZviRJqHjDx/ardWPh69niu77TFkyIoZGSFuAoDsduW4G/JrY+H+vaNZrc6h4r+KOloupBZDb6QdQiKNyNrm0i2sADjG7HvXyE6dfAUKkKsHeasrOTtqttNPW/zPcy/C4X67TqUOdWd3eScdnpvrqeQeHfi54mvvG10dV1qWPT1cr5FzJvC8nYrFuSB3Jr2b4FftBXen+IDonhPXNI0tB589/Lezi1hdsoqhJFjZ3LAAlQMkA4Pr8wyXKS6rqURQhpZ8qCOwY5/nX118KtGtfC3gm1tPhp8F/H9y1wqXN7cC3trbc5QZ2zrBLIY/TkcHOBk19BxZLB0ctgqkOZySirtJLTfX8DxeDsNKrnFSVOnHduUrNytfbRdfM63UPHPjHXSv2z4hi8hmVlW30fwzq+pKqvu5Au2EZ4YDPT5QeuSW2nhTxfomii0S1+IslqFxC1npmnaKgBIPzSB2fqMgnkVdup/jDrenJav8C76NP4X8S/Ei5dcEfxIWgGPb2o8PeC/jfN5y2Hwj+FluHGRLcQfbGHb+K5kyfqvavyn6zhqceVTgrf3o/L4NT9e/dwktLfKK/wDSpL8jkdH+IeteEviJqXxX8BXep6f4l1n7PJquvXGqeZdzzxqAZDJGiHL8lufnJJbOab/wm2uFby3hs9JW2vLh5jbT6NDdCFmOW8trlZHTJxyG3cDmsVQo56CnqwAyG4r7ieaYyo7ykf05lnh9wjlkUqOEj89fPXvqaOn+KvF2l2z2mm+LdWgilj8uWKDUpUV0/ukKwG326U+Hxd4mt7n7Yuu3Tyn7zzzGTd9Q+QfxrOWUYzTWmBbBFc0q9Z+85an0FTh7h6tT5KmEpSj2dOL/ADR2fhT44fFDwesy+HPF17YrcypJcrp17NZiZkDKhc2zx7iod9pP3d7Yxk57tv25fjBdeF9O8H+IbkarZaaNtsmrOl+yx7gTFuvo538skD5Aw6cEZzXiiyFV4NMZ/m5renj8VDTnZ8tjfCrw6xkueWXU4y7xvD5+60vwPrL9kH/gqBr37J/xc8R/FvQfDdpHc+ILR1ms4dHiFv57MGBfad3kqQSI49hGQAwUFTtftvf8FXPC/wC294d07R/is+i6Hd2UU8C6jpFpPAphkO4LMJIvM4JbG2SVTubCISzP8YOQTgckngY61QvrK11BNksSuuOMiu+jm2MoYd0ou0D84zjwB4SrYn61gKk6VVbaqS+5q/4nlngu9v8A4NxX2saXq+gPD4i8P3unXCyEzyND5g3fuxzC8mxdrEEY64yceieGv2hYtB0Bj4c8D6Q8lpCPtD3EZUvlf4REYypU553HOaq3ngjQ5yTJp8ROf7tZl38PtMkiaOCSaBc8+RMyc89wQaupi8vx1OEcVT5nF7/8C9j4HG+DfGWBrzqYHGQcWvhacXf1Vzwq9me11iS+kO5pWZ2z7mv1Y+BHxl/Y+8W/BfSZfFfwburDW9N0mJYtQ0rxB5VzdSmEA7o7yO5gkXI6BAVxxg81+f138HtMmuJHn1G7kSVw0kUsm8MR7tlvyNeh+EfFo8PPBA+i+UkMm4zWPlqxx04KjPQcFsV9DVzXKMY4qovh7pP8z8vr+FXiLlnPKFDmvf4Jq787XTP2y/ZQ8G/skv8AAS1m+KXgnQ57qw8OpcyW13lb64SVgwZnQLLIwyAHToQVBAGK8F/b0/Zw/YA8KfCxPi/8MtV8c2l01+ts2gr4l1W+hDuCw8wTSs0IbBAYHbxhVYg48m07/gsBpOueHbfQPGHwz0a3ljs1tLi70oz2e5Bs/eGKTz1dsA5VZYQSxPA4Hz1+2V8Yx+0rbwaD8NbTUrnSbeUT/bb25WSdJcMGBiSeUrHg8Dcep+XIBrz8ZRy7F05UqMIJST1UUmvS1rHBgctz/LcbD+0adWlqk3KLtbrurfM82V1I34pQ3daa6BxkCmeS45FfE3P9GeaSexLnnNLuyQaapcDBFGVLYzyKL6l3Jtlw0bSRQO6IQHYKcLnpk9s1seEvhx8RvHu7/hB/h9res7Cwf+ydJmudu372fLU4x39K+i/+CcXgvXNaj13UtM0q08SWM09tH4r8AXmnGf8AtTRg5WS8QHh3tpWVwijfwxUkgKf1d+Hn7Z3wq8LfC7UPhx458C6fb6GjLY2EaQxx2U1mIVwmzA4GChjK4wO4NfdZVwvRxeHhWq1GuZXtZfmfiXHHi7iuGcfPB4HB/WJxkk3z8qSaT25W73+Vtb9D8w/2BNC8afsw6fJ+0P8AEH4EJLZazJLZeHdZ1qTYFe3kZbmNUB3ROrhQfMUE4+XODXOf8FMPil8N/jPfaH8QdG+GtpoviO6P/EyvrSEob232HyzJg7WYFSAxG7AIzhQB+mH7eXiPw/8A8MKaV4a+G3w60LRvBF9FqQt7vTtLjhtvDs8QaaC6QKEiRDIJFaPIeRpAkauzYr8Y/wBpK9sG+IR8OaZ4sudXt9MtoomnnlDBJSgZ0XaAPlZmGcD05wCa4gyzDZTQSpXcWtL2/Q+N8POIsfx7xlPNa0HSqU21KKk3HkSslr8rrvdnnUpJ4U/UVGYwwwRUr7EyuM57+lNYHH1r4hSfQ/oycU3qVp7dSMIKgkgKLk1dMgQbR1qGYB1xjB9a0VVpWZwVqFOWq3Kmzd2qKSyik+V0BPuKvbNq/wBKY2O4q4ya6nHPDwkrSRtsu0ZzSAqw6d6jaUDgc/WgOV6/lXFex9bzRb0JCpZTgURW4IIYYOPzpqzMp3AU8SSSNwpxjrimmirQb1NL4Y/EH4hfAf4k2fxi+D3imbRvENluVLpDujmiYYkhljPEkbDgqfQEYIBGr+0p+15+0P8AGbV7HWdKNtoRs4XSVbD94JixHPzr8oHOByeetcydrrhxULBT8pANexhM4x2Ep+zpz0Pis84F4fziu69Sny1H9qOjfr3N/wCD37YPxM0m11bwD8cPE1/q+geI4xDq4eZyVj45Ea4VsYHGM/yJ8cdc+AWo+MIbb9nptVnsI7YG/v8AUU8tLidjk+XGw3Kq9CTjJ6KMZbkrzw9pl6++SH8jSWuh2liSYFwO3Nb4zPMVjMGqFW0rO6dtTgynhXEZPiIqjJKmr3tvL/FprYnt4ZNu5zjFJJIxyip3p+4DC5pTAir5m7868G76H2nJ7tolfynOSRUchZDjHNTTTM3APFJHCknzORnsM0J6nPKCk+WJVS4cn5lpHcY+7mpbhAGKqg+tMCKowDx71akjilCadmy62VP3z9M05JyeShOD6UitCcNMSGxjAolmjI2IxUY7HrWTR6yfLrckjnV37cHpU73DKAIgPyqgqHPynqetWURwBknpQrm1KtNokV2YYIwfeho8fMO3rUc0zRjIPPoaVZ1kTBPPtVLR2L54t2e4GVF4wKHIcDavPcAUwxlsHH5UBXjO7nFJPQiTlfVCqoUEsvIHpVe7nckIvTvipZ7rOQMVAdsh3H9KbsjnrTTXLFiKVI+b0pGbBG0npSsUQciopHJBZSAMU+VnJKfKrDXlfJGc59aikMg5YYFMuJmXLrTFvVuYwAeR71pye7oedLER53Fs8Wf9szWH5Pge2/8AAxv/AImkP7ZWsHr4Htf/AALb/wCJrxWiv07+wMo/59L73/mf55vxu8UW/wDkYy/8Apf/ACB7Yv7Z+sqQB4GtcD/p8b/4mpR+2xrQGP8AhBLXH/X43/xNeHUUf2BlH/Ppfe/8yo+OXipHbMpf+AUv/kD26T9tHVnOT4Ftv/Axv/iaaP2z9YQ5XwNbfjeN/wDE14nRR/YGUf8APpfe/wDMH44+Kbd/7Sf/AIBS/wDkD29P21tbXr4FtfwvG/8AiaV/21tbfg+BbUfS8b/CvD6KX+r+T/8APpfe/wDMr/iOnita39pS/wDAKX/yB7TJ+2VrTnP/AAg9qP8At7b/AAoj/bJ1hBg+CLY/9vjf/E14tRT/ALAyj/n0vvf+Zl/xG7xRvf8AtGX/AIBS/wDkD2h/2yNaY5/4Qi2/8DG/+JprftiaywwfBNr/AOBbf/E14zRT/sHKf+fX4v8AzJfjX4nvfMZf+AUv/kD2OT9r7VpFwfBNt/4Ft/8AE1XH7WGro25PB9uP+3tv/ia8koprIsqX/Lr8X/mYz8ZPEqo7yzB/+AU//kD/2Q==",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA+vv2Yfg/8NvDn7Olj8c/iLZaRqNjqYmhawTwraaldpKlxcxeY5uG3RIF2qdi4JnhOQyB07FbL9krxh8N7vwj8Pvg9ZnxRrvjvSI9Oi1bTNMsYraxMV+zRRTSqZjIWaNWzLskYwArlEVuA8C+AfHesfsO6D4qvvFGr22n6fezy6fbtpF61rp1nJqJhbUZJgTGLYz+fAWRSDNiPDO525n7LvhzUvF0Wt+ENf1vTtHn8SQrDpF94iilkh87Y83mSKI5G8jG3LqjMsr2zr90svlzqTUZ83wpv7r/ANfI+4wuCnKpQpwiuacE0rdeXTZO9397eup7F4d+C/w40z4d65pGq/AKy1GfTvEuU1/QtB029vVE9hFPHEts6FbgRy2k6+UrKrCO9jYxyOhj5q1/Z98ZvYW3iuX9kuX+zb6M3l3NefDkWVm9jMGdb6G5ki+WAFFIIVQFUoMbnz6b+x5H8NtL/Z6+MWj/ALSHxE0RNe1e5LaU9xemLUEvNIuoZHngLqfNNws11GGlQkeRLvwrfLkXXhLUviZ4r0bxp4e8T6lpnhHw1Zf2h4Qn1KaRIYlW5luI9Lt7vc7yTwzSXKghdkkflykq7xRvhhsXh6kq0HBqMVZSbteVle19bdtrtNrQ9TAZbnGM9jOFJNucouPL0u7OWm+6bt7tl1LP7F37MfgfxlqWhfEP4kfsorPo0Oxtau9S8PGHw/BaW00rXdzdXjQSCBWgidW5+VYbl0KOI2ToP2nviT/wTfuP2nfCmofCX9lPwvpfhPwxYaGlxBa6RbPBq0YcTTSzQ+S/2lvJZFPmSK74IkO/dXRfGnUNH8FfDGw0rw18RPAPjfUdauLy11Cys9BlDaPpb7ooXhmdCqS+XGj+SnkhHkyRnDDsfBf7T/wt8XfE63vvix+zDb6rpnifWbWDU38S/Fs3kOnwyXTeZNHALBpIlVJtpEaj5IVOMjefZyavkyryeNlGa0aXtFD+vlf5H0GL4e4iwPNVhgZ0lBOPO6E5xleLUpe9FRvro72srrXU+gf2bv2eP2Fv2jEvNR8Dfsu/CBzoVy8GoC5+EdhuaVYInI8jeWw+99m3zRiGQbgwGcz9s79nr9kb4ffCnUfAGg/sUfC2Txv4g0wx6B/wj/w10y0ktTMwjhuS8qhl+feApVDuglU7QN1e2aR+3Z8G/hv8NEtvDH7F3wu8BxzWLanaaT4c1C21h5544BNLG1vAsOJongQF5WCTFFKyhSkjcb/wU8+Fdh4U/Zn1D9uO1g1TT7e9sof+EO0M3Fte6RdF0e4SIhFE9rPsWeRlLtGrRbRhmwfIzWpXxEakcBbSz1kn7vXU8fAxwjnTdWKV21FOKbbT2abX5/5H5V+GPgx4F8AfD7xdqPxV/Z8tNTutVMFvo3idtJS0stGlMNyEYERNARLMbYqG8vzFhZQy+YTXC+Jvhb8GV+Llvb2MlrBd6Xp6i70O+0qxktJWMeQ8lxabYsDzUyRHk7Bu2nIX2D4HftG+Oo/gVfaTq3gDTdX0XxvqN7p+rQNpUkt//oUEDR3EE32gqHja/G0yxEAwJhm+YJ4HqemWfiD9oO68P6RDqNg2o6za20cAit4ZljkARgRGUiV8svA2rknJHWvGyyrKljZKc/3iptyurpapKyvtbfvpr0Nc9yuniMsjG1oyqJJxSi2rO9072d7JPy0sepL+zB8ItS0yzDavoMLx6Qtre2GheGY9QunuBFIjSmOUwzK4M7FdjEMYo2ZQVAWp8aP2Y/g54J+H2v8Aie80PWLvVIfD92tjctoMGhxI0cLlJWtpbNVb5lB/dyGVh6Hp7J4W+EnxAh0TTvh3o/wT1C60/T1aGJYfFUFwrOJvLdzAbe6CM0z4ZVOPMfbgZArm/jppGnW/wh8ZQ6Drnw1sRD4d1Bb3Tl1YR3rOkEgKKlpBaK8oOQBIjjdwR2r4iOb5g8fGPt5cvMrarVN9eXXXs2fa1MjyChl0mqcOdQfa6fL5rW39bn53UUUV+0n84n2t+yt8RvFZ/Zo0LwNqd/Ne6LEl2kelyajdwQlDeyzbGW3mjWVRLufa4YEtzkKgX3X9lr9sTxR+xvod54R+FX7N/wAPb6LWJpotb8Q3emRJqlxps6xpPprStC4ktmEQYRnA3kltwwB82fsuEf8ACkdFU5GTc/j/AKTLXoRYE4JxivzbGZvjcNmVXllopSX4n+kfCHhxwjnvh1lar4dKU8PQlKUdJN+zjJ6u+7d2jW1Txd4gNjN4Q07xTqv/AAj4nZ7fSnv5fs/+95Jbamf7vO0YG5sbjkQQW0OFhhRR6KoFJlGBIbnPSjJ7V4lTE1asuaTP1/BZdg8BSjClFKySvZXdu7S37ltGiUbWHvSLIpbIb86s+D/Dd74y8S2HhTTbu2gmv7pIY572YRwxFjjfI5+6gHJbsATX1l+xn/wSyh+MXiLUrH9qz4r3XwpbTdWlsY9A1HQ3+330kNus8uWlKrbx7JIyku2YOPMIXCgt24HL8bmLSowur2v0+bOPPuLMj4aw0q2PqqKik7JOUmm7JqEU5PXTRWXWx8zeG/h38X9d8Iar488E+A/Ed3oOnq6a1rOlaZPJa2qhA7iaWNSiAKQzbiMAgngisPX/AIkfFW/0FvD9p8QLxLRhGJIHijkEixoERGLqSyqiqoUkqAq8fKK+9f2r/hTo37Af7OXhTQvhX8atU8X2niQajBrmkRXjpbxNulzLFsRfMiVCvmAoGVgDuZXAT89ZZBtxkfQV0ZhhK+T1lRlLW2uuny8j4fJ8VkHiXha+LxOChKipuNOUoe+0tHfmXNFprp0aOR0rQtf8KXCSaFqCWqfYxbTpaJ5Xnx7UVw7DLMHCZZc7cu+AAxFchp3gnxnpPxYsviDZ3Ys5LbVor8TRXJdo3SQSDBwp4Krjvx1zXqbpvbLZHHeq8sCEHaOlXhc8xlF3TT0tqunY+RznwP4Kx7bpwnTu7+7N7+kuZL5JH6CfsSf8FNLKy8RX/jj48/HS9l1nTdPsbTw9LrMVxetexLKxnQRI28P9xhuAVQrBSc7D5B/wWT/4KHeN/iv8KLT4X3niCy1eZtG1Q6tqul3MMkk8c8DJGskyxEsFAYmMFMBwGDMVZflF4lJI25rA+I8l9afDbxBbWl5NHBJo90ZYo5Sqt+5bqAcH8a7Fm6xk406sNLrb1Vj87zTwThkuHrYvCYpyjGE3yzgr/C/tRa/9JPkaiiiv0A/jM+tf2X54R8FdFi81d4FydmecfaZe1ehGXeAQBgV8x/sxa94nPi7TdKsbDzbGAS/aHCbRGrBjuLDqcnGDnr9CPpZLlmztxivy/iHCxwuYy5ZX5ry9Lt6H+lfgdxW+I+AMNGVF0/q8YUFq3zqnTgudOyWvZXtbcmhfy2wCBnqDUu6HO/nPpVVJIpR5m7p6d6cZzu+7xXhps/Yo1YqJLd2dtf2zW9xCskbjDxuMhvrW98QPjR+0B8Q7vR9S8T/HbxPd3Ph+z+y6TJc6iZDDFs2bWLAmX5TjMm44PWueWVd2zcRSvNCo2oGJ9TXTQxmIwzbpzcfRnm5pk2T5zFPGUYza2bWq9HujTv8A4gfEzxz8Obfwf8VPi34j1hvD9yX8L2d84ubaGOUjz1UvKPsmdqufKRhK2N4BUNWAsZh4B/PvU5Yg7zwD3NRSKmNynPPaqxWMr4yalVd2la5x5fk+ByjD+ywq5Y727f8AD7tu7b1bGSYX944yewzUMgdwXxwTTzhRumGAPeommEnC/cHrXPF2ZrVcXuQSy7Ts245xnNY3xR0jVh8I9e8Qrp05sBp1zbveCImJZjA7CMt0DEcgHkgEjpW5ceUsfH3ie9J48+M3iLw98MPE2mWPhLSlbUfCmo6fc6ppkZs7gwy2zoyyCNhHKnOSu3nH412YJc2Jhd9V+Z8Nxtia+D4dxMqVNzfJJWXROL+f3JnxFRRRX66f5iHrvwo/aJ8PfD7wXaeGb7QryWW38zfLAEw26Rn7kdmArqU/bG8IKOfDWqZ9vL/+Kr55orxa3D+WYirKpOLbbu9X1P1zKfG/xByTLqOBwleKp0oxhFOnF2jFJLW2ui3PomP9sjwUgw3hnVcewi/+LqZP20PAyrt/4RXVfqRF/wDF184UVl/qzlH8j+9nqw+kR4nw2xEP/BUP8j6OP7ZXgFmDt4a1nPf5Yv8A4unf8Nm+AP8AoV9Y/wC+Yv8A4uvm+ij/AFZyj+R/eyl9IvxPX/L+n/4Kh/kfR7ftneBZIxG/hjV8A9li/wDi6jX9snwMOvhfVvYYi/8Ai6+dKKP9WcpX2X97FL6RPifJ3eIh/wCCof5H0Tc/ti+BphhfC2qjPYiL/wCLqJf2vPAyjjwzque4xHj/ANDr57op/wCreVfyv72ZS+kH4lyld14f+Cof5Hvz/tceDnOT4c1Q+x8v/wCKrM8Y/tM+EvEfhjUNDtNB1GOS7sZoEeQRlQXQqCcN05rxSirhw/llOalGLuvNnBi/HLxCxuGnQrVoOM00/wB3HZqz1CiiivbPyEKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/9k=",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [33,47,60,70] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [37,54,55,69] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAor9F7P/gjf8Er/R/FFrYeOvGNzqnh7V7eOO4t7m0NtcW0yNgBfIyZVcLk7wMOBtzVHxJ/wRz+HNlp1nceHPE3i66mk09ZbpZbqzCedt3tHGyxHeNhBBXOSce5iVSEYc7ehLnGKuz89qK/QyP/AII2/DBNBh1S88eeLFmur5YLe3KQKcPGPKJBhyC0mVwcEcBgrAgU7L/gjt4GtoJ5vFPivxZYRoUMN0yweW6EMSceVnIx0HJ/IUQqQqfCy2mopvqfn/RX3hpf/BJ74XztHPq3jHxdbWxdGlmktQrJG0iqMoLZmDhSWK4/gbptJFm8/wCCTfwRs5NJtJfih4kSa+t3kn8wwqI9s0q7sGAEDYitg8ndnABFSq9FzcFJXRmqkHKyep8DUV+lU3/BFn9ni61SeDQviv4zmt47yaOOSQWwZ40Zgr4MAPzKu7pwCM0H/giz+zo9wtpF8Y/F3mMqlQfsuOeB/wAsc9fb+VN1YJ2uWfmrRX6UeNP+CK/wD8H6jNBdfFbxb5cc+2NfNtGeRQV3EYh5bk8Y4yPQ1rav/wAELvgLpuhW2uN8YfFcUM9raTNPczWgjHmMquo2wktjepHHQYAYmqhJT2E5Jbn5g0V+k1j/AMEXPgAZ5INS+Kni4NEuJPJntCA2V4BELA/eXpwAc5IrO0P/AIJD/s16n4bOsT/Enx4n7uMLdtHapC0h2BsKYSSoLDv/ABAH3l1Ip2GtT86qK/Qfx/8A8EjvgX4Ymgl0Px74uuonlLSQXF5aRSGLZvG13gWPOOCc8ZXALEoOd0n/AIJb/Cu+mSwn8Q+MvPurqRLCWA27xSBY422ErCR5gLlSM54HygEkCqQauGx91eJfA9hDc+JPEdnZXwvJ7i3tPCVhPE9zb3r/AGeE3Mks7FyuyOKMq7EBmbmRNldF4b8EaXqPgfR7nxJ451mLVHto73VLaRgCpDMyfNlQ0TRtuJYEIpyHVVBHp3irQrDw9p0V5c681pALyJLmOHUPLUhmRWBJKqARsxvyCwQAE4Fc78RtB8XXOl22m6dcJDe3Nummz6gmnnyIVXyolkfbKX/dKjlsYPAUDA+X5rH5lNUZU4x5nZaflfyVjet+7m7q/kY3jnQ9E0n4eava2OlP5S2y3Vnci7EizyqZHG1oyVBACtgEfd9TWB478Sap4V0XU3sfCWr6v/Z0qLAlo7NdSoCoKxR4YSssZDKMsSwCkrtyZfD1yuq/D7UvBepOkOo6nbs+mWWnW0kkcLpbTpHCCq4UN80oJWMbTgqH4PV+GT4mguZLfV7OW3BeWGA2Nwstxbu0WN0wbZEIgil0j3sWKupCFo93HiMwisFCda8bq0nG+n/DiqVIVaabur9jyPS01/4zQvFrXwL1i+lm1qMR22otJbR2+VCSTBZPLb92g5wQjsRsOGYt6vbfB2x8KXVrNpnhaOa0u7Zxq0Oq38kk6uACuN7HaCeo64AAwABVzTYRpttPPq/xH2mwiiHnXtjLHEDJIkaSGV2KqBI4jYEg5UkZDKasvFrekeJbvTtdvJkmsJkguZZdOuJSmJDGAWBdSpZl2uSF/eLgEvWlCrl1CMVGr8W193+BVKnhqMVrv1ZzWs6XNbzt/Z1xt+dmYxAYQE5Jxtx1bqeMjocVwt34wTTPEb+GtTuIluPMWSCQSKWSNiPnccfKCrdeTk/MeFHvniD4V6Prvhi7F3qUUW/YXe4t1IhCsWGW6DlSc54yO9eWa3+yZf8AijXorvS/GkDXd/KEhvrWbyY/JZhthRCdsjGTdl1Jk+YcIWIb2IYmhRl771/r8B1aMrXSMHV/EtlqlleamNUkeO3LwzyOu1hgMSx7oRgHGSCwxwp59V1S+EXwW0PxGjveZ8FRiR4sEyTLbKXO1QOFkDDAAHBGO1VNO/ZcutDPnW1zHvWzeO4ja9jhWd2dEHlo5+9koeWOFYscjca6r4W/B6Lwb8CtN8Jayy3MifbObpy8e2W4kIjRiAWiwwIP8W4tk7snswmIp1LrZ6/cupyV4Wtc8c1nThoWhXd9d3F1EkS7giIAzAvEVjDjEmTuyRgbc7hyMDkDeafpthc3uiWtxp6S6hdNFZKqhGVZXIcFhgqypKo5ICpjPQL7l4p+El54u0O81r4W6rHqemRXzW8TKkC/ZI2JK7gZmDMD5I6gbO2K8L+IPhPxp4V1/VtE8bWH2W2sLxLWHy3eYSIkSO7pITh93mlQxIXLKOK5o4qlWjF03dPqaSg00yPUJhNpthqd/oMst0ha7int5njRkE7R7SxbepaMKfuBMMpVQeTj/DnwvoWm2IufC9zNc3tjb/ZrW21yCGe2nnbY22ZUVRL5R3MCgyUl3fvCQw7n4Y+B7+3sbe8v7LWmult2uruO2eRo7ZoneFyQ7bQrFFBQY3IVQnEcmx2leHLK38aXHhfw/YSi8mEt8jEqyBA+HAlVEZmjVLdDKI9khRsDpjFV1UXKuhoopo9j8V/BPXLi7uNE8UeJSyuirB9kViglDMFH7xSpDfIQAcHDAlgTnD8d6vY/BTwpY6R9nk10fZClxE9j5IZ8lAHC/KhKDcWfy4z97gcL7p4m0O2vLaW3nvVSNmDFQcfMpyBnJOC3UewOcgCvCPHmi3eh6owDoEhvI7l/tEDFwyGNd4JG4HYEAbKkdDuDEHw8wweIrU3CEuW9tVvb7jqxNGq4NR3fU4iz/ad8O6Fruq+IrLwsumW6X8Kpb6lLI1xZQXNvJ5Uc9pLCWDqgR/ky4E0TbpJAYzu+KfjvqWo+J9P8NanpFs9nexNNozaerLdS3kjSokT2aIUlwIDGzlvMLjbvZdr1z3j+z8Pz2f8Aanh/wpon9orNHHHc6osNuyzIneRo8DZtLKQcgooZ8kk+UeKfiz4y/wCEL8RafqVtcaY6ahdPpi6JaT2N3djeMSnB/eF2QYO5pBuDqHDoh+bzHL8SqzUnKelt7JbWtvta/r8zwq8q2Dqcsm5WXyPUfHXxol1rTJ/hhquh2V1a61b7re8voQVcFmeJmlYFIyhXejM8mGtY3ZXxg9Bq/wAQfHWh+DovHXiLwzNf3dlLDBb2enxXFu3ltdxLC8kY2tlB5fGcffDqduR89/CdvEPgj4r6Z4Q8T3BWa3to86PbzktAjOZI1kuZMPJg3Mp437VRcsNwYek2XxXhh1UeItO1ESQWF99imsns5lMGobJWMVvDNGRhI0UuCmzL4BBjZa4Xh6mDo2qJu60e7X4+iMKeM5pfvL67Pe3oek/Bn9pK4utcl8E+J9EmFjcW0xWa8gXZbtIyhlm8oOQzbpiXO518o+WAFJr1f4QWPhjwp4BTwpcP4e0xLtGf7NF4hWWKYszuFJlA8sjzHTYDjBKhQCc/OPhjxL4j0nVm8Tt4Lv7VopIrS4thY2lsNQT5ozIPLBUnYSxYpHhi2EwnzeDftCf8FGbT4V+Nv+Eb0iCTX59J1y5e+nhvI/IWRSI1eCby95yPOynCbX9ZJa9fBUM39vFYVOrpqnpZersvQ9D61VoVFFNy06n6XX/xq+G/wo8O3M0OqWNpDeq51a3yr7jcziKWNt5JaPe+cbiUG0hApGaOu65N4f8Ahpef214TY3Vg0tvPYJarGk1ycyErsXBRiykyYBJZmIDA18B+Af25f2e/jrqySaX4pvPCeoDVUmmi11VQXKJathliQujh5tqeUjFm+UshRGkj+mfD3xe+GXiz9kLVNBW/t9Vu77XZZILOcwRyXiiGP9+VL7giysg3FSgI2hmZMDty/HZjh8dNY2Cg1FrfTpbfv32N3XjiYtctrdy78LP2kJNQ8NXXgfwTdPo8upSXD6R/Y8TXlxYSJaW8SuYXctsixF8u5CoR9ysCEXfn+KXj64+CVr4r8feHtL0rxHYeJNl0lzCUiayaQFrl2vIfLREEkhbgqqRqA6uy4+bv2fRf6n8OYx4Q0y20wG/vp0h1C2864V4zLDcQG4lbKR74mlaZDzIvyIN7BfQ9Y8av8XvDdrp/iD4lT6bp6sDb3ukaa+65ZBvfbfgxmKJovl2pmNnaZWGciTgwtRxlKgqnLNrRvZa7fdsTg68VFydrrTXRf1b+tjp/h1418EfG7wn4rtvGepWmlz6Lel4XtgmxzLEzi2yJdgkSXznjRcFisigoY0zPpXwv+EfjrWNQ8LeFNVfWIorGR7jxLqGoBPsyD7MXiMG1JARNNEoRCqO/yOAUbHIeGvgd4Z0LwLB4Q8P/ABJuZfDct9LqLeHdO0JIGgkcyvvlcxxTXxVbicoskjGNHMYby90VavwC8ap+zn4R1Pwn4HvZ7+OS8nmOo3ts0l8s8Jto5d1wAjTOREkSGb5yNrEFUBb16cqOCpNSrKy103aWuu/l5nqKnBpyat6H0wuia3qgaOyETZA5YBGPr3rLv/hzc6nbvpt0d6Shg/2gAgAgjG4NuHBPTPU8c1p3N5YaVGLqe8jtQsm1VjlG3cfoB3qGHxlo2oZnj8RIMgbGVlCP7hipBP4mvsJwwk4W1+9Fx+sqWy/E8Z8SfBC90zUZZ7VDaTMPljmcSwyscjcQQATjIBYd+9eF+Nvhj4n0TXP7Q8f6Rpd5bRhUQX2miMJGGLRPv3DHl7ex2nJ6cJX3mbCXULQxyeHpLmRcsJ2hxIAeys2AP88Vznivwbba1ZtbXWmXkQjkSZUeNXeE7smNMb+Dkjj14yMAeXOLpStHVGv1enUjdrXsfFNtpVy2kQxeB/D/AIZi0y4uFv5pY7NjGJd/yMGhVSZVIYMW3M2VVcFVysOm+Ghqlnq/jHQtC8rzbWHSLx1itxLNGXUJDGSgZt5mfC4dmaRzlmZj9G6p8G9H1DV4H1uF57sMMSregKSrbQzxoCrYKbihX+FTt4UDlfG3gq1gsr3xJ4I0mw+32xVYYW3vEYgdkkIG0iMjdncA2doyQcmuWnhcKmpuNmji+p0Y2urHAeLtT0qztZrTV5YYEaBP7NlguC1zCQCTI+4KqDcq45IyyAEscV+U1r8N/iP8TPFSaB4I8F3+q3N0fNK2ce9UR5GUPIw+WFN2RlyABjJwa/V3w/oiapeW/h9PFrTol/ETfxXIdo7F2jfcMERyOWYQ7mljAJXJLZWqFt+zb+zX4U8LXEngfR10e7l81r3xLBNYm6CiDzCqM1y5lTzXQbU4Pl7lU7GJ9ahmVHAq1tZdjmq06fMtT8ofhV8GPi58Z/FMngH4Z+EpdR1OztpLq4smuIoDHGjqjszTMijDOoxnOT0r7P8A+CW3hr4l2PgX4lfC3xRoc2lwWOq6fJPo+s6a0FxBLPDKsjlHXcW8qJNgIG3DEH5uPePgp8EvgH4c8f6z4y8O+KLn+2ZdOlbV7uK0jiN9LcrGyxSIiMQd8csoQNuLbw5kCxFPRrDTvDlrdWtr4U+J3266JluAHRnaSEhvNxtT7oSPOSenUt0NYvMMPj6HI46eYU8LCa97U8x0fwR418P+LdP1PU7S3tdM03SLyGWU3KbIpQjyNcSBGG5pIjIAWaRfnXhWjQ1wdm3iDVtRi0nU/EPh3xlZWkkX2ObZHE9tKRGZbcMYkEMIV51AdWljEjbZPnMa/SfgOaK8v49O+zmS51CSaCCQGIm5tyH34DBdy7WkXDFhtOctzmW58AaNPp8HhZ/B1nDPHci8uGfyXQW4kgWWBx8z7Wii+VBlUZc5X/lp8vUyzA16vOtO9rEVcuoNXTsjwv4TeOvj1488SXmjafo97p7zo0qtqnh/Y8JEieWIJYFZ2UfvUJCRgqU/h3ouungf9pzw007aHqf2OG30l3+wX2pSJGLiMuPPuOyoqEEqXjYBCwViXJ9S8Q/DzxmmhW6fDzSPDmmQmxeF1u4N0SEYcKd2QyK6qMFSrAv8pYIV82stB+L1jeC01T+0Z9OjsBBpmo32nxG8srpxvllYpcSIgZVOMBR5mxTGS7zV5uKw86LUKGGU4LW8r3fo1suv/AOB0o0qjtFtLW93e/lY+/JNJTSLtr+2toYhKQZQEwT7k/iaZeQR6pm7sbhfMdMiSK5Zcj14PP45q1Np9rqOnfYNZ1e7jLEbZY3KkEHsR/LketY506Dw5fmOLTL6bByJYmlKNn0AbGfwr6uemr3PtYK+z0Niw1TxHFmG9v7fYHyiiZ0YgD6nj8uh4FK2lXN0ZL37VYRoy7pE2SXDEj0Uk4/Ac1SS80+3sZr+TSb1yM/K0c8rbueAuGx+AxWlo2pTySK8WmtETgmQZwTjJ+XaDx74PI4rKdaUWuZfkXGipL3Wczby+HdQ1N7vw/4psjfWs4E8CaNIodlJyrxsuJOhBVgVOcEHJB4n4gfC22s9RGsaXYSm5uAjS7hFCbk4c7mdkJALkkhezckHmvftJudG1bMdzYSpOCCzbmTd6Y6DsfzrO1rwt8PrRpYbnV7mK4ZQGjl1SSVhjkfu3dh+OM1E5NwUo6L1F7GEnaer9D5N+IfhjVrvSV0vV/C1ylyqvdJd2TQokWzYWYPtcFchWIb5R5LdgQ/GeIPh9pZl1Txy+k3cGmu6C0luLC48qa3htfLV3jx5ZBVbd3hIc7pX3FsIX+qfE/ww0C8sNlhr6XybvMMVz96Mg8fPuBBGAec5Iwcg4rznWfhfNK8+m6rqWo7JTElnJJaSSPIoLAI0gJJLAhWI+YBieDgjOniYRdpK5zVsvknzRV0eB+HfCOgfEC+0zW9K1KDRDaGO5MEF5BOjSxctPId2XOQFYfe+VV3EqMdpHpniXVR/wj1zqrjTW8qeV4YpUaW4Uuro2Tu3B1Ztp56BiQA1T+JPAXh27uDa2WhaD4el06yuVg12VY5EHnXaPHK5jKyszFEf/WErKImbf5auOO1Hwr42hSSTSNWmgMMUdzcMujXFk1nGqLE7zZOGMm2IERRpjEjBlb5z1qVCsuS2/l/wLHLKnK9rWO40WxXQNOjudAtpr9zdvJHb3Ui7luQJTJMHfLAvhWHPz7xwQ2KrabeeNondbfTJI45LuRZ5JXR2hJLZLhpDkNv/AIf4ccZAUZUGp+D/AAL4ehm8T3bvb6cgZ7gXwYMMpCNjsVICtIpC4kZoxkfc4t+HNe1mO3fT/FU92hE9vFZak0EaW95ZmBZBOpTbgthAA4+9vKAq0bNvGELJR2IlSvubMmqavYvPdySl3a7e2gkWY7jGxZysabGwQI2HCsABxt3Zq1P4v0q/8L39y3hm/iEdp5k8iJJcl1KomGRCzgAfIF6EswKltxWrb3M08M9/4ijOnyvcNGmp2UwCXio+9ZCZGIYjehYNwABnjDlyx3txaXGuRaWRbyWJW3822dlmDyEqpJztIXaGODja/HZcpUU9HsT7OS+HQ+o3vnt3iimR2jLYEm5CIz+dalta394jRTkPGeVkUjP41xuneCdAhKrea7KoUYPJyxHsy5H15rpNMtEtoDYaXrVyIgudzqT175ZR6dK7K1PS6u/lY7aM23ZpL8S+nhu7t52KyO2cnMjZx6Yxj9c1Xn0e3SXbc3CqwXIIlI4zyPrVi2h1piyjWk2I/AbJyMdjxj9aZqWka1cKgikCkjJRORwPr+v41xtN7nRs9CG1hsC7S6fOIWk2qVjBXjpj5f5d6tG18OySCG9tre5C4UNt+Zdw5PzZw2CcfpjtnW66lFGLd96HAOCh/Q8c8VHZjw/ohlZ/DDgFAZZRayO0p4XByCW6+hrnkmlZanRHXXY0dR0nR9D0qVdO8JrcWzxg3Ns8ZkbbznPJHfntWLPpfhnxHaFrDQZNNnEoY8bQCzZfODnJywzkfeNbkvjDS9SSO0mlvI3m2/uhayrwegZSB39actn4fYtHbWhW4lTKlgUxjuQe35VxypVY6xR0RqQbs3+Z5f4l+Hl/o999oGiF4lhVI7iaMeQ8PLeSylTtDMQrAp84AyxOa5rxX4Wsfs914TtZbOyjWxaO1a3tWWRAXLK4mfZ5jHGTIw3kMN33gU96SLxIth9ojsLedR8rF9+QfUYTOOR68g1yepeCNP1/Vrm6to7+O8R91pOzkRBvlOQVwwUAuuODluDgYMfWaqVpocsHRq6o+Y/GnwluNL8FWetXEsV5aaPdzStd6jGiLbzZE0jO+fnBVIto24JSPcQVrmotG+HXgC/j0nwHNc6FKLUWM+i263Mmn2xkeMqzqcssQYqxiG1eN7hiDK30Z8Qfhml7qFlpF8YBEtmioBbMXlaI8BsqFfJ3FiuM7jxyRXLeIvhtoXiOeHUNW0G9077TaKtwz3I3QuYtr5gChCTJhwA+YwSFYghj1U8TGEdJHFPAVFK8Txj4eaf4mt/Dd5D4khmaxbUpYoILqVZZtsxO1k2o6bFkVQN4DfvXG58LK2s+ozy6jZPrGkpZossj2Mt8PKIu4kkMJYHClhvBbaJFBIAcMi49Csfh/p3h/wAB634S0X4oPpun6rfQXsF1bWhezin+ZdswJaVCWKqOdmQ3G0iSvNoNK8deD5NJttf1GXU9Km8ySykstrTENNtSaSAO0iv5kLbcBFK5LgKd1bxxKqNJo554WrF3aP/Z",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigD7di/4I4xz+El8TwftEzMXupYEh/4QwYykCzBi323O1g2AQDyPrjM0b/gkvp2sabc34/aMMTWjhZUk8JLjG3Oc/bOO3UCv0p1DwPZ6F8LmtL2BBHpl0btrNXUqYwIhsd1UOWaFZFZm3MS2MkYxl+IPA3w2s4NVtfDrR6RdMYopYb7V4zIsjkxxPhyikl8BTkBmBAIKtXE8dRopyrOy3+RpVpunBX0dtf69D86rv/gklHaanBZSftCYimidnnfwkR5ZUOcFftWcfLjPYk5wATW1o/8AwRs0bXtZs9D0j9qcTzX62ItQngk/PJOke9Obzjy3coT0O3dwDx9k+MfA2uwWN0fh99nOoz6nBpMSNqMImnAUmUGJg/lsrlWIdSSUfKhdr11PhH4PN4Z8VwzWOuReH9VtLNLyLTlvjdTQySKC1xHKFClvN8zC4wF252k/Llh81w+IbcVp0/4boYUvaVNlp3PiG5/4Ih2cLoYf2pvNjcLtdfBHLZHYfbeRnv6c1PpH/BC+fVZFtk/ac2zttzGvgwEKCCSSxvgAAOcnjGScAV97WenL4fszGXeTyLXalxIoLfKNwAC8H9cZ96i0DxdZLqz3t3ax3NvIGLqUZiMI3IGRnaeCDlfXNdUazlL3dUW00fCPh/8A4IYWXiPxJHoNj+1f8jC48y4/4QbODGjMu1ft2XDFcZ4xkZ54qRf+CEyLZ/arj9qd42M8qpG/gJhlFOA3N6PmbDYTk/L7jP3XpGr2c/jnQZ9MtlQHWLWxhiiiKsqSzoMMvTadqhW7b+xC56z4qS63o9yLXSGLpNLLDLBDGzMXLrsIbBCnLPjJySwAyMitYO8OZszlJqaifmnq3/BElrCXT0tf2mhML25SJi/gsoUzE8hxi8I42AfOUX58lhjFX5f+CFksNnBcTftQpG86o/kSeDRvijMhQvIq3zMgBHcc5HSvs7xhrN7c6LNNYTJbR2t5Ef7QuANrRm5aLBZmQAqH5G/qmBweYNR1m8spYtTg07UpLcTAXEdksv7qJTgOzJ83l72TcdvOcdX4551ai1TNFqfnbef8EwdLt9Q+zxfHq6eBL1bW5mPg0hoHLIpZgLsgpukGGDHIG4gKVJ6vwz/wRmuPFEjJZ/tD4AdQpHhNW8xWbAZQL3PPGN2M89MZr69l8MeGbbWTPqMNtBc3F9HcXd6ttKzu6KQm2OJSd6vMA7AKWRskgoVbR06GTwhqL+D77RpL6eS3W4N3JIYGEbyOB8qRqyjKO6ogKnywp54dqvolfUbTufF/jj/gjNq3hezu5NF+ONxqlxaybBAvhOOLeQPnXJvmKsG+TaV5Yr0yccPo3/BNrSdV02XUT+0BCqoG2CLw6HDMHKlM/aQd2QTwCMFeeTj9LvGFvrGuaDc6TfaVavervSS1uI/NhYBiUCkqCQUKgbcdxkkBj4P8CvB+t+HPEVx4p1uIXqxP52rW8s/kwsjwlEDoFyo3vJKEyB80gB5cq4SqSe42kj6ZTWtR8W/AzU9Vnjt53TTXNvf2USQx6gn2WRi6hPkI8xS26MlCZMKeMCxL4H8AfFnT9d0DVvD631qI1n1vTI70qXhbKIEIAYFtjjYjq3yk7uedDRNY+GepeJHHivXtSuZorNrays7DT7mRZZQCmCzFIprYpho5E3AxkthRhjqr8V/DEMVpojPaNqbXE08WlvHJdQW1o0TQyCMk+VIGh6yMuFLjCkYx+fYnOoYXDQp05qcoK7Vm046bvSzXUmOJU4KKab6/gc94B+FPgDwNYwm0+CV01vbs1xayanbXE7q7GSMbZGy4dAWAGT5auVHBIrr7jV/7T12XS9S0q2gnicwW9u9lsmtv4tjGTnlg2CcMQvIOCx5jxz8Z9T022hb4YyT3l5a+KLS/ltZrGIl4dqSXMQR8+WCH+ZkVgwjeNSgkJV+lfEbwxock2t6hdQ6dbtfrLYNf6tLDLPcPbPJJGYjKU2hz/wAs0zg/eCiRF6afEmHnCM4U7x6tXsvw1/qxusVSSUY/O3Q0PGvgzXdLsv7YfSbqaR5CoQwbsLy5Y4655x6nFeNP4e+JZ8RiwfwVLbSXdtK1ultqAEkUZOBI6AIyuC6o5B2Ky4dgw5970v4r6V4++Ez6/purz6XPDax3UczWRnkZ45ZBsESqcRl7cZkJAAMg3Aozr3GkaJrlh4dt9UfUbe8u5LBBcNc2bW5nmeJcDEio8SvIAcKCQ7AZG0ivWw2dUq0mqDT797eX/BK5aVX4JXPnjwx4M8R+D5NK1fVIEsW0PU7O4uWhkDJMIikr5b+IkO+AD1TBAwVr2P4teAJJDLdXkbZS6Wb7LaqzSFyjrHGuAQzCV4yc4DBWA+YoK7v4pt4N03wQ+i3HiAR6ldoFGp2ulJGLRBtRrhuVwoOGZ5DhlJACk1jftBa8/h7S5ryy8Z2miK1u6zPc6dHOnl/IWch3jCqqq2WLpt3htwIGfQjmap4OtK13BJ+t/wDhjnr0pUpo+XviQlvZ6cviC9a4tdITTlu0nQlBtSR3D/KGMhO1ByCOo/hOOf0PxBcL4ka6h8NQ3EkVsI7S8ulcGKYrBJtLtkKdqTOTg52EdSK+svG3iH4Z6v4bttX8SfDe11Tw/q9tFZ6vdXbRwypDP8++ZIz8irGZMkAFDCUOWxu8w+J/gn9nr4c+ObyF7nUF1m3tofLhnuBEi6fPJG7TMzKxdVOU2kDeE9uOD+2cLKk6nNp/T0NoUnUu6etjzuXwa1pdQXkFtdPZ3OLyW+gtml2wKoEsk8oJiUh9iFWdWLlcZyQJI/Cl3Fo0Fvbu5vrCcT3kkjeZcQhYvIJ8vJw5OAQeqfMc43j0mP4D+PpvDQ1HS/CzWegSRpNJfy6xBJbPbbNymSWOZo8EYZXZwhZsZAVTVOX4d+Pj8Pbi5stKsbfQ9B0GS5X+zrWZTKkLNJIT94lnCyRpxtRtvzKgkdOmnjaatKT17eXmNxfLdqxxNzqFzpD3c8GtW015YWzXSQeWZDK2FaNCigsZG3EgNtJJABLYFeGQ2beAtV0jSby7mt9V1XWjqTyCySCFpmM7Rwzxum5WU7TksowqAlcV7Lp7aZf/ABDe8Ph3VIpdJmtra/h1iWaQXtvDK0PkmErFJHuESxo4Zhliir8qZ8P+IPwm8Zf8JyuoXXgfXLWC2it7m0jguoEUW5VpjC8TY8sqI3bCDAV1YxphErrp47Dzo+057Ju2umpmmpR5uh7t4g+F/hH4dW114p8O6nr1sk8sLX9jpsjG2nUdYFSOIFUOSrAFQMuxzli3J+Jvi14PitYfiBc+HLiPUNL8UPo5n1OOSe3lEeyUCJY5FtSwWO52CQyM6gxh87Y692u/hXqugXLSXENxNmJ7lYra4ltpUnMZj8xMtkKOePm9CWJOfCfFHwo8M65r5sNURfD8UkCyC5tFgEjGOQON0ZhaNl80mRgN43sDghnNfL4jJaOKlzQfKtrLTzf3v8NDLF5dVdW9P3V28/8AhjE+DnxZ1Hxv4+tvC/xM0SeO4g0tr/TzfaGlu01uJMtHBtU5LhkT58h/3gYsIyB6T4i1vTdbvxpHjPRGMej2fm6Ykdu0SQ3L26yKVGJGjdFuFYxFQCJFKnLMy8//AMI94a07Vda1aLQ9eF5qcjPqN5NDHcie32KFikVm2ARCJdmVLhN5aRwNjWvCngDwfFq1rZ2Bm0zT9De5az0O5ghuUt/P2fvHkALTMzRGVmOz5pH2rGhMY8yWT4iU1Cj7t972auv66etzjo4bGUpJ33et/I6X4W/FbRvCWgX/AIk8GaveS2t9azXdpf2M6+UzCEXHk3Qt5SD5b8lC7kHzN2Dvro/DX7S3iiw8UXNjp2sajpTrpcltfxXCva28AkjSeKGJypZN0cjKY28zftRiYPnjHNapoGm30Zk0TXo7C1LXlrHbX8aRKUkKxNKiDdtOJXwvG4yEnhiT8Xftm/EjSPhXrUHw38EfEfVtU8Sxstx4j1mdyjLcPHujEbb2dZFVipbezBSilmZWY98eF8Vi8UvZtRW107ad33f3epdaliY1LwaS8tD7ng+IPj2HxkfEltq8GqvFpGBczyCOIRXLyFWlieNkZXETOsYDZaOQx7ly66n7cWr6brHgPwjf6T46tfMvNGsEa2sERvtV1O0cezLONi5D7k3FlCnCSFcV+Jdvf3Oia8uo6deyW1zBKslvPBIUeNgcgqRyCCBgj0r6b/Z2/ai+Mnxp+KXhfwD8YfGUniHwtpqR/aNL1CKKOKK1tysqqrIEK48sRBskqkjKMDp68eFcXlmDqxp1eeMt73T07fF+ZtKU50XB3kz9Jvh/4z8C+GdRsD/wjN7daRPZyS2dxeXsMrlpZpFZpsENA6uRGnmLEWEfmIpVhI/DftDeCf2i/jf400y58N+HH03SYr9ZLjTtT8SRtcX8Za380BYWeOBFSBVClSQ6bnJHmQjlNT8f/Eq++H0WtnQZtVu7LXLqdtLSf7Pax24tQqwvJDue4UxBMh41MbXKRugMbA4OjfHTV/h5Zw/EPUIb69Z71bldM8R2lpHaW8iXaxM8rxAgtKHhxkMOdynJK18rh5zp1JU69LmSbcV1XyX5/wCYU8Y6MYwnFtq732+SX59z2HxHqfxKste017ubX5dO0uwtdI1LTtN1z7LbqkSSxwqs88DwzB4ikrqIVMzrM6NEGRY/cX+MXhQeGZfDPh29vP7PvXnLQ3F5HKyu/wC7CykyMscTyhhkFogAVwqiJX+W/Gfxe8U66sM+jeGdUMtuJZtMa5ijuDqGyzeNSGhAQxtuaaN06GUbQwjCyY978Z/G17d2rWfwfuSjaIRqdvp2yKWGFpBGbYRXrhnCIru0JC5BTDAOJD31qmZOmo0KFr/PRr80+/3HXLHzqUf3UHe2l1p/w533iPxLqWuWTaV4B06+vbe51O9lkDvbx2sPL7sIqwxyQoiZW3wrqXBXJbK1PFGqxeJ9H0bVl8IXOsanqmo306TxSGD+05Q0XnlLqNCQsoeR3n/elVy29cgLwfhm18Y3Xw0mHir4favBfN5lzZ2Og232ea3kMokC+ZC3z+V5IEbRMCpUOvJwuRpF14zutfv9A8QfDnWrfQoLb7U+m31k4jvYEKbbYJcM8jAmOKURlmkSbaVVWkd282jl2dOMY15Nxe/kltptfr6HkVIZhXtGaettLbWfyP0Y13S9C8S6dsvL+eCcDdDcWjKfKzjLeWwIY4+vQcVyfib4U+FteNxdLpsUVw+wx3L2TISh5UPkDkjI+6w+h6er2mv6s0PlT6fBApPLrIpJ4Izg/Qf/AF8VWbStVu3e9+xQKu4tHPcaigA29CpVeMepIxxX3NZQqT5loz7WMGocr2PmiX9mt7p7a5sfPgle/E+nSyaWoLuV8koPMdcg4AwpGfmDZya5HxT4C1XwffT30Gs6k+nWdpKl5L9oCQvIX4laLMrF/Kw7NI/L7uCgbb9M33gDQr63k1XR7zQW4Vdv2xbkROF3Y2kDGCUk2jgssZIKllfzvx58NrXTLWbSbPT5tR09pHdrdHcvKSBGIWIlCpFgl9oR2+cqQw+7k6jpJJmEqM1rFXR5Tpz6Brus2en2niySXVLXS4Ga0VoyIIVBjMkqNMJLaLdKpyCVUzkhkxXkvif9hr4J+L/iovxH8S6naNf31vFb6qmtRrPbQySxiOJQEUoJdgcBt0mxogQWIG72zXPC+knUnS0upNEuDBIt9HDbyoijC7ZZHmkwGEkUciAJ5RIydp2tHweo/D/w9DZz6p438Sv4ivtQZvt1yyW0epHzJXAMEUK7FDbEPlt8qBiSFcOQKpiXUvSlb8zgqU6sp2srHCfCb/gnF8IfhPqFz418K6lp2ratcKtrpVzr4gnEDrJI4uYlKbYJGQRERh5GQxv+8ZX4ofBj9gzxZ+z78ddc+M+o+JvC95aarbz/AGbTra12LYTXN0AyIxXEahCyqUHKSFSFHNeveFPhlqNkL6/8LjTrjTLu1/c6Vqd21lbTTeYnkF0QHk7kO9YydwbBkYsJN5dJv/Fky3Ov+E9I0+5l1KRdTWS3LgyiJsBMkFgsrqoLRx52sXV0AWumeKxvsmpO/NoxqjGFrrVC+J/DukeP/DsOna5oWpS2llq5e4uNHu54JXacRfuh5LBwhWJSAyEbPMDZDAVn6R8MvAMGn6kmqeFdU1OBtOaO3nupTI84KIqtLIdxLKxKDAJk2A5/hXph4vl8KaUbWPQL6KafyZrs2aM8LN5cYZFkGWDACLceQQigFRhTej8W3kn2nTNR0WS2JupHSeeQtK8m5g/3GYOWKkKdxJBUnGQK5XSqJdL2Cor/AArU8s1H4rfEbwHqGk6J4I8JJaaWlvaRawL2FkhlYwXMcEIWOUbWaYvE0nOBKrFFXEVaXwp+K7ahC/8AwmNhdE6jZQbLKRI51t5ElDSW6hERosMHyxUhmG3hQpX1KbxppNjcQWfiy/ZZra4Mo+zIzTywi4IXA+ZRuI2O4Uhm2lNmQtecfHPUtcubhLr4ZwRXWrG5t43tYliHlNL57R3DRKxkC5idVX5i5xwRkr4FbJadKftozkmtW7/fc876rUpK8J2fU73+3NN1JXiW5aAT3QN7I96I3aNgTw+QEXgKSSOCuMAAVwfxd8U/DG28Px2Nl4p1PSNQlvLe4sWht0iE0SSJ5ha6lMiwyLb+bcR7op1ZoBmNkcJJteHPEHiG1lXSfHGsS3k1gtxKNM8NWbXZSZphEzSxyqs+xw29ZXQBmiaNgAQx6C5Oh2Wu6VZaz4ftrm01Pw6mqWDl7Q+Va3QVwAskccpdCzo3mRlVa1MfmOyOWywub4HG4l0Iz9WrWt6v+tdzooV5yfLza/efSMAsdWidnt3TcCSzO0eO/O4gAe36cVLpuqGGZfsmk3BJYZYInl4/MHjv9eO9acfh6+tZSgkkcnJLOw+X6YqKXR0iZjLd7SF3EpcYyO/1NfRzpO14s+nhVV7SL2l+H/BupyfbbbSVt7zJ3yQxorE9+MZI5/ziszxZ4H8Nal5k134wMl2XO+e5igkcYJBA2qpBDA9cj5cY9Cz06xQjyNUmADjAN0w+XBHbr179eD1Aq5J4e8L6pOxvtPUPIzKJICQSM8jPGeRn/GsmlKBonaZ5X46+FVwWRY9cS7CxttuID5m98ZBlUqQQCDjkfezycY4fVvhjZ+OdKW1lsmubm1kmFxZ3V2WjnmUTcbHQCEeRGqdhlA3mIG4+gdYi0XwtarbS6BNc26scPEsgcnqAzAAEAfyHXrXN3Pw58NeILeW4sIWaJ9rRWl1a5RG83dgBRjbnsQ3OPrXLGcoy1dkXVw1Gqr21Pmex+HdjFqayeEZU0PS7nU7g28n9rG7WaMxIAyqwkaFRlVYE4JgIMa+eWrnprTxFqnjKLV/C+ur9iuLQSWdna6syWsrSgEq0M6RtLGSMLK/zKSxLZBz9HQeBJPDenz2dz4McSTXTrdR3eFSPEDMtwGYsz/vDtABGC7ELtDCvNvH3w4s9aGmateXA05oWaGW0trUtHCkhkilbfJOQ6iKRGClFC7HUZLKK74YhwTd732POlhZRlZo5jXPGGi6Bb3Oq6bq15PbQ5utQkvY3eNbdCqo+BxGyuVLKrOBnCnniXUdT8VXltHpltbI9uZtjshFrIsSkky/N/rVDD+HO4YwGxmj4l/A/wnE9pJN4qt9OgeGe4tNX0tnjvrZo2mkRfLDGONSkhAKthkdgWVlJfjr7wgNfuNN0z4UXmsTafc3Qtrm4vZGFxIJElZLmSXKsVT5mYBo1DRIBuzJHJ1U6sGjmUL6Hfrp+jwC6utOiea6vUeZbcyRg7CgQlyvXLGAZxuO7ncFAqxYvfajN/Ys09xDI1tbTXF5FvkEaoyFWlJO/AJjBGNpPy4fpWTo2u6rF4jt4NM0mK31O7Q2881ukhjjzFlnafCuUYOQPlUhXAcvsYVFrWv8AjMabJLpS2Nvcyai6XcslwJZrO3mk8go4jHEYVwHWRPmRCGGWLVz42isRg50oPdNab6mNWnem1Fasz4PjNpH9kavaeHNS03wvpF1OY9Buodd837TarKyxSXHlhrgSAx3B3IVRsMoyoZxheFvE3gjxH4lTUtc8RWtjdPDDCYo4Yra8nuJYozHI0VuT5e6MkIcuGTaSQ6utZ/xF8OWl9bTX3ivwJLql9eE/Y205v3806Bty26W7wjcqCPYXcEs6j92AsrcNq/wq8T67faH421z4S6Fo8z3Mv/CRLc6YGvdPie1hEK72ceWAY3zFGQrNcguDGUjHx9LLsXh68acqd7O6dr7Wtd6fr8zyqGErU3zNeh+oEE2s7T5mtQlQ/AJwSMdMnHfHt1+tR6lp2tzKPJuY0G3LqWDA/mQc4zjt9a/ne/4fg/8ABUT/AKOe7Y/5EvROn/gFUkf/AAXL/wCCpkSeXH+1GwH/AGJeif8AyFX6B9Sqra34/wCR7TzGg+j/AA/zP6EVgvmUWsoBTaN4GRk/7LKQQR/+qrWn3ei6c5W30SSNEfdB+5Yr13ZOASCCOpAIx6c1/PI3/Bcz/gqaylG/akbB6/8AFF6J/wDIVVNS/wCC1v8AwUz1hPK1T9pJJ1x0k8E6Ie2P+fL/ADis5ZdUk9WvxLjmlCK2f4f5n9GF54g067uo7TUJb1FYFniaCQJ1zuwdox79OabJplpbNs0T5ZVkDNvc7QTz2zjAzx9OlfzuWn/Bcv8A4Kl2EAtbT9qLZGCTtHgnROSSST/x5cnJNSSf8F1v+Cqkq7H/AGp2x7eCtEH/ALZVzyyms19n73/kbQzihF6833L/ADP6HtatL65spLXVtIU2boSZo5G3bQfuEFMZ6c9CM/jwcHwtvEuH1rRW8m2d8SWuoW0jBYliIVAoZg7CRi28dRhSp61+Dzf8F2P+CqzI0Z/apfDAbgPBWic4/wC3Km23/BdP/gqnaKUt/wBqh1U/wnwXohA+gNlxWCyXGRd4yj+P+Rv/AG5g5K0oy+5f5n7TTfDmSW+jkitrm5lknmtmFnaqqWDCOQRTBpDmMrJ5bNwS23y/lH7xMib4aaNY6jf6nY24sZbm32nTdSne8QReVEiq0kuxTJHhwu7J2MEWR2ALfjJJ/wAFsv8AgpxJPJct+0soeViZWXwVoi7yRg5xZc/T1561Qu/+Cxv/AAUeviTd/tF+Zk5+bwjo/Xr/AM+nFa/2Zj3peP3v/IxlmeWS3jL7l/mfsT4l8BeO5dc0/wAR2fxQuU8qea41Kz1GMW9tapHbK8jJJgJsEPkkEOxLSgnpgYPhXWYNNlt01/Tjply9iWaO/VBHOxjjD+S25cyKqJI7DA3Iz7yVfH5JH/gsR/wUZN4mpP8AtCxtcxbvIun8G6MZYiyGNijmz3ISjMpKkHBx0qK5/wCCvP8AwUMu54rqf4+QmWCLZDKvgzRldPnL7gws879xzv8AvZVeflXG9PLsVFayX3v/ACOWpjsG9YJr7v8AM/Zi503TtGtUivbNoLqe5M1uBbRuSIhH5c6B8ksJV3biSNxQnO7mvZ3t6njFdO8VQz2EsNp51xJ5kyRw3KXJMMXmpGVd18yKNlkkV1SOUnPlgV+Llp/wVN/b2s7T7An7QV1JD5wl8q50PT5l3BNg4e3PAXgDoMnA5NTW3/BVv9v61+0eX+0DKwulKzrL4c0yQFCqqUAa2IVDtB2jC7iXxuYsdI4CslZtfj/kZ/X6VtE/6+Z//9k=",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [55,59,76,74] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [40,55,61,70] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvt39j74N/C7xN8CvCPijxJ4D8OX15cTXSl9U0eKV7mVL2YBGYgl1KbV+boAAOcZ+Iq/SX/AIJ/eFNQ8Q/s4/Dm+jv7aySzi1ueASyENK8V8zGbp0TzB8vIJXOCAwHk5zWjQw0ZSdlf/wBtk7fgebmk3CgmnbX9Gb3ij9k/4c+Ftdm0O7+CnhRdR0u6aC70qXwhbs3moJPNjzGn3lIRNr4+dSfUNkab8A/gnqN1eXnib4LeGbOK1t1FvBH4etI3m4ALKqx4bGQOdzHazHqTXunwq+Hfiz4tfE/U/D+haE2paj4hv4NO0RLK68gs5YcJvdAWwGiG88ed13VB8Tvhf4k8J3WpwfE3wO+iz6Hqc2mS2lxJuuZSiIhBUAfOWdhtCjAjPXaTXytLEYmN5XbenXv0Pn41q0erOV/Yf/Z5/Zp8Tftc2Vj4i+BXgrWPDOn37x6gNU8G280BjSKZt7RtG0ZA2jIYc71PRDX3J4v/AOCFvwy+M/hPwD4w8Hfs8/B/wjpUVss+u3epeG7a2e4jIifdst4czKSGB3upxwCoYmuH/wCCavhibw78WdWn0XwxYRaXYeEriO5u0t2uJvtbqkUMSvs/dyM3mupBBYNu+VQVP0hrXx98f+KfgRf+BZ/Elx4hfQ7230+8u1uhLOA8QlMMu3lWWJ0bcecMM9Ofp8JiYPDcjvK78+luvyPpcDgXWwPt5T0va36ningj/ggL/wAE6PEVrruiaP8AtF/D7XL+zYLqQsPh5Zs2mHypQUIW6zHnaWDNz+5Y8nJHyNrf7B37O/grx/r/AMPbHwL4I1228JajNY/2jp3hm1uY74xu6l3laNST91CoIKvHICWxk7ut32l6l8UvGXiDVfh+v2I38Is4o7Z5PO8iGUfPtYFo2LA5ALDYCGGCrc/8KfFbeAtMuNKXRpPsFjaCO6tRcfPD8izqzhjkFo5G2dFIHCghxV4mpzRShoz06FNUbc2xk/DD9kz9n/xr8UrnR9Z+AXg+2gsLFZ7hDpNqq3BE8iho0EPsgKYwckk9Fryv4qfAb4IaT4z/AOEfT4SeG9OeGzK3csWg24jV0Kr5m3YcZVwxHGSwPQZHvPwv+OK6p8YdU8c+LQunaRd6F5OjJIp3zyCSEQqu5cE7pZEbGAWkUDdg1wP7RGi/Z9X054oNZuLjWrNv7SmF1MsnmhhGHJb5hiJI0MZVVwpzkl1ExnLlu2Z5koPD3XRmRZfAn9lX4b6HZePNF8B+APHGiXlrpJfS9b8PYnmuXgJvVHkCN/JiuYmjDpPEZFnhK7/3yxfEH7aOl6FpXxM0yLQPCthpEUnh2J3t9P0+G2V2+0XC+YyQqqbiqqCQBnA4HSvuDw54F8Rahost1fahJaWVrJbt9olkgWW4eV3DMG3bmYgiQsVJO8bh0NfHP/BRJ2k+O9o7xSo//COwrIk0AjIdZ7hX4HOdwYnPO4tjgCuihXcqygtmrnk4SrzVeW54NRRRXoHqBX64/wDBMjwrYXv7Cvg3UvEenWc1k0eoxIIldZGee+1QqJCpUkk2BwQ2VCggcc/kdX6v/wDBNDwpoE37DPhnxinlSavbxarGyWt3KVitTfXI8ydH+RZeZVyp2+U65G85PznFCg8tXN/Mretnb/g+Vzyc5V8KvX9GemaL4mtZNL1NZdFVjYazdNp95cgSGKZGWSNBHtXcoXjLYxgcfLmmePJNH8fTWEOteE7nxJrd9ozT2Op6TqHlN/aJjlaBATC4bapgGCOEiZMpvE0KfFTx5Y6d4YS+8J+C5LrSNdvnn16RLaO0jn8qORjuSFEjj81IA7JF8qnIBxha5pfiN4ZnlsvHt5oC3c2raTq1hdeHNXnYw2UksBihvUlVo/MuFc+YilVUNGgYkOcfOYCM3ivaS2Tstbq2qv8AOx4NJK92e8fsFzXU+vfEjTvC2tXlvJpnwo1PW0jk2GeC9he32lJAd+0RgNhj1U/LkAj3H4E/tDa94C/ac+CXwh8Wyw6laeMjp83iF57WNmvr7Wonk/eKrL+7SC4gVcKVQr0A27uB/YZ0LSrfRviVaTLYale+JvhLcyLqWl38gudGNhDd2q2buiKBHdSG3kaNJXiMUMCuDlwvN/F4+JtL/ap8CeIPCD6g974a0XwVcWM2kzBGtriy0fTkmGORIp8tlCthTuAYEErX2lLlo4GDWmvTprt+h9FhrxwPu9Wjt/8AgpNpGn/BLxr8R/A3wi8MxwTNrwuZJDpgkjjSXToBEgAD8mW3kygxuREGBvyvw74n+GttdeF7bxreXD6ta6Y08d7LJeFN8CyCLKGNyqxh3uPkCKTIynJ3hD9df8FK9S1LxP8AHz4h/EDw944N1feIfEl9baT9q0+R4ILeyQQJcJ5UZKSRpJNAG2uSVUuOTu8L8M2OlSaBNoWta1b2yQy2V9bTPbs0Ms/lEpdKHUkRmZBb+cBsESylvMKDdhXa9q0ey1zxjE8407wH4l8R+DgJrWdbqPV9Pthd2d3tVUheORCYlGeGGCzbTucEAjAXX+JjaP4J8X6Nc/FDw5dXNpcop1/TdG1FLOWK1xueCOZopkWXersH2yLvI3Bxlm9L+Img61f+GPGTeEPAK63YT6g8FjDcFVilVNPXIVGYOwZ0CBuokkPPy7a434/XOoNqNv4b8Tu9x9hsbS3nfW7VUd7cWsWZCSoBO9SCVIIGQMbSlZTqclK9jjzVuGE2M/4X+O4bG+j02+8P67q1jcWTy22l2WryRzW5F2ZI4QXQpJFvYSvEioJGdgpSR6/Pn/goRpWr2Xxk0nV9Tshbxaz4Whv9PgT7qW73V0qhTuYlco2GYksMNkghj9ma3rsHw3+Kt1qGl2QvLOCxspJ7uzu0zLbPbwK3l7yzKxkZuQflDZCbQ1fFH7ePj7W/iH8YNP1LXVRXsvDcNlbrGzECGOe42feJ5IOTjjcTgAYA2wUZKsnbozyMvu6yduh4nRRRXsHuBX7H/wDBIPxbrfhr9iTwc1p4iksEh1Z7yC5meBBZzQ6nqJt5o5HUkAzNsKiSL5nU7ZDsx+OFfr7/AMEivFHj/wCHn7MXw68UeG/E+o20l19ut7VtM0+NZLeE6vdf6uUq0gm89VKSRmNlMgRjsb5vMzWj7fDKF2lfdbrRrTz7Pozy82bWHjrbX9Ge3/G4eDF8AWek6La6T5VlY3NwdQt7xjdObiKBoyF8woNjJ1CHcskiudxUL4J4Cs9K8RavqekG5ilEdg9y9g0SxhU8yFY3aQhm5MhZkRWIKodpBOPS/i34S1D4h/Hzxp4t8d/FlZ4rbSb67uJJDI8hu4rNrmMEMcOHnPkSSZ+VnEjA7lBo/AH4aeDvBC6L+0R4i0jVdTsbfTDo1tpGnWZH9sX7XMLJa7xE2XKqXfGCB5Tc8I/yCoVMPdW1tol0dno3v0td73PAjF7s+hf2INb+NX7OU954p174ceINQ8B+IPC/9km8gs3a0S+aYJ5kpJVJZlQTqMv8u6TaPmcH1LxrB4M+I3ijSdd+HWqDT7jxDZaVp9vYzS/YUEjFkEx3A+WT5zx+YwBCg7Tjca8r1r4uv4R+KF/Bd+Kjq+i2vhyxTT9Etbki30+6urVDJFGkdxKUCzmWSVVdy0ylHjiMrxLneNfGmvGy024h1D/S/tIlt4beM/6PsKPHI+3qh2kMBwSo6ZAH0OHdWhTVGTTj6a3u7/LsfV5LQnGm6tTZfD69/l0PP/jZfN8T/CA0u58DG0urHxFqNppNoL+AyXELajbXFzLFLGCs0bOkiqA0eER8jco26Pwu+Eeh6B8NtY+IXxD8SW+nW+v6rf2nh7R4m2R20Kxuwa3jkUST/LbtgfICpkwozzyUvjDw78F/Eepa5qLahZLpniyY2uktcpP9oljKi3njygVUliHmlkQgm6R1XahAq+HfiVB4fkmbxGkl5dapNNPpVqmnrLHbamGLgRBygyH274/MDKl0rlcrHW0ppTfU6al5zikzufHvgn+0JDD4duYbZNQZILPZqEk9zGXuS5LFo1CA+YxMGQFcYC7gSPK/2jdH0nxD4usVsdWuJIH0OztXvYJN/nqgMci8cEnCOy85znjOK7r9q2RD8ItL8N3fhiGa71Jt2oGaXJhTy2kc5DAllADKeimPkH5RXnvxSi8L3nwO8P8AxE8KySJYJKbV7YwH7THM0PlulwWJaRh9jRUZFC7AMgEZeqNnJXZrmGH5sM1ukeW+M73TtD8bQ6d8NvEF7qOlabZXH2C/1DTjp85WWMArIiysBtEg+VZJEG4ZLqST8Tft76ZZ6X8cY4tO1Ca6gfR0eGW4iWOUr9onA3orMqNgZKh3AJxubGT9638v7PfiHwvp8N742urLXrfTr671qHUvD77dQkjnhjs7GKeGdk8gwIX81oY3EhkErSKUMfwh+3/4o8WeNPjPp3ifxtO0moT+GLaJvMkjLJHBLPbxxbI+IVRIljSLChI0QKoTbXThoONU+dwCaxPlY8Nooor0D3Ar90/+DePwp8ZPGH7JekP8IP2wPD3grWbA6laaD4S1qe4YahcXmprDK8lk8TwXcLRjBlCymN4Yw6oFEg/Cyv1u/wCCSv7fn/BPX9nz9nb4W+BvHX7ZOvfCjxpo9zqt7421yXwTqOoRwF9RmaC1tW06JnmSS0KB0l/dqZ5zliyhInDma8mceNpyqU4pK+v6M+2/2r/2UNE8KfG690y11zxX491jRvC00nxSnstJkHlxRQNIwMqCciOSSBQkkiAJth3bvmNeJ+GPGPwh8M6br+qP4lvdOGnJeat4Rl0qNmu4NQkWSLTooJvKQA20/lXDSusB8rzPK+do0f07Q/8Ag4N/4JUfsz6T8Y/BH7OvxLhupfFcsB8La/Z+ANY8oxNYwxzeZNej7W7LObl0ilTZGZCRI64QfnT4m/4KH/AH4j+OLrxd4w+MEqG+vZZJyNAuQyh8hnCpBjJyJGTOGYY3KGyvl4jBUrqUY/h87fgcdHLVOanPRX2/L5H0T8PfGcEemNrGralceRbLuhvbiKSRjKG3bmO4AMSFYtyQU2j5cq3YfC+6uviDrN74u1uC8m020tLuV594VLYtGypOpJXdGpKsY9rsfLT5Gyyt8baZ+3X+zhJEulX3xWlS0jRykcmk3uzceAcJAe4DfMG6AjkYPrXgb/gpt+w5oPhPxbo+r/FK9klm8DX1hoKRaJdxia6nilRhuNm7I+5ht3fulVi33kVaIUKvOm0fRwlCFJJO1uh3/h34e/GD4067afC6DxFpUVvZ6IJ11soipHZ28kotZZQWyz7CiAgbiixyEBSSOL+PVnf6D8VYNMk1O8votMupRdGW3nVLed7hZJEgjkHyhg6uznPm5VtxyoC+Gf8AgrJ+yj8PvFHibXfB3xVtP7L1bU9PiGiDQNWg8yzt4nt1EYEToqhRG7ksrlCyoik7V4Hx1+3l+x54xvLbWLr40yTX8Fwt1e397pWp3E97dPbxKxRjaoLa3iMUSRxAMV8t3DYdYlVShKUL2d/mcEaVSWI1at6nsP7c3xJh8L/BfTY/Pb+09cje2S/kumjaSKexnSePCONz4uIG+Ybc44O2tjQPCcHiH9lPwj4H0zUdPsrs3X2q5fUtRjtPMgs7SWSRYpZJAGdkChYx88jMiKGJAPyj8ff2zP2WPi9r3hf7P8RTHpuiakYXhk0zUH2Wskkf7xQ0XzGNIu/zsrIoAO7HV/HH9vT9ki7tvBtj8PPjBPqsPh/T2EkUmh3sKpclUjZ/nt1J3KrEfeALseOAsqhN00rPz0PRzCcJYGpGLu3ZaavdX0PW5f2Z9Jt/2W5P2q5PHunXd/D4u/4RmXwWLknUIT9n8+K/REYHyQQ0R3Kync33SMj87/2+9N1TRPjlFoWs6PJp9zY6JFbzWM9tJDJbyLPOHjdJPmV1fcGB7g8DoPr34c/tufsQ6r8EfFnhr4l/Ge70rV7PVrO+8GT6RpF3Heb84ueRp0nnowWA+VJdWyI0CuvmMStfG37cPxg8P/Hb41n4k6J48vPEs1/pwfVtZ1GCVLi5u2nneR5fN+ZpGDqzNlssx+Zjk13UafLOLt0PncLRdPEJ8r26njtFFFdh6oUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//2Q==",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAq94a8L+JvGetQ+GvB/h2+1bUbnd9n0/TbR555dql22ogLNhVZjgcAE9BVGvff+CYGuat4d/bj8F6jocNhJctFq1usep2fnxMs2lXkTjbjIfa7bHHKPtcYKg1lXqexoyqdk39yIqz9nTlPsmzzef8AZr/aLtpI4rn4BeNY3l3eUr+FbwF9ud2AY+cYOfTB9Ks3f7KX7UdhpcWuX37Nnj+GynLCC8m8HXyxSENtO1zFg4bg4PB4r9hvHvxDsvGV1p+jr/Zei60l+Hv9dbSh5FiPNYl/NWJ5dm2VgoMbyBJHA3Dy1T9Af2XvCf7HHiP4feHUtfhzD4onsTNc2/i3xTbpJp98gto5LlZreZXt7aPc0YMMxedGkZ0lZ0kceRgs2qYqbTikkvx/yOTL8XLGyk2korrfW/pufy3/APDNf7RflpL/AMKC8a7ZH2Rt/wAIreYZuPlH7vk8jj3FWr/9lH9qTS7WO+1P9mvx/bQSxJJFNP4OvkR0f7jAmLBDdj0Pav6b/wBp/wDYN8Oa/wDsUeC/2yPCvhLwZqPjDSNPttX8R6b4d0OKx0TxTpVxKZzD9mhEOXjjlGySIxTShSCXk8kL8Q/tYePPFXh/TPDPhfw7Z3mmz/ZFubKSJzI5jjby4Yd25MOAW+Zf4Ahzv4rrli68JWceiaOur7Wm52V0tE11PxgH7PHx/N6dNHwM8Y/aQcG3/wCEZu94Ocfd8vPXj61ieL/Afjn4f3sGm+PfBmraJc3Vt9otrfV9Oltnmh3vH5irIoLJvjddw43Iw6g1+ynwq8HSX1jpukQXthDqk4juNZg1zT/Ljs41k+SMhXDbX5nKxbWjhWNnKrG8h/Pr/grhBe2f7R+i2Go31zdT23guGCe4uoXRpJEvr5ZD8/J+cMD6MGGBjAdDGVatb2bivOzOWnipyr+ykuh8tUUUV6B2hRRRQAUUUUAFe0f8E9dYj8P/ALYPg/WptOhvEtmv3e1uZXjjmH2C4yrNG6OqnoSrBgOnNeL16v8AsQ2ct/8AtPeGrWCOV3KX5CwM4fixuDxs5J46dD0OASa58V/utT/C/wAjHEWeHnfs/wAj9P726v7mHTtA8O6wqGRpLmPUJkiikBVpVJYhmJYKyqpyNiujALh6+k9T8BWfxs/Zl8KfCvzHbSbPRNTKpBaTSpJm+1CcTSTO/wDx8FniVSVdmWMqFAAL/JPg/wAOeONHt7KzvdHa9u9a1C0fS2ht2829bcYxEiGPk7ireUW+bB25CsF+vfhd4t13w3+zr53w6tLYa1eLcjTbKbTgDMp1CWNsSqT5rKBu2uN0YlZAo3kj5XAwjTlJw0TT9N1+p5eTUnDFN+Xr1Wp7wfi9bfA3/gmJ8Pv2SNZ+IWl2/izU9UVfD9pomsxX7x6P9skuPMvXTK2aJl0jVHYkQxAiP9/HD8TfEKe18SeNdU+LN9f6fPZ6Rq0yaZBBIz/aGRJhZFIlUMwZIIEYo24iFwNzOpPrHgnwb4N8T+BtcuNS1JYPEs+laW2hQ6lpWyZIpBLHdOFcqxnVADuA2hcsQTuI4yf4d3nxO8a6D4Z+E/8AZ2qxwXNpZ6bBp0V9LfzRmOZprqFIoti7XX97HsMkylfK83CuO+vUcmp9bWX9f1ue5mleOFw8Vu7tr1aSv8kvxPNV8Nah4h0G38R+I7fRdLtr19QvxqeoAw3V+Y7Fi8bmGDcxkeParqGQy3h3SfLNJXwn/wAFpfhfrfwp/ab8LaRq1rarb6j8MtN1HSbm1uC4vLOW5vPLuCrkSR+ZtLKsiROyFJCgEgJ/TbV/DPh341aNqXiLwF4MuLbVNCg06fUoSotxJZRLa6fBcwxfa5TJLNdTRExEoYWl2IbhdrR/mL/wWZubW5/aO8KYs7uG9j+HNtFqhvWAkeZdS1FQWjESeUwiESsC0rMytI0m6QolZbT5cSne+j17nz2XX+ta676nyLRRRX0J74UUUUAFFFFABXs//BPeTTI/2vfCR1iLfblNRVgJSmCdOuQpyORhiDxg8cFTgjxir/hnxT4n8Fa5B4n8G+I7/SNStSxtdR0y8e3nhLKVbbIhDLlWIODyCR3rKvT9tQlT7pr70RUh7SnKPdNH7+fCL9npdZ/Yj8b/ABm1W+1G11XTdTuLWG5truNrUwxahpaSuYPJLBle7ZlKSLkEHcAjrLnaA/i/w14D8M6Fd3plgVrrT3u7ZphHfRzq5jnaFivyEK7gOiuy7OVDNn8TdL/bJ/a90TwhN8PtF/aq+JFnoFyzNcaJa+OdQjs5WYxFi0KzBGJMEJORyYY/7q4gh/a0/aptmia3/aY+IMZt23QFPGd8PLOQcriXg5VenoPSvNjlnIkotJWt8+r+ZjgsP9Une+lj9w/GGveFvFH7LlvGuuWupJaa3ILq2/tEMRIZHnWE/JvMe1IIhGzMNrRuQSwA5P4b+IdZ0HUtWufCGhXEtza+HILqxS4jl/eRpveSUs6bZYPJtbuFx8yECSNirFhX4v3H7Tn7Sd2jx3f7QvjiVZQfNWTxZeMHycnOZOcnmk0v9pj9o/Q7w6hov7QPjezuDaTWpntfFd5G5gljaKWLcsgOx43dGXoyuykEEim8tbqqbewY2g8XXVS+yP2X8R3HibVNefRLi+tLPVvDMLxrLY21tavHdRXEk0MCSJHsmbcciaUncNiGRo0jWvzh/wCCyPxG8UfFb9ra38c+NbS4j1a/8LQz6g95P5k0skl5dyl3Y8k/OAM9FVQOAK8Oj/au/akhe2kh/aT8fo1kxazZfGN8DASVJKfvflOVU8Y+6PQVy3jLx746+I2qprvxC8aatr19FbJbx3ms6jLdSpCnCRh5WYhFycLnAzxW2GwdShV5pSujDD4OdGrztoyaKKK9A9AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD//2Q==",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [51,35,73,64] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [54,40,71,58] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA3vhY234neHG9Neszz/12SvtW8019FhGuJIrBxloCMHBHWvir4Vo0nxP8NxquS2vWYA9f36V9wXPw7+J3xS1Cy0nwd4bu7uYx+UVtI2c8cDcB0HueB61w4rm500fK5/CVTFU0uzOT1HWtV1e9gj1a1ES24LQA9Dnp9a6i4+F1p4isW8RWmvtb3DKNv2eXAbjHpX0J8N/+CWXj7xVo+n3PxX8eweHgiZFnbxCeeTI5BYkKuDjpur2Twr/wS++Cum2H2ZPiR4lYjgyvPAfyHlcVi8PiJxvY41kea16alSjy27nwXF4Z8TaPbHRtX8xgpBScEHf3710s7asPCUMdppN9cF4HPnxoz555zjtX2jqf/BK/w3fwzmz+P0jxyR7RFfaIJGX/AIEsyY/Kucm/4JvfEfSLP+zNL+MuhiygRwiXNnLF8pz1IZqynhsRGLSX5HPUyLOZS1pbPuj5Usdf0bREtZ4LGC4dbcb4bgAbs8Hn1Fb/AMRtL0PTtKXxL4YsyTdiMxxyHdGjY5bjoR+deg/Er9lP4X/DvxNaeDfiB47s5TdWnnL/AGPctI0S56yZRSMnOOOdpOOMVyfxPufg14f8K2PgDTPEd7qdnJcSeZPZz/NAowo3AgEEZ5B9q4ZqrBqDabXTsmL/AFbzVqMnGyT1uzjrPwpqWjJZ+I/FslpPYXy7GuLe43G3OCSTkYHAru/CureDNFuE07T/ABhM8b7XWYyAq3fpXI6F4xv47TTrTwXptvf2n2x7ci7QZZUO3JUE9f6H2JwtT0ybw9q82uSW+We8YC1giYxoO6rxx9PalWow9m4p2keLXw1WM3Tqu0l0X4HafGT4q6nr2uWEghfz+Yjc2sBBKADBznjmvO5x4Y0hJT4i07UFvLhdxnbOD7E9wc16H4Q8R2HiPwncRrHa3CRf66aXCzWoLE4Hvx+gqX4z/Cyw8V/DCPUvC98w1GGVTHJNjYylhkZUegPXvippYaVZcsOi/I56U4U5qnPRXtc898L6b4O+KEFnoOh6X/xNtIbzI7VHG24Vm6/UcfmPUY+AK/S/4b2Hwo+HEVn4iWwnl8SRqwuGi+YqB2UDqa/NCu7J6kZ1KsUmrW3Vu595w5T5YVJp3i7W116306b6d/keifsg6LpfiT9rP4X+HdbgEtlf/ETRLa8jJIDxPfwq449VJr+iPwf8L/h/4Ns47DwlodnZQ8MEtbdUXpjJwOTx1PNfzy/sUHH7ZXwkIAP/ABc3QeD/ANhGCv6B7zx2nh2ZrdUUoQSj9lOelfSUKcJe9I+toUKdV3t7xlftR6tfeH9F03VfC7F7u0aQmCMffXAJ/lmvPfAP7Rum+JvCqam9/tlcEvH02sCcg/kayP2rviRqNt4JXxRa3QWayu0eQocfu2Own35Ir470/wCLN5p/j250vSZXmg1SQPbQRKSRJjkDAyc+leficX7PEy5P60PeoYP/AGVRfT+mj7fb9op4ZmMcny55IfvXBfGb9qS5sdEW3i1KVHuZljwsh6E81594U+C37RfifTH1DRtAgJODDYy6lDHPIDjoGIA7nBIPH4V458frXx54N1A6L450O90++tZRIYLqIgsAfvKejrwfmBINck69RrXqdOGp0VUumnY5j4za78QdU8X3nihtXe++2XyrBGdwKITtUH5ucLxkY4+prV8P3PiH7ZYaPH4et44XiCxiPJJZWDfMc/NuBIIYkEcEcnOdB4htZNk6hZlcB1z24962dI8XaQt4qEYZv48kFD+VQlSu5W1N4UKMVa103f8AzPqX4X+G/gn4t0KDQfGHw4srML/x63emMbea2cg9GXBPLE7WyuQMg1Y8d/sMwaB4S1Dxh8OPGn9uWMcn2qazniUXsQHXgfLLgZJI2n0WvnmP4p3Ph5I0TVd20gqxbtXsHwP/AGmdUv79LDz3lJX5fL5LcdAAOa1WIwz92pG+m542c8JZXmtKVRJQkle60enfv8zxjSvD2hXF1qFlomnS+dkm6jaP5X7j61lv8UU0jR7vQH2JFGF8y2lzt68EY6e/+TXsej/DGT4heKLrUbTRdS0mYXDv9rngkg2Kc/KQwAYY4r57+KPwy8UeHtT1ttP0N1nckBzKCsqZxvHp1z614vO6C56TeraZ+EujD606dXS21zL0f4lWXhjxyPEOnXQ+eM+bbsS6sccjnmvhKvrbxX4P8W+GRDf6poTNCiKVu7Q+Yr+3HK/jXyTXq5ZCUJT5vL9T7Th2lGEakk73Ufw5jvv2U74aZ+1F8NtSLY+z+PtHlz6bb2E/0r9ifFnxsjNtLHHfgEHqWr8Vfhhqz6B8S/Duuxqxay120nUKOSUmRuPyr7s+GOhftBftJ6k0fhCzfTNJjI+16zdR5WMdSFHRm9hnr2rur1KsbRj1PvMtp05U5Tk7WZ6/40+I178S5ZfhtpNtJqFzqcDxGCM8qhwC5P8ACBkc9uPauy/Zx/Zd8MfDSSLzdupa3t/03V5U/wBVkf6uMfwj1PU9+lXfgP8ABzwj8H5n03wzCbrVJ1/0nUrxd81w4HDMT2HZegr1TwzFf+H52GpkmRzkue/vW2AwsK6cnr3OjEYj7MdvzOptII/DTwzxLlIjwM/1q/8AtK/CnwB+1P8AAy+0Wa0ii1i0tXl0298sF4Zgpxz1wTwR3HWuV8U+KLaDSZI1cEkcY4xzXOeDPjYdLb7HJPggMrnP3hz7V04mVKEXTlsyaNGdWcakd1p6n5yyeGvFPhfUptI1pcPbTvHIqgfKVJBx7cGtfSfCdx4ilA0vxBFBMcYF0pAH/Alz/Kuu+Omr2Oq/EvWri2wImvpNpA5xmuDa9liz9jYoR0bvXgtQR6kazd00blv8L/Ed3rH9m6n480+FFfa0oWR+M4JAKjPfrjpX0X+y/a/Cb4IXf9q32uS6pqkgKw381tsSEHr5aDOCe5JJ9MZNfIllruqw3hlnuHZt+CCfeups/izeWsH2dpXBU/KB/wDqrSEqdKSko6ra+ptGcakLXP0TX4w6PrKtPZX6FQMrJAxbn/dwCK0rL4kfDnxD4dk0TxtY2eqW06MoFxZdAR1D4yDyeeCO1fnRpPx/n02ZY01No5mbG4P0/TmvQNC/aMklkRftubiXAbH8f4YrWrj4vVx/yMquGwdWi4VLOPW5oWn7POi+Evib4r8Ganqc39gajdGbSGWbL+Ww3AY6DYW254ztzivy3r9Ldf1/UvE3it9ZPilkuERY47ZgNqrjoD6nrX5pVzZZVVSrVSVrW/U/LMo9i8zxjou8OZcvpeVvwOo+COpeEdG+NHhDV/iAyDQbXxRp82tmWN3UWi3MbTZVAWYeWG4UZPbmv1h0/wD4KS/8E9PDXhSDw94Y+NVha29um2O0tvDWooqrjAAAtgBj61+O1Feq4qR9JGpKKsj9ZY/+Cjv7FWma2mpWPxwhbDZZxoeoD+dvWv4//wCCoP7FN9DDc+HvjfFLKPvp/YWoLx+NuK/IOirw7eGvydTd4qcpRk0rr+u5+ofjH/gpZ+zBfacYtL+KSyyHqv8AZF4P5wiuLP7ef7Pek6VcXVt8UYru/lhbYkel3agMRwMtEK/PCiorx+sO8mbxzPEQpuMUl/XqfXVv+0R+z7rljdar4i+I1xb6jJMzCCPTZmRsnOd2w1l698ePgQsTpoXji4kkW13JJLZSqrS/3ceXkCvlmiuNYGCd+Z/h/keQ44uUrvET/wDJV+UT3u4+Ovg0RPcjxHFK7D5Yfs0owfrs/rUOj/HfwnLp1xLretW6XII+zJFbTYI9+DXhVFa/Vadt2aReJimvbS+9f5Hug+PHgVk+ztJH5pkUC6MEm1VzycYzXQav8fPhlBpuoWXh3xjDGSYvsjLYzB2wRuO4x5Hfivmuil9UpeZzV8LPE2VSrNrtfR/Kx9J+Av2j/h1NryL478TyxWqgmO5jglYo2OpAUk9q+bKKKdDC08PKUot62/AnCYCjgpylTb9634X/AMwooorpO0KKKKACiiigAooooAKKKKACiiigAooooA//2Q==",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigDv4f2Xfjrcf6rwNnnHOp2o/nLVs/shftEqM/8ACvM8Z+XVrQ/ylr660dIljiWfp3z3r2P4f/DXWfE8Eb6dpUhjKj946YXH1NcyruUrJHyEs+zBz5adNN9rP/M/Neb9lz4827bJPh9Ln0W9t2/lJW54J/YT/ax+Ir7PBvwdu7wYzv8A7QtY0P8AwJ5VH61+u3hj4I/DjQ4La68T2Ed3dKgJiIGxT/Wu2ufEugaPp5sdCtoLVUX5UhUKOnoK7IUpu7k9D6/LMFm2KipYlRhfok2/z0/E/HbUP+CXf7dOlgG/+Bwj3dAfE+lk/kLmmx/8Ewv25JV3p8EMj/sZdM/+Sa/Vm81WfUpmmklMhP3cnOKuaRcTS/LP90VnrzWPqIZHhmvek/w/yPyksf8AglP+3vqRxZfAgOf+xq0ofzuq3tJ/4It/8FLdcGdL/ZuWXH/U56KP53gr9UrLXv7IkM27CjoAa7PwH8UJI7tXjvGXBHAarpOk5Wmy3kOGa9yUvw/yPxu8a/8ABHj/AIKN/DvTG1nxj+zm1pbJ96UeLNIlx+Ed2xribD9gP9rbU3aOy+E+8qcMP7esBj856/fX4n+OrPX/AIfaiuoTp5YtHJMjcA7eDX58eIta1KyZ7/w9eESCQlcHIbnvWONr0cNJKOtz8/4mxONyOvCMFFqXdO+no0fDsv8AwTk/bNhgNzJ8GW8sZyy6/p5H6XFZUP7DX7U9wSIvhW529c6xZD+c1fqB8F/HWo3vhQ2erktKyEMpGck9xVHxy1hpGjkR26ZJxvX7yn8K4Y4yo52drf15nyK4tzN1HHkh9z/+SPzHuf2K/wBpmzG64+GwXP8A1GrI/wApqrp+x9+0XI4RPh5knoP7Xs//AI9X3NZeEfFXinXdlqtxIm/74Q9K6PWvgZ420azGrR7wqruIZMZqHjMU9YxVvn/mdr4lxsEudR18n/8AJHv/AMC/2DvBngkprXxGuRql8qhhbjKxRMD2wfm/H/61aXjTXLTT9bl0LRYI7e3gfaFjGOO1ex6Zcvc28qh8nHBr50+M4vPC/jeWSQHy5hlWPQ17coxhCLWiP1nKsrweDjy01qaOq62ZYgI513Ko781zmqa1MMkznPXrXJ6j4v1GKR2hYkE9AKwr3xXqcysnP1FYzxEL2R7sMNKK0Ozg8epZ3ipJMipnknvXUW/xT8K21oslzqsKHoPmr581/WrtVzLPtz1rzb4heKdaj8QacdO1JhbROplR5GCkA5JIHXj2rlp1r1lFuyfUWLf1eg6iV2uh9e6r8S9PLb1nG0dM0zR/itptteebFeL+HavN9Dlt/iN4RS60a5HnwwgyzSArvIHYdTk1wmm/8JXZeKrjQdZgmhWIZfcCCcjIxnr2rmxbnTq2i7oeBzDC4jDOq3y8u6Z9MfEv4ym++Gt3p2m3e+a7Tyl2k8A9TxXzBqepaxpcRt7bMztIdkKLuY47DFex+FPhlrHibSo7ZwbaJl5mlbkZ9q9c+GvwT+H/AINs4Z5LIXVwoJ8+5IbJPcDtUQwtfGSTnokfmOcYDMOKM3dSEeWjHRN9e7t5nj/wB8B/EjX4o9Uu9EksbUHJluBgn6L6/lXtR+Gvhae5jm1ixF1tILI64BPrXT3Wp21sVht2SNF4wBgYqq95Ax8wzp83bNbSy9N3R9BlPBGT4OSqVI88l1e33bfmdh8PvDfgi1kRbTw7aQnbgbYhn6V2us/CPwz420t7SSxjXcuAQtec+F9VNnKl4uG29q9J0P4i2ttbqJcAkd69TB0Kap2mezjcowNanyOmmu1kea6V4vt7Z2QjG73rif2gfDFn4z0A3lkQtxApZT3YY6fyrL0rxTDgP5pZx3Jq1e64dQs3SScAFSNvSsY4jng4M9BUI0pKUT5yuddgtpJNPukIlgYowPqOK53UfFSxStFGp575rqfjX4TaHUZtX0sfMWJcDvXld5qeYjFJwwPzetefNzhKzO6nKMkT+IdZSQAvMSe4FcT4gnS9vYwpUlX4BPejXfEK+abcTAEnsateEtN06W6W6mVp5m+7k8D2rCWr0IrxU6bizvfghr+o+G9Xh1E25vZI2HlRzDbEn4d69P8AGN/D4y8SadqtndILyQstw5QAZzkYA7D868306z1KysDNFbhRt612n7PFh4f1P7fq/wAQ9We3igfbZhT0OeWOe3auWUK0cTGb2X4niYilShRaSPbNHtLvQrCG2uJN0qxruZejHHWpP+Eo1CO6KyTlUXpzxWHqnjvQLy/+y6DcSNDHCFUyDk44rMuvEaTlkMuDnn5q+h5o8ilfU78HByop8tja1jxvPLcs0dw3HvWdfeOXiAL3z57c4rkvEGsJCwELE/TpXD+LfHDW/wC5jk+c+nauGvVaT1PUS6H0N4T+KbWkCrJMW3DHJ6VtS/GFY18sliD33V8reEfHGrzXgjkmJB9a7qy19ppl+0yEADPzGsY4qs48tyfZQvdk8nxBOlswadQo9aoah8cY7ONpGvU2qOcmvF/iV8UIdAO15meR/uRock815/Hp/wAXvird/ZtH064gtm/iCsuQf504KpL4TinKJ6t4+/ai0hLiW0S4WeQkgRQrvOfp2rzsXHxB+I+omXRtKa3glfhgnO09D/Lp616r8G/2PNNtLWHU/EcfnTkBpHY5G6vadL+HHhvw5CIrWzRQg5IXpXZHCSavNnM8VTg/d1Pnnw1+zb5YF5rd1LK5GTuNddpngLRtBAktbYZXuxr0fX/s8C7YcBRk8CucltZCm4j7x7VpyUaS0Wo6dWtWe5zN/Ldbja2nRvSodO03U7e7SGQuiHkAcV3Og+E0u51llQZzXR6n8O0uLZLiFArIO1RTiqzNaihTfvHOaLAbdAykliOoqe9imt3M0spJccLmppkXSh5LkKUPPNZ+s61ZNHuE6lgex6UpxjY6KdXZIp38jThiDztwDXHa3ptpDMZHQM7nksc4rR1vxpa2RaKE7m7fWqdh4Z1zXv8AiY3sgghPzc9WFclSdNadTnzHNcFldP2mJmorour9EU7DybKbdboDIRwBXQxR6vd2ZcyhMjAHPFYOpX9jo+pQ6bpFjJcTcZWOMsxPfgV20aa8NAN7H4NvwAhbLwEEY9utYcs5XaPzTOuMczxsOXAQcYd7a/8AAI/AX7JPhmynF94pD3lwWBd5TkfTntXsGh+DfDmg2wh0vSLeIYwdkQGa77xh4YsdF1GWyljEa53LwBXnXiTxCNGumjjmDR54YV9LJU6SutD69OpWlqxniK/GiErEFVG9O1c1qHib7QjbJsk9FBq9fatba3bujkEnkc9K4rWrW70a+Mu1vJY53DtXBiKklqtjtoU1azRo3QeeLdKxJI55qvHvZREseAD1NOh1K0kgBMoOahuNUgtj8zgc9zXBKTl1PQpS5Hex03h2WCxRZJj37Vq614xtF0/bHIFwPWvL9Z8dRW3ywzDI/wBquc8V+LdYt7A3obCN90FuTnvThVlB+6cuPxmFw0OfETUV59S/8RPFLJMxtrpizE8A9a5ZW167s1v9jiFm5YdcVytn4g8ReJ/EB0yx0q5upXbCLHGSBn19B719UfAb9nnX08Lx/wDCdaaqGVC3ll8suWPB9OMU4UateZ81ieIMfiWqOV0r/wB5/wBW+/7jx7Q28Oa5ZjR9AsDeXsh2lkjLMCeOfTk17J8PP2TvEGq2kU3iC/mtLcfNLEJDvIz+leqeFvhL4P8ABCefo+g28Mmcl1Tk8+td7puq2JtNt1Iq5HIq6WWWqXm9QwXCkalT2+YVHVl57f193oYPwu+E3gLwjexw2Hhm1bn555YQzN9SRX0V4F8JeFNbtI7C70S1kiK4EbQKVH4YryvQb3RppVSFl69RXonhnxNbaNtlW6QAdBmvWweFjTldn19XD4eFFQhFLysfP3x7sdQutTW6tidhU7iPrXlN54fbUUNrNGenBI719Fa7pVr4jtWhmYBgOO9eT+L9Em8N3bJJGSg6NivPxDc3d7HNThCmuVbnm+meE5LO/aG8kxtbA+lafiTwZZahozqigsqHt7VkeLPHFnpmsGRmJwMMM1Wf43aRbWEkTxMzFDt5HWs6Th8LM8Q3Fc1zhpCujyPZ3Mm0ox6jpWdqt1eahCf7PhYoOsrHAFauzQJVm8ReIZGmd/mjhA+VP8ai0K+8R/Fi4fwp4H8MSKinD3JAWNB6579OlaQwfNFu58bjuLq1Sq8Pl9Lmntd7fJdTAstI0m8uDZXGogzMM/Nwa6TRvgRqHj3UI4LrU3jsExuZB8ze36V6b8PP2NJLa4XU/EGpfarnA+Zidq/QAD9c16vc/CY+GNJjuNNQMsQ+YAda3o4So46rRHNhchxOKxSxOZ1eZ/y9Pn29EYHws+CfgDwJaRjTNGhEmAxldMsT65rtr7VLTToP4cKOgPSuTPiGeEiFiw2jkA9Kz9c1uSWJiCfeu2MqdONkff4XCxpxUYqy8jcvPG8VyxUMAB+lY958QVicwWpZiO4Nchf6tFAzPJKc+gasK78XQQEjJGDwO5qJVE9T1IwUWezeCvHcNs6z3twMdSCa6Wf4pacxzHcYGP71fNbeOJ5ECwuUGe7Ul98RZbSDmTp1ZnxWEsTyLlQpqCfNJn//2Q==",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [48,42,67,56] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [38,39,67,64] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+ivpCX/AIJXftWQRLNdWfh+BWkCf6TrIiIYkADDoOpPGOuOO2bP/Dpv9qw2/wBrSXwo0exWLp4gBxuUMOieh69Dg4Jrh/tLA/8APxE80e58zUV9ISf8EtP2mYzGhv8AwmXlXdHGNeyzDnoPL56N/wB8t6GlvP8Agld+1JaWhvgfDUsW0sjRawfnA64BjBo/tPAP/l4he0h3Pm6ivpv/AIdK/tbyT+RaWvhyb52UMNZKZx3w6KevHT64HNOi/wCCSX7W0ib3i8MxkE7kk1zlceuEprMcE/8Al4hqUX1PmKivpW6/4JRftZWzIPsXh+RWid2kTVjsQKucFigGSflAGST7c1Xg/wCCWn7Vkzyo+naFEIRkvJrAAYeowvT64p/2hgv50HNE+cqK+jov+CWf7Us0ayxx+HSGYj/kM9MDP9ykl/4Ja/tSQo0ksXh0Kqbyf7Z6jBOR8nPQ0f2hgv50HNE+cqK+iR/wTE/aR+zi7e+8LpGTgySa0VVT3yTGB2P5Vp6b/wAEmf2ptXtjc6dfeE5cA5SPW3Y5HbiLGfxoWPwbdlNFR952R8x0V9NP/wAEmv2rI5BHJJ4YXIySdZbgZP8A0z9q0LP/AII7/tdX8ay21x4TZW/iXWpCFPHBIhwOvU8cGrWMwz2kjVUar2R+ifiD4jf8IaYprq5UyFWjuJmjIaMp+8LNtb5RyvIJJKkDBIxBrvjDS5V1Cw8HRiPVovN2WgibybeVGYRlyWYL5hVljDcnMe7aPu5wGk3a+VbaOqW8dxNc2k+pxuU3bSqOVZiN6qz/ALskbWIA6Eih458d6pa+H7PRfDmmQ2+oSXdwk0trZ+U8sbsWciTBYLnnncPnI3Dcqr+cUYwcLS3Pn4ybjrIo2/jPxr4I1JH8bDT+YEtzIxwSWEpRtowBtRtpOM7kOeAa6i28e6DC08uq6jH9kFtEkkhkH2Ys+D8wcfMwjSTjGR5vYGuIuvEWv219HBqc1vJdWEihpMNLKm0geYMklCpVV3DBDAgnIYDatNW0Lxg1tovi7Qo59NtVXzrCNjCWwMN5TrnaSPlyQfujg5xWkaEUt7BTaatc6B/EX9pMNa8N3xYrABLFbxHyWi3BXYNkEBsiPCsQc4IPZmga3d+ItQNvaX0sUah1ltWUNsCbl544zJj2IY84wRufDfwT4a1mx/s+616Xw/pmm2nnmGWzmaXYrgbUjRCWfLHAwAeBn5sCv4h+3eKdTstKe0TSVXT/ADbpknO1okRy24klkY7x13EFmXYBwvTSoQtqz0YYVuKne4yxa71pV0i1tpz5iESwMrLvcOEwMMWyT0C9cAjdzU40PU7yL+ytDhuGu2Qu4j3x3MaEku4ymMYz35HPQ5OEG1bQb+5lm8ebBbREWcRkDMsqyAkCQiPpgrgqRtcFmAznf0vxz4usbO4ul1+8uPtVt5MjWEZszKrL5ciSYcl1OSoHQgqozgk7NU4K0jsjClRj+83GeFPAF3bW08ekeItQljD+cZL0qTAAqJt/6ackjGSRnOMEkx3Hh68STFpe2DuVEkZinKBsMPvbQAR1XgnGOnWsi2+LXirw7cnTfFGmCS3illNrdpEskUbKfljaQo0nlg7H2g7ckZAcHZkeJfDXijxzr03iG78TMI44lktIY1BQKsgABOf7xIy2ARzuP3acuRxUkiZ4mhGK9nG78zd134WeH9Ymt77XNOitrhnYsxkZ9/pGVZuoJYjAXjqehpLH4cWul3iwaJqt3YxRyRLeLaWqs0i/x+W+HYOQrDdhgGYEowGKi0HTPE9hbQXWs+I43lgjnitgxb/SGCbMAEEgkNt4GN2Du4zXVWviCxt9Dae0uVmu7KFm89ZNjMyLwQCx+UuAMZySCMnrSdWKlqiqeKp39+B6Z4Q/aX+HvhbSf7D8O/sCeGNagtIpGS58Q+O76W4m2PjdKRZRnG3k7UUcfjXO/E79pfxV8Tjp/h/wf+yZ8O/h/DZzYvda0XXbrUppFG3bBDDM0ccKEmQPuicncNuwpublZfFsyWkc/wAlpb3dtHLY3N1ZNGEiaNTGW3E5LK4YgEcleeSDQtvEGjySfZpryweQLujAijWRslTuUEfvdpbpzgA8gGuuOOco8tjs9vScUkrGLeaTvsZozf3t5DevC9zEsrq8jAMEmDbCSVQTDjOA2BjDMuFpul2Gpa+1zZXKrLYjkXF+VZ49ygIcsPNYjbgnnCk5UDj1c/ELxPYvt8XeDPF8Upu4009oLdrrTuq4zJbxRzR7icE+WQvUnkEFpoemyWhibVbq/t0uXjmsTraLJv3ZLJHJsklw2V2pGATv46Z55YD2cfc1/r7zjhlnLKzi1+J5tqvhm7mSfVrTSporiSUlQkK7jhyzBd7FQA4AGD8ysPmwTVjQfhVf3eoQwW2swwNGrM8tyqOzkgKB8rjliQMnPT1YhfSb74IeOrvVYxYaRDp1rdxB4Yta0qWJyAxLNt8zzQAF4BQFWRs/KM1zWneGvif4Tsri5tLEtFc3HlvbW87FCgwBvYIoZVAf5mHViABWMqMoO7D+yp0v3jjdeRV0PwB4guLkXV6iW6RTPLdNPZMizssaOfM/cqzLuUIoAdCzZJQFsxf8IXaXEk15eX8VvI8pVicFMp2Ab5cjgAc7QeMfLWhHrvibTNAksLjWtS0vRRdKJYrfzvs0kgbIDoMK7EkBcgsMBcdxU8K6VpmoXhkXVbaaK+jZ1VYJN7oQz9Cinbjy1HLc4JPGTpGLnqkdNKbpxtCGjINV03TPDw3S6ukjCcQQuNN4EnlsCV28ByVfAXAY7iBwQOabxW1tHNayJe2slspi238RjdefvhSehySBkcAZAyC3s/hnwHoV3YsbrR7maxvZHsVvpbd1WGVWViNzr83ysrlY3U4355waoeKfgfpT+I3svD2jq4heZtNbVb630xZ5EHmEbLmQG68oOpIVs/LgsPnFVLDSqxuRUwTxUlUk7eR4t4X+OkV9q95okjyxWMqqEvWQokeYmKqSAQ5dY5cH7wzjClgTcj+IOg3dhejSIZ1ubyR44Y7rzo42O51Taj5LENj0ZwEwAW+azp3wJ0O9165voPDywie582OC61EJHbyYKlUWIYwcIxJbJKLk5QNWppnwNsBfQ6Pq1gTd3SPAgsbdX865PmCEI5ZnTzCyBs7lLbm2klVrolluIjQvZ2JWXupLljJXOW8NfE7V7+xjSXTobqPzzIu8MrPKoy+AqluASeV+bkDcRgd1pupWNn/Y0aMXmdHGoRQTBZMJNMAyFlUMXjb5ScFsZHOCa9n8A4ddlk0dfFUOkTxSuPt11bzpJA6IQYNkcPmHcMqNyt8wJYgc1kav+z3qPhzWIYddv7ySe5tQmn3UklubdvnXMiOdhdx86hyCPlOBuJNc31f3To/sepZOEtfM2Itc8P6xDNN4h8RtaXm0STrt8pvKIUI5iBAVdjOxwg3GQgcqFG9oPhHUo00vw4nhptejn33UBtktZhAjttLSyjDRYxGQGYYMgYAbi1bFj+wtqnjbw8+raFf+XPbahDJYabp+q20nnI2VPmBZldUUlw52Eso3kxKTIfS/BfwC8U/CKHR/HE1/bTxR6SLyGHU9pxcfPmOSCSaNwiSg4JyTwr+asiqtRpanZhcJUpTfOjh/DPiqd9Qkt7LRYLKTyjJNbzQ3CgbXO07lkUEY4xjIAU85JrpE8SeHtcDan+5u7gwskkFskrrLujVZEMe0EIR1Zn+bdyDncfKdN8Z6NaaydettXmOnmOBY7GCMvJKm8BW2RSAgFQCQ3zZDgHcpCdFN8QPE/iCyfTdKjSwiuLA4C2MUcMRRIw7KiDcS0e7LllOQpzlXIwjiJRnvqa08XOm+WWr7f8E3JvBHw68OWV7P4L8aSW14UCfZ4dR1GMNL2SPBKc52534IX+LCgUZoPiHomjiS/ksNeljCvPdXFlJIgwQcvJAlvuABC5f5MKRzg7kg1P4gz6/9qnu9J1C3Fujabb2sVvI4jDNFvl3pKoOzcCChyRgEYWrifCzxTa+GoWu/FKwXeX8iDUbd0jY+YgxkhF6F2yDtIRgWBHzdUK1apZItyqSbfKrHKWfxZ0Xwhfpot7oM0ZSbzYL21tYZZA4bOY4m2mMccjzCRgZJ2isPXfj34rvr+41WF5sJJJukmcEMWB3naAPmO4kucncd2dwBDtUudHltTqMkMUkq/KpRNvOOuO3SvNvHyal/ZMiJP5RkP7vLYBXOefwr6PC4WhyJ1FdnJLmcbIvXf7WOv6FqH2O1hjMTSjyId0jgEnoQzHfz6549a9BtPFmtXOio17MsU8kaebZ2mUjDHoMFjz3P06dK+ZfB97Yap8TdM0OeJJHs5Dd3LdQAjAL3/vHP/Aa+hfD+pR6o8ktivmEMT5WeWwCc/QDJ49K7qGHw8ZXjFGN6ijYcsXiKRjfQSyITxsEZUBuSB7A8c+9aEviS4utIj1LUB5U0JLBQeMenTuM4puv3ttHdR753T92Wa3z1PGcnsRgfXHNeYeHPjD/wkvxPn8FarbJbWJ1CG2NyBuZU+fedvQnaMgZAOOtVXqJRaKowaldn298JIvi942tdHbwJ4yvb1vs63EcN3GnlWzAbSqyS4DGNyQVJxvUkKcE1X8ZeFviPd6m+jatpGrNcWqSoNOWOd0uGIAIiWSR0xswchlUrGOeRnl/gd8X/AIO/BrxZZeLdQ8aa5exPFHZRWmoX0QitV89mJjZY0aT5XxumaWTIzvwcD6Y8EeL9N/axT+3fDHhyy1G2tL5YLq98hGSLbh/LRyhDHcFfLDPPQZr514WEtpanqSrapWPn2Oy8O6Bplnr0nhzWZdTMCz3d5rNlm3ST5GVlVQFZUw2cKy8cO+Q1c/4u8eS+PdWgm1W/mtVW6t5I9WVGdYsLzEEwFK+WdoUZOMEsM4H1X+1Bcad8L/hv/YmpaXZXELxPNPby2yRqyKerA5DhcR5B64BGMcfL+pfDW2aztPG1x4wtUs7O3huJtMgE/wBoEshiG2QyIF+UMU2Lz8u45AUvKl7CLS1OSrRnVlvr6nnN/qvg9rOQ+F/C/iXTNSYma7u/EzrNZwK5jZgqtG0jqMXAH73APl5xh91W/t77TLeaaS3n1COZ1MK24M00DMhIcgM7lShILquw7ZABuINdxa/C68u0mu7vUYJp0j8zU7uznT92qxHh1kVvLTMiH5FwwJGVJ5t6x4ftLLQZ4ND8Y2c/2x4Zrm1nhZWuLlVdYjG8uVZjHJIGEZjx83yFtzHyVTXU61gI0pXUjyzRtY8R6mQtz4N1uO3mkiIvBa6jHLsJJYBvIVWKlI8lS24EgKNuK6DV/EfjLWLmHVbPz5P7OKtb3XmSzkBg+xWfdhc9vlGWIz0NdJ4d1LxTrGuy2Ov/AAzlmitYFAsYL/MMrs28SLE08gR/mJLIsagOQoCsBV7456P4S1bw3pVl4S8M38WtNMkbWt1HAEjidsgKmyUPIxXYQrluTgA4FdsaVNJNS2MZWpprU+Yda8Ra/bvLbQyxpDFtcMzcsGJHA9sH8q5bxt45m1HTGVrlJpIR8xPVRVb4p+Avi3o/j6TxV4bsLq9s45pje+HIrkxqowy4IOcFJAxGVzntg88FYy6x4nsdVm1TR7rTZLa8aF7KZCMHoOSASeo6AHGR1r2aGIhNWuc/tactEzivhb8U20/42eI7i7LOQIk+UkhgpIOPQcj8q+qvhB8QtPm8y+sYQcpj96cBPXGetfI13+zb8WdO1OXxb4f8PagkssvmF7eJi2CQQCp5644wePqK9VT4y6RodhbWd/8AD3xBpkqRqupRmANHHcAfOFb5Ttz0BGR3raeISXuMmir35j37X7m/vdKuNYt7hmPmszK3VDjJ5/GvmnxH4x8Qa/8AFRNK8JZtofl87UntJHQu6bWchQGPykLxnoccmvtX9iz9l7xp+238OLvxUNcm8IeELa6S3i1fVLUvJeFUYytFCMF0UlFLF1XDNt3tGyDt/HH/AATI07wnZ6lo3gPWrjWjY3CwyWiQwTSX6q4G+EoNyN5iSeZAdzIkYfOXC1jUnPkbWrOqEYSmk3Y+af2eP2Y/H3xi+OXhPwBrcsl7CkhutTi8U2bSWH2HZJDKRDFKodW8xHjLZZZVhPyjew/ZT4efCPwJ+x18EbXwX8NIGg0m2ka5kmljTM0r/NNM/lIibnPJ2KqjCqqqqqo+Nf2G/wBib4x/Dz9oC08f6n4Hn0PTDaTw3l5czW0Y+dkfaUDhzlkAAEeFPcDNfdXxg8XWlr4Qfw7c2QuoZIGWSCZTIkqAYKnJyfzB44Nc8an7rswlBqb6nwj+3n+0/wCGIPFw0jwtfWmuazd3EcU0N3fvHaRQo2WLy7GWOMruy2xgPMTcCDiuB1T46+GNe+HVnp118O/E0tzPHjXEtdPu9Yt/mnkkQpLbRyzRog8lSCIyBHLwksgKfNPxK+FHirxB8Zdf0a6e5lj03Xbm207ULecF5nSQwrchYRgM4IkB2ty4A54G4um3HwqL6hrnjaK80mCT940WlmK4UqoX5hGjq6jax3phiOSWwAcoqlvfUhznH0PueXxB8JbuwstO1zwZBLblWs4U03ybWQx7l2yTSwQicnK9d4JG8ZXDU7U/Anw3+JOmQXHiG6h/s+2jRPs11YQuY48yPGThleTJQHJOQGPPOK5mHwBpGjXVzdSafsvIjM17INRCQAMhbeiCTYwVpFKkAh8KFLKXNcVo1nrc3iCC4ktrmGK9tbtmCFUSFkhdY1BLEBAoyoT7wbAdvmB8L21S9j0OeUFd7s9G8R6D4NsPCFvZ23ia+hvxI8kUEcAS2VejCRd+X2J5jg7QRnqVG4+cWFv4RhkuLu98U+dNcWrDT4hOsCpNtfbIXJAwXK7mYk7cdgQ23Lo1laxzafrvicBZox5Fi87GQzIN6qGAViMOUyQmDkrlcZ7Twb4S8K20wv8AU47VbUyu5ceQJ3lEYMaRElZZHYou5gGK7yzYJIIpSlK9zl9lHEyfO7HkOs+DYJc2d9okUd2Ii+oXFtbmDzMlmQOeCm3cSDnAEjZ3cVW0P4MeHLvxJPZ/2U8Ooz3CwiNLSRvtEmAgVHjRlHGVUHABPbLY+lPD2nfBmz06O28QeM9XE1yiSWgjnE1ugJ+aFlkLBiONznbnA2YZN1cbqPh/XtOkm8JfDXRXMUxjhiu9NtZVdv3byNhIy6nbM6vsaJmCgMQpO6trtdTSng8LKXu7mVon7MvgS3t7a6u7y5solhk+2zy3D/MyrvMWSgCtt3YB3k4GBnINew+GPwoSNbLxPo1tplrqbxompeJdYibSnXdJmWP7JcjBAAwkjEHYTxv2rd8FSy6tBLq/iPR5p1tLVpDcNYSPOquN21zid4W+Tyw5CghcAjkVD41k0rWNCTWW8GJZaPa/aHeDyMy3UkShyJiApdcH5/lbClQDgEDek+aprsdU6cYUny9D6L/Z88CaN4B+EMHw98J3kmn2cOm3D6de6eZXeKWeVpDcAyqpV1MhZVflNoDZP3vyx/YR8SftF/Bj9vfxH8MPid8YH1S2aTVbNRqQlaNXeZZY5LWAKzwNKVVo441/eJMQoOVNfon+yD8dvB9zbXsviHVVngvLAz2lyMTFSN8jx4zgY3E5XGdwz6n5K+MH7EXxLX9onxH4r/Z61S81HTNY1OfXtPi1FLnToftJuLy7jitrjeqvJbzB/LLBCEnDbwpLr7tGfLpe55rSkj6w1X49a3pdtNq+t295Li5mFyliVn8gpncrKjMyj5S284GCeeCB498Yf+Cl8GjeG00/w2Td6lczrBZQY3FNxCg4XPTOSTgDFcV4B/Zk/aQ8Hal5998Ym0fTNPPlw2/203ETN5nmF9sbItxtYyHDKm4vgsQOfYNM034B+IpJYvFtrpVh4k1DNzqes/2ZApnKOzNczDJJLRhWdoyNziRmCggrzYqlHeD+Q4O+j+88d+HN1aeJ/Dd3BczWNhd3FqWvP7Vt52GACM7Y0fftLehb5lIHPHSfDbwLdXmoW2neN9M0f7B5CxQxaaqiKEB1Uo2+M7Bt5+63BZRubNaGp+Hvht49tE1b4Q6tocslvbqt/FfwrIUuR8wlIbBEfyzAKAFUOoJZlDNBp8UWo/YU1m0vVZ7orekCOJLmNJVd3iQvlhkBcbw3O0HGdnn8sk9BKdX2iUldLqdRrug+OvEOovaTXKrJFciaaEwhIXiLZKYLEKMEkgs4foASQKydR8E+N/A+pabJeXV5b3cMiCw1TSsujESGMs6KEkQsTt/uqGJKnBB9H0jwXothJHqElu+l6YLRRDcNpLMUU7pBmY7QvyEclmO1R1AFMs9I/tJ/7KsddaCSC1YQR3GoKLZtqsruEKoPux9GJO1MEnA2eZ7JRR61WjKVOz1aOG8Pab4W8ZXlpPq9pqNjqGnrFHJp1tOpjmbdtZvPeMLt+QMqHBUKF3MSc7y+JRo2jS+HrO6tZftsKLqTyTyRmbJdgd6sCCJNjbcn7jZyCMdR4c+HKXvhg6fPpUTQTXMsk+tW+mtGiBSih/OSNiXfPlrGCvzsvPzbqwNc+Ffhqy8MBNMuNSvIrKyaOaC/tHuFc7XZTO0MWYh0ctyc5PzABScqi0RKjLkUUeceI/BM2l2kdnpfi8w2wkV7uCR5fs5m35zyrBSoD/KyMrsXJb5h5HW+FNdu9G0BoJvF1lBHHdpJElqkhZbeSTZG+fN+YmdZEDDAkLoBgZJj1jRLSdre8tdNt9QNnZKUivdNjK/uWWSIvKXZ2CgFd8i7vl2j5eB1vgm18M2OiaWLLwjf2l5E/k3qWq25sLJkWWLLQSxsDhXZQVAYqSxXIG7VR5rqxnSw8ebVnEeFLvxlFqLeJvAl3KdQtroeRdtBMtvHu3q6r5gKS7psRhQ5JVg+4csmh4y+HnxG1tbux1jUIrJ9RWYQmHxUbaOBWUSyRF2iw8RcnZtZWCBg7ZYhvQXl+I8uvtqR+Kpls5b2Zo7eIxxzQzJy6D99CBF8zKUAATbt2EACuq+Dcng24srM674pv7WcyCSHUGjFtdTojlGuA5OZYzKwBwrxqGChsjIunGfXYulhrNrX70fnfL8C/wBpj9mx7vVfhfLPq+nNLNO9rZ6gHe1iRjK8iysE4BC4AULjH1bA8G/8FG9V8LzpaanrGq2UFhM6rFcRusbMyBWByNrHChgw55bk5Nfpr40+Hfwo1jVtdhsNNuNYYEzarBqMWZpmLECRGIDL8ryjGFAMTMefJYfP/wAbP2Sfh54xluLOHwJ4X+x3ipI4v4pJJopnDvG2bOESs21l4YMOcOGKgV1qq4Sswlhly+6fNOof8FFPDPjaxuZb/wAVRPcT/IAJFXjOVAG7GcgDJHQV5/43+OFz410K7Hhfw/eytqNrLbC+jIcHcpTo3yt1xtyfSvdH/wCCYfwlfQ55x8K9PkuvODLd2981kked6sAsyjfgwycoR/uAEZyrT9iTSvCrC30S9gEdrLvitDIjq5yecDczgAHoxGQpz8opudFu92ZKjLl2Rl/s8/AM+JfFukeP/jPNeS6Ra6kDDpGl61FZPDcK5LQSM5VrYnyvmSNQ+1gxeNtufujxh8XPhJ8QfAl/YjQLywvpLeFrKO02QW0b7YiIzLxG8ZdVyWj27FVvlYI6/NOi/Czwa2my2viO0t0uUTzhBFr0ptrUeWIg4gP7uPLbPmK5+RhgEZr0nwDoF/f+GY/DuieKlkQzttuXu0tQI1XeqMTEC6K20HEn8D7geCmMptu19DanSSi31P/Z",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD9KtT/AODeNtJ1V7W7/a2m+yrGzC6j+HLPk7FKjC35HJO373BwD8xC1Wj/AODenWf7Oa/uP2pViUyyiCU+C1MckUZG+UkX+5AB2ZQcgjjrX6YfBLTNR+JmlTxrqmn6DCDLdlr11SN5IoQEkwspEhZfsylQikxhirIRx6rbeA/GGg+F1+IY+IHhOJNOub37VaNcrE0losKostt5kMvmN+9Z9uBIVkUZYhI1+OjmeYyV+f8ACP8AkfSU8Bgpw5uVr7/8z8fbP/g3n1K41BrGT9qG8IdWNo1t8OjK03yIykoL8MgJLgkj5QgPIPGf8Qv+CBOo/DXRrPxnr37QGvyeHZyq3mrWfwzSV7N2iR1DwLqfm93zwCqqGcLlgn7AeJdP8BaLrdrqvivxU9ib7aXnS6tpoGkEYeVWaPYxVWmIRARiXawK7VI8R+JH7Wfihr6b4W/DrxZix0mZ4LqSxtPJSW4BKlgHVZMxksof5SfoiGuvCYvMcTV5FP10X+RNTAYOlG8vzPy90L/gkX8HfFGj2GoeGf24U1Kaa1DalHZeAVaKznEQeSHzG1Ab8NlAcKW4O0ZxXV/Dz/ghJ4W+Jegwa14e/bVtRJc372q6dJ4Lja4tHj3b1uhHqLLC7fujGitJvDuCUeNkr6l8S6ZNJYNqOq7Z2SXfvlPKucg+wIzxXX/ssfDOTXbm91KzvNHs4tZtLmGW51MlonuhJHIjLhfkfLOxCFGcE8gNI6etiniKNBzVTVeS/wAjkpYahUnyqP4s+R7D/g3fd4fM1r9sS3s3FxFE8cXgb7QQZYlliH7u/I3FGyR/DtIYhlZVgP8Awb66fDqtxoVz+2MPttpF5lzZxeAVaWND9wsraipU4KblbBTcQQdvP6X2Hhy8u5Zdd0nw9axRSq2yWyu47eOWKO12BpY0MSLI6IGOGaViq5IeUoOzXwLqt9pttqfhPTL06gpsrs2E81vdLDJHlo5lMsXnhgphgWPAB3Aox+YJ5rx+KUmub8tzeOXQcb8v5n5YS/8ABuRP9hgvbb9seJxM+xWPw/YRM+1GUJIL4q27eCvILIVkwEYNXyB/wUM/Yn/4YN+NOmfB4/El/FDah4Vt9XlvpNGWxMEkk9xC8HlrcTg7Gt2+bcCc8quK/oavfDaaLe2s2tec3hl9TLXqabJPBPHMZC0SCMCZgOH+WTYA42sCWcn8Yv8Ag4l/sd/22/Dlz4fjVbKX4aWptgISjEDVNTQ78om58qdzbQGOSOCK7MHi6tavyyenoc2LwdKhRbW/qfBVFFFeseUFFFFAH9NPgNdes9Uk8J6/BoWpW2r3EP2C908zQ3du2QWmgjKRvCypvnZCBGyKCfnMitt614E8ceJGh8SaLrA17SbaYXWgC6vJ3kvREhfaZd6FGjWZHiQBndWYkAlY1dpXxt0bS9VvtFbx9dwqZVlvLiaQLJbyrBLbiGF7RTuijURBmJkVkcjfuk3ia+8bWjafo+l6Ho2jX8TR7oXitHSWedyVV8PkzYQoUUlCm9HiA2g18SlFqyPsKU6Mb8sr+hR8Q6Vc+Fr61i8Sw/aJLGF4m/s6FQt5LB5YMds8ceyFX2s6vIu6fBjTEqpn4K8B+KdLivrgi98y4mmk2yF8kMW5ZiDyeSTnNfdnirXr+68OGFfDd3GdSSdbC0v4RhoxgL5SN5a7vmQBkwcEAD7uPk7xp+y0lpLqvxO+F1nq+m2pvXuLrTbhVSKFGaQsdrgGBdykYMjEccAMhrvy+tHDya7kYte1SaPmv9p/4o/E4+NLr4LeB5i0aNaTapfGQA3DFY7hUi5G1R8uT1JBHAB3fU3/AAT/APiTrPh/4Yah8N/F3hb+0dM1ZoblbSed2EN1Gsyo+VDYkxJuB2kExpuKhd6+F6n+zT481j4vv4qvdFkl06eTdeWdykkE8Y8r5QP3bEMAB/DnH519j/s1fBnVPBP2S1ufFr6VHx5sP2BopPnxGqM4bKj7p5BILNwMMT14nEQnTcUctGjNVLnrX7O3iXwf8S/A9t4jutanfVNLuoLbVDFYwswVdyrJHEJBuA3YH3dqSIAFVlL99ZWVxpmqab4eNjc3d+byVPtNw8KJHZMJpTkP5ZIbyoy3yoAZQV3YYr5d4y8Cxacknjb4W/Eeb/hK9PcwXOnQfLbX1qEJjWeNVDoqtKrLIpONxyHG5KzfDXjPxB4w8a6Lo/xMsdatfEl/CIY7XXRGpnO6H7PIkixEXxaXvGhk2Rjdguc8EqbqNyiehGooe7I+hE1fS4JrXU7C80m4tWRJFn06WIRXLIojYhyoDRjOB91SACRld1fhj/wc1TWcv7e/hZbDT/s0SfCawVYgpAH/ABM9UPBzg9eo4znvmv158K+J/F+l+LrG/f4eXeoJrd20jXG5JHuJI5maRIJxES7NJIm5N77hFGq7SDX49/8AByjdQ3v7dfhi6XULSeZ/hZZ/aktLmOXyZBquqDa3l8KSoVwP7rqehFdGWxaxiv2ZyZpJPBu3dH57UUUV9GfLhRRRQB/UV4m+C3gjxPp0t/rPhyCXVI4Dt/tWAzTnMwJQ/fCuAo4EhOVPPO5qH9jaX4a/s/wp4Pi1CG3fUJhDFoekwuXWeUmZgZAoQlgsZZihYxne5AVh49c/8Frv+CTuqavYTR/tj3tnbTWqDULiTwHrAuoVVFPk5jsCsnzvIRncqnzD8+5Sef8AHP8AwV1/4JMXbiz0L9re1mt2nWQyL8PNcRiVOd8g+wL5jHOFBJ2KgUYIEp+TeDxMNoP5I+sdfByjeEop+qR9JXOvfDnxL4pTTZfELQ3kHmpYWUc0gjikUJ5WwM2LeMckxxySFVkXYcoxOL4zsNQ8X2z6fD4RiubWOKV5ruS0Zkg8tEaNnHIyAW5Hzn52IwUJ+UZP+CoH/BMPQ/EM/jTwl+2JAL59zNbXfgTWpLeZ/Kljc+U2nbIwwMXlgZEezPDHcPRvAX/Bcj/gmJooXUNQ/aIt7WVLKO4t7ay8K65EqXDvKZbU50+UhAqQKG3vkStjBRhK6ODxNWdnFrzasZLG0+S05JejTPWj+zN4tt7E21tbDSXzK16YrLNvJIGdQzFiPMRwbfKBQVPkeYoMoz0ejfC3Qfh39g1fx1e3V7Pc20VqLfyJZ/tW12wkZdduNsj8bTt3yM2dxJ8Uvf8AgvL/AMEwPFGsQar4n/aMS3urSaWSwuNN8CaysUKyySl2KG1ykxSUq+3coO8qxLcyWX/Bcn/glFcQI+vftK21xcwu7W0974F1y6MWSvy7hYxkKSoJ2gYOWCncUG2JwdejPlinJd7F4evhKkeeU0n5v/go+rfFHhTWtMha00Syt7x7IedbNeKu6aXClmBVFDMpJZGVg7IgZiuJMcF8UdA+KXiPR00fxvZafeLFeW11Dax3NzvkjjKnASRJOfLyGk4YlGJPBNePxf8ABeP/AIJT6jBKdY/awvF+2wmK8trfwPrMC7H3BlV47Leo6ElSOQu0AZAe/wDwXY/4JPXJubmz/ayWz2MgWxn+HuumK9XchxI8dpnA2dlUjcQMgkVhHD4nmvyS+5nU8Tg2rOcX80b/AIo1b40eAtUtoIfikl/oOkav5k2k3Nk8S2AbaswEnWS2Y4Xy2QMVmdy6k+YPys/4OOtX1LX/ANuDwrreqeHf7Me7+EmlzxwwxKLaSN73UHWW3ZeJI3DBt2Thy6kkqa/SGx/4Lo/8EsTeyyx/tXNpWpX8cTya7F8N9ZuRBKE+VmXyIyWjkLSHCOsjO2Qwxn8lv+Cy/wC018Ef2qv2mvDvj74DfECPxNpVh8PrPTr7VItBm00G9F5ezyp5MsURwouEAZUCEYwFxtX0cDTxCxClOLtbtb+vmePj54b2LVKXbS9/6+R8kUUUV7Z4YUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/2Q==",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [31,49,61,80] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [55,37,77,62] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD96KZcqr28iOTgoQcdelPooApeHont9Kht5CCyr8xXpkkk49s1dooptuTuyYxUVZBRRRSKCiiigAooooAKKKKACiiigDm/Gfh34hatalPBvj6PSpWkOZH01Ztqn0DHBI9Tx7HpW/ZQS21skE07SsiKpdurEKAT+JGfxqWg8DNAFK/1aezvobOLRrudZThriCMMkXP8ZzkDvnH8qtefGHWJjh2GQMU8EMMilDkKU7GgCnba1Z3epSaXDFc+ZEpLO9nKsZwQMCQqEY89ASevoat0UUAFFFFABRRRQlcAopCyr95gPqaA6Ho4/OnysV0LRRRSGFBGQR60UkjiNdzHjvQAIu1duaWokV7iRZUuG8o4wgAAJB65xn9cUzUotQktpI9NuEimJGx5Yy6jnnIDKTxnuKALFFM3CKIyTNgKCWJ7Cvh/9uP/AILafDv9lrxNrHgr4U/CTUfiJe+GnWLxPf2Vy1vYaXOXwYHn8t8yAYyMBQWA3FsqE5KO40mz7jor4r/4Jq/8FtP2eP8AgoXq0vw7j0uXwp41giaUaDeXIlW6jD7d0EgA8wcr2B56DivtB42fo7AexprUht9BZJ44hksPzqtcXlyq74YmPOOBn+lSmzVz87MR7mpljRV2hRj6VrFwirsx5ak3rsYV9eaxO/yWkoA9Ez/Sm2U2sxzgvBJt5zmP2+lb+xP7o/KjYn90flWqrpK1iHhryu2LRR0rzT4u/tL+FfhB4gGl65avJDHbB7mVW2+WzcqPm6jHXGeorgq1qVGPNN2OrRHpdZXjDWYtH0Oed2YEqANq5PX/AOtWm0irH5hPFZHxAu7TTPBuqardRhlgsZHIPcKC2Ohx061q9CW3Yz/AHivT28AaTcT3yuUsIY3k3g/OEXjg9enHXBFaOj+Kk1i8mtobWQCFj823hhnANfB/7Jf/AAUhuNY/aQ0r4Q+KFtrbw74htfsmgpLbjfFLEAA7NjrITgg9MjB45+9dE0iK0nuLwIFeWd96j0zwOuPeiE4yimYRnKbVmP8AEsmpjw1fSaNCGvBaSG1R1yDJtO0EfWvwJ/ac/aM+LHw0/Yv1f9l6P4P6lqN3468by3Wp6t5bI11ceaFKAopa5laQKQnUFgRknFf0BzxLPA8Lk4dCpwcHBFfhN/wUw+C2j/s0/tqHweuvat/wjOnxQ6lodpa6vFYtE04YqnnOriKJHUKSAG2KdpB21zYjddj08NFS0Z8ZfsZeDfjX8H/+Cknw/wDAGo6ZfeG/Fkfi+yiurOY7Jbfz9r7HxkqdrrkdQTjFf1TW8Zit44mxlUCnHsK/lk/Yq/4TPx5/wUz8GeLbDTdS8Q3Gn+KI9Y1AW9611IsFtmVjJcOeQNgHmMecjqSAf6OP2VP25fgt+1vNrOjeApryz1rw/Kqato+oRqJIwxIDqyEq6ZGMg8dwK2jOL93qTVouC5raHs1RXt7bafbPeXkqxwxqWlkZgAigElj7ACpa8j/bj+I//CrP2b9d8Wi41WAweUftej2cU8sAVxIxKykJtKoUJOfvjg0VJcsGzOnHnqJHjHxY/wCC2/7HHwS+MkPwm+JJ1/To5rlLd9bktI/IgkLhMyIX8xUBOSwBIAJx0r650PXNH8TaNaeIvD2pw3lhf2yXFld28gaOaJxlXUjqCOQa/mo/av8AEPwd/aB+IWpfE7V/Fvjlb6+1NxFN4hhtVtxPvZtr3KMQWGPuBV4AHGRX7i/8Eg/iXffET/gn18PtS1e2WH7BYvpNlObrzftsVtI0KSrnk5CdOowfqcqVVSWprXpezZ1/7Y37W/hH9nr4e6gYNchj8RFAtlayA7kJUky+4Xpx/FgV+VHjr9rXxx8VfFd3p8+u3N+JJWZ/OZisWfmwFP3c7s8Dnivt/wD4Ky+G/hbrmi2mpHxlerrpikUabbp5kEqlhudjwEPbgk8+1fnm1joGi6utjDGiXMNszLMFOcZzgjv9TXy2c4mc6jgnoczsfvRpUd4uk20WqRKtwLdBcIG3APtG4ZJOec85NfN3/BRH9ojXfh1pulfCDwnpt99r8RW01zfajbW8hWC1jIBTcoxuc5GM5x6ZBr6ZRQqBQOAMCvhT/grP4m8SaT8YfAGm6Z4gvbazk8P6nNc28F06RyMssADMAcEgFgM+pr62t8IdD8z/ABnZ/E3RvEnhTxN4X0HXvt2lR+f51lp9wzW77xhiVX5ThTg/Wv1a0D/gqv8ADD4Y/sN6d+038dtG1S2vlmksZtFsdPcz3N1GccGQhYww5y7ADkcsNtflL4l+NHxf0rxb4dsj8avGOl2d/bRLqf8AZviK5hBt9wVyUV9pwmR0Pevmv9uX9vD4gftL+KbfwNL4qv8A/hFtDk8vRtGuNQd44iAQZNrHmRieSeTx9BnSmlRjFbk0aPNLm6H6sfDP/gvv8Wf2rvH+qfDj4I/B7RvD63CxJpmp6hqUt1JBGQ4llcBFTI25XC8d91fDf/BXf473HxP8Qwau/jWbxBdxaZHa6nrUyFDduvmAqADgRgHgdDknABAHzt+y9qHib4bT3vxJWa4tBHbuLRgxUyAoQcA4BGM8+uK88+K/jjUvGNpczXclxNNPcs4LfMMbwTz+A/KtqlLnirHbCrCk9T07/gnf+3D4h/ZWuPG2l+EPh9oeo6v4+0tNMudf1W28y4sbP5zKsBz1clCwbgmNDnK1+gX/AAbu+KvEXjv9uvXfElhNLPbz+C799TkWQlQouYNu/BwfmbjP973r8evAt4PD/jK01fUIZRDDPukKxkkD6V7f+zr+3b8dv2IfjlcfEz9nP4h3Gl+c4W9sAPMsr+JgCySwsQp6n5sbl/hIIBGqwypw5upmq8pXj0P6zq4v43al8J9Q+HmreFfifqenyaXqFk8N/Zzygs8TZGQvXqMg44I9q/Ob9r3/AILX6af+Cc3hnxhpnia0sPiB42sonutN0W+ZWsEZHfJdSCpPy8DI4wecivjD9kX9q/4w+EvDOreK/jz4q1CVPEiC+0efUr2SWVwAd0hD/dVs4Hqe1ebicQ0nBK5vRw1RctRHz1+3nqWieDfHFp8MPDloLb+xbu5cssBAnadkLyO28mRiAM8L1I5zX64aB/wUl/ZI8Z/sXeFPhV8K/DHjiwm8O6FbWOkXC2kdibe7t7cQl/MSTLqX3EsoBYnd3xX5Dft1fFT4PfFv4pxazoWkaqs1rZeVeN/a8ZSaU/MW2mHcoOem4k4zkZwPFfBnjfxZ4JvBd+GfFd5YmKQmFY71iE/A8fpShhatWhaD10NcwnFyTjsfpH8SP2oPih4v1uXTNf1ma5ZF2iW6laRtufc9c1wur+LdUubtrx5/nZdryDIYDA4GDXgHwP8A2g/FHjvxadA8W3bXLzAeRcBAzZ5yGIA46HPNe0Pp0l9HNZysQsgAYgc18ZiqNSjVtM8iUZRep+lnwb/4L7+B9T0x774w/CW/iE8Mc1hN4cYP5isM4ZJ5BtwCOd3PpXUeOfiN+yz/AMFJNP8A+Ft6D4y8S+Hr7wXptzYiyv7GFY7g3GwjqXyQQDkYxz7GvgP4b/sk/Er4rxyt8KPDUV1Y6PpMUs7G6jjRIwuCyhjubGMnGcV7d+zRoep/DHR/EfgS+udLu1N4r3LW0r74XCAYwyAEYH4e+ePWqZ/LD4yNCvpzXt3ZrQo1pztI4v8Aao/Yr/Zy+G/ga+8V65+0Xq15c6HpEFrpAi0qOFLreJd7uSzEcoAO4J9DkfkH4s8DX2pajqXivwtIDp9tdlAJLkecSCOQuBnhh0GODX6S/wDBSL4M/th/Gz4h6f8ADj4RfB3xDP4e2R29xq/2NorSWRn5RZDxLgEn5M7d+Dg8V2vhD/gkRpXw1+CEbfFXVbTw9bRTm8um1qZGuroAI5wilQFYLgZIOOfQn1qWIbamtj2I4WNNWPl74JQeLfhj8KoPHfxS+Fem6xYT6YGgtNQuXj2JjlyY+Qf9nPOfXFeSfH7xboPiDUorDTfAOi6HPcRLNeWmlRNiHIDIpZ2YscZJOcHI4GDX0t/wUd+Nfg7Qvg/pvw2+GcaXdxqkqvCbSJmW3ghYZGF5xu4PbkV8j/BWC+1TXJ4/F+jXANwwK6reRkADBAQb16Hp3wAOla+1y+GJWIqStJf3nba217dexxV8K3sjkbnTbaJtxiTnn7grF1CzivNah05WVHuZUWMsOOSFz7c1758Q/g74F0e3ubiCR5r2+i/0Yxa0qw27+oUkMD7emOlcHpf7Nnxn8Q6HY/E2w+GGtXXh+PUVW51KCyYKiI6h/mZcDqevHBrv+v4XEU/3c0/RnPTo1YT2PW9A/Yp+Lf7TPijQfhb+zdcXfii7s7ESeKLiWTytO8PxMxZZJ5j8sKAEgbuTwFyTXpHiPwV4B+I/xEl+C8Pxo06z0DwD4eh07UPExjKwajfokYeOLa5IzIWVeSTtHHQVg67+0f8AHPx58Arj4ZfA7wPL4M+H1tJHFewaYXiF3O6uHknnTBnlcqSxJJycMAGxXhvgb4m6Uvwyi+GXiHw8wtLrU5ppdQ0uN3vyg3J5KqW8vkvIckdBjI6HzZ+xg7zkkvM9idVxo2SMj4+eFvDXgXxZb6VpGvw39yLbdqslvceaiS7jhQwyCQuAcHqCOtYep3PwttNEgutL1nUL/UZbdRc2ZshBFBKVBJ8wlmkAORgBQeua9h8GfCX4E/ETw7e6VozyrqUBAkTULi3gvlyDypeVYiFABORxkc15j42+HHgzwF410VZm1F9Kl1WOK/F1PEWdBIu4q0J2lSu7kMQeMEjmu+GOwdOl7k09OjXY8mcareqND9nWPVvDvxG0/UtR0ydIbmFzatIpVZOV5Bx9a+kNR8dajaW882nsqyFMr5g34I6elXvjd8Wvg58QPiB4Z+EfwX8HQaPpWiaQ3lojZ2y4AJHJJ4TqTn5qjh+G6atZNaPqBWU8b1HB5/TpXxeOrzr2nKPLfoxV7Se57B+yh+wqsk2jfFDwV8XNd824RI72d5MoqEDzkCIVyQ2Pl6YB4xX2H46/Z98C+CfhFqx+HPj3WLnxG+iuDbzwxr9olwFwhABJ3YbJz6dq8L/4JYXKaH+yFpHjjX9Tt2fU557uZVc7YAznCKCScAEe/rXrOp/HPQtWmuryyvlimR/9FimViGU9eCMY9vWvns0x04Y+qpe872V+i8j9upZDw39To1a6UJSimfnbqniX/gsR/wAJtd+FPh7B8SGtYbhYl+1MywwRk4DebMQqrzxg4rpbL9lH9pOTw5P8Qf21/wBpHUpbDTYmu7vQ4NQ89ZiGwvnyJ8pyFZiuey89RX21B8YJbdLpwqNJcoFLeXwMdOo47Hj0r52/bs8V22tfBq68GnxRDA1+376EP+8fKlSNo+bkNngdq68Fn+Mr1IUeRJXSf5HmVsPwZhcNWn7Zzqcr5VbRN7aW6Hwrb3eu+JdJv/EFjE6l5THbyy3O4xwh2IRc8EEdT1I713vgTX/GOgy2vhrSNUa2haCSWYJarKrP8mCW3ArwW7HPtiud8OfHnSvgYIvC/g6303xCJrgi4Or6W0KwkgBQp3txyxPQdOvOPpvxo/whZdL8TX+q+Bhrc2nJ/aX2K/iP2aUAAwnDldy8g9fzqM4y/iHGV37GgpQ6Pm/4c/M3iIuTbZ5Omq/GWcRXEXifSM3WptbWy3WiK22MLncT5gyeGP4GpfiX+318VbX4D+I/2ffAtot7aRzG3n1OK1+a3CgKRGqqQudqnPJDDrnNZPxc/aq8AfDe4fTdJ8MaFrEtpLujEF467XYHLAqGHOTyOxxxXnf/AAT/ALmX4lfGXUtC8SL9s0zUmuLm4sJpjtbcclc5B4LHkYIx26138LZXmuFryqYunypbapp9zOeIgtj6J/4JGftv+N/DPw0+J/wp+Lvhe28X+AbDw415Fpur2sZt7KdxMMfLHvYzP5YBLjYYwV5rg/2XNM8cXMGo678NtOjt7WTxTm6SWMGJ7RS5MIdwQOijI5AOecV9O/DT9nb9j/w1JdeFfEXwgOkaRrU8aazf2bTSzxxqxO+NJJCrOu5tu4HBbNfJv7Q/x48Nfs8fGvUvB37LWqeIdI8B2msKgh8SR2l1eTOw/fTHZGFAJGVTHCgA85Fezn2Cq5lg54eik3PTXRFqrGUVfodt4q/aG8c3scOtSXMkFvbzTLcs2mxpb4LDZtD4b7oxuCYcjJIAFcV8QPirqPjDwpqNtqelW8tsYHZpBbopZsEq2QvBJxS+JP28/wBnrWLufU9RuPEMtxNliJ9Hhf5sezKMdOOePSvCvix+1zrHxCt5tA0eKO20y7cNNC1kgkYKwZRvHI6DOOvPrXyuA4KxeCrQqeyUeVrVSu/0InVpyZ1g8E69H4wt/FHhu4ELrKZY325ZQCvJU/U8e9fQNl4ru4NLN1p0avcqok2x/NkDORjn1r334eW/wP8AjR+yV4Qi+G/wy0LTfEl9pkT6tf6hqTSQWzFdpVYYwHdsAjcz53OzDaCoHSfCf9mLwT4K0Gwh1ixtdU1G0t/Ll1NYQonJ4J2lm54AznPUkkk115xmPsZJctzmcYs//9k=",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD96KKKKACiigkDqcUCbSCimPMijIYH8aq3d7PEMx27tx2J/wAK0jTcjJ1Uuhd6VG13bqcNJ+hrGu9V1Ar8ltMMZzhj/hWSdbmLZM7f9/q6IYa+7OepinF2szskkSQZQ5payvDd1Nco7SFsYTbuYn1rVrnqw5JtHTRm5wTCiiiszUPU+gJNeA/tE/8ABQf4PfA66n8K6drVpqHiKBvns3dhHDhiCJCBkNwePbtxn2/xNpuo6xoN1pmka3Lp1zNFthvoIwzQnPUA8H0/GvzB/wCCj/w+8c+DviLrPiH4kxwvbXVuI7DUIoY4hqEOCpkKISFcHIPc4HTGK87MsRWw2Hc6YH6m0UUV6ICMSBkVDK0jZAap6KqMuVmcocxWhgZjlyCMVOYYmGCv606vH/2kf26P2av2UQkfxq+JNppk0sYaO1iXz5/xiU7hx3NVKolqKNGKPXGs7U/8svr8xqMaZYY5s4/++a+cv2b/APgrd+wp+1F40h+HPw3+Mtumu3UrR2el6tA1pLclf+eYkAEn+6pJr6UDqXZAeUbDj0OAf5EU41HbQpwixkNpb25JhiC564NSUUVEpOTKSUVYKr6pqum6JYyaprF9HbW0K5lnmbCoPUmrBOOTXl37YWoaZb/AbWrW/wDGGj6QJoQpl1oZgkUnlGAIIBGeRzxWc5csWxpXZ2k3xI8HR2st1FrVvN5ChpY4LiNnVScbsBug/oa+Lv29f2q/CPjfWpfAPhXSdL1rTILQxXN7eaesoaXcwdELYIC+o4YnPvXzr8Udfl8C620/wa/aC8L+J9Fk08FptNuRMUIPELMjYU7skZHRl9a8Y8c/Ey/j8RTXt20tz5h3kx3GwDkk5H8QPp/jXzOY5lUneilZBqmfu/RRRX1ABRRRQB59+1T8Zh+z5+z34q+L4hDyaLpbS26lcgykhE4yP4mFfkf8Rfhl8CPiV+wL4g/aT+N/xITUPixr2tzD7Xqd0IVxGFlIjXOFUJKo92JHIr9LP+Co1xpT/sZ+I/D2qLdf8Tq6s7G2ktYt3lytOjKz9gg2HJOPqK/FX9rPwH8JPirf+CPAngP4oaxDbTy2kfjCKZWeLSXE+yW4iCn590W1uuR82R0B5a1RxlY7sPSUqfMz4N1/VLvTdZa90y/nhkScmKdX2uh7MpH3T6Eciv6Vf+CE/wC2x4p/bd/YM03xh8QpvtPiTwlrsvhXWtSBH/Exe2tbeWK6x2LQzRK2f40c9CDX89/7eHw8+BXwt/aDvvBf7N/xJn8WeGbSxt9mr3O3d9oKnzY/lABAIGO/Pevqr/gkh+3D45/ZB+D3iTQtIvll03VdZ+2SaTKislxM1qImB9AUVccjBUHNXUxNOjT5pdjmqwUWf0XT3VrbY+03Cx7vu7s81l6z8QvAvh6+s9M1rxZYW1xqEwhsoJrgK88hyQig8k4B49q/n6+OP7f/AMefEngeHw3pvxP1ppNLurj+yoba8ZfLhcR4jB64BXoTzzwRXkup/tG/FfxC2l3OpeNLi3vdP1NQLuaV2lhmypZhzt3gDggdCRya87+14yfuRuvX/gGHNqf0veM/HnhrwNp8l7r+qQQMtrNPFFI4DSLGu5sDqcCvy9/4Ki/te/CLxZ8CpfGMXxD83XL278m30SJSUVfugEHjOQT34Y/SvJvBf7T3xb1TT7XSNc+IU/iM6fe/aYY/E53/AGkuRvEzqwaRdoxgt3rxv9s39srxB/wlp8Dw/A34XWOlPIkttaWvhRZ13MMEZld+rP7ngcjkHH+0niKija3zPSwlD2kHLsz5K0343+KtI+JdrrtrfzRxyOqTW8WFWSMlgQVHBIySPcCvq7VvEmm3OI3gmZkQplgOg4HevBfEvxbs28W3GmeKfAOj6JMNqCx0PT44kDscgjZuz1HIJ4GM8V6loHhrVfDtvZ2WsqpkncNIjsCQDjqQcc5rhziNKnyTTW2phXilOx/SPRRRX1hzBR060VheK/HOi6Bpmozi6E82n2xluLe2kQyRr/eYE/KB6kYwD1xQG4nxM+Hvhj4reB9Q8B+L7VJrDUYGilDAHacHDDPRgeQe2K/njb4r6n8H/iF4iW4ms1ilvJxLPqNmsh4GRgMe+0L146+1fq/+1N8KPjX8UvCN78Yn+OGpaLY3uo215o+laFdSWckVoE3FHlVmVxhecKM9z1z+J37b3iSK1n1vxDotzhDqJywUMcSE4GDXnV5J1j0qF4UrM+bPiJ4jXxn47vtXDQq9xdudkTgqfmOMY7AV6l4S1az8L6UNAyVlDAyHbsXO0d+/HQ+9fO8Oo3UV4LpJT5isSG2jrXtWk3MkvhpPE3iIkM6qzu42nBCqOBgVpUwUsVRbVtEefiJa2Z1OueNYvDentqkGGuXXzLVQ2csM4b3ANYngX9oC/wDB8t3faz4bhu1ut+24vMttmZlYsDj72PfpWB418U6XdJplrEvlwpCytdkkqwLZ59AoIzjnmvonwF/wT68S+NP2SNE+P3j54NE0PULq6udNjvmMU13HGdpYAsDtOQR0yMV58MBCluvxZnCDaLvwk+LPiD4jaDFe6DpMlw8reSjQqXaQnpg455PrXTftP/DW98C6TpXjn4g+EpbC5e0jAt9SsNpVucMVYdCF3fiDXLfs4fHnwv4bkX4PeGdKtLVbu7SCS/VEEiW7f6zDHkHHI5HPQg819H/8FAfiFoP7S/7Nr6ho+nWh8W+AryGw8XaTaXG77TEilUvohnKxuC29Rna2MbRxXJPCunWi4nv5euSm4vqz85fAjWPiT42232O5Hlz6kWUFM+WFTOwDPTA9uvSvtL+y7e7vlvr7xF9sCA+dBIv+qB7biB05556V8AWx1Tw9qK6xas9tcI/mK44YE8ZFe2fCj9tDxbZ28Nl49jS+tbdxELlYwHVBwSVAwcAD61WMy7FYuglTVzz8bZVn6n9WtGCBkjr0r8ovGH/BZX9sfU7T+3dK8DweGopIlVdPn0ISsHUbnwz5PIzxgj39O2+An/BQr/goJ9nuvid8Qfh9oeoeC7e+SLUdY1WSLT4oA4LB9y8iNcjewU7CQG2mvZeNgtEr+fQwjQqylZI++vi18afhr8GNLg1L4leMtN0WC63i3uNUvFhjZlUsRk8547A1+K3jj9s3Xf2mv2+JdH8KeMpV0vxL4yhsLSOFMn7M0mCnYt8vABAPB4GK53/grx/wUV8R/tXJosNtplvp1lp4ube2Om3f2iCclxlw5ADqQOGAPsa82/4IzeBdO0H9rLw/8dfiffOmi6Dqkc37tN37xllCFgRjG8KAByc9qzp11VmzolhpUYpyP1+/b68eSfCr4WfDr4Xacv2O317zLC8KcyW1oLYqG2dSN+wZHOMn1r8Qf2//ANn/AMT+HfEEXg3S71R/aHiM2axuMBwVaVLj/rmwwA3T5Tg1+nn7fv7XHwv/AGgfiZph8F2WqTwaPpr25uXtiFZgWc4Vc44OM+1flP8AtKfGTxJ8XPjJ/wAJNq9y6y6dbRWVgygK0UMZ3IoK84BP6n1OaUFUq6bBCpFR1Z8va54K1Lw94mk8LajERdQXZgdVQ/MwbHHqPSvVfjRpbeGvAtroccY24VC6uTnDA5/TpXP+PbK6tviHHreqzCZxdLNM4clmOcnrjmr/AMePH9h4h8N6dHYxPDMszC4jIBzwCG6njPH4V7mHiqdFp9UcNSKlO6OJ8L6yNK1zT768tYrqK0vIpDa3Lfu5QrglGzwFOMH2r66/4KBf8FPU/bF07w5oHgTwlbeF/Dejaatva6JbwCLyl8tVZGx975gcH0xXxK2ov3Y/kK1vCOheJvHeqw+G/CmnyXd7Mf3NvGo3Oc4wPzrhrwi9Drw/uyud38MtP1PVfEgn0ORHnVMKitlifoOtd34j+IXiHwFYXF3Z+dDra5jvZXJ+YHkhgev8PBr3T9i/9gbxr8P71fHPxgsYY9QilBhsbe5LxoBg7mIA9+Oa8R+P/i3w5ffGjxlZswtRLG/2A3CAKJkKgj5c8kAgDpz2rz6KjOqkd9WjOkudrY8W1DVta12SVG3Seac+WkeSAOeMemM1W0VdSt2lf7BN5DE5uNjBVIz3xjJ/pWl4E8bX3w98Yaf4u02GKSawuBKkc8e9H6ggjIyCCeOh71f+I/xp8WfEW5j/ALQS0sbVchNO0uzWCBc46qvDHgcnn8696lBQieNWk6lRn9FX7NP7Q91/wVh0DxH8IvjT4NstA07w9JaX4u/B+uvI8sjmRUQmaE7cBJCcc/d5Hfnf21f2PLvwJ8KNU8E/Bbx74untbG0twnhXUb1ZYr6a4aS380SttO7bsBByMqp4Gcy/ET9nf4P/APBNr4Fx/G39jDxF4h0l/EN3p0N1JcakbiK9glR3EhilUjcAcg/w7iBgcVzvjP8AaV+Jvh1NE+Jmn+MoPEtzqxgjvNP1HaCzBd/lqxwI3VySCOMr0GK+LzCrTy/DQpauT3Z+g8P5YsRio4uNuRdGfIn/AAV2/Y78NfBb9nr4NeETq8n9u6PpN9PrjLchojJcsZiq5BJCupUYIyFztXOB47/wRW+NOm6J8c7vwh8RdMs9U8M6ZcxXd/bSWxZmXzDHvBz0QlWAHXHO7jHR/wDBYn9q5vi/p2lT6jD/AGbq9hFLbSaRNfpI3L7ixWNQvdsE84J9a8P/AOCPeotF8WPHE+s6RBJp1/4Se1nunX97p9zJIHgnjHQgPGUYf3XPpTwM3UhK97NfmeTnNGUa0ot63Z+qv7Sfx0/4J/8AgHwrqVv8GPAD6jfTQsyXItZ40iG0oQTM+7OSDkLx24r8dPHd/bS/Eu71YRRxJPdGVvLUgZbPODk1+hnxY/Y21r4WFrrxB8XtO161v5VWWK38tHgikQSIfvk/MCMAcfjXyt+1f+zb4X0D4hLa/DjVbgylFW8s7q1CoCdzrNHIHIZWQp8oHBzya9nLMDTwtL429z5apCcNLnz38WGhn1pZlc4K5BArzbx5m8t4ntRuEZ+Y9MZ+te1/EX4Q6nF4Tk16TWw13pysktmY/mlJPXdu7fQ14po88Gq5jlZHG8qwYhuQM4r2JN20MlzHB39+YLkQ/LkuVwQeua9U/Y9+Os37Onx30D4viwt7ldKeX7RbzwF98ckbRsFGeGw5IPTI79K4Xxj4Mb+0TqWmREqGZpUA4XBzkfXms+wcKuA2CAc8+9cdXWVjqpS5dWfcnxo/4Kg+IPiZqNtBoD/2Xafal3hItiIn97r+HrXiNz4r+E2r+K5Ne17VpZJJ7gyzzwpv3MfbGcVJ+yjYeGruLxJqfiPw5p+o/wBn2cMsK6hbJKFy+CRvB28d6+xvBvhH9nDVNA8J6d4K8IeFZ9X8R+CrnWNRt7uKzjXT5oZfmh82QAYCDJPy88be9fBZ3xUuHsUqaouo/I6auKqVVZvQ+dvEP7OfgS+RfEreCL/UbWRRvvtF1COSEHPQiPdtPI4bnkeorzPQPgbH4+/aM0T4JaHBfaTBrt+LW2l1NcmMscLhgoBGSvqcV7/o/if4bazboNS+BehWlxca3DYRmLy5FaNg/wA+5I1HDZG31A5rkvid4v8AB2kaJD8SPhp4ZstC8ReFtatZ7a704hX81ZXUKXABIVAH2/7WO2a68Bx1UxeJhh5Ydx5tE3b9DCNJPU/T3W/jLrHij4F/Bv8AZ+8Z64PEDeFNcgj13xRPO0cKafFKixo6ugDMI2VCxYfIpPXOeP8A2qvitf8AhcWmoeA9e8P3ekx6nex29xopSdZEjn5R8SAL8rL8wznt0rnbr4m+Mr60ewu9amkilwJlklbDL3UqCFIIyOQetcrr+k+H77S5dEsdPg060d5ngt4bUPHG8nVtowM9CTjJxXsV8BUrVVO23mj6TL+IPqmWywq0u99fL/I+Ev27filZ/FL4v3Go6PbBI1IM7bs7mxjA9Oa7z/glPq2j6b488YeF/Gmr65pmkeJfD32WS70qJSiyRyeaplYglVGwkYxnn0rqZf8AgnVp/iHXLnWb/wCLlnctPK8ggm0l7dQMZC58w9PXHNdHrsHhb9h74L3N1BpdndapqktvDZO4IEpVv3h9Sojd+f8AaHSnicPUeW1aSdm4u3qebUxUa9Vu92z0vUv2dvg38b0vNesf2otWvzokUUN09xqbD7NChO0HBHdRzjjpXEyeHU8J2kfhjXfiXB4jsNLzb6dq81wpZYwTtjLdSAD3/vYrx34b6Zq+l/E3xXppur620PxFoOrw2uoSuwhnSexmuLTEnCttuYYUwCcFwM5OCvww0JvG/wANdd8NT3kiXH2Bprcead0cic7sZBycAfgK/DcPPPcqxUm8wlZbdXr66BOCcLHU+NdE8J3K3MmoeJYUtZHPKvnI9j3r56/aA+FHhn4Q67pF74M1E3Fjq1o87FyCRIDjPHtjivTNe8F3Nz+yza6/dxTf2lFaRSSlnYMGbBYepxyP8K4L9rPVdCvfDvhi78OCMW/2Vgvlyg8lY85x0PXj2NfXcP51nVfO6NOviZVINtNNJdNNt7nBWpqES58Jf2YfEnxq8OHXPDGpI+6zuri4ifCbI4F3SHJ68Z474rwz4geBrz4e+LbjQbiQOisTE4IO7oT+pxX0L+xj+3Kf2dvhr4k8FapokV405lksZ3ALtHMpSa3b5SSh4OM4wW4614H8S/F+s/E7xpd+Jbq0SBbidjbwW8BART/CPXpX6vKVV1ndaHPF2R6p+xx4x8BeH9Z1u1+IOt21nb31kkaG6baj4fJGelfROreCPhp8R72Hxt8OfihZWFulq9nFBaozRSJjEikqPlBzyBySBXxteeA9a8N+HgdctsvK3mC0KE7R03HP09K3vAv7XPj/AOEPhWHwn4X0HTXtIZnYNLb5Zixz19sGvlMw4WoZrifrDquDWmiTHdRPonWPhJpEkaxaT4rg06KORZ1Fsr7VkXPz/N37/XmvLP2jrTw54b8ERaNo3jC0v7q61WKe4W1YAlVRgScepK8fWuI8aft5/FLxto76FJpNrZJLjzJIHOSAQcdB6Y/GvLbjxRe63q/2+6VAzMoCxgDHPPSll/B9PDY6nVlXlJJp7Lp/XmU63u2P/9k=",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [40,49,54,65] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [39,37,57,57] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigD7TvP+CRGnWpCr+0ujs2Nqjwj+v/H3Sx/8EfJp+bX9oq2kA6qPDYDfkbr+tfXV7bXV7ctIYwgMW9JkiYooB6HA4baexI4x1Bqa203W7O0N1cxoY4UD7ml80cj+HaSvGc9e/XiuhSwcaak5L7zxfrWKvv8Agv8AI+ffh3/wQk8G+NrRxqX7acmm3yIWWxX4bPcGU7gFCMl/juSdwUDjG7J204/+CFem/wDCTjwxfftf2dnLHGrXZuvCUamE5IK/8f5XPTGWXrztxX1Pb6rq1vapqTTmeFjtM8CAxrhifvDgkY+v5VYfVYJlOrvaxyPyGniJDuQBkkYBI6e3Xng4tYnLowSlBN902H1jFN/F+C/yPjBf+CMETNID+0wPl2hMeDuWz1z/AKZ8oAyfXpxySIrr/gjTFBEHj/aWRmKltjeEdvH/AIGV9hyeIriaO4j+yvKIYycM+0yEAEdB1wSRjrgetc/q9/rey2tLyUwXDszskzgEqSCp54A+uPxwcXD6pUlorfP/AII3icUlv+CPk8f8Eeb+Qj7N8fklH8YTwvyvTt9q5610nhD/AIIneG9XuUTxZ+1RqGlRFSXlt/h2lyR0xhf7STORnuOg9ePqyxv9Yt9PIuI2SQJuAQAr127SOoPfvnBqaC98Qmze9mV5IwP3iiUxhVOPmB9OT+Q9amMsLzdPm3/mNYnEvr+C/wAj4+1n/gi3FbazcWehftKPd2aP/o91ceCxA8q5OCY/trbWwASu44z1PWslf+COniBL57W6+NojRW4l/wCEaBDD1H+lfpmvs6PVrzzt5s75En3RtA0pZ1JB+ZT65xjjHUYp1vqk17BmxvZXKuB5c8bbuh/vYOeg6Dk03PCRk7xVvV/ncHicTbf8j4wP/BHjUPtkduPjvJ5ZOJZv+ERwI/8Aya5+vSta1/4IvaZJIn2z9qIomf3ph8FB2Qeym+GfzFfVdzqOuPaK15Ky4bnp/UcetXEOozDzNPcFAiicTPlicDOCByOfXjGPpnU+r8ys0vmP61iLb/kfGd7/AMEeprPeW/aAchG2nPg8jnp/z91nTf8ABJ2K2dkuf2hY0KqDz4ZB9PS6r7emfUGYo+sLGXjKrEsWBuIxg4PNY9xZXTx+TLMZSuPLkjB+b/eUjgj37fhWE50YfE/uF9YxP834ITTNXudZkSC0t3tbi7jdY0clR5nzEFQxwAScEp/cGBwKuQ3d5Y3I0uMvK6lftcqynZbHduC7+hYe/wAo474Nc/bWiQ251I2UhZjsiaI5lK7eHZTuDHHynuAePStO+l0q6kiFtc+TMLXy4TA4g+UAHD9A4BUdB/G3YceFJOW4OHyNzSNS1LTJhZRaky2kRKrPCygZBUbTn7uOPu8MCcYxxbfWZrl5be1ljYG4BaOFWAYgnG3jpldw9CSvox4yw12/0NAkGpGdlbEjorfO2Scgkc+nY47ZzjT1DVPsavol/bwsY4ndGLK7RNgMG5YY/h6EcDJHOKiVOUXdgldHQNc6A8ypaXYiClkaB1ASTrkKc8lSM9OcGna/JdKgis4jw6GNSGVcNgJk9CNwIAHfj64V5f2z2Kz3mqJJcq6hhsdiFbkFuG5w4yM9yDg8GxeXVzi2065mM4ki3q8qBkk4/hCA54zyucbh2GKIybt5A4a2Zd0/TWuYIpTqKm2Mh34TZtUEg5AJ3NnHOQOc/NhaWeXTLBUjvZZhCWJSSeT5WLfMBleqkZGR0K4plwcusM2oNcGdGijuDJukhG0lc/xHBAzzg/LwPmqe21qzvYngeziaLzP9HleAkAjIJG3Jyc4KZXOSvTNVzWkmChJLQiju9EtI00e81NElkieZisxYMu9+SeRjGBgdORzUeo2kNrf29t/okUcmftpL5aMbXI7gKDuX5jjoSeuA6Z5NJ0+5gZ9O8xjtgVYXT5lXByrjjBGT8w9u9JZ3mq6zEL61ukKMnmQq0APy/ICPn53ErtyehI64qJVIxd7lKEp7IdpXiG0uLySa80yRQjyCYvMpVkC4JOCScEccdvzLndqF2k2lxOYJJTlGYfu2GQUcA8ewwODzVTU4Hhu5bW7smD8pcO4SMXHB4XtjGMHIzwB6HJluNf0oC0067EsssaEC2gk8vAJXavGOPlHQEAZ6HnRO6uiHTTehtyosJaJUM4QuHjBRnTaoIO3OWGMj5eQRz3IpXWvPLbCBlgiwmx8wgupGACQrAk47Z+XPQ9KlttXtXIuvL2M0bS8xCPy5QCd5JIHADZO3OPpWPrmi28dyupW9yiRs8cbFJsICAreaxbOc/KMfdJ6kYwZT960vkKNNvcztRSZoo7dZYXSNvntZzuMAyzN83BPzbgRjJLHrxi3HpcFnpz6mEWWfzhsh+zkLIRyVDFQDgkHJPG3PIIqTS9A8R6+26w0iO7uTZ/I8CMSSrOpymGChEUnjBOzOMcV2nhX4XPrkEF9ZaBPN9hUx3X2tWY71LEEco23GfkDDkA5OMUTqcrsek8NKcrRWpxUMU1zZywX80cNw8TMuYQ3l5YhIyxXCsTkqoAzuXOeRWfeaVqcWnS6dqWsqTayiVYBcncpC5eMAcMNgY9iu08DLV6hN8PrbTbaK78TaiqPFLIptrS1CSrEsaHftZioQknJBbBiYtjcKxNf+EVtqsKahp/iJ0W1nj8qZXkCrvXb5qls7iwXdnaxLBuTg5XtUlvoEcJOLTa1OOn0fWtOurW0ubYJJ9nDKsbghiV3qu4E5OCvAJxuUHvWra6pc22nxS2Fo8tu6oJEefHlqNoLAbgMAAHJ4Hsa7O3+EM8iJrlxOiQoCEu45CDJNgnJ29G3g5A2nAYjBIzMPgj40bTDBGsIguleSC4FwHUqynY3GT04468cknmPaQZt9Vm9onG+IvE9l4Pht9Z1HW4bCGW4kWy1CW7KRzsgQuFkYjzGCyDIBGAyg8EZxvGHx88PeCfAd38TbUaTdadbB9HkgtVheW6u7qzuDa5jU4OJbcyPJgHZCR5okMaN5547/AGUb/wCKXxp8TaV4o+Ic+ix6UmmwQvb6Y11EyzwPIwVt0e3BjTIVW5mycck9J+zT/wAE6fht4l+FFr8VvjX8adaurHSINXl1bwPobJbzaRqiXa2MYFxJ9oTbPJDaq06wEZaNDwqufWo0MLGEak5/ISwzi0kekX6XdjJPpo1+1aeOBYLyawuzJbSXG0BpFLIjMhkZtu4fdI5b7xfp9/JIttI6LcRiJ2VUL4A+4CG3Ajht27AIOB2wKlxo+rWG3Sr7S7q4e8V5/lmMnnBlL5Y4O5vu5BYN84bnkLueHvD+v+Z9rjsHltRaKWnFvLkDBZvmwqr94EnnoRjoK8epKMr6EfVql7pMpapp+i3rW8nivU7i0V5N9u8USgvgcrjDHG7nOOFA5yRXOXWlX2k3dzeW9oLVY4QqedJlmxwWYIo6DGBggbWOegrvtW8L61LZNfxWah2jUxG4nJjlI3EHYy8gNtIyc4PHUtVDUPh14n13ToIV059jXIlaN0EsVwuWC7QX+TqM5A575HLhJdXoS8K+2p57a+ILiPUJb+K+ju4X2gM0bATKuAFVtgAH3hnAJBByc89FYSx6lbXOpDwyLe2gjDTZJjVzh/lUDh2IOcDIAwewzFqfwo8Y6dqlzYnQJMjiCeMlY3UPsZiGVdpBGOB19cgVp+FPh7raSCwubZpbpAQQJV2v64QFjnjrx90iqm4pXRPsG91qfW2t6D4a8OWH2zwn8LNHunDxuLS20tInCNKd0ibYiGKhnk29TtOMkgHkfAUOry+K9Rhv/CV9p76rfTSutwVaO0AjUIyxkr8h28YUMWLZxhjXeX/jFbWLzLqz/dsQr3EULMqljxl9p2kg56YBbv1NDxFoniTxhbWcdlO9mRah7iNIpJUYHnbtYIrLweSqt6EAHd5ibejZ9POmpSUr7GP448LyeIkWLTr6UTW10JESzlKkMqvvi3eXkEqWAGHUEqTxg1z3he81HxTp9pZ+MvhvFpcIYi407UdGlLm5ZjiVQFOYwVcYPyZkUrgBizvAf7PniPwL4zm1m9+LGrXFzMHLJdj5FkYjexGCoI3OFXA27m4ODXqFlo15mMy+IIxBG5MscK3ByGA6HzGIOcHgc4PQ5zM3d26Exp3m5vS5y2m2GnaVqV7c+ItF07+z4LWOOK3XSZWEjbBIXCAMwHyBFAA+ZdoDELnZgnitfENrHrkUM+hXTlVubDR/MkhUlQHUMwVs5wMupyBkcsUx7/4i6PoviEWkzXFtaKZY4ZL+1uILO4lIWXeJmUhsKkmCOG+ZskYroNG1q68QwtPeWl5ZmOXaiXNxcRNKuchgCoyCuGAzkZw4DgqpzNblQdO/KmcvpvwksH8V3/iu8063nl1aaFl02602KSK2jjjSMy8FlLSLHywO4BFGMA1NY/CS48C6fP4e8K+GtBsLW+iurqB47d7g3AuLue5kNwgmiVSLppAERgFjSA4Owg9VFb2TCS/tNRkWbYGVxLOWkAzheuTjcxweM89cUtxBqgmabTNZI2cTSXlnOyt1wdvnDBPHPOa0Va2qfYr2S6nIaf4D8WaNJ9oXxHZ3EcahI3ktCvyMSQoRRndyAQSABgnOKmv/AIZJ4wtorTXfE91bNChZUtmkjVWbnqTsIHAwCRx65NdV5fiRTsu54LjG4oIYpYSgxjJJdgw56cY5PpTUbUnjSG6tJ1cyLgcqGIH8J3DHuD6HtUObbvcSoU7NW09TyvxJ+zHD4gnttDvfEcwh89JFngjZCURwT86uMt82epOVUhe1U9W/ZsvPD8M8dj4huPs0EBaEzagjOmA3yqGKgnJHJIJycn5ct6xNquoSXSQQfagzrwsg371JUKBiUbfvHqDkZ4qe7N+HEs9iuNpb52cZI4+6DyMdu/TPOar287asz+qUX9k8U8AWMV1ryy+DfEIvLkIsWqloRHh5UdXWRZCVkDYAILAFWLhjlVrrLr4A2bGe6gudv2yaKUiwtlRQV2lT/rSwAOW43Y/hUBRXeLqEUckcH9kA29tEUiitLwKSAMBV/hHT1GAPartvfy3un+QvhklX3ERXNxE2fmB6YYY75B7ZqPayvoxwwtKC2uUZLC8ktxb/AGmNkRNyPK8iMTkjhi4BzkcY4OevSnz+ELC6LWGvXksis0ZCrE+A+eH5cn72DkYI6nGMDj9Y8T/GyCaOSDT/AA3CJsJcXaXk5ZVCOWyrgBiCYlUg5bc/CDOXprXxxuHjtNO8a6LE7u0vlSWDiVFQgHG52LMWLAcAYRjvBwC1e26HeK6M6CPwvp6vHdTaxdQQyyBJPLu5WOWOAxG9lx0JODtyBkBWqe98N+FrW1kt5xqNyjIN628m1hypJLJtIyRjHAxkdOKoWt/8bN00Os6joEBhRNk9rF5hmUnjeJNoGQCw+YEZbB5GLVjrPxaWyEtxqtqkzKANixiPczEZGXJG48AcEY27s4qbPe5Scexl3PgTwFq7w3Wpab593C7vp82s3X2mW1udmwOjSM+07CM4IJQ8MOc9BeaaIZJbtbueFYoCWia5fanAGEVMZ7cjJOTnqKwIfEPxXiebUNS8TW92IhO8h+yLvYAEKoGWc7doJOOckAFsNVbUPGvxBiu7TTn1+6FrA0bFY7FLlZQFYxn5UZyN4UjvkYGThTPvS3YJwN5rW3tP3U3iBCkbeaXPnkE7hgbwAOo9enUYq1Bc+dETLq4hYqhKxo6bVG0DJYgnqT3PXCnLYxrnxH8RNS0EWmn6dGZREUgURIzEKSSwMaEqG3Kf4mA29xxBceJPi3Ehs57S1Zoy8qIzgM8jFSAucnqDhcMBlueTTUWxNqx0sc0rBLnTbhZ0Vs3HnPJuKZUnpuLfxDgjoOnNRraxMyhgbqaUmTzJldNgyR8uxdvZid3oPYiI/E/4h3dpc+HovAej6PZ3Ny8a3H2dZ5vLjclF8xn3fPnJJ/v8bV+VYbb4qfEFdfa9fwhos6IYWSybSUaKZ1U/eXJCByX4BZfnyAuEMY4sfOizfaDaGC4stO8SWMU21ykYuRuDYOAvmZ24JIyRtwcDgVZsfBPjNZWceKrSa2Cxqso2ksRkcBQq+hJUAdBhcEmrL8QvG1ol1JB8NPDI835vsl7bOsSow2sIyJBJgkbhjLIVbaVBKlLf4s+OrGyfUNP8C6O/mOzRyLpqBoAzAht22NWUDd95cAEkAlFAqz5baEuSv1NW53mWRUubNpJQGZiSHBORkKx4OMcDvn0qdLRHcTS3WnXMttL97yEcliDlh3XIyOB+nBxdQ8feKhocsX/CDaWwizGlzNpbefCisUVm/e4b+7uUDcVD4EgDVg3HjPxbqOqzSXfgtLW4hmjjjOn6V9nib5EVnKEnGcHdjA3AnhemXI+4/aJH5t3P/Bw8s0Thf2NLQu/BaXxvkYyOSBYjLYLjJyPm6YyGjn/4OGGnmZm/Y8t1jIjCxDx45HyqBzusyOcdAAPavzZor61Zdg0rcv4v/M8n6zW7/kfo/ef8HBt5fSK9z+ykpGxkmT/hM4iJULKdp3accDCkYGPvHGOK0f8AiIoItwV/Y3g+1E4e6bx4W3LgggA2Jx1PQ4PcEcV+Z9FL+zcFe/J+L/zBYmsuv5H6Xyf8HFl4ysY/2PrWOTeGSWPxqFK4YHbxYD5c7v8Aayx+apZf+DiuG4nS5m/Y5Jk6TSDx9GWlUj5gS2mHBJ+bI78gA4I/Muih5bgn9j8X/mH1mv3/ACP08f8A4OO43t2h/wCGNXBdcNInxG2sfXpp4x1J+pPrioF/4OONTE1vI/7JCkQxmNgfHakumMD5jp5Ib/az+Ar8yqKP7MwP8n4v/Mf1qu+v5H6bW3/BxXZxxLFd/sd3cwUIuD8TcKUHVCP7N6E479h1xRff8HF0VypFv+yBcwFnDsyfEgZLBg3X+zQcZ7Z6e+SfzJopf2Zgf5Pxf+YvrNfv+CP0ssv+Dh4afeSXlt+yXd7pmHmmX4lFztBJCLu08hFyeABwOOnFWo/+DjjULeeSa1/ZMmQOcgH4h54JBKnOn4YEgdRkDIzjGPzJoo/szA3+D8X/AJh9Yrd/yP1Cg/4OSDA5c/sdTMWh2Nn4jL97jLj/AIlvBLDJHT0Apbj/AIOTrxwrW37IMkToCFLfENHAJ6kBtNOCT3z0x6Zr8vKKP7LwP8n4v/Mf1vEd/wAEf//Z",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iv2Y8L/sr/ALBVn4Mn0vV/2SfCr6gJI/s19It0XZMgOGJnwCRk5Cnk8YAFdTL+z7/wTI0/RrbSR+wh4Uu54oQtzqM11dRSSMAfmASUr6ZGOcHpnFeisv8AdTdSP4/5HnvMKaduV/gfh9RX7B+JP2Q/2E7rTYLvQ/2XtKaZJFaSDzJEWRVAAG9JM8nJbgdeMdvP/EH7Fn7LM1vNcaP8DrFJC4aO23zAqMcjJfDc9Bycd6n6hJrSa/H/ACD+0ad/hZ+XlFfp5oP7D/7NoeOTX/hDpMSscCMzuSfTOH79K3bv9iD9kV9NdV+DGkwSqRtlMspU/wDj9Zzwc4SSuivr9O2zPymor9PJP2If2bUkIPwc0tQDhG8yQq3pzv4qKD9iP9ndEVrr4MaPHnJ2yzS5/R8Vf1GX8yI/tKlf4X+B+ZFFfpcP2Nf2eobJmk+A1hKw3fvImlbGAPR/etjTP2Mf2W5rFLg/A3S28w4BlaVSOnq/1pTwNSCvdDWYUn0Z+XNFfq1F+xn+yVHAEuPgLohd2JUq0x2jsCd/WpYv2Kf2ShGZh8BtI3EcAmUg8+7/AMsGuf2Mk7Nl/XqdtmflBRX6v+IP2S/2StVvbhtM/Zv8KWka2hihtIGucxEHIk3ecWZ+2WJBz93pjnrP9kf9lvTxNbX3wA0SZ2OyN5J58p7gCQc/Xj2NdCwM5LSSZDzGkujPYrnWL94omlSNWOfkJDEcn8+MfnUEGswXYkivLiSPyufLIPJ74wDwPrT1trsyFLnaD5e4K6AsOM4JBI4PHXB60y50hxKuLm3aRm+UqTgMB6dcdPz96zpYuklaTPOcJvUlt9WsbcxpaXs7GSTGEYBSRjIweSOaTV5LC41K2t72OSS3RgqzxN+vXoD35HBpLzSLyWAyzNAJ0k3IoXAG3PbCnJ5HpyDzwapWnhae2s01IW8kaGcuYoblnYqduF+72OSP945OBw6eKpOd+YcoNbjNftLK9gXXMWUxhUiJEt/mJ7ncV9hnORxVCfxMkESRyllBwXVMFfwrobPT9cmjMNusUrjgb1G9gfUnj/8AVWNq/hSW6k+zX8a2sy5A2MrJjGcYVjwPX9K6o4mk17z0RHJU6Ez69LCiLcaeZtrZePHUjHUYP9RVvT9ftp4hK1tJbvyWVxyB1GCRggj+dZtpoOu6bHGttqCuAwAVlLHJ4Jyf6+n0rQnJ8q3gaGZGiJTgplzgEgkHB9evfiuGtjKalyx+8qME9WakAZdkkjKFZskxKdw5PXHH/wCulkedt7xksScIrAcN6H8wfxrPkv0ik8xGEin5AxDAMemQDgjpUL6ncW95GNjlCDtMa5/PPPXPr1rjWNqXKcESai+vwXaG2s9ykjzmkjHlocZPPXHI/I/SqOpeJbnS4vPkkVg2VcgNs3dTg1s29xJcNFHDtEchy3mdVOOMkdOcZqrrmix3cbw315Gq4/dhcN+h7e4weetbQzCnzLnWguRWM1PFdvKBKhV1DdpAODxnipbjVPDd8rEy5kVfk3jn8weOfUVlXPw0tAfKbUHticGIKSQVIOckA4+p+nUirA8PuTAdFv0gMT7HyoVpB91gSAx4OcggjPToDXofXMHZezlqZ8k2aupXdyYojbyRyRs7L/rBnr0IJyen9KrrcW+qXgsp40E9u4ZEfcBjqdh5weOpGQVHJ7Zt1Omn3T2EyxQXO7fDvf8A1TEYG7uvzA5B9TkccEt08N0EvIWleZh5KwBmUqSeVYDkZ+meDgdK+c5vdsehGnNS0Oo+2Q2six3t4ibYtrwIowMAc5GQOMHt3wMYpdS1e5sY7eOPzvLnYqrNathSAcj5hkdPTvnpzWTp90b1/Pmmgy7rKhkY7oyF+6O+cHnnJ54AGDJdKt1ZxLA00RJwyOWjEZA6KDw4+hzjt2rNNJp9iZ0pN3NKLxLOkZEakzxEGIh+c+nBx+FZ2sakNTkWWS4InRsrGQW2jkY+mM8Vm27Q2Mjf8TUfu5NkhVDlXPQDoB0JzntTbzVzBcv5LKGZgDLLlmT12gEemefU1r7SXNaLMlHozbkvY51S3vZyCFbDoAcLzj8CQBz0NRLqE9nelC8UgdgY5Vdd2P8AdYZPIBPp0+vJ3Gs3FmWu4YVUbS0koBBTGTkVat9Wubm6je9SKdJX+SQHaATnnI6896fJO9zRwSR1E7QxWf8AaMMbWOWjEkdxlo2JBCqp3cbvmxyRwevAqC3Es0BzG4UTbY1dWUbTjcCQeGDZwPc1WsddaORitm4j2Msqi63RHnByFIDde4OCauLfw3Wl3sCwmG1jkVpPNU5JbcSqnjIyM5yeCffHPJzi7AoKxalt0iVTDIEVnWMhjghj02k9eePX+dR6jcwi0SKBZpHSNlwHUhflPGfT0IPBNYeneKJ7uymit5CpmVleyWQbX3Dbhc8DkMOeGBI+mrbLbzRu9i0VxdxruaCK4RDu4PlkuRtJ6c8ZPXvUJNvUnliiqk1yLbyp8uIyGfdL90KeGOcjOFBz/OtWPWbOcBprZFmmhDhhIG+VeM5XoOO/fPoQMe7eGVPO09lWKSISSFEwCSMc5UH2/wARTLK8u40lSWyiRzbkJJ5wKTYUZ+Uk5OMngY5x70/eTKUY9TR1Xwktu0hs4mMcTssCoArTRAvjCjoucgnB6cA8VmSadJcwvJpyx2zqHil8pwJNrtwU3ZPVRggnII9q8/8AAP7WUniLwxe6F4/8DxadDqVxeX3hfUrSzVWt4ZHw1uJCyefDEVESfK7xoNikLEiL638Ktc8BeK7C1Hgk3mqXSSJb7ZreOGS1kdcjDFguXCsV42gLyQQBXRi6VXCwu1dHrwoxaVmY32XXPIs1vdGNpBdQM1v9qQGScb8ZIB+XkEAjnqc8jMw8PkMmofbnjNv8rH7UdgJ5DHHII+ZcAcivR9attSvI59Dt/D6m60uKKV43lUGHLqCCVYgsFPKE5CEk4O0DAe2082wtG0OKN0iLyyyFS0wXLNtABDMQDweCcDGWWuOlVlKKbVmRXw6UvduY9zpj3SB7aeORUVlkSYBCrKMZ5BLAjJKj09sjG1O+vrmXzZ9PSK3MoRXMmRkH0BGc4PbuenGOytblbK5ii08xPFET5kUyh1lYrj58gg9WBAUn9Q2tB4b0u9jJv7BYVjnaG5W5kCROhZcOiAByCArDC8DOdu1q2U0nexjCgpOzPItK09J9xmgdDEMHzYTzkjI9+3X3963NEi+w6hGk9ob21lB822eUptLDhkO07McEsBj5QCCMivSp/AvgrwzcC5srmK4tI8PfXEckcCRxEcBdz7nKgZ+Y9B1544HW/wBo/wDZo8HiWyn+IulXk8cOM2dnJIqscEkOiFDjJ4U9OOe+6dSp8EWzX2EU3cgtrLQbfVPt0VyI4rq1lhlgebEkcjK3l8A5CrKqEvt2sCR8uSo51I5Aj6gLdPMWPblmIJ6YYDnJBPpwM9iccH+09+2n4mspToHwXh1bQ9B17wqtv4k1n7PPZDVlllPmiFsRloBEJLRvneKbdOe6bPUviFPdQ+Jbq4ks40kvL8yTTW8z3ETSShpJm3uqZ/eHcF6YOBgAKNq1JU6cebd9DOdJRjdHL6ZY6hPe6lLPepI8M8fkyoQwXzAsmMHHABPr0PbruWqwySSC2s/KkZ/KkfAUqd3Iznpkg9ayLdb28tjLbw4+0SH7SiOxKuAEZcjrhFIHXpx0xXUwWsbNaJIsSxzkSsgB3lUblvn5IOWyc8cnJ7cl9DDki9jPsytgzSxxTC3QKsEcKDlfXAHC59v5gU68sby6tBHoMEqtvAMjJuAZhx82cOfTnoOOBW7Nc6NbSuJYQw+xFYCxy28Fg0uDwOvcEEJ25pr6frenLNf2unoYhK7MIULmCUuQsZwoJA24DHPAXJzU87SuHsby0Vz1fU/gv8Edb+Cui33xN/Zs/tO/tPFOm2MHijSYk0y4W1OraVDdi58mUAytb3D/AOvVwi3IZHRi0lclrvwN8JeBPiNf2fwl8O3+l6JcTfaBpd/M8r2Ets89v9leVi7NIyqrnk7Wl2AAHA7M/EP4sHSLnQ5Net9O0m5mYJY3kKrskmkVyFYAKWLW1mEYuQwt9q7mlOZviLrGsah4hstO8QWOn/ZrfTbCXUr6CHbtEum2kyM5ORlw0QbByWzkYcLVVMXOdBRb0sew3CLbSOch0Ge81KGS9tbe4vUnjuNTvFgCQgDrBIpONgLFRgBtqgZJjDDZ8Z+H9U1G+a/0+HT4tRVU3TxwqQ8ZA2jgHeu0sDkqflK8gKV19F0W81yGHUba/g0+KW7kK3JQySXKjcCBv4ViWjCsGYhUdcHcGHSWfguNnNrrPit1jkt38qW1WMbSEAVd2/724Mx+XuMDpXmxra3R0U6bnDVbnhtj4a/4R/T4v+EjlRbhADcSRowjk8z5Ad7MvO0ZGMMNi565rU1azvZ74+IdUl2vpWLN1nIYOpGGGCwXKqVG7JwocYxmvV7n4Uw65F5Nt4qmmKEmQS24ClmTG0f3s8Ak9jnqABBrnwmutespYbjUbySWaKNbiyawX76q21N4HOGyP4hhhxhgK1hVb+JkLBqL948T/aE0j4g/Ez4SWnwz8HLJ9s1Txbb2euz2jRGQ2B3mSTZkDK4hBUMCQjA8Ma8MvP8AglB49vvHHh/SLP4mwvaazr0Vnqt9daS0H9k2jY3XToZSHK/NmMNySnz7SXX9Jf2Xf2dPhxqGt2x1qXU5pYry+sv30zRIuozWMs1sxAGfIRYgwwOX3BtyfIPSdU/Z+1HxnqLa78L2s2ni0H7bfafdxxGBmR0VWhMgJWRiz9TtZUzwVrtjmFbB2hFXudlLBYetBylK1j53/Zb/AGUfg3+y78A52+JWrN4t0TR9elgt9ZRJkiuIHuzufyI5CfKclstGWIVhIpGSw87/AGq/h38H7W7W5+BnxOHiDRrtLecW1rLcKLWU9I3Nxbx4wB/edSc5CkDH1R8S9Z02PwhqfwS1PRrq0vLWWXTg1nAWtzqlvqRZiHTgQm1gba8m1C42jLGLPjR+Cb6Pp99Yw6RcvZXA8pdPt5ohEIt6kqEEiqOpboPuZ6n5uGEpc7qVH70m3btqGLp+2XsopcqSSZ8lXWnmW5bUNP1QRSQRqrW8tjEyzSbhlPlJK5xgk7dwOWHcaccWtzapDYLexTr5yw+ddOEUPnBYsTtRThjuzjBBPGSPYPEv7OesLerPonh8XVvJcb2hlukR0Zc7Thm5AI4OTxn0LVV074Wv4dQ33iLTI4rWyj86f7Vq1ph0RdxaTa+CDtGeOcEDkYHQ6yex5awNS9jzLTtHl0+6fzLuC4iRMWriXdFtZRyXRWCckja2DxzzxWp4Mh8fC4bwy73MNtdTi9miu4GZ2wzIuzOGKE7vmHp75rVs/A/jHxff6TfeEUsrPTvtzW8txdyyFI7j92cAYY42SDacZOG78n3DwR8FtO+Hfxw0i18R6wmsXeuaREtrqS23lpbzB3YxcsTgYJDHAbd0zU1Y1oRulpa9zqwuBwsdJy17XsUNA0Hx09jqHh6fTpobu2uY7qaN715BJKxbynfJIZkL+amQMBHJyDhn2XhD4i6xdCy1q5ltLS0Kxy2yQpMJxGS8QMjAbmGVGWUEjzBlQzKent/EdjYePdO1q4uJjMbS7s4rW6QRTTEMsscYiZVIbEcwyo67Bl8HHS+HNe8NPosEs+k2y3ju0rqYIyyea7yIDkFk+U9CcL0BIGa8/mmlZrQ6lRg9jFeC/s4Vubm11GZsBUjErkAqc8qg+XIPUZBx0yWrS0O1vL2OW7a4ubQvgGyvFBKHruBXHrgjJGenHJ3lktikl3FHGxZ+ghVdvPB4+8O/vnvTbzVbaEJu055GP7s7PLABzwcsRx+vSo5mtjVJIzdZ0e5uNJutKgnlnS5haBDa25WZZJBhcEuBwSOdw56EdBxHhBotf8VXnwz13UluV0+2ErpHJIytkiRt52orDLxrjtsYDKkFu28RN4d1rdp+qMs7ujQLELgRyKrqA4BDhlOB1HPHHenaHp3g/wAP2UOnaTPEtsiJHHAg847AAAOTnbjBx75xzT9pJIrli1qjW0oaN4h0K68HWepXkWoXfjDw+LZ9IMaS2cdumoyzvI2/G108tTG2d3lqCMZI9c0v40zNqPgrwjoOrzjRn8Q6XpmsW2naUZWD70RkaQttMR2BWcAYRy4I2bm4TwVqfhaz8M3OsX80MLDxJp8El/JAY2RGt79WfOMkoJCV7AlverHw0vLDQvHEfhuS4vYbiDxbpdnLA7l1tJFkuI328bQQRgt32jBxW8JtzTa0SdvmDjH2dl1epwVp45tnjnl1yMW95rQSd7SSQFUiMgdomZWxnzDEAUbHUAniq8FkqXMtxFdPIHkwGeRSpYDBA546HI9cnvVi017w41rb22lQXTw7B5apG2UAGcZIHIA7+lU/7dt0gd9dldk3goBauhjByvJL4JPIzx0ORWcpTk9hOwn9m2dzI16UiEskQV7hnCgou8AFgQMAO/OeNx9TXnWrW1t8U/A8Oq+Eba3ksZ9OXUWvLIgv5TRb4oi0YALNkfKC3CY+bcDXaeN7zw/ZeBNW1W10y8uYrPSJ3S2sb6S3eSJEZisbhHWN+cK21tpKkA9D1uvz+HLDwNosHgrS7WCC5haaB4t4YwIqCAuEyQcc5JALJuyDms3OcYq3UuCg7t9Dznw38JfCVv4El8IPqkMN2+uW+oC7trbH7g2bQyQRnplAYmDEZHmE7fmNXx8JNE8MeE9J8XeKvEd09/b2CXR1OW8mUxbWJY7Swj2B43wCCTtG4ZyK2r6+8W6daQJp/h2zmiuZJrm3uZL9kY52weWF2MRh7ZuSRyeN23Naaavr934WsNXub5PPgmltZIeWeIt+93KSQcFpJAGC8hAcjIFdrr1qkHFvoc6hTjK6PLda+BWma9fGXUPE9xPMmFjk+ygnOMgndIevOcYzg1b0v4Z2XhnSRZWGo6lPBHcGRSj7H3EEnO1xuHJ45H5VZuPiLo11OJLXEnmhQGju2bOQykhfKIbAJ4Dc/NgjGa2LfUbW6/fR6Xcxo6bo2SfDXCgBtgGcKTk4BI6HPrXK6lS2qNLwTGW1+LWzEoEULO2DLc2gw5Gdo3DhsYPHUYNSt4otrcvJPZrNuQ5It1GVHVsZ5+n86i8iae0eO6Os6ZcTr5qxTgTNDkHhj82VyvIBJyx6Y45zwt45tWZ9G8RWF5bTxlxI7OyRuVKgAKwBQOTvVDkcDHTnKU49RSqxi0mdOPGEFtIWt9BJBHzCJjuYYPzFUXoOOe25eQSMyvq1nGftDeE4kijLFSnKxnrkAJheDnGeeOuaJ2iuHLaZOXmtlJVJYU4T5WkGOC4wFIBPJA9cFJjrSXcaw3Sm3MLEiySHbt2gZOGBDHa+3aCBnOPukUnB9A5mzUTW7+7sxpjpILOW4iuZbVo1+eSNXSN9ytvK7JZBt3bSGBwSFIfrviDUvE2s3Ws3K38FxeyRfajZMIBvQOTcJ5ci7HO92LKFYMzMM8YzbO3t9WuEltmvGeeRo0ijLPHGRgMFx8ucrgEZ5BweatN4fvo7KSPS9Uhilm/dL9uh8xDIN+0sjAFiGyME4IJOarnlHYfK2Gva5qusJNqGoW8ayzuZr/8A0fYjStkkqGJCqSS3ljgdhwMU7a7uWgDT6FdQmNAQEgjxyeVG0tgZ4zx+tXn0TVNPWGQrbtuOGhKsEYrxwwHIGCMnbyPfFJD4b1q4VLiPTIYkZBI6idZGjkYc7CHx6DIPc5HzGk5Ju5LU0VNat7XVtDvdC1+2Mov7Z7e5tkcp5qMrKw3AA4wTyDkZ/GpYtUk+x2NnNe3sdtp1mlrbeeshxCudqAuNx6n1JJJqGLQ5/NbzZ7ON84aRpBuRd/Tacqu4EH6EDiqun+GlMwvrK+09ZllaGR0kBnVwxUkhouCCCBjr60r26itMr6hoen+Jpv7TvL2ezu4JZWtrjTbp4HUOD2G3OCAfLbK5RcA44gj1vxb4Rs4vD15q2oarZ4EsdzLYCS5jK25ALSM67mbamAq/MZSzKCuW2Z9M127W4Nl4gtrtZYz5EpjL7AQCTlUGcgcH88n5jm6p4P8AiPIs1wuq2bo85JgkKfJGFBO0iNmznoNwGCAcY3VonruRyPc//9k=",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [49,48,66,73] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [52,46,74,87] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA7iw/Zk/aR1RkTTP2f/G1yZIjJGIPC12+5OBuGI+RyOenNdNe/wDBPn9vXTdIfxBqP7Enxct7COLzXvpvhvqiQqn94uYNoHPXOK+8/wBi/wDaw+JfwC+NWj/EL4dX2mx6/Z2F2tpPqVgs4QC2kwNmQcYG35SK/VnwJ/wVB/4KKQfsqaT+0fq+rfCS9tL6+ntWtL7w9qAuIAkxhV5vKuEVQXGBgsTuXoQQccRWhhpRU2veaS9XsjOE5Si5cuh/L1ZfBj4wai80enfCrxJO1tGXuVh0SdzEoIBZsJ8oyQMn1roj+xz+1yJ7G1P7LfxF83VIPP0yP/hCr/ddxbdxeIeV+8XbzlcjFftf4s8UeEP22f2nrq4+KXwo8LaF8QPGn2ewh1HwBbT2+naxFIQs8l4s9w8kVyn7gxywkbg0iyDIjZfpnV/A/ggah4EGmtfonh6O6i8OX82zy7uwkikg3gj7zB7KSNtwABVsAhgawxOIr0ac5xhdQV2+19jai6VScISlZzbSXXTc/mlvv2bP2itLgiutT+AvjO2inBMEs/he7RZAMZ2kx4bqOnrVjQ/2V/2nfE/k/wDCNfs5+O9R+0ztDb/YfCV5N5siqXZF2RncwVWYgcgKT0Ffv5pH7LnwovfgR/aEGu2E/ibXru5ltT40uiNJ0ZDcNBHseNC8SskDtjLfOBgchT57+xDZ6do3w2vNU1i5WG+0ae/uNOkiVZXF2E8v92D8rsUeQDqCCa8yln1PE4adWjG7jJx17ptP5XW/U7Xg4xrKEpbq/wAj8SfE37JX7VXgqWKDxl+zR8QNIedC8Kan4OvrcyKOpUSRDIGRyKm0n9jr9rnXhbHQ/wBlr4i3n220a6s/svgm/k8+BZGiMqbYjuQSI6FhkbkZc5BFfsd+1D8YNb8Q+GPBr+JoU199St5ktdb07w/IytK8kaLbS+YgWO5DRksicMDuQY4rpfDHinxT8P8AQ/B+s+HfEKQwaB4fl0vUNQOjBo7cNqt1I0DSbDu4kR8gBiXPrmu+OKxMqLvBc6drX0v0Rk6NFTTUvdet7dD8SLL9kX9q3UtRl0jTv2ZfiBcXcErRTWsPg2+aSNxnKsoiyCMHIPPBrNuv2ePj7Yx+de/BHxdChGQ0vhy5UYzjOSnrx9a/fT4nWN74P8XR+IfB3hRbe41G5hurhog05kMk/wC+lbCDYQpftwR9BXgPxn8ENe+KPD0PiC3ktPA9rkazqEOlLOodgyorFnRS3JbazED72GOBWFHM6lVr3dzroZdCtiY05Tsm0r22X6/efkz4c/ZQ/aa8VeIYvC+i/ADxnLeyyqhiHhi7zHukWPc+I/lUM6gk8AkDvXTW/wCwN+05rMiy+GfhZrs1rLbQ3MV5quiXGmwpDIHy8090iW1vsZVQ75gGaaIRmQNkfrF+xx4Bm8T+PL/wBNdi61DxFpWn6Hpuq3hJFvLeapaMpY/MdoHyE8naSexFdP49+F3haz/aE+Mn7GmmfFs6nc+DdGudS0fXZdOREv5rVIri+tHAmk2SRxC4RMdZIMNtzgOeaKFTkcejk99ErJvbpdHHWo06M3Fy2bS8/wDhz8o/hv8A8Eqv2qPiboV/rmk6QlidIvba01mz1fQNat5rGaeWGNVfNgVYL5weR42dYkUvIyAoXzf2mP8AgnP8Yf2UfhzL44+KOqx/a1vdOVdHh8O6tayx2l0L4LdS/wBoWls0a77NQgCtvW4ikyqSQmX9Yf2df2Zfhn/wtnw5rN7pkupf6BPrttZahcvJFHJFOgRWt5dysC9vGX3qQxUKQFXaeX/4Lf8A7Pfgm+/ZG+JH7TU0t2uu6hPYXbQmVRErT6zbK42oqqP9Y5AVVAyAAAOfWcqdKUY1dOZXXrqkn6nIpRknbdOx+Z3w9+MWo6JeRTpOI3jJCujFWXIxwQfc19C/D/8AaU8d6p4eg8LSeN75tJWczjTH1GQwJKcjzPL3bQ2CRuxnmviSHVHS4URNx616d8IfFVxFKsTzcbeRj3rnUk2rm0oOK0PuvwB8Wde0zVbTxHpGotBf2Kj7HdRSFZYOQ3yMDleVB4PUCvS/FfxC8Q2XgWx8K6pK0r6movbiKSRiiwlDFGoGccrvz7Ee4Hzn8CbzSdc1/TtP8Sa2LGymnjF3dtEWEUf8RwvJ49Oa9P8AEOswa14jvdRtIEhikuW8qOJnKqg4UAyEtgDA+Yk4Fb2jJNd9/wDgnLK8Wn1Wx0fgL4r+Kvhd4oh8a+B9Rl0/Vbe6NxDdxvuCyHqxVsg9+Dxz0qO48TT6toraHcSCS2lvnvJY1bG6ds7nyOedx4z3rm/7Q1ERCCO8k2L0QScflV/RdQ1SG3eJtRlRC2AizkDr04NZ+wo3+FCU6jlzX1PpH9jGL4Jar8EG8Y/tH/Czxz4qPhfxTp/ix7LTfCcbWXhK306e6WOOa6uXEd1FcLJO7ral3PlODGTGN/z58A9Q8ca94NfQ/ilqFzJpUmrz2Gg3tzIII1u4UikaUiN2BiZpweQOGBGMEDjvjl+3J+1LpPwt1X9k6y+KEUPw8WWCSbQZrGxhV2WaLUEP2vyvtH+vDy7t5AI25C4U5nxH8Z/A7xT8TPDUP7Kn7TGm+JNX1DQ5rnxPYQaVeQWEVzHNAfLhE9haGEFAW2IkwGxh5u0hU+FyjAZpleeYuriZOf1ipeKTlKMYRvy392KhJp6rVXXxSd2/ZSpvD/vHbTT7v6ue5x/Ev4l+ErySwbU7uCaBXglgnu5eAT8ylWbHX2rkvi54q8X+Pvh2/gK6ht5LB7uS8miVf3nmrayrCycgblmMLAcfd7jg9Hd2th4l8Fv4kXU7KDUNKEUV9Dd6gqz36u5SNoIvLG4oAA/zscENgAGuacZ54/GvuFhqHNzcup5ft6yVr6GvcasserJrmiPc2t9a38V5puqWNybe4tLiL/VzRspJjccEFTkHvTfDM+m6d8Rpvib4htL7VtXvhMNXvtR1aZ5dSEwcS/aH3bpC5cliT82ADkZBr6N4j1DRfMW1t7JvMjZG+16dDPwepHmo20+jDBHYiiOG/wBVLS29jLK2cHyIOB+CjFNYagm2oq7VvO3a/YiVSc3dnW/btbvfEll418FeLb20udKtpLazs7KdY5UgeR32kbD5oDyMepPTIxwPOv8Agp38ffFHij/gnd4q+HWvPHcCx0zTrJZ7hD58g/tjTpRJIwxvlXyCoYj7s0uckgrpE3FlOYXR43HWNhgj8K8r/wCCiHiaXU/2MvGVpqlqLibbpwhupBiSPGpWxOSMb8jI+bOO2K1nCM2nLW2w4+R+attf+bP5Wee2O1dv8Nr6VLtUWXB285PvXA6dHtQMw+8cgV1ngubZegFiAP8AGudwUZ6HbpKJ9Y/BzVNTtri11Czmi8y3kjkj81A67lIIyrAqwyOhBB9K91gt/E2rWj+JrmGMi5uGMs6QssYkb5iOOB3PGOhwBivm34UXANrHtYn5F6Gvq/4FHW/Eng/WvBf9q3ptZIvPhs5PHVno9is2B+8mS7UrdNuWEiNGjf8AdH5uhXaD0OWcUzEEGqgYLQkevzUsZuYPmeQA55KSYp0DO2AxfPfmp1WPZne49a10MbK5R1j4F+I/iN4b1X4kaX4Hk1LRdGlt7fxZqMcwk+yRTw3cVuXQHcql2YGXGwHYjsC8St558HfAHww0j4n3ninTPCSWGsfZRcww2jmOO3GPJkg2KRHjLEkgcsP9nI9Md7dJB5lw6DPJ25wP0rsIPgLofwn0XTte+LHi3V7W68aaSfEHhyHT/CqTzjTnuLiGMXBmuIDGpa3eSMp5qNDIj5BJUeZVg44mLqTS5pe6lo9I3s9XzPSTuktNLaXfbRrpUJRkr6WRiJr8iEH7Ewx0IkFSal4rnv383+xoBI0jPJJG4iDZ7bFG1QO20L06HORT1R9Ejutnh7VLm6g2j95eWSwNnHPyrJIOue9QB3UbvNB9q9K5yF06zGXIa2cBTgHcvPT39xTv7XQjCwyY9iP8aTSvFuv+HTcNoWt3dr9rtnt7xbaZkE8LfejcA/Oh7qeDVi0Tw5rWmwWmkpqI117p/Mt2jja2kh2qQyvuVkYHflSGBXByMHJcEktCJNVUnmKYevTn9a8g/b/1L7X+yb4rV0lziwCl8cD7fbnHWvU1vIxIVd9rL8rK0eCCOMY9eK8k/b0uopP2TvFiKwyfsPRf+n+3pXGtzyvwb/wTH8V3sCy6vq0mO6QLzjFejeHv+CZMdkqSC3vXI+8Se351+s3gP9lDSJIEdNFiTacZ3k9q7KH9lKJ7NbiDSvMRxlGj3EEeoI61y8km/M1c2luflNon7IA8K2SxR6fdqyDaWDdcfWu88F/CzxXonhTWNetW1GG0ghaOaSGG5CPhMlHeKJoyOV4dlxnng5r7g+IfwAsNMZxJbhCGYFSTnI+teGfGT4PxeHfATa1LY6hHNLKPLlk0cLAAckBbjzcnKjO3yyOvPet4abku7R85xiUNjbz71YRJWOWUkGqN4fst48RlbIb0p6Xwxj7Qa0MdnYmnhkI2hDVV4GD52N+GKfJeKespz9KhkuAWGJTj1xQInjDJgBfwqdSxGdpqkjIzBvOOc1ZVun7w/lQPqOIk/Ko5BJ1I/OpSxPWT9KbIjMM7v0oDU7KfWoPjLfW1jfaVZ2PiBwIbafS9It7O0mXexCCy02wBaT5j85JJxjoFUfPX/BQHSfEXhz9mnxdoPifRbrT7yH+zzNaXts0MiBry2ZSVYAjKlWHqCCODXpUyTL8yyfhXIft5+NdH8UfsO+JtH1nw3GuraZ9h+xahpyafYwmE39mu2WKK0WW6k4PzNMSN27HDlgpK7Pvvwp/wXw/4JY6faGG8/aZMR9H8E62c/wDfNkao+C/+C4f/AASA+FV7LqXw/wDjvHHeXAg829uPBuvXD/uZLqSIjz7NthVr262lcbRKyjChVH87tFVCcqcrwdn5E1cLhq8lKpBSa2uk7Xtf77L7j98fGH/BcP8A4JuX+nxaVov7QN3NHawiGKa+8P65PNIqgKGeWa2aSVyBku7FmJJYkk14/wDGr/gq7+wj4g0KOw8NfGDSbqZnYtcWXhvXUmAC4w/n24Qgk5+Vc5XsOv43UUm23dm6SSskfoXrP7dX7L9zevcQ/EwuGb+DRb0DH4wioB+3D+zARn/hZhHt/Yt7/wDGa/PuikTyI/QRv24f2XwM/wDCzGP00W9/rDUMv7cP7MjHj4jOf+4Nef8AxqvgGigORH6A2/7cH7MeCG+JJX/e0W8/pDU8f7c37MKDH/Cz+P8AsCXv/wAZr896KA5Uj9DR+3X+y4AM/Evt/wBAS9/+M0f8N1fsuY5+Jp/8El7/APGa/PKigaikfoPL+3H+zA54+KBI9P7Evf8A4zXnX7U/7U/wJ+JHwJ13wZ4M8d/bdSvfsv2a2/su6j37LqGRvmkjVRhVY8nt618e0UBY/9k=",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAor+lr4Nfs1f8ABtK3g3QLf43fBjw9qPjHUNMtpNUa28K6xBbLM6KdkSWkaQhSxODgtzyx61n/ALQn7FH/AAa8ePPBF74a+Hd3a/D3XWjddP1jTvC+uzLHOASvmpd2sqmPdjcBtYjowqW5J2aaZHtKfLzJ6H82tFfsh8F/+CY/hzTfEXhPStR+FPgDxLaS65LqVnrNrosFza+IdGiuJY2uoC8XzwE282UlVGXY25V+7X0H41/4Jyfs7r8dtWax/ZP+HsWgal4RmfSof+EM0tFjmGEMqxrH8pR3AydrHqM4rgxGZUaCd1ex1UqE6ril1P57KK/apP8Agnf8OvjL4c0Ox+Hf7OnhVr9r63tbiLSPB1q0rpPIkYmfaqkrHtZmIyQN3HGK5j9mP9lP9nDxLrniP4aeJ/g/4HTWLjUktNMXU/DNm0qSJ5glESumSVxkhfap/tXCNSs7uOrXVK9r27f5F/VKimk+p+PlFf0PftJfsZfsM6Z8D9VuB+y/8NPC1xK9vFaax/whGlQyJM06BYlZVUhn+4ORndjvXyx8GPgh+yjefEzWPDGpfBjwvfbPDmqeXHceALPEMq2ksiP5csBYOqpvUg9cYNLB5rSxlNzjFq3ceIwc8PPlbufkRRX7sr+zb+xj8Sv2f77w94M/Zf8ABFp4j0Cxiu9U1KfwFYQPKil3PlyFAZCyxleDgHAYisC1/Zo/ZWufAOp+FrX9m34eprOoaTaSWks/gey863VZ4zM/m+WdjHKr8pyw3jOM1Mc1hJtcjVnb/gjng5RSfMnf+rH4i1Ja2tzfXUdlZW7zTTSBIYokLM7E4CgDkknjFfqb4w+Av7P2l+Mby30P4S+C47Xwxd/2jqSah4Ot3W7hiUvJbJ5Vs5CNmOMO7Y3uSyqil67T9nX9mX9nvUp/FXiiH4R+DNuneGrC80rd4ftHmW5NzbsHhkZPkYeYMleSAa6Hj6SV2n3KqZdiaVGFWVrTvbVdNHdbr52ufkxa/C74iajPbW+jeDr/AFF7u2hntxpUBu96SyxwpzDuwxmlii2n5hJIsZAYhaWx+FXxP1MyjTfh1rlw0EVnLOkGlTO0cd2YhauwC5VZjND5ZPEnnR7c71z+ysfwF8G6xr+vfDTVv2c9Ok8TQeHZ5oLDU/BUdzdPpsdqh+2fvomLRLEsLRtk+XHBCybFjj2+aeF/gpr2lahH458J/B3wDY3tppj/ANi65f8AhOwjuNKnZ1MUv/Hof3qBNsCgkxAKEMaqoGmGxUMVUUIbvbz9DkqQdNXZ9Ufsf/Gz4ffAH4r+Cvif4x8A6prcPhe3ZNWtbW3jCiNoDE00YZ8OULvIA+3LBPmUjdUf7UP7SPwz+Mfxa1bxl4A8OPYaNeeSlnZX9nEJkSOFI9z7HI3NsLHDNyTyTzXzU+1ZSsUyuoHDKCM/nSmfYAMgY96lYCisasVd8yi476WbTene6WvT5s5qlb2qtJHs37G3xfs/gDpviyDxDqX76/0qSy8PRQgyx2glliaUgH7gOZjgDnvnca9d8c/tb6Ho9xYeNfCfhExWerWkkMeiHVG2WKsbbzpI2dSSpkWd1j4ALlQdoDH5N8G6DeeM/Fdj4ZsWAkvbgJuLhQq9WbkgcKCce1WviH4kh13xVMulTK1hZKLXTfLOFECcKRjPBOW6n71a1aFOrhZ4eXwzab76ChU5MRCuviiml21PcfhJ+1PbfAa6ttc0TTJ9ZkidW+wWl59jH3iPmkZGzgSOwIxgqOpORjfAD4jeDvBF18SviZ44j8Nanr2panFqXhqDxDpE1xdyXH2h5He2njyltN0y7jBDcEYIPidvqeqWwZbHU5Ys4LBLnZnr7j/P1ra0TUfGF1E4h8RiMFcMBriIWHoQZB+VebHIsFCtOrG/NNKLfkm2l+LOueYV6kYxfR3R9FfECy1f/go/8M774D/Chbc/EbSNNi8VaTYxHFsoS7trKeOWSZolyLe/uTw2GMQA3Z44P9qL4rfBf4MfGe91jx5PrOsazpNlFovhnVvDxtktNa0e5guJ11OWSKOQ5e2uQeBIyvJHEw+Vtu9/wTx0P9lzT/jVr3j39oX9pG68AarD4TltvDV3b+Jm0kvG0qGdhdqyRlkf7MRbSs3ml9yRsYiyfOH7TGlfs/fEn9oi6+B3ww8eeIfGej6abbRPB2v614jn1K/vXUhDDC0WV2eckrqUREkWSPYBudT8Fh8XmOD4xxGX8z+rQgmlyNK7UXf2jdpdkkv5k3eOnpUpyxjU6iWh6t4e+Jt1feDb+6stG1G3tNXtDP4YgvljV4be5S3PnyAHIm8qGLoQqv5gCrkiupl8QeEfEYk+JGs+KLr/AISrVONXhuTCsH+tkdmVUGQxZ8nBwfQACvM/h14g0n40aff+EtNkjfWNDy9kkBc+dERva1VSC4cNvZEO4gcE5yazJEgVypVuOoz0r9FeGjiqd1LR/wCSX6Hmuq8PUta9v+H/AFOm+KWuaL8NdX06/wDAPiXzD47szZeLbUNbzbYXubK2ULvVliIF0752mQGMBSp5rQ+E/iGy+FfjJvFOu+HbrUNMfxDZTala6ZIiyPp8VxBNcKq8mRmSN0VcDJOOAePPb/TLS7ura9NrE0ttKpjeaMPtUSxyEAHjlokP1UVpAC5feoO5jwqjGPwHQUpZepQUXLpY1qZlWq0o05bRvbyuet/F/wDax8QfGH/grv4T/bX8I+GvEFv4S0TWdJjh32ksN09hAqJco0Usg27y8+FG1Sr5YEls8/4x8Q6h4N8OajpeuaaJdRm8R2l1cW2nkXyxRlZ5H8toAyEK0iLtGSM4IyDXDJK9s25Zn6dM1q2Xi95yltr6vewou2MSyMHjH+w3UfQ5Xvg10YDDQy9UvZaunFRTa1durtbXuefK1RNSvqeeA46Gmlx1JqI6RInIvH6en/16hexmHAvGOfY/4112QuU9O+C+leCtT8FeOLrWLB7vW7TRo5dAijuGRkbLCWT5SN20bDgg56d688Vhu+9k1d8F+K/HXw81g674H8Z3ulXjwPA11ZHDmNsZU9iOAcHuBUXiXwbbeHL2LT9D8eWGtwfZ1b7Xp1pPFGjcjyys0UbZGAeBjBHOcqEHK7DYIIrhsSX0cOT1kViB/wB8g1qaBo2jCWUz+NtNiIIAEkVzzwTkYhP0/GueXTtQGR9sOMdMD/Ck+z3MJJLq2P7wPFOwKNil+1b4YsrTwBZz+HfFNrrt5fGW0TT9Iiu/NRpYnIUrJCgZyyKBsLdTXl3gn9sT4uf8E6/GuneCvCXwa8JeLLzxh4d0+78RaB8QvDT3yC/W7umgAgZ0eKaJZZYCAQHDurq2Bj1130Yhb3xLrkmnWlg32x7qx0mS9uSYgZBFDCpXdLJt8pSWRA0oMkkcYd14D9ojQviB4r8V+H/F1hpkupG2up5NWmEm5hgrMjsWOMbkbLdywGeRXj46hSrOca0FKFldNaPXzVnttvtpqj0KFa6jSTtrud58BPiH8WfG2j6h40+LOknTfFMniS6ur65tbSO1WeaSQXBmjSBEiQBpCgEQ2L5e0bdpVfYtU+H+oeKPB8nxP8K3TakkCs/iS2EvmXVg4G555FxuMLcsJeQP4mDZA8g8D6nrA8KWE7rHvntUmkDckM43kfQFsD2FdBofjjxf4Y1aHXfDmpS6ffW5byL2xuXhliypU7XQgjKkg4PIJFejQgqdGMUrWSVlsjlqqPtZJdy6cdM/SgSbCMtg1HfeNNV8W6u194pkt1mmJ8y9itlXc7MSZJAgG88kk43H3qPX45dFuxFa6vp2pwMAYruxkcK/r8kqpIuDkfMgzjIyCCd7GVi7DPI2FUqe3JxWxeeBNetV8241DQ+Bz5fiWxc/ksx9a4watek/Jbof+BUseq3ZPz2aE/79Kw7IoFJGX53YZ9DUT2QY8vJ14+bpU4bPJP0pHbPzZP5UCvqVGgkRvllYY9TXf+EvDHxC8dfCa/js/FetX9joU7S22gQnUriC0z8xlWKK3e2iLbpfmaSMnLkjueFaVyevevS/DemadpX7PeqeIdR0pZbq5uWFpNJpZYqjNHFkSyaZIuMhvu3kWDnChvvpji9TziC4dlG5m9+atQC0KP5pm3FfkCkYzkdfbGfxqpFIS2KsRsGHUZpivqNuWsIog7XMobJzkDA9P61peDL/AMC22uHR/ij8V4/CPhjUITb694jTQpdWNnbMA277Nb/vJPmCghCCM5JABrLlXd1wc+oqncQRMGDIvHcrWNejHEUZU5bP5/npoOM3F3N3xFoHhLwfdQaB4P8AHun63p8VqnkXdjbXMSoBlfLZbiJG3AAdNynI+brihHKXJUTA+hxVBGZlCZBC9FOePpU8cuCAVFarRBzPqWlaVG5dSO2KsWetX2lSm403UJoHKlS8LFSVPUHHUVRDZGRj35ppLZ5UH05pj5jdv9R8D32nWqaPZX9hewwZ1Ga+1FJ4rl8AfuY0gQwjIPys0n3hzwazEuLaZVeO6TkAglOoqkWZZA65VlOQynBB9RV6fVJddW3s7u3D3YxGl2XlklmGWIQguV/iwNq5PGfdBe5TFzIONi/So5L6VQd0Kj6GvUv2Rn/Zi/4TO7b9qS+t4tKVLdrf7XZajcI6idfPRVsJopFkaLeEdmKIxDMrgbG9d8b63/wS9uPgnqJ0Dw7o8HjZtEuI7VNLm8StGl6IrrypoWuWKEPJ9iHlSqBGBPmSXKCtadPni3dK3d+V9P63ON4tqs6fJLRpXtpsndPtr96fY+STeNuz5Q/OvQPGvhCbwZ8LdN1Wfwd4lgfUjCRe634KaytzvjMh8i8Nw3ncjCjy1DR5b5eleeaTYXOs6ra6TBcwRPdXCQpLdXKQxIWYKC8jkKijPLMQAMkkAV2nxs0uy0STT4bLwb4R0kzLI5PhTxb/AGqJBxxL/pU/l4zx90nLfexxmdSvY5K3u5DgmEdfWrcd+QMCDn61jxTOpzuNTrdS4+9+YoEaL3m5ceUAaheXKk+WCaqtcvtGH5+lNaeQqQzcfSgCZZpGGfJz6GpI5XBw0QxVBLqRCMcVYW7bjgfWgNS8sxA/1GaCRwfL61AlxvA+YZx0p4m55IFA7Cy46iPFQSMEOfKz71Os6txjNQyXMY49+1A7M/PE/txftRE5/wCFnD/wSWP/AMYpP+G4P2oef+Lndf8AqCWP/wAZryiig1sj2DR/29f2qtD1SHV7P4jWkksDZRL3wtplzEeMfNFLbMjjnoykVZ8V/wDBQn9rPxnfJqOr/ELS4ZI4vLVdJ8FaRYRkZJyUtrSNWPP3iCcYGcAV4tRRdhZHqw/bc/aeHA+Jv/lFsv8A4zTl/bh/aiUYHxP/APKJY/8AxmvJ6KAsj1gftx/tRryPif8A+USx/wDjFDftxftRv974n5+uiWP/AMZryeigLI9W/wCG2/2nv+imD/wS2X/xmnf8NxftRf8ARTV/8Edj/wDGK8nooCyPWf8AhuT9qT/op4/8Edj/APGKP+G5f2pf+ioD/wAEdj/8YryaigLI9Z/4bl/al/6KgP8AwR2P/wAYp3/DdH7U5TYfigMen9h2P/xivJKKBn//2Q==",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [53,49,63,79] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [56,36,67,70] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK9P/Y1a5i/aR8OXdmti0tsL24RNRjjeGTy7KeTYySgpJu27QhB3EhcHNJuyuB5hRX6p/Bv4G+LPjh8a/C/wp8MafdQSeK/FUWj6dqsltKbaFHnij85xs3BYxMsjtk4Rl4GRn+l39nL4KeFv2Zvgh4c+BXgrXL++0vw3ZG2tLrVZY2uJFLs/wA5jRF4LEDCjgDOTkl0lKqrlNKL3P4T6K/t0/bj8f8A7ZngLw94W8S/sheCrPxGYvEUUfifSBCkl1cRSMqQqvmEKlsXYiaQEPEDHJuSJJnX1rR/it8O/EnjDVPAGieNNPuNe0QKdX0VLkC7s1blHkiPzqrDBViMMCCCQQTfI+awWVr3P4MaK/uT/aF/bm/ZW/ZcsJ5vjJ8ZtIsL6Aqv9hW9yLjUXZ42kjH2aPLoGC8SOFjBK5cZFeDwf8F5P2IprywQaf46Wyu7ryLrVx4eje208+c0e6UpOzsNiiYCJZGKOAAXDRqpKMN2VGm5bH8clFf1g/tIf8F6dIv/ABhF8P8A9mR4NH014riDUPG/irRJZ9kpykcttbRuSEXh90qsxLAGH5GV/Xf2Iv8AgpF4l+LHjTwr8L/it4l8P6zfeLbe/XTJ9Dktlu7ae1e7kdruFJzsieG3+TYhxiMl5PMYxynCUrJ3B05RV2fxw0V/dH+1NqZvv2aPiLZwvlpPAuroMHGc2Uopv7VXjq/8OfsyfEXxHpc/kT6f4E1i4hlC52OllM6tg9cEA4ro+rVDn9rT6M/heor1T9unwzB4L/bc+Mfg61ulni0n4qeIbKOdHDCRYtSuEDAjgghc5HFeV1zvRmgV7Z/wTm034Y6v+2p4DsfjRqV/aeFGv7htfn0lI2u/sy2k7OsAlVozMwG1N4Kb2Xd8ua8Tr6K/4JNorf8ABQb4dzfa7u2kt7jULi2utP1CW0ngmj026kiljmhZZInV1VlZWBBUYNKSbi0hx+JH69+Df+Cmnw5+EPwq0f4G/sa/s9x6JLY+Kbe8stf8Q2+n65qV5cRReVCAx0+IicyzTSq7eZJGZ3jjMcZWJftv9nn/AIKjeOfDv7MvjT41/tKRLrep6TC17pekaTp6RhJftt7ayWDXFr5qRRx/ZY386ZVZRJISZVj3V8VeMPAXhbx1eXOqeLb3xBqd9dwwxXV7f+MdSnmnSEKIVeR7gs4jCqEDE7AMLiud+PXh3wTrPw71fxF468O3F+ukWk2qyxWOpPaPePC73TJIQGQ7383LsjFWubiRQHmkZuem8ZSkuWpf1WlvRW/rudEcPhZQfPe/keyfGb/gsX+2t8ULDRbP4RQx+Ev7b0fVLySHT9OaG4vXinkjRYGvmYyBYEtCptSglluJAGL5jT5u1r48/tCeBvK+O9xqvjmOHxeYtQPix5poLu/FsguSkeoukjBxF5MjIHZcpASrGKPHAwzeIL79rfXNOOtWVjNoOrR6hZXV0t5eRaZEvlvZxwzLDbtJJHDBGFDriREZtilSKd/wUU1zX9R+Pel3Vn4sa9sPEej6fHP4wudQcwpNHmOU+XbIECR7RI8cEIZd5Vw74YxRoY3+0I0W5TptX53zP3m78qaioadnJStZ8r1a9CjhMvhguZz969rXhdbbq/NbdcyVrq19Un6N8Vv2h/hD8fviD4U+KPheDxdqOs38UT+J7fx1rqK8shcrZzw3ihnn8uFrdpMwDKWzeXG0bFRU8SeA/g5qXgOGHwv8dbIeKNH0l7rxt4MMV5YS2E0U0XmWi3E8ckdxcfcQr8zeZbSBV/1cb+YfEbUvh/8ACrU9D8OQePJ7TS/El0st74p0PX3lkmitLC2uEgmMcM6tOZbkQhYkVY5IlLsSZDH7b8AvF3hfVvjPp2j6T4Yutd1/XPAUdpqV9N4xhivo4JZms3e8TCSPdukMFv5C3BDW+4fZ2YNWuLhXo4l05fDdrbt30218tbd2jKjhaFWknTk772dlZPZO7W36+R514w+Hnibw5Do1lqdnpSo1pJELvTNUgvkdxeSgSMbdmVnCGMgxs6yxRrgnDY57wrP4uufHV74auna0uRIdOnu7vFu1opKqyFioCkAspQYYgkAZJFfReofsdeM734beK9I8YeOvE+kWuta2l9BDcXk15NbWUNzJ9mt45UeSNfLZpctO5d0kUgtlHPQX/wAD/hLeaNHr+ia5q63dvAY9Ra+OlxrLfy/a9knkQwRvcwhH3PIAsnmMVeXDJu560Gl+6V/+G+7vbYlUeZe9JaW0v02+fyfc+7viN+3r4VvP2e9U8G6pokmpXw+Hyr4q1d9Wt3it3uLRY2kP2eIFmWSQrMohhWOXMagnaK+VP2sP+CrWmftT/Bqb4T6N4itdPvdQmkhnt9FS+t0vImg27JWm2oYizltrYIMAw2D83z9N+zR8adX0e6t7X4t3sHhHcttqEFujNDJK5LojssKqrssbkbizYVvvDcDzXiL9i69t9Mt4fDWs27x22pPMZGleS/uYXSIeRI5aGARoYnZWRFfNw4beFTbpLE4mcbVJP5L87Ih4ejhpL2UYvq7tP7tXbT8j8ff2ntQttW/aU+Ieq2Uk7w3PjnVpYmuiDKVa8lIL443YPPvXDV2f7R2iXHhr9obx54cu5fMl0/xnqltLIVA3Ml3KpOATjkep+prjK6o/Cjhk222wr6L/AOCTIiP/AAUG+HiTKGRpdSVlN0kGQdMuxjzH+WPr95uB1NfOlfQX/BLKCxuP27/A0eo6sljCE1V3uGiaT7ulXjBVVQSWYgIucLuYbmVcsB7BHdH7jz+MvhH4L+K2i3dno2l6x4XW1MWrR21xc3cs8EzTJMzG4itsXUccmIykcSK0UTjJ3O3E/tBeBv8AhBvFes/DfVdYjvrMDbbX1tKhj1CxmjDw3CGN3AWWGRJAAxI34JyDXGS3bKflNe26z4cuP2jv2QIfH2jlp/E3wmC6drsCh5JbrQ5HZ7aYbUwBAfNTb2jjd2YAKKlbnSmfFnxg+B2neMvGjeLNH164skurSG11krchVKpPbbFRVXcubeKdeCF3Rx9MsTyXxA8D6f8AGTwx4J+GkF5Pbw6Fqt//AGhcxTRC6tdOM8qJkkn55BEEG1XUsrMwAUZ9i1vTjL8wYhv73XFc6LC30/UJr2PTbe2aXKqtqJCqRB3ZIw0ru7Bd7Y3MTyfWqvKMk10DmfLa5h/BzwT8PofG8XgjxDq+qwaL4E1LfY6hb6TA115lzDDIs6t5ih5odmQcpvYoxKgmMd9o1/JbfGOTxNqer3d1N4ntF1m5ncyygX0qMtzCHkQN5ZVbaUqSURvJGVLKlct4W0e7tbvV9Sa8ty+oat5yJEr5MS21vGrtkbRkoy4Bz+7JIAZS3a6Yb/UtQfVW060WX7PDH5en2SRokUMKRrwoyflTczsSWZnYk5rFw5qqfr+a/wCCafWZuDh6fk1+Nz0LR/Ger6Ek0ehate6cLnaLg6deSQGTaSRkxsCcZOPTNbsPxq8amCysdR1/+0LexyIYdWtIbrILl2DPKrSHJOCd2doVQQFUDzq21CPGPu/SrK3AcZwCPWtHTg90QpyR61/wvy48QawdY8f+CdL1oJZJbWMVte3Np9mWMKsKAs8oMSRjYIwq4AXnAwes0v8AaV8AQ3smvT+GNe0qe7kja+0LRLXTZtIk8pdsLPbTRrHORlm/eRHDMSCSc18/I4JzHJg+ualW8u4xhZiRUulHo2V7V9T8Zf22bm0vf2zPi5eWF8l1BL8TtfeG5is/s6zIdRnIcRYHlAjnZgbc4wMV5jXe/tVMX/ag+JDt1Pj3WCf/AANmrgq1WiON7hXq/wCw/wDEzwX8Hv2ovC/xG+Iet/2do+nfbftl59mkm8vzLKeJfkiVnOXdRwD1ycDJryiigS0Z+sD/APBS/wDYob5v+F1fh/wjepf/ACNXr37En/BZ/wDYE+B3xk8z4jfGlZPB3iLTZtL8VW8vhTVZ4zbyLkO0K2+JMMACCrfI8gAJNfiDRS5UWqjR+t/xb/4KD/8ABPXSfH+r6V8M/wBo7+29Ahvn/sbUz4W1aNprcnKb1ls42DhSFb5QNynbkYJ5G4/4KFfsXytlfjCD9fD2o/8AyPX5fUUw52fp5F/wUH/YygJMXxcVcnLY8PagM/8AkvViH/gov+x1EQV+MOMdP+Kf1H/5Hr8u6KA52fqlb/8ABST9jE4E/wAYyvPbw7qJ/wDbepV/4KU/sYJ9340ke48O6j/8j1+VFFAc7P1eh/4KZ/sXAATfGYn3Xw5qP8vs9WU/4KbfsSD73xq/8tzUv/kavyYooDnZ1vx98T6J42+OvjXxn4ZvftOm6v4t1K90+48tk82CW6kkjfa4DLlWBwQCM8gGuSoooICiiigAooooAKKKKACiiigAooooAKKKKACiiigD/9k=",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK/pJ/4JNf8ECP+CZn7SP7LFt8TP2mv2ELSS4ub+RdA11PiB4ltbnV7QdZpreO+WJAHyiPEcOq8oCu+WoxlOVkDaSuz+baiv6lP2wv+CA//AARi/Zp+Dc/xh8G/8Ezn8WxaVexnXNPj+LHieBrexKuHud637sFjfyixEb7ULMQFVmXz/wAX/wDBE7/gisfidqOn+Ef2FzbaXY/s6X3j2LT9U+IXiRbj7a0sYghnT+0sxtEkThkDkE3BBzsUi3SmnYUWpbH81dFf0wf8FDP+CGv/AAQv/Zv8D6Y3hL9nXSNE8QXM15I9hcfEXxFd3D239k6kbdzbnUi6xm+itUE2Nivt37k3o3mPxr/Y0/4NibHTjpXwV/ZG1jVNTjmsrz7cPGPieCzeCK4Wa7tHNzqIlSR7aGaMMsL7WmUrlh8ucko7tGipzeyP57aK/f39mX/gmP8A8EUf2m/2l/CHhHTf2LBo2ma5qWqvc+HT8TdfuFNumjwPbwiZryOfelzb30jHYgO/aGkVMJ6p+yF/wRE/4IcfHjx6fCp/ZnstXfTfhZ4cvNVtV+I3iGGQ6xK119ulRRfIZEx9lDNGTCjMqjDMRVwpOpbla1M5tU736H811Ff1tH/g2a/4IaH7v7D3b/opXib/AOWVcT8Zf+Ddn/gh/wCGvD8Q8K/sYGHUIfF3hyzvQfiF4mbbb3msWlvKvz6gVIeJ5VyOVJyCGAI1eEqoxWIpPqfyt0V/U7qH/Bub/wAEX5f2nNL+G+m/sUuukx+BL/UtWg/4WN4iIa4a9s4rRtx1HepCLejAIU7uQSox5JoH/BB7/gkdrv8AwVN1n9mWL9kw/wDCJ6R8N01KTRh4717i9Z4D5pl+3eb9yYDbv29OKTw011Q41oTena5/N7RRRXObBX9V37BX/BW3XLzxNYeBPjP4H8J/Dv4YWWksuh6gdOvYC7M6La2tos1zIZUzIFWKCNxGgRVVEA2/yo1/S94h8MeI0/sS7+H0N7qFh4iHkaRbJah51uVcRvYkRgh5VZk2hcM8c0DlIzL5ay/aKScZW/UqNOnU+M9H/a0/4K//ALUGm654lsP2ePBngy08M2NtKLLW7i9W81KRFuVhW9t0EwSRW3qdhgcIY5QxdVDP8LwftB/Ee81fxP8AEzUfjFqWla/4p13yfEltBNJbQ31tdtdTXivsdCtuDHn7P5cgkEqkAZQH3fU/gj4i8U6nZ/ETxl4OuHnstMurvR9Q1PUksQkckEqNNC0pXeZFRggj5lNu4j3PGSnmem/s96J8TbLWdJl8L+GrS18OX0nh7RZrfVoNIlezkMU8Nw9s11Iiyk3u92jAhB8wsoCSEc9sTOL553fT9TrdHCUtaSdut91/n/wDgfjJ+07qPx/+Imn+Nde8T30M0fhaTQvFUlg5vY7+awtlgtb4yM+5ppp9xkCKqQqkbAzZaJOb8aa9pPgHxLpXhzVPiXB4o0q/0uyvbiTw4WCJNKttIzQxOdrBYZ5Y8ypEy4G+NWLF+c+Cnxl/ZNj/AGdPGWifHXwjr6+P9Y067tvCN1osGmyWNisdottbpMspWWPa0IdpUyTkFcPuJT4geFfh/wDEH9orRNN+C3ifU9N0jWo7h0ub2CW9EF4Irmecq7SANlxHuKvlTcNnlSG9LG4anQnSqR5mpQlfbl5klbXdPV26b32V+2HJ9VleCVmrXbu9N10sut7O7R2fh/x/YaRc2mrfBTRpr7WNDgvtTeTWVih321vaSSSLGscgCbYxdONhEgYIUcMFK+heF/iZ8Afhr8UPDvjCXXtN0TWdS8L2Npe6vaanbSX+j6mIfs7vbs0UkVmFacyPI7RsGjeeGQypEy+d+BfhP4t+A/xb8LfE3xf8WdHjsLvXJdPa7tJ7iO5sPMtZgkjvPAYkDCNlyjM+HIO5S0b1/GHxF/Zvij8d6R4v8Jaz4j8Ua7JDp/gnU18DRSwYisrSyhnW8urzz4lQxzKIY4JTujjeOdgxjHjUIValZQneK5XK+u/a9uXtpv8AIarQo4F1VGM5OSXLdLTvbV6dXtrbc+i/G/8AwU0+Jfh3wtrmg+BfjL8RDr+pRy2jatrHiGU/ZB56vujhNw8aSDywN0axHDMg2qSDx37KX/BR348+AX0/4f6lr3hlfC//AAkelSTRXPhy2SW2ttP1VLiI+bbJFPckbPuMzfK8gQLuGPDvEvwc/aKNm/jHxL+ztrt5puoH7XbSQ2UxW2t3IZTujCOBtIA3jBB+70I4nxz8XL3wwdK1Hwb4Yt/CXiLSbrzBe6VAY7mDy1QQ4kcGQSKV3F95YswztKnKp4yftU5p8y63uvz6+h5lSl+82XKttLH6y+Hf+CrviD4ieJPil+0H8HvFfhN7Lw18NbEmwuvD9yj3t3byatcJGDLcK/lqJD5m1Nzh0KmLa274msv+Cpf7Q1t+0b4g/a107X9O03xl4h8P2+l3F3ZWCC1gjQWy5WKfzE+ZbUZ3ZG52ZduFC/KPhT4r/G7T/Bus6N4U8TzW8GowPFdaZpg8gahEUKFJYogEkXBK4YHqwwM4N/4davHdWth/wlHhoXlje3Nn/aNq6OhWMElyBGUO5QTgAqM9SBXY8ZOScpaW1tcz9go6rTSx+alFFFbGYV/S98CfHHhXXb+9+CPxM1s2Xh7xYYkh1UzJHFouqpuFpfuWBzEvmSxSjco8q4d87o0x/NDX79SuzMCl3IhByVUKAfrkGpe5pTOi+KPg3xf8MvGWo+AfHej3Ol6xpdwYbyzn4ZG6ggjhlZSGVwSrKwZSQQa4u919bcKkrNiNSFx3GSefU5J5OTjA6AV9R6jokf7b/wCy+fGWisbz4ufDO18nxBFLqH+ka/4ejVjHdCMxgSzwbliJDF2VCXZ3khSvkXV5PMBjCjPvTsjVXZ4h8d/ghLqWgWemeFYNFgtb68Sw8LQSGFZNP8opOQxUtIiySm5/eTbMmQDlAWHofg3wV4H+HosoNLv0uJtNv31CO8gsWJufNtxAbZ2kKGPEXleY6qwkltd2D5nmCt4z8NXeuPpy2sLvNa6vbTKFuY4Y1TeEklmkkISOGON3keR2VUWMszKqk1asylzGssTsQ6goWUjgjPfkVP2rFyk+VG98Z28C/E/whqPhPT73XtHjvJjHb2uyK8QxGCUbp51eBhsm8pwqRHftCthSxrM+H+t+Jtc8BeF9D1hzcWMdvZaxcWOpR+Y1vqCWrRNMofISU+cAWAUgq3OWNAsLrGcBvY1teCZdCfxVZxeNry4tLBreS2l1KKB5mtEIBDBFBZlDpHlVBJAIGCc1hioRdLnavytPRXem9ra/LqXh6zoyfZpr71/mbq3qTZ+0Qq+ccEAg96v6h4m1XWECavrFzdx/Luhu7t5EcDGAysSrLwBtII9qyNP8SyaP/aFhYvazw3cJtmuJ9OSUtGJFcPGZkLwsSi/Oux9pZSQGYEiCSLljnjqBWrUXujBNrY1NEl8LaVqcmpJ8L/CFwZphLcQy+FLEJKQAMfu4kZBwDhGXnJ6nNWL+f4deJba50Hx18MbW70e5l8z+zrC/ubL7OcceUY3IHOD84c9uM1jxwsDiNvy7U8iVTyc/WsZYejJ3aNFWqJWufgxRRRXWcYV+9n2qRnyTgd/YV+CdfvfcIkbhl4XoRipkaU+p2/7NPx/8V/sy/GXS/i34Via5+xOY9R003LRR6haOMSQOVzweGBIYK6I+0lAK9Z/4KPfsl+FfAt/pn7TvwHWzf4a+PvKn0xLJWiWwupYjKYhE+GSORVeRVwPLIeMogRA3zfLIjRja3avtT/gl/wDGTwd8WPBXiH9gD44K93pPiWCefwwJFaQxPsMs8KMxZYSpjFzEQgCyLKxYsyAtWND4E1bw/p17F5V5ArjOcEn+lRJaWsUflpbAFOFYGvVv2qv2dfGP7L/xj1T4R+LZDcPZlZtO1NbZ449QtHGY50DdjyrAFgsiSJubaSfLpA7NkKfyo0ArgMGxggfpUsMLH8/Wt7wT8Hfi78S/Ok+Gvwv8R+IVt2/0htE0Se7EXGfmMSNt/Guv8J/sj/Hbx58Gbj48fD3w5ba/oliX/teDRdThuL/TQr7A09ojecgPzMPlJ2I0hwnzE0A87ihAHAPHtxVmG4I4zhsY619Ifs6/stfBf4s+C7b4kfDvxMfH2u+H7KO48bfCLV7gaFeSxtuR57K9EjpLHG5jGCMlCdxjkkjjP0l8N/F//BMfRfC954l8AeHfAOjx2JEGveAPi/oQGowussgxFcSJcT78je6gXa/u4kAt2LNUSbW4H57+HPDGt+IPEUHhm3+y2t3cAGM6tqUFhEAV3KWmuXjjQEYILMAcjHWvXE/Yk+L+l+JdP8KeMvsum6jc6gttc6FdTJa6iw8wxk2cd81tDqhLBggtJpQzbRuUOhb23UPjz+yd8Xr/AE34b/DfxPbweHxavBaeEPj7atcaZpysLaHytO1aF5rzSj5Vsz8zNBl1ChCNokufhlrvwtZvCXg/4iXXwp0/XSsi+AvjD5GueBtUDytdk2eqBJbU7I4bbaZoln3EKJmZjU3A/lBooorY5wrvm/as/aib737SXj4/Xxje/wDx2uBooA73/hqn9p/GP+Gj/HuP+xwvf/jtWNI/a/8A2tPD+rW2vaB+1F8RbG+srhJ7O9s/G1/FLBKjBkkR1lBVlIBDAgggEV51RSsh3Z6549/b/wD28Pio1q3xQ/bY+LniQ2IcWR174kapefZw+3fs82dtm7aucYztGegrnT+1D+0wxyf2ifHR+vi69/8AjtcLRTshXZ7R4O/4KRf8FEfh3oieGvh/+3t8aNC06N2dNP0f4pavawKzHLMI47hVBJ5JxzVLw7+37+3d4P8AFt94/wDCX7a/xb0vXdU83+09b074kapBd3fmSCSTzZknDybnVXbcTlgCckZrySilZAeq6T+3Z+29oPi65+IGh/tkfFWy168mkmu9btPiHqUd5PJI2+R3mWcOzM3zEk5J5PNQ+Mf22v2zfiLrjeJviD+1z8T9d1J41jfUNZ8fajdTsijCqZJJmYgDgDPFeYUU7IDu/wDhqT9podP2i/Hf/hXXv/x2uk0j/goP+3v4f8H3Pw80H9t/4v2OgXiyLd6HafErVIrOcOMOHhWcIwYcHI5HWvIKKLIAooooAKKKKACiiigAooooAKKKKACiiigAooooA//Z",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [42,51,52,78] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [46,32,59,63] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD4MvvEnh+3shqmlWkCSxJCLmCSMYkZTMu7r8xIlUn/AHB6Yqt4V0XTLn4f+IPE96w82z+zizhZDh1Mo3sSOBjGPcMfesHWUjl04NbgDf1CjGcEV0/jWax0rwnp3gOyIglbS4PtTuT+8lkd5HYkcEANGBz/AAj0rtaaZbtbQm03Q/FHjDV9e8feINW/f2duXv1uwWEgkgkbHOcHCcf7ePQ1jy31lY+RLBarJHMhIKYzkYzyPqPzrT0nxhri3+v+C9Ls4bhNXtv9JkdwNpRJFGwkdf3nsCB1rlY2ms9QudHvwyTWCyIYGz8sgcKV9Bkg5/3RQ7pXYoOzLeuKNSv1nivnxsCgeb0AFQeL9Gu/DwtJLO/ldZoiZHZjgsDj5cdqghkk8qS7ydseMnPrxV0WMl9r1lp2uTSCGSaHexbcVjfacj/gLZxUxaex1RpOraPczr3wr4zFvb3As7mWK7hWaJ42LB1bPT15BGPUEVtfDnw5ot5dRWGtwr501xtKu23j6Hv/AFr0W38CXuhalZeF7m/eYJGqQRfeEOdrsgz6Oz/n711v7RfwMtfBWufDRbJGt7rxRpSs8sOEZbh5mYDg8nDqMnoAOeK0UZyVjmr01h92eT/ELwl4e0g3Y0rTkVBG/wBmuYoyp3qo/TdwfbPeus/ZW8X3Wna1ZzAsu6R4JGYcSEgkdTyfl+teefEVtT0/4g6h4ZR7h57S7ktfKu2DuHxsYED5c5z0r3D4b/s/ePvh1b+BR4l8CatY3esarHFMt3bIiK5NyUX7+4uysvVBwgGegrGtRdSm4PqrHFVi5xt0PaoPGF0z72OV29Of8avW3jZGTYGUMvUZ/wDsqNZ+F/ijQiwvdCuIQq5JeMAYxnr06Viy6OtqrM/Dt1GBxXzVfJ6iWn6mDwl46M62z8ZWgI85gwPTkH+taEPirTCOWXkdyv8AjXmpt7uI5Er/APffSlN3dxkBpXHvvNeXPA4mn0/Mz+rVoI+TtB8L3svw6i8UMiMkt8bZMP8ANuz6dMdvxp3ivQ7XUD4o1bU1DXWl21jHbkEHDsBu6cfd/LHrXu/xd8PaWnw//tDwQLM2Bv0uGSzI2CWZQ0jYUY5Ykf8AAfavmvx5rdvpup6/YPbux1C+RlcdEKqCc/Utx9DX6NOCsere+geBVLa1HcsMmK2Z3/3BgH9WHvzTfH8C2nia6umfctwIZhLjAd5II5JMf8DduO3sMCpvhlEbnVLpChYf2TgDOMlmHGfwrK+Pba7pHiG28N6lZCOGzs4mtJFQ7Zg6Bi4J6g5P45rGpG8NAjZM1LS10qX4e3t685E/nRpCgBw3zgnP0GTWtfaVJB4buPFF0Gt57O9sba1d0LBx9nDFhjg/dxz0PrivOLC9uPscERQgod3K/wC1kV3Wv61Z3nw3tbSa+eS/nnW4vVMpIXyldY+M4XhjkYGetY01yu7PUpNOknHc9c8a+IPDp8V+GvEHgzVobmyvJpncwkny3xCQjbhkMFIJGB96vSP2gfG0HiRPCeseJdc0rTv7J06CGye6mWMuEMbDG7knCnPb5unGK+Zvh39i1CxtzBqdwXhkMjxySKyiQDGABjAI4HevevF1zpHijwhpunajpcF3AlsiMtxHuBIQA7cHrXXCWuh5uYwWKpcqbTJ/2cPhF4C+MM/xe+J3irQra61KJJptCndyVgkdTIXVd2GOecngAdOa+iPiF4htvEHhb4JSFlae48WWmFVsjetoysMgY4INfL3wk1TV/hvod/pdneGJ7+WQzmM5DK3GOcfw8fiau+BPj9qcfjbwR4Q16NmtPCGqSXG9DuMmYioOPxP+eK2jG25y7QR+kF5ZWl9EwlgSVXU8SLkc+xrkfFnwV8DeLo1Gp6HEjoxZJbceWyk4zypHYdDmue8F/tQeFfE0COJFV3OCpBVhwpPyn611UHxP0G8GUnfnoTFxW3s4S3Rh7SaZ5zrP7LOlSIX0rUJ437eaQw7e/wBa4jxD+z94v06Z0gs0uEX7rxP95eeeTwfavodfE1lcqWWUfmP8akF/aSADzR/30K56mDpT6Gqqu2p+RGjeI9a0L4c3MGkXsiIJHPlA5DBXBHH61wviXxNDqt/NfuZI47tN0sWVP7wDAxn+H9a9O0vwotlY/wBk3Uiyoc7sLgHP4/T8q8h8fWKabrs9lbqBHFcSIgHHAIFKTajc6fQ7T4TLK00tyv3msIt231DPwPwx+ddJ8QxJf+I9HsbmOO/muLWOCGIKuIgF3ZbOfUjOOwrhvDNx4p8PWlraLqAt4btYZSY0Vm2OMLyQcfQc+4r1TXfDFvA+n/Fa4kY2FnGuyCKNjJO4UdNoO0c9SKUFdaiW55j8S9Fi0LVBLbonkzQRtG2OR8o44AH/AOo1z+hSifTWWM/LLK0SKemFAJIH/A+fp7V1v7RbSaPqOnaTNCUZtOinIPBAIKgY/DrXJaQqWllpUiLhWhmZj6lmIB/EBfyrlqK0j0MDd14x6G98P79tKvpGjkGwncOeCVYdP1r66+B+gfDnxj4YbR/GmuixvCUbS55pCI1BDb9wHXjZjtjd3xXxt4amRI7cgZUw5J9fnOf1zX0J4Vvhc+HNPlRzhrOPcwJHIUZreirnDW0k7Hpfjr4HeL/Bty91c6RJPp/G3UbNC0JBHBJA+XPvXJ6doPh21vjq1rZRi4ddrTqq7mHHGR9K7H4ZfH/xp4BMenyyRalpnSWxvRuyp64YhsH8D0HSvTLbQ/2d/j/A7+HtYXwx4hlP/HvOv7uRvZMYxnA+U5ya7LI5m7Hk2k+IL/SXUabcGIjkMqjOeB1rq/DXxh8V6TODcXX2mIgB0lJyB7HPBqv8Q/gF8Sfhi0l1q2kG5sI/u6lZfvIiPVscp078e5rkbe6KHJ/nTTaYWTPoPwn8efCOokW95NLZyHtcOCvU/wAXA969C0rVEvYRdQXPmREcSI+VP418iQyk8Dg1teHPHPifwy6/2VqkgVSD5cjFlODnGDVcxm6aZ8pLr9wGLgZz9P8ACuZ8fpbXSyXr8MYhgc8nIB/TFbRjK/KE/SsbxHp19q8As41VR5qkscj5R1Gea4pa6HUnYuyacmo6PG4LAQaBaTEqehSWJcc+pkH5V1HwV/aR1DwN4QbRL/Q/t0kl9M8Uk5HlIC3C5AG3p1Oev41j6Lc2cEs1vdnbC+jywdh93ZIvXjrF/nqMvwPotvr/AIAk0m6uTEZruYsyYzt3HpmmnyDbRN8cfGN1408RQ+M7hraS1vCbaJo1+4Y8BlZT6ZyD0PY9K4bwzO9xqflNcMI0jYBTyAWHpV7xJoy6Z4XaCO4kk+x6q8ZLdBlAQfbjP6Vg+Fb/AOx6qGlHyOpQkjoTwD+FctVSb1PQwNSFOpd6G8k72UWiqrYEmlqzDHTdPIf5V7b8KdUa48H27+bkrI69OgBwB0rxjWNBnddO8nWLFvsVgqPHHMxcNvLFTgYyM4rv/gnfXj211aSj9xHt2EZ+/wB/bpz61th7pnDWblJs9Xtr8n5cdKv2108biSNyrA8EHkGsKzl3Yyea1YW3Hg13XaOc9e+F37VPxD8CxjTdYnXWdNyA1tqHzlR0O0nnpmvRBpH7OP7RKf8AEguIvDOvOu902iNJiSOxIV8YJ4APPJr5nhJC4xnmrlpeSwOGSRkK9CpxiqtdEPRnqPjn9njxr8OyZ9VEM9mT8l9bOGTrj5ufl59a5OCXR1by3vlOOOAf6dveu4+GP7V3i/wfb/2N4nto9b09j80V2xDIMHoQcHPHUdhz69bL4J/Zr+P1xJf+E9WPhzWJULeQsIUHOONpJyNxHAI9aXKLntufn7NEFc4FV5402H5eT6CrhmjYkg9OtOWK3kTjp+NctjoOZ8QTTW2nyyW8btIsbbFUdflPH49Kt+ELW40zRbe1kDLIEy4B6E1tnT7R+fL/AFNPhtbZOi9Pc1NtQOT8W6Zu0fWbRVyTLDeBjyMDKsPryMfSk/Z/0HTtZ0fWDeafBNL9sSOJ5ogxQGMdCQcDPNa3ie7/ALIWeZ4hJb31qbaeMkjPIZSCOQQwB+gI70nwHjGleF57kfI91dl075CgKG/MEY/2feh6sqLaNT9m+PTxr1ol/aQtE3m+c0q/cQMysQMHJ8vOBjrj0rX/AGf7Cz1DwZ4lnmljSawuYJ7eSWOQecrHy2TzNhjB+ZWw7L93gkna2L8PPEWl+Dtf+3y2UjNB4huVE652xJhAqnrnOG7Z4r1r9g7xh8FvDnhn4mN8Q9EuLy/1PSriw0AwBD5EksEyCQhlz8rvGwIYEFcjkVpGKRE23sc7b37xMC2a0bPXGDj5fzH/ANeqFxYMjkjketQx7kkGT3rW6JtodbZ6jHMoY5BNW1mXb96uVt55EIKHpV621Obo35f5FWmQ0dDFcFTycj3q3YalPazrPazvE6HKsjFSPyNYEOpBiOP8/lVhNQBX90frTuhcp4eGkHY478U4TOo4GKsvaEfdX9Kjkt2AxtH5VyGy2ITfTR8L3pj31yTjfn8BUzQLjDLzj0qNoFB6DNTZjMjXbe81O2a2aQgOCPuduM1q+H0XR9Nh0yEYSFMDn396Qqp6qPyp4dM+lSk+YCx4Iv5LG98SCMZCNbXbpnlhvZOPxlzn0qt8DtUjS61VZ3UA3RMYJxk8/wBKztR1G68PXsmr2LbhcWcltLHjIfcD1H5Ec9VHpVX4Us0emT325h5l9LtYnkgEiq5/esO10e0rKk0YZXGailCrkk/WsHTNfdcB5M46ZPXr71pi/wDOQsQOeK2vcz2ZZjnQHCsOTU8U21uefxrJkmZDlT78UsWouvU/nTTCxuRymPjdjPSnJcKD8uD681nQX63GAzdPQ1I5dBmJifqad2I5JrfIwFqGS3wxG3mrgBY4AoNvITnFZtaGhnvbD7zKKhlt16gVpy25zhh2qNrQNSswMYxAL/Oq8scpPH863vsqkcmojYKGyV/Wo5QOS1LT9Vvg9rbXKR7wVJkXdgHIyPRvccitfw7o39k6fDYeWoCIASgA3NjlvqTzWzFp6bt2PertrbR7cFcn60lHW4XZnJ+7xt7Vo6fqTD93Iep96lfT45AMDFV7iwERyvStkrCsayBJY9w5yKr3KPHylVLORoXHcdPwrVt2gnTazYP0NG4tblK2u5UfDHHpitC3vy/Bc/rVO4sCM8YxVVTLAcA9DVLzHof/2Q==",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDxT9nD46+OPEHw91XwVLZPqM9qI4o5Y88wsuFEigHcwKcHHf25+ktB/bw+KXwI/YalufAS/wBm6nc6k0kWpTOoeWVJfLVQMAuI+Ds6fLz0xXwL+zpqHjax8QXGhaBqFxYWuqlbXUby3gDMi84CsQQjHsTxXX+PfGHj+C/g+DmseMbuXwzpVwfs1qREsjLIGkdmZFBkJbcfmJAJ4xxXoYGMcI61OOkai/G6MKmHdS0ktjb+Evi7Vvjv8cx4l+I3iXSY765uZtT1XVtbDiCaTdubeIlY7nYjoK6T9nj4eR/Ff41a/od5rcl1p+nx3M5m0yVgJgGCIVZ04GWX7y5PTg815H8KNPOmReLL6Vyr6fpK/ZjkHAkfnPHJwAPxrofgV+0/8Uf2VbS68TfDtPsureILdNt3P5q4g3vygjZCdx98cdDX2lBYfKOF6Kgv40p3S7RtHX/gnPhK1R5v7SGjpNNPs9/8h1mx0f4wz+AppxFKurtaNJNbgIrqxG5gNxUg+mSPWpPjvoWqfDTxREupTQXZeQSCWzL9e2d6L2Ge/Bq14l+G/ibT/wBobw7ceO7k2ban4jsW1mcOoCGa5QTODk8ZduCeM88V6x/wUs8F/BzwH4a02x+HHjP+19Tg1LF7cRhmiCYYDY2NjjJ6gnkenFfMrCUqlOVS9rH2c8/zRU5wcvdlZvRau1r36HzL4n+JNxr9m9laieNZcK7bg2F74H/6qv8Agrwrp/xH8YQaRoFlNo1oIMSOf9Ikcj+PB2+oGeB/KvO5dev/APVecSPTHH0/rivoX9jPw83w++MGj+NviR4duLzSJrV4r6Ayh5G3gMpVWYcAhe/Unp1rCgoxqqMnZPqeNVft1eN2/I6HwbdaL8GPido3hvRLLWrm3aaK4vfImja5ufmK7F3GJVGccckc8kHI1/2zfEY8b/FCbxR5D2n2e1htv7Hv7mLzmHzsJC0MrIQNwX7wOV6CvRPjxqXwjuNZ0zUvhb4ens4ZmxLBeIS6vkY6swwABjBJAr5+/bEF9pfiYavplvPDCUijhugjBS+3LKGPU425HYfWu+riqiUsLGSlTve/d20HSpww16yT5rW17Pe5joLuTVkudKeG0iiRP9ZcKVQ45yVzjnPWvU2+L2kad4h8N+N9Y8RyaTCfD722ryeGlEc0K/Oj+Wi4O5lPOTznJyK8J+H3g/xZ4rtR4h8TQyXGmSh1QSXhjOf+emACSAe3eq1xruv+ItVk8Lx3TTwW0skWmwlVGN52+g67VrkpSVKd4o7MRmFTEZW8LOTS+z5d2O8Xal8NdO8Z3dr4C1HU9WsfOAsL28txbTuh5AKBmwQTt98ZrY+Hi/C6SdpvFuheJ7nVppSum22kxQyxsVByJElBLjIwQAOO4PNS/DvwNcfCzxG3if4k6PNbtc28keih7bzA7lmjaRMAg7SrrnnBPqBih451m2j1W01Wxgw8MTEpJBtUEMv8Jx6im6idQ8KOHbp25tjS+FI8O/D7WL/U73Y1zBAk9taxlyrlwxVsEDgDHPYsNo70y78Van4j1GG9utBhZRMbi6hndnWb/ZY5DKMH+Er0HfJPBx3+oRazbXupzuky2wjL3BwQhXAzu6AAD8BXtF7Z/DPw18OhrT6zFdanqumhbKysCrm0lLDJnJPy/KGIA5yRwcEjmjDmlc6vaclPlRwXjnxLo1nrCyafoFhbQXsSm60axWQQ5ViAHkkleVsgZxv2jPT15zx/rN9rXiCxvdRtYbZFgh8u3WYYSFWwBgsTjHrg4xx0JXU2s9Qv/NvHcmJAfkYAtyOOc9jXXTa34Zt9au/FFp4XEdn9mkghilfLxAweVGoLE7trEPnqTkn2PazclFttLbyFRgnPtc0E8X32vxaXearBZajFHfQKtkdeiSeYh1bbguXjB2/fK7V71d/ao8baX4tsLK5h0CPSLpt7zaTDrQvxbghlGZFRQGO3djLfK6c9hxnwu8NXmvazqmo6fdRwyaLo8+pASRbhIIyoaPqMZDk556dDVTTRp+uS3OqX1jqJubtw6/YbllYqR8qnO7I6c4PBOOxqHL37nbDnqp0oatnE+Gru2tfFWnXN4ivEt7EZFbkFdwz2NfWGqeP/AAvPbW8mnxwoYwob7RlIxkqMsUBOOucc+lfP3iHTPiBoAlt7CbUtNtp41NxbWt3KFkAyAzrvOeO/T2Ga0/DWkRXcMdvr0lzdOccT3srDp2Bb8f8A9VVNwaKp0K+Fk1JHrfxZ+MPjLWDZaB4huPC8ENlFNJaz+FLiWcbMhR5ruNpJUKwAwwBO4A5A4jxLaMPBlprmqeKo7hrmWRbWzjkDhCgBOVZSRncOp7n0rFiE/wDa0+nWkT+XakLGqLnavYevQd65e91lZLweQ54UHYSOevP61ME4swnVU7o6zRrzxjpsj6B4jGoaZKsu97KeLy2VGAYAoy8cc9OetasMvhLw5eL4q0iG4mv4svcLdP8AJJJ2IVeeDk++AcDoOYPid7jVf+Ei1W+uLm4udVMMonl8x5FCjB3NliccfQCtS7tX1nytT08SWttNrMFlIkqYKlhneMgZBw3HUdDW0Y3izn5421O4+MGtaS+l6Np93qH23UtL8O2hQRSsFtTNJd3EobsxBniXJ7A49ue0LwZqPjWIyX+nyw6cYEKX0tsSsm5t2IywxkgA55HP0Bi8bWdvca/fLplpPbPdWpRo7h9wQebII8DaMBVCj325r6U8TeB9S0/9k3w143069uJNHF9bWuZp0GZxbyCQCPIYfMAQSMDkAjOK5MdzwwkpxeqR3ZIqGIzalh6y92T1PhnSEvNd8VaDoV4XaO9uY7csi7m2sVGeOT1zX034k8K/BAfs/wBvbaFpDWdzFrNuz3bXuJAEURzbodp2k/OdxYg8YUZrG/Yv8D6bq41TXde1SK1gtLWGU28qKpkjIYq5EgDY44YAjuCa3rq20LR5pbmHTbLUY0lZ/sl8h8mbDbgGCENtJ64IOK9GlSdOCZ40580uU+YdTlm0m+FxJKuGk3ICMnAPGcfQV3HhvTW+IsU/huC0mm1O5eBNLtraMASXL3EUYUgdtrt+OKqXHhu68T2MPi+6W1URtHvjXhVAcA/L8x4BP5V6Jq/xp+FX7Pnx30Hx/wDAXSV1q08L2umyxtqunv5WrXqjzLiaRHcOoMjFV74QEBQAKydJqVzWMralX9pH4f3fwtvbjw1qUVuL6CJRtt5dwXEnlsT05JV+oz7CvKvh9qFxp3iu0igwF8wRlAM/L07+1dv8ZfjrL8ctVvPGviHw3DpF9qAVktbSVmjbMhZm+f5gPm4HPSsP4Y6ZHHryatHHv2mRJDgELlRjnsfvD/PM1UnA1w837ZNnoVp4m8M6rrXiKHUNTW0jbwhcRWs0sbY88lcLx6gsMnjnrXl9lrR0BLae4kErc+ZHGOVIOMcgdiOee9bXirTrS1N/KEjkf7PtgEgyoY4wQM43dt31qt4C+Fkfxa8RDQNS1eWzF3E0i3EMYkZWBBxtznoDgZGcDmslDmske9Wrc2HlG1nG34/8Me7/ALFXg7QvFfi/V/EuuW9h5d7oKeTFfTqACJcE4bjgEcj1PSvFvj3f6vd/FqTxle6dotpBbWh0+3tNGQokWwSIgKEkhsAEknnOe4rt/B/hXTvA62Nvapd3No2lIsVxfBGbzfMfdwmRGcbcrklcYJNUvGPwsbxTrE2uTa9MbNYS66cRmNZQvLAHgZA5PXJrts/ZKL3Pm9XUbZynw/g8J32taHLrem3895C4NpbwYZPNaRSshIHA65yTjA969d+Ovhuz1LwFbtZ2ItVs79brMs6+YZMgBwEIL4zzxwOfeqvwSsI/DfgSwNhbwxvcwLPMyqAWZxu6g8/e49K7dNfZFV7i3SUqOM5J/rTjD3TDEwlWp8sXZniX7M/gDxH8ZfiZpnhe9DNDdXGwDz8u2xlXy1Jzg7pFGT657Yr9Lf23vhh8Lvhr+zR4Q/ZP02YRrpdquoXN7NcAywzNvc85GVLSSdQRjA4OK+U/+CbHheCw/anbxTr1gyWXh/Tr68miMfyo0tzE0JI7DbBxx37cV6T+0/8AFvwj8aPi5qni2PxTbJC7rFAs0UrFEQBeNqt1Iz16H2xVRpxdJqWty4OVPERqQdmtmfDfwbsdXbWYr7Vp5GnNqCzkk5HAGT3r16DQjqEWGmOGHPJ7/jXEfCWO8trIjxBZKk8ZWGMocgomQG49etejWV3Eka7BjIFTG9rCle9zE0b4Q6Ro1sbS1uJTGzs22RiQCTnjnp7VxHif4baXcePH0kIj+Z9h2LKgJO55lbgY4wgz9QK9aMly4/dniuD8ZeDvFV348t/FumX6xxpaeVKuM/MCdpx+J/E05bFRbPE/FLLbuYYrMO9oDGuZSpUq208D6d6734NWmvax4YupWtI3WKeNY0gTd5YKbskgZyS4znuAOwxT8TeEVHiuWylwXls1kBP94ykE11/7KviLR/h5KNQ1zw/JqcBvInEEV2qEvCCArBgQVLBcjg4NY2beppF8upxPjiRlaY7/AO4cd+1b/wCzdr2lad8U9Ns7/VbbT/tUDLHf38TSwW77DhnRXQlc4yAynAPNcF4jnv8AVZbi7truEW89/OkD3V3GhG1y21i7ALhSo5PPGMmrnw61JR4hiOjTJLrMlrNBYrG6SJHujIMh2sdrjOASOMn04iD5ZJ2PYq1oTp1Envy/h/w59Q/EO5+FVvFpvhrwNqem6nJZQM2pX2mxusDzu24rGJGZtoyOrE84JJGa5DVLW6nspbexbYZImVSvqQRXO+EfCGt6bYQrdpsm8sed82ctnk57112lWmoPgSx9zXW3zani2szC8HaL4u0fSLPT7hyDDbxo0a5IUhQMA46cV12nWeouV8+I8gAkg4/lWtp1k5ALoO3avTf2bPhXcfFH4uaN4ZW23wm5WW6yDjy0+Y5x0zjFOMWZyke9/Cb4MW3wY/ZRvfE+r6XYQa9rGnu8Ut3LHDy64SMu5AU5PQkckdK+Ybv4H63FPvu9W8Mpvb55P+ErsHx3yQkxb9DX1l/wUd8VLZaBoPw1sMRx582Vdv8ACoGB/L8q+STYFjuOCT3q5pbEU3K12eVaZ4YjDARJgZH8VbdpoJjUMR/49V/TbIQgF88Yxn6VfVcjAHFJKw+YymgZOMcfWqV9b3E2UjUYPqa6L7Oh6k0jW8Y5x+lS0w5keKfEDwd4ll8bWOtaZbb7cWzxXTZzs+cMp+nJrQ+H/gPWL7xtpccWN0+pQDajjLEyrxzx37mvUrqxhlUh0HPsKj0qefw3rVpr+kSiK6sLqO4tpdgO2RGDKcHryBUJK5amrHnX7Z3w0utI8OeHvEl34TbTbq+vb1b5ZtMgtZXbznaNpDAiJMzIA3m4O4N1IArkf2ffDFpZeOdVmksojJAcJIygsgkSNjtPUf8A669L/bT+NmofF3T9GS/03QNOaPX0luLfQNJhs0nmnDI87rGBuc55J5PGScVw/he71Dw949u9SsIFe0vbWBGlfqrogQ9COwHOKU1HmViouVj1q1tUfGRx7mtS2tox0XH41zWla+06K7MuWA6E1u2V/wCaMMQOtWkZu5t20UKjKrX2l/wTU+Eq2Og6l8WtWtwv2g+TZTOcBY1+9+uefavjDwppl54j16z0GxVmlvLlIo1TrljgV+kUTaf+zz+zStuyqgsNMJZXbbufac9PX+tbQ0dzCo9LHzZ+1T49+DXjj4wX41fSvElw2nv5BltNRt44dw+9sVonPX3HSvOv7c+A1qfJh8C+Ipsc4l1yJQf++YeK4zWteu9b1K41W5P7y5laSTJJ5Y5PU1VSfJwaTaZcVyo51LQg5U9Papo7djgfnxVqK2AGTjr61IIVA96kZUaEKcHH5VC69s1am2MeB9agKgnNAFWcEDjmsy+83LbSRnPFbMsZ7VXls0djkcn3pNAtzyP40+D7vV/C0smi2zNfQTRTW5RCWLI2RgUeHdI1K6t457uAxthdyEEkcfSvV20mIj5h/wCPVCdDgUllXp0+aotdmqmkjldOsbiABFJ4A9a3tOecLlsjrzV+HSU6kf8Aj1WE02NU+6evrVpWIcj3X9gP4Vy/ED4sRa/cxMbbSSr7iuV8w9PxA5/Gvf8A/gor47/sfwJbeDrScr9rmVWjjkGMAE9OvQAfjXVf8E+fgknw4+ESa7qdu6XepYuJizHgMMgYx2BH5mvOv2uP2g/hFH8Rm0LXPhdFrE1hGAJrhR35x8wOPw9uuK2irQOW/NUPkI3TNnCtx29aVGuDmQxOq+pXivZv+GofAWmZ/sL4CaNF/dMyxtj8PL9arf8ADYGv2cxm0X4feH7X+4EshlfXkYrN2N3JHkJYDqahnnGMA98Uxrk4I6nsfSomcuaQx4IPIpCoJyaRTgYIxSg5GaHqAhjwcZppjwSTT2fJJ6UzcWJBpKyAcYlxwKQRccilzg7ifwpVbd2ougeggjGPQ12v7Pvw3n+KPxX0nwpDDvja4EtwCP4F5P8AL/8AXXFs20Zr6+/4JkfCq0vNWu/iLewqzhmggLITgKM5/wC+j+lUtyZNKJ9Y+ILjTvhr8KWgZ1hhs7DaSzbduFHcemDz7V+XnxR8Sv4u8f6r4gZ9wuLtmUhiRjpxnntX3z+3l8QG8J/CK+gtbgrJcxGFArgZJJXp3r85Z7gPIWJOScnmrk1axz0lYR8E5prMqDLGm+fHjPP5UyWdWGApxnrWZ0aI/9k=",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [47,26,59,99] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [51,40,56,86] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK/YHwz/wAFLP2Z9X8Q/wBkeJbnVdGlhuZYbq01NI4CGiba6iYGSPg+54I4rKrUdON0rnRh6EazfNK3y/4KPx+or9zfBv7VHg3xNpjaf4a8fWk1hPm4KC9URPsViGyW2ltuQO5JwMk4PX6X8a/h3c6Osdpf3C6jBeSLdyy5EDxlImjEalASQWfc4ZlOQuFKNnyqucRh8Mb/AD/LQ9WGSc29T8P+CfgHRX9Dvhz4maFrNnFs1pBBKBJ5bEowyOpRsEHB6EAiulvtWtdClt4r3WNMc3NpFcx/ZNUgnAjkXcoYxOwR8H5kbDqeGAPFebU4o5Ff2N/+3v8A7U6Vw7d29r/5L/wT+b2iv6W9T8btceCNPtJvEay28V9crb2TalGywNthLsIQxePfuUbyAsmzCljG23nk1i0uvOllvoVigQST5mRW2b1T5AxG9ssDtXJwC2NqsRh/rer29j/5N/8Aami4ZbV/a/8Akv8AwT+cWiv6E/EnxO01fJs73WGZI4H+zZV2REDZKhgCq/M5O3IJyxGcGsHUPiR4QvdM2aXc3X223uGS+e6iMcJBRHTyiyjeMNywJXPy9VYVtDilzTao7f3v/tSXw3y2vV3/ALv/ANsfgVRX7t/FH49axp/grQNI8afEu1k0a2guZtC06XxDFKlgjSsJv3AkJtSzoXKsqFxiTBVgx8c8Q/tQaRcXFvp/w/0jUPE81zaPOraIkbwKozjdMzqgycAAEnJzjHNbviNtrlot/O36fiZLh9W1q/h/wT8h6K1/iDrSeJfHuueI44XjXUNYublY5PvKHlZsH3GayK+li24ps+dkrNoK+svih8I7PVvGnjTw2dUTy08Z6llVjJktXW7cgZdcAlQG+QldknXJYD5Nr9K/22vCHgzwL8WLCbwrbpaX2t6A+p69bQQnyXupNU1DNwHZyxeRQN68IpQbOG2rxYuTjUi12f5o78FFShK/l+p4J8GvhHr3h7XLnTLHXbZ7dkidWvbBpMMWcELtkXHQE+uR0xz6sl1qnhXTGubzXfDO5LzyHiGmuZAP4SE+1BnOASQBwBnnNc94U1pYL0QhhvbLgDjKjGefxH519sfsf2v7HGr/AAnfxH+0B8NH8U+JfDFpd3Xhk6gbu5stIMhuZHkksbeSBL6OQwxRtbO0hlxgiIZ87SjDL6k+evDmbXdrX5NdC/aY+EHGjLljHfa9vK6d9Wvlrsjw/wCE2mW3xCtNNutI8Z25TUp7qO2u4fAkj2s4gWWV2ikOpqzKsUTs5dIwrxSKNyhZH7fS/hbq+gXl9afE7xl4G0wpduuk39vppmt7uEcoWle/jjSUqQxjjeXGGwzbCa+wP2gP+Cf37M+g+IPh58O7mDVPBmgraeI77/hJtC8Rpp0kN7fTmX7Dax2q+V+5gurhDuiWJLaKYCViDt4LxF+yLrNj8Afh1+yv468W/wDCwG8C+KFvbjxsNKCxz28FrNBb6XG63MkqwxrO0LEtDsaGA7VWLJ8XNKeTRw1So6bhJP4YttLbu29+7PRwFXN5YiEPaqUGt2kn17JLtsjwHxb4O+GejXtx4V/4TDQNR1y1v0srrRbTwxaC5ilMywsHE2sosQR2w5kZAmCCQeKp+BfhD8N/iz4j8X+GPB/iq0S88KGaWTTpPhml1dXdnHC0r3aHT9XurcRx/uo5B5xYPMFQSbH2/Vn7b/wd+Injz9mn/hB/hRpWgeK/Fdx8SGvtR1VLR7K7vxHLJbbBNcrBEHW4nSMQKSshZTGS8mxsn9nf4KaL+xx8QdM1zwZ8JNE1vXpZ7i+8ZeI7ywgl1iW5u9Ruk1KG0mkgEkESrbhYIBtjTOJGPnSSSeJluGwUq963M4eTad7erWh6uNrZksNehJKXpdb+iPlvVf2ZteT4kWHw80CWzu2vLWE3eoz/AA0ubK2029kuLy3XTbk3N7G6Xfm2M6+WqsMjbu3hkXxzxD4j1vwz4bHiXxBo/hC107ervPDbNNcxWrP5f2t7WK5aVYBJ+7L4ID/uz+8+Svvnwh+yt4K/Zm8HaX+z74e8eaf8ZvAUl1d67rcmt6dDqVnZO1zHFa2WfMkRFhNyX8rymEtzdGVWgJCSHx51z9jj4gf8E2vFXx+0Lwp4d8L/ABPt9KkVNYu4ba21eVrLXftaKLOWZpwtw9skoQiQBblZHWRg1ehRy3CzxE4Sm7RV1q/LqvXaxx1sfj/ZQlFLV22Xn0/U/Ly4+Gvhv4z67qPi7StWlF/4e8I3OrXlodC+z2pNrdW3EZ+1SvKjCZ/mZYGAVcqclV90/Z6174b/ABJ1HxTpfgP4p6jqqeDPh7feKIraw8NyaTaTT2pjCpLMLpriVcyZMTARsQrHcFMbeb/D39ojUbfw1rvwI8I/D3R77U/FHhO50bT5LBIba6RI7V/s6zTyuA8MECuihjvbCkszklu6/Y08S+O9G8CfEr4b+PLBNPvtA/Z81uFrBIIo5YYXWO6t1mKEszBbmRwG+ZDK4bDFgOjGYKLw7lraKXLfv1OTDYutHERjpeT963bofnh8RdNTRviDrujx/dtNZuoV+iysv9Kxq6P4xZPxc8VEnn/hI77/ANKHrnK+lhrBHz8/jYV+nPxr+Bvxw/aA+Nl74oj0tdL042tva6bZ3xBvIIV3O4dIiybvNklI+fBBXmvzGr+lJfhbZR6kxt7H7VOxy6sg2Rj5SQzZ5OCcKPy718txPmFbAeydO2vNv/26fR8PYWlivaqd9OX9T8+/B3/BOnxVPNDc6t4m1RLlIX3yWpgjQqWUgBXR8cBecnJHGOlfT/we/ZT1r4Y+DItRtvHmoXD6y1zp09jLY6cDZoogc3UbpZgCUByFLeYPlbchytfRGmfD+yihEkiytMsXD4RWh6DeflwM+igZx04r0vRvhvptx4F0qzuuJIb2eVlyC0iusO3djjOI84ORtOOBmvn8BmdbFKp7V81ldet1+lz3a2Fo4eUXTja71+5/qfL3gX9lt/F3ia50rw/8Vda0fTrrWHNxpeh2WlrbxXogETlVltJWDYJTczbivI2Bto7Pwj8MPFmu/DzR9T8O/ErxPZ2N0fsNpoWo+HdOt10l/tjRTPEr2UbttaOQRyv5okDLIQ6v5g+k9I+H2nWGlLqHha4EN6bq4LBoQwiQLGFccAEn5wB0+Xp3q1qHhyz1Gbw9b3Vlby3fh9rWeyluIlZY5ohgSjcGG7r17Eg961licMsHOMuq0+9afr9xk/azrqVk1fW/kn/wx5NefC345+GvhLqev6P+0R4mu5ry4m0+2h1CHTbWFZbtWRJPNs7SC4jcPuYFZFAwflyM1Ppngjxz4h8Iaz8Hdc+Ouu6RrGq+M5vENhcWtnYyyXFqImaWxRZ7KWJUjljjlBYPMxK5crG271f4i+BrzWv2WLbw8qwXHn+LvPkiklaJ2WCEMsReIq4VnkVuCBmFc55Bi+EngrQz8WfDHjbxTpsM95DpRt2vrwPJLHNcWgjuG3E7m3yLllBwzJESCVCjHJ60qeYUYyldStddLS6/qTimp4KpaKTTdreWx8UaF8LPE3h3VdTvPBnjXVZLSHVrkReGPENlBbQT5ZYneXzNOadMbC0SrhWSO3ySWeQ+U/H/APYZ8B+O/B974e8R+Mdc1DVr2Fk+1tcJGZ8TwSxu8NvFHCPkSWMHywcxE/xEn74u/h8l4hsXji+1XD58x4QQWJ6Dg56DjgjqDmvN/HXwBt7DxivjW8nv5J7K0a1jgj1O4Nn5THeW+zb/ACPO3cebt8zaNu7aQB5FTG1qE5Tpuy6eT6HrQjSrpRmk2979e5+WHib/AIJX+LLDXm17wD8SNUsL6N3NtdSKVwoABGUVDyCRweN3QgGtb4Ifs5/HX4K+FPiddeLraTxE+seBdU0TTf7PvN8pa5igjidvPKqsaiIliGbaBwGr9OtN+G41NIIDAfNl+4piHPJ5x1bnquCenFY2t/C5LG11GG40qMBMpKeuXBwynGOn3cHHIPHc6QzzN5UuWpUUoqzs0v0MvqGWwq3jT5W9Lp9/U/nE+K80lx8UvEs81rJA76/eM8MuN8ZM7kq20kZHQ4JHuawK7D9oa3Wz+P3jm0UECLxhqaAH2upB2rj6/W6LvSi/JH5tVVqsl5sK/qrm0mC3i36nI8kjdIITkA9gWwcn29eFGcCv5VK+r4P+C4H/AAVDtrn7XD+07h+oJ8FaIQDjG4A2WAcHGeuOK8LPsor5r7P2bS5b3vfrbsn2PWyjMaOA5/aJu9trdL935n9CVno8l0Iba3gC7pABM8RUL04VM5J/3ssTngd+pgs7mys4dPjKoAuHneMKWxgsechR7HJA5PJ4/nRtv+C8X/BVqzuI7q2/alRXiBEZ/wCED0E4z14Nj19/r6mny/8ABer/AIKwzx+VJ+1ZlcYwPA2hDPOe1j69fXvXjUeFcXTuudL0v/kepPiDCyt7r/D/ADP6N9QlihhOi2cEkiTKVuRHyWQ/wdhljgdcYycitG/0K9RUS8Yxzzxh4ml4V0AyMDOT1JzxyR1xX82sP/BeT/gq9Bcrdx/tWNvU5BPgjQyM/Q2WKvX/APwcE/8ABXbU4raK+/azRxZ27Q2zf8K/8PhkjLlyNwsMnLEnJOenoK558I4+fNecfLV//Ih/rBhU1aMvPRf5n9GHiC31iXwUuh6i4fTzMyxOU/iZdrd8HgHIweorK0Ow1WKN0n3vEhjP2pYPlwVOT8vRt/Uc44GMHI/nguP+C/3/AAVxutIj0G4/a1LWkMzSxxf8IJoIw7Yyc/Yc84HftVez/wCC9H/BV+wsP7Ms/wBqlUg3lxGPAmg8MSSSD9hyOSfzrnjwbmsKqnGpH75f/IlriHBqDjyP7l/mf0OxaSbhDDeXTja4ZiWzscNnjJIAyOOcDGMHkVev9DuILf8AtO3nwCFMqGMkjHG/A+vOPTPrX86Fz/wXf/4KtXchln/aqJY4yV8EaGucDHay9Pzqdf8Agvj/AMFZl2kftXfcXav/ABQmg9P/AABr0sNwtiqdNqrKLfTV/wCRnUz/AA0mmoy+5f5n9CPjDwBLoQjWJHtpJkWby2TAwRuVlHGBzkY9eK821611uw8y9Nkj3EiZVJJijXAAwR5g4YgEYDBu3TNfhzrn/Bff/grV4kMB1r9q8T/ZrdYIB/wgegKEjUYAAWwH59c89ay2/wCC4X/BURopIH/adDRy43xt4J0QqSO+PsWM+9ceJ4Px1SbdOUEvV/8AyJtR4jwsF78ZN+i/zPBP2kmL/tFePnMTIT411UlH6r/pcvB964qr3ifxJrXjHxJqHi/xJe/adR1W+lvL+48tU82aVy7vtUBVyzE4AAGeAKo1+g0ouFOMX0SPkJyUptrqwoooqyAooooAKKKKACiiigAooooAKKKKACiiigD/2Q==",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAor+jbT9OspfA7+M4vGGleZHqK2p0QzSfbSpTd54XZsMQPyk792f4cc1Ha6wjfxfnXzlXPqlK16O+vxf8AAPooZDGpflq7f3f+Cfzm0V/Sde+JNW8U6nNrOv6xPd3kw3TXV5O0kkhAAGWYkk4AHPoKILxOgNcs+KXF/wAHT/F/9qaLh2+9X/yX/gn82NFf0zeEtd1TR/EFlqehao1leQXKSWt4k3lmCQMCrhv4cHBz2xVr4l6pr994z1GfxX4jXV9QF063WpJfC5W5ZTt3rKCQ6kAYbPIxWb4tSjf2P/k3/wBqH+rj5re1/D/gn8x9Ff0iyTRRPIY0ALtliB944AyfwAH4U/RPGfiTwNrFv4p8JeI7vS9RgDm2vtPumhmhyGRsOhDLlSw91b0NOPFl96On+L/7Ub4b00q/+S/8E/m3or+iPX/Et7qd/PqOpXks9xcytLcTzuWeV2OWZmPJJJJJPUmoZtEkl8E3HjmXxBpccUF+tqNOe+X7ZIzIW8xYR8xjAGC5wMkDrWlPiadVtQoXtr8XT/wEUuHYwS5q1r/3f+CfzxUV+/nh34q658P/ABPaeLfCWqS2OpafOs1leQHDxSDkMD2NYvxR+M3in4keK73xn458R3Wp6pfSB7u9u5S8khChRknsAAAOwAHauhcRUvYczhaV9r9PW34W+Zm+H6iq2U/dtvbW/pf8bn4O0V+22u+IRptnb3c2pWxFxGXVIrlXZBnHzhSdhOD8p5wM45Gfjj/gqf8AFLwr4o+DumeDrDxPZXGo2vi2Ce4sIrtGmiQWtyNzIDlR868kfxD1rTC568ViI0vZWv1vt+BliclWGoSqe0vby/4J7ND+0F8bLnRLrTvD+nS6dPcy+al9D4hM0sLFwxCC5tZkCnldpQhQflCkAjS+Hfx2+P8A4Na7vNS0qXxHdXQVTPrfi0KsSLkqiRW+nxxLgs5LhPMbcAzMEjCZmr+Fvg7oHwm8LeLNI1C4uNePjnXG13R28d3kfn6ZDbaVJa25U3JeFDI98glA3MXIJJRQsv7KWieCfibpXi9ZfD+qeIdbj8PXt5oenav441ezitprWxuZwVe0uFyjuEDrIrE7UVGi3Mx76fB2OxVLWrTSs3q5bJXfRkVuKsDhPedOb1tol3t3Wh6JZftf/tBbsD4LeHnBPfxdOMD/AMADWzN+2D+0HqLRPH8AfDUIhhVMQeLZx5hGfmb/AEHqeMn9K5D4CfCbVPiD8IdI+O/jbw1aafoWqSW8UdxbeI/EsSwyTPaRxo4XUp2AMl7bx+YRsDSDcVGCdDxx4i+FXw2tLyfxP8GvFFvZaMI01HVbHx/qU0MZeUqJZCupMduSo+UdAOCc5+cxXDmNp0ueMU4vr72vpc9ahxBl9Wr7NtqS6e7/AJnR2v7Wf7RX3X+BegZP3dvjGfj/AMkKfdftd/tBktNcfAjQASc7E8YTqAfT/jwNZnhnxx+zdf8Aw7sviZqXhq/0Oz1O2km0S38SfFXUrG41SKMYMsEcl4S6FgyhhwWVscc1o6zD8NNX8TaTongvw3o0ljrNpfXH9uaz8d7+3sbc2r2ga3EyysrzMLtWCBgdqM3IFfL1aEoTcWlf5nuxxVFq9n+BRb9sH49xOsknwC8PHDAsreNLggj04sAay9R/bD+OTqwX4H6EvP8A0OEx/wDbAVpeFNJ+HvxC+LupfCnSPBWmtqEmli50QeHfjDrGtQySfao1kWYpPGLdEgE7Al3Z38pcYLsuL8QNG/Z2tta8XeAdb8UXXgTxHoNtqUtnY6sfGOsxXSRapLpdpKZ7SSKFIri7ENuJzL5cU03lsSyMK9eORY36ksU4r2bdrrmbv6K7/rzPM/t7LZY54VN+0SvZ6aXtfXTfsc14m/aX+P8ArDg2Pw7srEkfN9m8XuQTgDPz6e2OmeMDk8dqgb9o74+RJuX4P6ZKNuMSeMZyB+dkc1yfwL8O+M/iBpRf4p+GZdAnv54l06203xFqqTvDLBHIk8ZuNQdSGEyBSFcBo33IeM6/hT4LTapqXivx3rXxg17S/Avhe6iCznxsZheoHt/Mtnuxu8iby3k/eJbSoJtsaLKrbg6OCr1KkqFNJuO61/zNa+Ow1KCq1LpPZ6dSDWf2sPjTokq6le/BPRZVjkDNA/iWZlcA9Di0U4PsR9RXiVx/wUd+I/jbXxpei+AdNtJr278mE/bjKI2OTnywqFlHPTHTqKm1r4kaRceM9e8LaYviTxfa6dr0kKalpWtXtlb3MLvcvAYHaW4ZA0JtW2So7riRSS3z11fw9+Gnwt8bfCnxZ8VJvB15pcOj6hfXKW0WvXF1cILXRraQ5uf3TSF5GeUghVBfaAAor0KOXKjSbxFL01e7+Z59bMI1ZpUZ2tvtsXNe8G/Fj4wfDbUJfGuvPHZTWDJLZ2lvHDDLIDmMr5m592/YAA+CQBjnB8B/4KM+BNP8G67pMOl6JHYQxRNbLAgkUhY7i7iUskkcbISIvu7cd1Z1KufdfhF+1j+xrZfE7wzp/hL9nGXTUvPFGnHVPFOq+Jr6E6dAJgsjNEt3JFNEQ5kcSgkmFecNIGZ/wXH0Dwza3vhzV/Ceq/btPbQtEksL0ak14txDcS63IsizOzGRSEBU7iNpGOMVeApYnB5hCE1ZO/Sy/PczxeJoYzAzcOiXmfT+ieFrKXwr8O/Guk+NfDlv4b0e5V9QS5hlE8+oG3s5rjypY4bjcULJG8YWFlKH9586mKH48eIf2P8A4R3MvxT+C0Wt3d7Y6MY10iJRDbtMqRA3Fw/2WNVVgsqs+Ds84NgiPDcB8Lvg98atf8OW2h3et/YrGS6kkCry6HzJGj2hAPmCsqn5geuc859Qs/2B/Bnjuwll+JOpahqs01uI5/tV1JGvYZGzD45IALEDP419FieI8xq4b6vKa9mtLRir2Xnv+J5kMjyilV9vBTc3veVlfrprocV+y58A/i149+O9h8MPjT8X5YvD/hSFPGvgfR/Cd3E9hPc6fdw6fDYSSDzFhaCW5QSv5EryxE/vXTypR9NeFv2J/gJ4n+MHwX/Zu8UeHdUm8MeCPA+san448J2GqXN0urM1qrxT3F4yHzLPzIZ7dX22pRrqL7O8bMI1vfDT4A6b8NPCE/gH9nG4udMurqaefWjHPIyyxyTLcTeasgIkXdGjsGBGIgOigD2/V/H3hX4C3dj8aB4V1W++zeHJbPV4vCNlFJdz2ot7aLYyNLDGRvRJCCGzs3HYsBY4xzNKE73UJRS6aWlpfy1e3cj+znN01Fe9GTfXW8bffoj5K+MX7Iv7Pv7Leu+L9M1zSPEWu654KtItT+HtpBqc0tjHp6SXV7BZGGWAeRI0dnc2cU32q6MkwMwjikijLULn/gnFrP7DXwcl1v8Aaf1Wy8ZeJr3XdX8Qs/h7UZPs96qaXCjRTG4gDMFmuLjdKFUp5kU4KtHsH2Tpms6T+0D4o0D41a54Fm0uJNShlNlJcyC8u9OtG1FrFbkx8Rsz3YmZBvVN7REuN7NgfG3x1pf7X3ie2j8Q+FUs7XwXLqGl/ZNU0KOOWZZvKRo7gSPL8yvbyBwGG9lVXQBPn+er4+l9Umou+qt59z26eHqrFRlONmviPAP2A/g/8Kvh14C0T40aXJbR+MfHGj3N7q1s2pBxJpdmPs9qkalPNYy+RLdHLRl5VESxt5SxjYstE8X+A/AnjXw1od9f+Crbws+vW2rX9x8QJIdcu4LpLi8kvYbmSxuXeUreWskBkmW4RreKNZCssqP6n8LvhzodjejwTomi2cTaLogt9FadNzwEli6oq7N6kvvUSs4Vmcqq7mJ5v40/AjxR4j8Of2t4nT7T4jv5bJfEN59rexSWKNBHPJBAqtAh3R7lUxsjBAg2EpJH14XNq39ixp8t/ek9t9FvrurWWi07nBWy7DyzuWJjJ3cYrVvSzk9FayT5r7vXouvkf7P37PHwa+PnwW8Y/tW+OvEPiW+stC8UmPQ/+Eh8QPcS3NnbJFdTy391tEsmUdI02GJI5TGAm11jTgPhV48/Z2+Jfgbxf4MufhR4ul8D+Ip4tVNr4ntJ1lZJrWJWti8kjSJMLq0vVVo2Kq9q/lyjy1x9m/ED4Q/Cax+CvjL9lr4f6Tbf2NdaBfpb3cVqLdkv5reQPIs8iIrLNvGYz5qq+ed5Jr4T/wCCd/7Fml2H7SHxD+CXg/4iva6kvhHTdVttE1a4l+yzxCeaGaecwWpRZomltljDsp2XUu0MCxVZdU9hRapfxZXu7b66/mdeZUo4mpF1P4cbW8rbfkUbP/gl74M+PH7VPhT4f/C3TvFPhTwFd6RHceKPFs10l1bwCSytLi0tYYjFEqSj7bDbmQyytKqtM5Z4p2fmf2gf2iPgV8JLDx/8BvBPhyHwtrfh3VtV0Cxgh1S6nGpyw7bSG9kvpFCwvJHbso8yUsFts72FfUHx5+Mvxv8AgR8P/HP7PHgXQ4/7Q03wsbU69f2U6EXsWj2wjurKaVxE8AJU58vmQSBuY2FfktpvxX+EPxI+JniHxx8cvCV3q13remGYX0upzLKuqPGTcTExgjEs8ksgLI/lnZgNg16dLkx9KNNvWL18uyPPxdL6rUlUtvt592fZ37CH7F/wC/bU/ZY13VP2jvD3iWxvfDGv6dp+heJvBPieK7uNU1C9DRzROJC8LIi2ySGMkOxmiCywKzyN51/wXK8OaF4COk/Czw+myDwjpHhjRliLKxiWBNeCKWX5W+QpyvB7V7d+xZ+3P+zn8Bf2d4/h/wDDj4c39g1t4juNcTVtJlFwZ7o2drbNp08E+zdG6xyP9oWUMjSgrH87k/Kf/BVrXdT8WeIfF/izUNQjuRfeI/CjRyQptjP/ABIbhyUXc21SZCwG5sbvvHrTxEozx1KPNfl7f1v+hNCkqeW1JJWv3/TyP0p8D/sT/Am38OpqmpfBfwrPNDqEURWbQYnZwwckr+7KYAUA5YE7xgEbsegeFP2K/gBr2r3zf8KN8FqPsVy8aL4YtY0iMULt8qhTlsKPx5Oec+7eEPh/Hf8AgRLhbYzzS6kB5kZIJCr90c7VHzD5u2O3fu/BXwztbnUhHY2iNNfXQhiCHCsZGwAAOFU/Tp+VebTm44WnJpWsm/M9StOM6k9dVdfkfH95+zUNI1bT7v4beB9DSzmuoINd0uaOCwtLi1UTSMjTQ2csjiSU2/mRufLKwArhgwk9f8d/slfBnwb4Hi8ew/CXRbc2eoRpF9j0KFZj94qyvhcODggnvg1674lMFlox8NWnhu2eR3Bafk+VIjyfMrLjkq20hsg9eoUrU/ac8D6t49+EVl8KPB3j7UNK+zXVjqEuq6WsbmSWFgdhEisGRhlWQggozLxk55KGIpPCYiNTaKWvW7Lm5qvRlDq/w7ngfgD4KeBZPhbZa3468Lf2xYaVaXF1pVncaY2pXIT5jKYIUiaRg/lgRwRKzMqIB5jMKr/Bb4Q/Cf4veFLHxtbWWg6nYeILj7RZWmn20BtraPASAoE3J80QRlYfKI3QISqhm930jwzqNvNofhV7uCaC1sEt2KDyxjczYQDO0Atgc5wOSTkmrdaJD4c1tPCOoaXazwaPdy2Ett9mCpKiSsGDoRg7skEEc85ySc/E160IRd76vc92NWtN769jzP4SfCb4Z+NvEWu6Z4b8P2DaDpLqmsRC0hls7263JiHywuAyB42MrnHKqoJYFOi8ffspfCey0+6XTvhvpVq0Uav51vpEKEcjGWC8A5C/j71ofDH4e6h8PvH/AImv7Pxzqr6X4h1OS4Tw7cwWaWmmFpcoIvKgSQbYwkeWchlQMQXyx9d/bU8S6z4L06y+JHhTwoNQk1uaFLnT3vzbNiVmjUqyLhz5/lDBaMFGMgZSoDfeZRRwtbIKjg/eV23/AF5I+ex2IxFPNKfNs9F+H+Z8h+JU18+Kr3wx4lM97osqQRiW5ij2fvOkOQg5BiDAkljk+lcf4B+H3wV/Zx+Ov/C9LbRLLS57PTJ7axh0nTEMmoPcp5UdpIEeNlRnBcH94N9ug2/xJ6Z8APtPx98B3HxK1vULCfUJNalsdN0ayvQzWFsscMiSBDggymV8uQQ4QBTkEHnfjn+z54k8WWel6ppd/f6VJo2tR3k50+KDfcxqDugkEsMg8tjtLFSjZRSGGK+RVevhMVGbb93X9V8j6Gp9XxVJwikrqzPGf2qviHbfHLxXBo+ieE57GWHwXaaXqmvaze28mq6mYg6uzi2ihhjZmmlDNFHHuUDAVAsafKWt/wDBNr4ZawglsbcWvl27JC9qip5ZZmYl9m3eQWIBbdgBVztAA/QlvCFiIoFlticrlRcIQWyPXAPfuB7gdKiPwiadHkcsnmnOzy84HA2gjGOnfP8AKuarmWY1cQ69Oq437OyNo4bCU6CpVIKSW19T4Y+Bv7Evh34OaJqMj+N/OvtV1ywuo31DR4rmGws7IlpGIEyG4M5uDF5S7MbQQ5JyvhX/AAVobxERqt/c+DVstO1TxrYz299Jfs08nlabJAiSRMoCttUtlDtA2jBJLH9EfGX7N+tQfEi38WWnxF1u2tg6rb6SwgfTwf3Y4URhi+9SdzlnBdwpVGK18kf8FuvDf2D9njStY8p1LfEG0ibdEQP+PC9xhuh+6eOvFfR5bmdeeNoQl7zlZSZ4+Y4an9QqtaJbI/bbQb26g0JLG1sIooiRjylAUdMk8k8+gz6ZrX0TxFDDpFxY2kq5S5jbKqCzldwOXz8vP8IHPqMCsS8guxEVKeVEoCxwocbB+Hc/pS6bFb2MMkAlgRl5ZFIJX6j16/5zXHWx1b2MYLpoNYam5OT6lvULqKxgSKVZLia/uhhHcLnGSW6YAC7jwO+O9WGuLFtZVpgWjSEsU2cbfu5z2P4Gse0kutY1cXjQyEE+VaRCPlFxlnOemSB74ArpjoNtbWjRSxlZLgIzlgcbOcHn6H8fXHHkyxVespKOx0ezhTsmYkupxajqAhtEMbIoLPIcEcn0z71i+I2Gh6rfXmub7sSkTSTNjcZA5BY7zjOWJJJz9a6SXwysF69ruR3kbIlVjjPJ9uM1X8S6ZGjpZapACPIKOj5+9nofTkGvIrxrxg+Y66UqbmrbGYNRtL/UI2ktdjwwmOXbj5sElS3HXBGPqK6f4qeLvD/iz4O6f4S1Ao1xFdENMyLlMBcKWPIU4Y4GBlsnoDWFo2hXI1ie5ht5rkXNorqUUkK33ShIByTjPPpS6sCzKHkJiljKSJtxsYcg9MdP616+V5tXwuBrUk/jTRz4nCUK+Ipyf2Xc4b4feFPBPwwuItMsPDtnY2MjtloEWH94yqkceQBxwu0dyNo5IFdxLp9nJp8Masw85WEbAglug7EnvxnHeq9naWsdo0F/5bMWwGYn5lzkVJeack1v5NtOYnX5k46/7P8An0rtwEZzp2lqZ4hR57o8t+IPwqKanLrKs9xZyso2RBgUkxjG0ZI5BOQPb6QeGdNttB1G3h16JzZo+JLmNf8ASIweoKnh8dgTjmvW/CXh641CWa3jtHmaNMTW7jLKfTB/z6Vy3irw1ZtPIluWBxw4OCvqOc5H4GuPE4KNJ+0jpqdFPEymvZyOA11dKn1D7W9lJNbvITDe2URVtvzACRAScj/gSjOeK/O//g4C0S0tv2UPD2r20kEwl+JVmFmikydrafqDDI7Zxn8BX6Pa74buLe2jkvWkttzYiuYZCo34PQg4zjnafT2r87v+DhEeJLX9kXw5Y6wIrq3/AOFm2b2uoKgDgf2dqA8tioAPqO/B9eOnJ+dZvRu/tGGYqLyyrbseOf8AEUJ+30VRD8H/AIPFYzkKfD+qnLf3jnUutVT/AMHOH7eZBA+EnwiG5y740HVPmb1P/Eyr86KK/TZZZgJRs6asfDLMManpNn6P6b/wdA/t96ZM08Hwj+D7MUKgyeH9U+Ue2NSH6+lbWt/8HXH/AAUF13TbDS7j4E/BCKPTs+S1t4b1dGZtxbc//E1+Y8457DnJ5r8xqKyjk2Vwi4qkrMHmGNlK7qO5+k//ABFJ/wDBQP7Yt4fhF8HiU6J/wj+q7en/AGE6b4j/AODo/wD4KA+J9Rn1O/8AhB8HUea5km2Q+HdUCx7nZgig6kcKucAegGcnmvzaoqXkeUtNOitRrMccndVGfpV4Y/4OmP8AgoF4W01tMt/g98HblWR18y70LVy43buQV1ReRu4+gqrN/wAHQX7e86SRyfBz4OkOP+hf1X5T6j/iZ8GvzfopLIsnSsqMbD/tLH3v7Rn6LN/wc3ft7uArfCv4SlQuCp0HU8H0P/IRq1N/wdB/t8zKob4PfB4Ff4hoGq5P/lSr836K3p5Xl9FWhTSFLMMbPebP0w8P/wDB1P8A8FCfDV5cX+mfB34NiW5tzDI7aBq/Kn1xqg3cZHzZGD06Yw7/AP4Oaf28dRupLy4+Evwj3yuWbboOqYyev/MRr866KU8qy6pHllTTQo4/GRlzKbufoWf+DlX9uh4ntpvhN8JJIZB88Evh/UmQ/gdR/GvD/wBtX/gqz+0H+3X8NrH4WfFbwN4J0nTbDX4tXhfwxp15DKZ0hnhAJnupl2FbhyQADkLyOQfmSilTyjLaNRVIUkpLZ9gnmGNqQcJTbT3R/9k=",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [47,54,58,76] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [60,44,72,80] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDIMk0vyMdyjoelMdvLyqjj60+1N1Gu4tn14FWre6Pc5rgU4mbUmZqCcksr8dhgcU/Yxy0vT1rQkgV8nb196ZJayyJsCbh6ZxiqvdXJu1oyorKnO79KEcnlRmnzwTRnYJsY7bRxSRG5t1H7zOfYUN9jRNWHGW5BKvLgH/ZFMZ7tlDC92+/lg1YFzGCSTTRcwSHk59BzxSUmlqPQaIZ5Mn7Tk/7goaCctgvn3wKfuYDl8jsMVJHNHtOTlj1FP2ruFissdwxw7dPYUZn+5I2fwFWvPCkhhj05qA3x3Hjd+lP2snpqKUE9SN4IJDhoYpMfxNEM/qKgk8NaNtZm0xMtjoSMfTB4/CrX2wjlU2++c0rXj5BJ49Kv2s11Dlj2Hi6jx5YGM9KkHlIucVoGxhZQWtXjYdVL9PqDzStbWirgJz9TXNeCE/aMzml8xxs6d6eULLnOD3NWfs0Q+doX2/3tjYP49KY4ijXMS8ntnrRKpG1kKMJN6lSSFEBZzuJ/Cq7GLOfJ69PmrqtC8L6ZqZjbVPGui2CN/rN4vZJE/wCApbbT+DVb1vwf8MtOsftNt8Vbi/uA2Da2Hh18jPcNNJGCPXJH40lZbtGlnbY4vJQbWh4/3qinmby90Vr5jem/Fa+o6d4eTSSYdE1q/lyA80WpWcAHPXYQ59up9aw7Dwm+pEofBetuVQuRc6hZRxqoOCWZ9qgcjqRWvtKT1cl95DUuiGXV1Z2sBuLqZbcD7xbkDnHX/PWm2l7Z3IH2PU4pf9lSM07U/h38MNYtJVudFnhcRo2Ib+QSKGAKnb5gByMH6Gs/T/gv8IAJFW/1VhFs8yS31PG3cSB5jb1A54HH8Q9alYzLFH3qmv8AXUXs8RJ6I1GkuF/h/UUw3SW4/wBIj2575z/Kq7+Hvh14aSKNIb1Q0Ky8Xktw5V8lSV3MwHuVxzjORx0t14S0LRrCK/1rwTq1hFPvNsury/YpLpQFbMcU+x2+V0bjPBz9eaeY4CGqlf5P/I1jRrP+mYzXmlxFVNwu5s7Qcgn6UrajZZ2tNjH+yf8ACte7sPhvpfg1dctN9xdTXkcdpbw6NcTfIQSflDAMx3R4CkfeBPXjz7xT8SNVsNRtJPCfw8m1CJXllkv5YTDAwjBYmIMwEsOEf94ylGyCHQA5xjmWGk/dv8zb6vUtqelRw3t822Of5c4yygLntycAUSpo1sbhLzxTp4ltn8uWKOcSEPhTt+TIPDKTg4AOTgZrk9Vb4kaWV07WPi34iaPzxDYwy6lZQmNSxBCiOKNl3ZXOT2rB1Hw+L4y3s/h7U9TEku2ZEv3AuJFUnlkjkCnah6Y6YyScV5lTH1pfCtP68zVUV1Owbxt4dgkklsVN2wcoEZJEQYAJdnA2gZyMKSeOcZrmh8Q9ca58ya9gt0GSUghBCnIwpL9eCfTpVaPwxp+kQ20cngSLS7eCZobe3v8AU5t+0sS0p2xqW5+X7oyVYgY5PSaPpWm3aiSKwtoLxEkNvDFNKcEBtv70EKVbaMk527vauR169/if3sv2T6GbP8Xdd3w6Ve20Ns91uCq1hAolUZ+6259pwOp7ninReOfHlxKrx6lql7LDgNbQ7ilsSoL5VvlAw2R8rdOuea09A8JWtvYWReC2KOGdI4SGZZA+dzffJ4LAeoI/ugCLUPBWp389pLqOpQoqIsjFoSGYncWTzCxjkdcIMggAMBk7QCLEVW7cz+8pUu43UPG7eHfhjffH/wCJU/iDVdF0O5ZZND8MwzLJM+VVWmmTIghCtud8Z/5ZqUaVWXh9V8efDjXvDuj+MfA+vave6T4jWU2P2vT1kntpELhomZZNv34ymQBxtJ6ivmT9rD9u3x9pviG/+Hfw91y+0+40u/mstUhjYCxcxuyvEISNsi7s5JADYz3r3L/glz4vh+LfwO1PQ721tbe70nWbjaFlYIrSKJ2GxR8i7dzZAIH5V34nBVKeC9pUvrb8/QV6TlyR3L3jr9pT4e/AjS9K1Dx1bXdpHrOqxRaVEIIpJJI1YrJcyK0mIkVgyf3iZRhSoLDrrX9pD4f+NNVvdW8F6SmpPZzxR+XDcr59i5O9JJOUSMOMkMQyna205Wvh79uT4dfGPxj+034r06FpbnRbSxh/szULrMVu9utoshjR3A3Zn85FH/PQt0yTXG/A3RP2gvCd3pnxo8DfD7WtWtNK12GKW2jDg3Lx7ZGgKcyFDGQGYKVUOoyCVFdFPKqFTDxn7SzfmrHPKvKNSyj+B+jlv8VE1y6SHwXazRr9stZRO06SstxEuzespwx2DzCEQ8FuMg4DY/BXjzxJfXkGsW1lo9pNp4igntnZ77eQrCT5opFi3EsSULeww528d8FPFnxu+Ifx11vX/iD4BvtG8GpoIj8NaTIR5czeeB50m/axuCih2YqoG9lVVXAX2SxuI5Wv9CsvAiSPdxhEa31CC38kqysx8zyycFUYEA9/bB8arB0ZuOjOqEnLU80vfAninT9Uu9UfxndXdtEQsQmjmu5Z1VlIOY3X5+M5AXKgIVIypq33g/xB4hv7pLVvFFut5GDc3N7pUbF5AjZ8t23EsNw5kRgAcghunr+maDqOla5Jps1k1vDPFi4iu1FyDuKuMliyudu4gHI57YrOXw3fxX51Dw/rIAEaXM5tH2jeUaRhhRk/MdpIIPbIAOZjUd9ikn1Mq/1aGKwi1KDwpcXUojiVJ8NHhJOQASOuXXn7x3HuMFH0nXtXw93aS293Lbr+6hu/LMZI5JLRrvHYZ+vBOKxodC8YatqVnpdmiK9zPKZVuonSO28sBtohfkEMMFhjHAJ5APSa5/ZNrCgs7uG9hmu9twdP1CN1jZQVVyhLsvGHAJbiVME5IUu7bmbcpIybu+lsdOh0XTb+a3jW2I2RXDyPLkmRmbILbjn03YUL0UAXbmHx/fFrvVPGEVuGiQWwnV1kYjgBm25yRgZPYAdK0oRpGiWdva6xrTrLKFuLiONXAnDBvKZVVo4o2C4y4XLeYQcFTU8mrX/hTXoYvEdjK00ts10mlyzhluF25zgjzOI9jZ2jPTJ5rLmlcWy3I1stf0mwuby78S3mox24yjQwO0rlnRARGCemRkAnjJ6AmrZ04+ILVYtWuLpiFkYefBt8p0cq24fNtXp8xA5PsTVSx+Kdpd2Fo+oWaX1sY9kcE5n84AqFGFUjb8oTAUZbaScnJqKbXNQ1JDrOneDtStRIJFDnTyA6kKpBInHCmQjkkjOQDkLRGTT2L5j8ov2vvB3jPwV+0544tPEdjvln8TXdyJLZC0e2aQzIobHLBJEyOx+or7C/4JTR33gv4H6z8To9Mv3g1nV5re6urUAFIhD5DxruKqxZZDnlSM9e9dj8cvDvjn48aPdT+PPhtajVV1PxTdafp1pKLlYLK8vtDjsrZ5n+aZ7fT7HUMTMobeIySxJU6nw9h8W6Bo9j4S8Bfs2uiwWpimtpvENhCkJUbclVfcjyPGp/eLnnd3yfoMdmKxGCjSja/wDl8zjjDkqcyO71bxH4Y0fWLO20/wAF3uqMzR3EFvdvDEqGKSQgOZJOSCCdjDAOOvWm6Qth4su5fsupTrDEZ2/suCbzjsALEzMtqfM2xxn5wV57dBXI+Gj+1xpmpxxeJPhvp2kaXqLTMttCIBDArb96hmLctkHKA/eBPTA7PSU+LEuox/aYNN06yeHYb2K5CAAAZSREwwJcKM4JbYN3QV4M4Sju7miabuyx4ZspNT0m5uIr7dBZ3kauba4ldYHkDtHu3KrMD5bcDH3M9BW1P4esPDFm/hNbDUDAJpJbq6XTvMnkdlTC7sqYwdzffYfKq4HIrn54dX8PwXE17qrB7xpWjitHmjiCquI1KLgOSSDvZhnI6gYMGi6RLPPPFYaDY3jOVAivrlpHkwrMcK4ORgHPJ4H0pLnn1NLqK31Oog16DTNAC6loySZkhkcXV8yOi8KyEebjeyBGAwQNm7pkHLg8WwWlwbqz0MtbSz5soZJtojMaHdtDs7bcDAGSp4OeMjG1Hwze6xpcMVounsBJHBKYNMCLliTlDGwAYr5mcq2NvX0hn8I+INYvPsd/rN1DG8ywK80b4XfGFYk9wE6549eM4r2eu5LnLe5ej1eUSzXaaLexSwKkFnnaFAxkhiH3Mp2scAZJwCRVTWpdXkuLmyVGDg7Lj7Wsc2wg4JUsMp6ED6ZxUmieMPgjD4km1HSruOeaIEahPdaaLlYzHvbEakfMuAMEZz1BwcVWsNe8F6VJFb3mo6JLqzXCvcRanp4e4nVipwV8tEDB2jIaMEHc2SOMKVPWxTTfUiiWxima2GqWEzRyPC03lmMKGRBlgCT3YDPPJ7AE6It4r1UEt3nEwTBk3GNcEtjc55yFAG7ox/CTRbBfFGu3cljo1rZW1s3kPPqWieT5TsqttJzuGdmVx1yeRgVZ1v4jeGrDU4LrWbi7VG06NQts4UKdoT7gILAM64Ocnv0IqvZJR3FGKtqypda7PotmpsfC2rtDDmJ5o9PdkRdhVUjiiBJKhSAB935SCMCsKTx5rc+lf2fenVI4Zd0wF/HLFCZCzsQ5fJxvYk7gQN5IBJweqsPGGg3jvaWvgi9EsioLCSESTXBbYzFWBbaNxwuW4A6cmqV14luLmKTxHYeHLe2tJrZ2025GnObcOQUG4bFYgOMknPJ4GCKnVbEuOujMVdd+M+nRINM8P28m4Ruy3eoAJH8yuuVXIIIIcgjn5cE4ILdS174m6mZrY+MtKs0nkaS4XTdNVA7sWLM8mAXJ3t16FjjFWb7xP4++2uqatFHDcCET3MlvFvZVSPOFCthcjGMnpyBmrt/4R8a6hrNmPDni+eaC7kMkcK3cVtG213SIs3ClSvmSj5lLBQcjcA1RTtsLld+pn7PFt5f2s/ij4qalePbLvit/tbtH5ROCwVSMEuOo44bgnlVk0zwT4luBp+neIPEcd69w5e2WcGaONm+XaFjOCR0zwS3Q4bPS6rZeKtJg8y+1e60yMRje1zdssbDaW3bMBSDgMcA9FIyeKoWGm61pFrNrtp4lCadJcS2kd+t7mGRzE8hC5BJO1WLDAIAA9CbepSsmZGoeELR9eWx8Nz6qyCBIolMkk0ryNtVWbJUKchgeOe/rWkPh54lgk+y3nhTUrSMRO32Ge4V55DvZThGklZAygAMw6ZI45qXUNWs9B1lJz8QoJS7GSCzEZLrgMAHAVcnGOQOc5wBipv7V+1F7O51CWdfMjS2SS8kG6R2xsVPkDDjOcnGRnBq1FWG3HqN1jwprkd1a2GlX1u725M0ctrKjiIMFDqNyMq/xK3Gct16U3xBYahp9/eLf+II7vMu8SpPKs4UOAFXeoOzaQBkA7SOmNtTadqenaqTp9ra3U8sqlYFt8RJkBizgbiwGUJXnJHJ2n5ag0nS/D6vIsNzqsd9Zlo4nu9TTDttI2EbmXGU5facHHUkZhqmZpI8sh8b+D1Wbw7pOj2xbcymW4MgZ3wSBvxkFmABbnqeDVzQvjbpd28MEhtrSaKD988DxyQ27gfMqsSBkHI4G4+3Sr/xW+Hnwy+HHhqTW/iZ41srqaJLVm0+38MlS8pSIyqWQER4l8xQMzbFUfMTnHk2/w6NWs5vgr+y9rV9Ckkr2niOaxu7aFgPMjSVYFba4ILbWdQRncBwrH0PqtKavcTU4nsVv44P2d7i78SW5jeIvD9qZQrui/dC8chCx5zjkd6ydf+LHg2wkFyvivY15K6JAYkaRZA2dkWdgbEZXjazZzwBg1zPh/wAJeNX02PVfHfwi0/TrqAq8cC3Mmp3SyMgyv7zHZhnafUDpXVaBe/EDVtJa91Tw3dWM1ujS25bRpbaExrlmZRLKiq2F6guufes40IN7jaaV2Ja/E3WfETXHibwf4VuLuz8r7M0ssDW5JXaJGVZyG6qvzRg8kYIyAdPwjq+vxX7azr/hvwsmjzzBEvtHvXuXvrhHVUWZvKAIAZs/eKkKD0NVr+18SeIPCIfwB/wj8+o3DCWO28WL5jWxDMCCtnI5yQwddofIIBC8kWdf+HNt4i8Oab4e8Z/EXULXxLpMelPqWteGbK6tLaZJXuo7xMzhAwPm2qsm2NlDZR2DkEhTpNdLfiCet0bU/wAXvDPhyOWbS9F0q7me5R5nvAWWCCOB5GdgFZpTvCqFA468DkcvdW/iXWrSG50vW9W0SwKSzXL20SI1wWP7uTOwFjyBhgxOQB0AFceAIre0ZfF+pw3+n2mmCTULptLN4ZykTSFPLWRwgLKI/MO/7+4KwXaZoPG3jrT9BtT4i8P6hJJBITcz2+gpBCCJnBjgjLo3mbAoYtEoBJbANVCEErobm2WrzU9N0SzsdHuvifqVxqGoSSxia+vYpJ7sogGVLs2eHQlQvygOq/KdxfceJtLF2nheP7bfXdzn7G1vCY3uZvNCtj935arwQXORlGzgnJ5TUfjj4as7mO51n4a+LG1CBnCCLw/PJITgBT+9cYOTjqAQMZwDud4Q8f8AjjVLiw0jRfhs2lWEoMQnmt2glgjXJKOFlkk+bkKVjbBfI5G4TKknuiLts6S/utDhtZNW0fwYt6pQMkG555Ig7OcYYsWfc2SMbTk7TgAC/BpWr6jpTWFxoy24MjvNNPdgO8RCou0AgKCxU8nJB6DkVk+JfjDYaHq8Pg7w9d3V3NeXEg062h0Yy3E9vCrSLIZ3Ejb9q5ZRtOFzucEZyDqWseH2uNaijhtL2aINdNbQcxus0iCNQn3gFIOTKpDPJhMA5lUZzjogk7HoF5rOg2PhizxHqD6klzN5i2sDxkAhPLQpFncD+8OFcNx1HINHS/EHxD1K0huYNHNuttCfJt5YIoZBKu4FiwdyokbD7iSQBjnIA4J/GnjDxFa3Ohf8IprgfzSot7WGQNIwXynJWX76FVc/KDgt1wM1Y8FR65F4RfV9Tt9U8LXt3cRJp+mvdCSeZWe4jDNGikkYCHI2sPtAAB5xnPDOMddyOa5+eT/8FCP2x3SWL/heF8qzAiUJYWq5B7cRcVTv/wBuz9rnUoIba8+OmsMkBBiVREu3HTogz+NeS0V9p7CglbkX3Ijmk+p6n/w2v+1GZBNJ8Xb138oRl5LWBiyjGAxMfzYwME8im63+2n+1F4j0NvDOt/GHUbnTnVleykih8plZdrArswQVyCO4J9a8uopfVsOvsL7kHNJ9T2HS/wBvv9rjQ7FNN0X4wTWcEZJjS10iyj2ZxnBWEEdOlW5f+CjH7a0pkJ+P2qKJpWklWO0tlV2JySQIgDzzjpmvE6KX1XDfyL7kF2j1LxH+2x+1V4tUR+IPjbrFxGCSYdyLG2QAdyKoVuAOoNZy/tUfH0wG2uviLPdx7kYJqFnBchWXIUqJY22nBIyMZ7159RTWHw62gvuQXZ6rp/7b37U+kI8WjfF68sopSDJBY2dvDG5AAGUSMKcY9OuT1JNWLr9vL9rm8dZLj426k2yRZEAt4AFdduGAEeARsAz6ZH8Rz5FRTdCg94r7kF2epal+2v8AtUau6S6h8atXeSMEJKvlq4BxkblUHsP19TU+mftz/tW6Ld3d/pPxgu7e4v7Y217cRWFqJJ4d5fy2byssm4k7ScZryaimqNFbRX3Bdns1t/wUI/bKs7gXdr8dtTSVfuyC2t9y8YOD5fHFVof27/2sLfJg+Ls6EoEJXS7QHGc9fK9e/U15FRSdChLeC+5Bdn//2Q==",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDFjUxnPpTZLtd+Npz9KuNYrMxC3CewzUb6Y0TDDBvpXHdGV7MgW9AXYqnn1FCytkqQOnapFsz5uGFDrPG+FGFPek7JmiktBqxoy5yachCMCO1Ry8Md0i5+tSQxxygBpF6d2p3HdE8V7HCvzK3XsKbJq0O4rsb8v/r0PbggJGQPehLZlG/cPpQpAJHq0Yyio2R6j/69MluraRs3Fjby85xLaow69Dkc/jUpEgXJbpTiykA+3PNX7RIVmQXsmmX4CzaBpi4OQYNKgiP5xoPWs7VvC/hXU7j7QdCjgbHziCR1DH1xuPNbC26ZyqdvelFqAcgimqvKDjzaHPQ+BvDLON1tKQP4fMx+o5/Wkn8EaASVjWWPn5SrA4H410M0IK43DP1oWOUrtjOeOgGar28mR7ONtRqFs4C4K85B61YQsygkU0eWqBwoz34pPODHauPwFccVK4Taeg5lUt7/AEqOWBGJfz+MdNtTIrMM4oeIF8gdunaqm9NBRjcoSW287wEI985/lTSka4AbH0FXZwI1wqL0Paqv7wEsYVPpkUk7I05dBVmYfdy3HrS+fOp3GI4/36YrSqciJaVriTGdi59MU7czBNrqOa8QnEi7fxzSG7tzwP1HWqxkvGn3S20QiB6qefy//XVe81XRrScQ3mopCzDIDtjir9nd6IXtLbmqL+N04O057ZpFudhJLk/jWdbPaXAL2l8JQODtlDfyqSVrlfuqOemTSdJj9ou5Zlu1l+VSQfXNR72xjzmqsZ7iBN8kSfiKkttRsnQtO4DA9ApxTUbAmmdL9ltFGxZckf3uM/0qCVbQMY3kAOem8VIguXbKIxJ6KFqPU3vdKto728tzGjyBIxJCAZCWIwuRliMMSBk/KfSuKeJhBXbKVJyBYrFxnf04zu/wprFpJFihhMjMcAB1UfiWIA/OqHiTxXoGgSx21zqcUlzI+0wRROrKMMckFRg8dPcd+Kq6L8QvDtzJJNcaLqvkoAA1vAkz7icAFVcbOePmIPt0rBZjhr/F+ZaotHcaT8KPF2thXgOi26tzuu/Gmkxfo1xkVL4j+D2o+HNMOq6t428IpEpw32bxRFeyAnt5Vqsjn6gEe9chf/EPw5b7IdO8P30xzmSa8uY7ZEAAJBzuBY8gAMD8p/DOi+JouZDKnhW3ghjOWbz5xIQSwzuBKrgLk5xwat5hhraD9i31N0aL4Sa383UviKsOE3N/Z+hXNyMf8DERz7YFcybDwq9+9t/wnV38p5RvDcinHufMO39ce9XJPjNcQxzroPha3eeJQJGuJ7mWKEkDBLEoCfYgjk88VmQePfiJqkzarpul2bWsEKSS3FnbCYLgkEt5ingHAO44rL+2aMdOUHhm+pq6b4N8G+JIZTa6vrd0sLBHnsorhFDMpYDPKZ2qTjngE1h638BvBGqzYs/HWrx3TKS8E2qxs7AHBIQKrDnjvj1pmreNviBrCJP4h1C7bS7WIi0aW2BVI8sC20DCg84IPIFbfhu21PxTClvZWl3cwvYmOCSC7EcY2qxjcnaSuRk7BuB2DGTmojn9eL/dxsQ8HGStJmFY/AHwtAJLWL4k3lvMrEi1iu1RnIVWJAA5+VlJ57itzTvhjpWm2dsyeLdbAnAcPdXIcOCcZHycc8dav22saRo93IH8U3EVpa3cj+RG42SSDKhzPLLkIWCg9MqBgAdcrxPd+E9N086ZqWox6hO+mhV02zvGEUW2PzftErAMrsVBQKQQT82T0qKmd42p8VjWGBowV0rF2HRfh3aEteeKrreIWYRhVbnoASSMZ7Y6+1aumeAPD2ranBZaf5k0kgZHF1PJBGHGA2GKkNtLLkDrkY61wV58ctN8CeHLnwraXdp4cTUXNg58Pww2t5LCsiPuE7whmJMPQllXcQMHIrJ8T+MfiHoN7d6hqeiC6tk2RWeqaldf2lfujxJKFaJF4Ibyg5YoTvbH8QHLLMMbLrY3jh6cTsdU+M3juHX31Xw7o+oQ6XPGrae0mlrHHlGZQuACCSQpJXBJyCG6jnP7R+M9/LP4hudGvNOS1CCC5h1BomvSZNhPm7RuRt4BbJzznA66mo6Qv9o3aXuvzQP5smJTdSs8bqGAjfBiXaWC9GOOmKztG8N6DdSPJdePLu/nsubmOSa48iLcyjnDvwN4Y4C8jgNkmuFq+5doIdD4R8Ua/ZR3kunGxjQYFw0+5gW6lmznPzdRwAR6VJdeGtfsYyde0sTrK0RaxuLiEiZWYEMTvORyefWtPw34PsL2K7hjmsFvtPt5FhjlvN7us58pd0ZAZtqszZyGUgckritq+j0u4sIbNxp9o9leSXEVnARFFFlVDDkkunCEbhkbMZOc1NktiuRNHHReAF0++aWO9g+x7Xgaxgg3RRAKkhbKHJySxJbOAOoyBWpfar8HPgdC/wARPjVpuoazp9mn2mDwzZyHzJlWBXEUjMdscUr4HDBwGwCuN1b2pDUjY3k3w+TSp725tHGkQ3d4z2ouGjUwGUIVJTJUMBzjcBng18W/Gf8AaS8Qfs1mKW3lGtytf3UN1dXEatDqGorMzX0pVi3yvO8rquThWA4xXdgqTrzstS4xUINs+pNL+MPhr9qf4et8Qvg5px8E39vdeV4n0LRreWeCQMSIp03PuVVwVKEkZYHORUqfCjxZJYxQWXxDuHhu4irQWscpcFQi5ZhIgHLuechQDkY5H57r/wAFU/2j9C1h7r4fS6V4etZBiWw07SYFjkGckMNvIJ59c98YA+uv2M/+ChPhn9p65i8I/FDwvaWfiKK2BeC0nEEF7AjhpGTcNqyckjg5+b6V14vK69KHtIx0IhXw9TRPU7b/AIUpoPgW6tptV+3anEt8ziwuJjcISWZmVsyYGCWOM96+J/2xv2tfFUP7SUZ+HKQ6DH4Dujb6fEjC4gvZ0yWnlikBichmdFBU4VU5LZJ/RnW/iBHfTgPpWmCVpCELXU8gT0BZVCnr25wee1fIvjf/AIJy+HvH/jPWfHcnjK7k1TWWm1K8t7jTXaztvPYht0pVTwXG3G45wTmufLauGpVm61rWMcQppLlPM/2Z/wBsLxn8afjXpnh/4763pjT3wMFlqF7GlrAki75UD5ZY8lsqpYdWRQeFFfZ2g/DRB5d1H4ibUFIxa7USOHaSHwkcjnJIHBIPGDgCvk6T/glxq13YWT638TLayu44JJ7tLW0kncp5hRFVSq4ICnuc5Ppz9hfDG6uvDXww0jw5qniWW7Gi6bHb3t55Ue+YxRLGJWBztZ8Z44y4A6iqzKWFqSUqPzIoyne0jodN8GXVrdpp+mwabZ3k3zveSqC7EAY81okXccAdSWOAMfNVjxVZ65aXE2m6hpF6I7SeSOWW5VwhcBQWVZG3JkADpuwo5B6ZkMlv4h159O0DUtanMKb55PtRiERK7id5YcYB5zkgVfgj8MSwyWEmo64dTSWNbmPUdR+0oJJHAJI8w5AB6Z4xnnv5bcjqtGS0MK20zUb+zDahcQXN4kRcTJHE0ZDO7SO6GNxzvQjjgAYIwKdd6fd6XanSdOlufLujG6La2AcTHOA6GMKWGWwBwQfetPxBpI0HTpry5hj1Z4j5V+ulahCvIVFZis86soZm4DsxPlvwduKh0Ow0eJpPEEkcUNpcIiWS3ow0FwdnO2LBcqAG2sSpyMYyTRK9rmUotvUztL8HS65ZPLb2t6tq7DzJ101beOVmPykjziQzfL3JOeO1XYfh9oCTPY39nqpuEQRlEQw72dBGMMHO4jeoKkc7hyuMnRsbSC4tUtPD+mXepiGFWmvLTSpn3EgrkBlK7iyyYIOSGxklaqSfEKz8L6A1vNdai8y3vm/2gEUT27AsDAyRRjaQSfvgtjHXvn7zRPJFNFvUPDE+jaMttouhXN9/aDwrPb2kixsiBfvZYjDYUHaCCSy4B5x+UH7YHie7s/iX4n+Es8h8nw9441eS3Bk3ExT3BkRfooJAPcc1+sVx8UdJ0ueSfVfDtlJBGkewTQ5KhVjdPMKnLM6ev/PQ8DAA+Hv24P2I9e+OX7Rcniv4FWsfmav4KtfEGuwXIMR3NeXViHjRiW+ZrUgqTxtDdHFe7kNWFLESU+qIxCfs7RPhLaWJI9a9u/Yo8Z3Pw+/aB8K+LrVpQ8WpGENCOVEqNFz6cuD7Yz2o+E/7Bvxq+JOi33im8t7fR9JsJLmKe+u334lh3Bk2Kdw5UjJAHOfatr9nT9kH4xeIPFui6xptrJbF7KLWUFzGyBrbOVlXI+ZSVIDDIJB96+kxWLws8POCkr2OKnTnCakfpenjC9tdRuPDmtWWi6h5ksRj1Z9TdlwSA0YXZwp3bQVwck9uazLzxn8QbK8nvhpmm6dYENaLaPprXDMqqGAUTxsN338PuB5JBFXbdtQ0PwnHf3/w/u53aOKN7hUH7qWMBs5IBXBCSZ7bQT0FY+j+L/jLf2rrceGtRtbS3vkVRekxiQg8yE4y6ngAnIzz71+f295s9B/CmzW8G6LpniS4XX9K0y7F3HHJPcyixtYzbLGCwCNIHb5mXaqZ5KkZ44v/AA80N/EU+t3UE96y2MStcpfwQqDmRVkGADlwJd2F+bA9BWPp0Pxp1HVzYeL9DXTwqAC+fUonjk44zskJJVXDdAPmx1zU8mkHSCda8W3Cypdwpb2y2vmqluMkZOFLMRkEnIB3HnvQ7sI2bOt1W0tdC0ADRNMhs7i/tWhkxcIbgOWRpCWLYXahIAcbQHbOazNR8R2lpqm21lttHRElWd49Ydrp1LDaW2bEyo3dFUYY56A1yyWVjc63b3WmeF9ImupJTslktVjRmJyCw2HOSerA4BNaon8UWs0kc76fpFrJAUnjtYky3mAfvRsCk/KScEA8AHHa1ByYroyNa1tdOP7t7S4KR5aBIwmCoyp/csN2TzkE7ixJ5JqCyHiGazEF1aXcdjKS1rMbvEfm7SoKruzwURTkZwBjGM1qm2tNW1GTXpPFFrpVmzo76fdWC/altZAAshjWX5kwyE4Y4JALEiqOq2Hhp7e11ey+Ixu4HhlWKWO0UxyHG9QY42O4B1ONrcBSTzxUqnKT30Bqd9S14f1KbTEkm0IXscV5aBbgGaIRzRBwCrHdyd46dSduRTF8Pl5RERGltbSi4kZ7lURp2AfcFYjec4DEEg/jWp4YsvD19b6g58WyXUlnbNJbhAiSLIZS6Z3jgbiflyDj34q7D4V1K8guL208MKkCv5Zuri7ZYsqqsGByq7vlJC9SM5GK05ORD5GzGfXtH0m7jbQ5BPcxWxZXtIUMUbOUwxYpgEn5cZ/vdSMjG1fX7bWvFkHjp7mOy1uLwxHo0jWsxUz2H2gXCiVGJG7zSWyACNzAYBxXW3fww8KarFb2V3oHh66s7i6ZEezTzYYgGUNK65cFMt0zk4ORyBXPHwH4AOswW8aIsUCEOY9NigxGy5yo++Fw3UcYIHNHNy7EteZxngXVPA3w0t72PS9Bcabqurvc31pHBJK8txIpBx54cKpJG5Qp6YxWrbeMdM17Q7LVvDvwVtNQkt9INppmpXtr9nEFsXVwgAeJWAKggYbaMgV0cXjnwHY6JpNksGotp8VrO7XDxA/a380fvPn+UsNvBxxgDB6mnqWuaLqlhbanY+GNcuVvH/cW0q+WNyysgbOzgZAXH3iW4Hai69RarqR2Pxl+Pmna1NeaRptlZmZ5JnMUSEwyO2QFXLgLyQPbjtVzRrz4m6lcXmoeMfFcKtMjM98F+QFhypUrljzjdwOeM4ya3g7Wo9dSe4PhXVLRIJt8UA1ZciJXXG8A5RWI3ZP8PYd3X8Hh/wCw/ZU0y4WeVQ6ifVTOqbhuMZJwSQdwI24OCehp2i9kNJkmqeCviaVP2X4n2jGeOMMRZuRA/I3vh1ztwuQBzu6npVDW/DHirSb6z0248fyajIk2L27fT44Ycbc5UmUnOQARzntjrU/g3T/D2nXE99caXqNypjaTbLdPIiKFI3IoAGA/Y5yVwcqa0Ly50iHUjbaj4Oa0ZGKeZcqqRKpZTvP8PXcO3AUY4Y01C72NPdtsY1li0gMOsa8t1fSsd9slzbqgUyDkRkMw+XvuOM5AGCK2dJXUY5YdTN/I9zaCMQpHJJe+VlwBCS+McBiAAy/N05IrqLbxgscJ07SPCelx5tlVdSE0SuYkRk2tLuZth3lgoOC3J6Co08T61NJLpqagttG5/wBJs7Gafy5dx2hpDjY2TkZ6HPc1bhYi0UcRHqnxHstKW20jxVZ2ysPMa0ls0Dkl2I/eo42bVO3+IAjjhRVu9ukvtd0221T4javem3fy7qOz1HajopLNJDujVoCA7kbixB6Y6V886b+0Pp2lm1tf+EmMdlbyHfe61aSb5UJQbo/McB8nPUgjkkcGvQ5/iP4cjuHi8Qb9Nd3Mn77ZHNtVFBzGwJQ5JY5GFAOSCQat4epT0J9pc9U1/wAfX1vo1nNJqMdjHDELRJIL1t0qYDAPtLZ+5yQRuwOOOeUsNP1LUL2G1m8VfuriN3itbORlkmC7zvGcZAVsds7awvD3xLuddRdb8BeCL1rO5MbOk/l28fOCwPmEB9iOX98kDk1z0niz4uyxX3/CFfCXT2S2cRBby5t7dZVIcqwlhd5DwFU5TILkbSBuoVGdRhzt9T0/TtO1O40u5XTdSvbOFYWgjha+2OZXVjHMY/8AlrGHUFlHB45BNWobO/kikvLHQbqyvTFEsd615b7rmZWVWYxAjygepXzGDADgcpXncvhHU4fsM114vZb2SRZrvSNNsWaGWR1BaJrkMsiEAECRhjOPlAyRY0bwd4U8Ia1beKB4k1mTU5UkhtNL1vW4325dwzFQXROSDuDfJwSQa0WFW19RrezO9bwBe6vex2N5Yb50geMSyuCgA5CIFJOMIF4BA2de1WWvJ/BsMHhDxZDp6QXNg0irbXqpbLCTF8/ClZWVATH8p2GPsCCeO1D4la8IY30PULu0ubq0ntotWjvS0qCQEbkbJ3MMnhgQ3AIxkGDwMninxy14tiv2a0tXNvez6jLMzalKMLLIRLGoDMAo7j5Tjg4Cp0En7wc8Xsjd0742/szaRDLomm6VLd6iUkFpCdNaYzHBUkxLIVbaq9dq54PrWrrPxO0TQbK0TSW02G5EkkyW1/ZrumwuY+QSnJTaTux8zdR1wNOsV8GaUsWl6XZpFahRGSkcUZyxZgqkx7ipJUhQCVJGSrEHJPj9Rqus3l5oDW9hp92XaZY4kguAcxiZPLfeRlzjcq9SAe1VKgvskuR2V94q0G18P21xovhWCCSON2lnum82M7gdqhpdzHZkHqxJXkkZAZe/ET4m67cW1roHhtYFhB3Tf2ckMzrkskjNkZB3HBPY5wTXJ/a/iLqerf6PbfZLO6jQ3urDUXVbZGVd6wpkJ8oUDaRtG1trruJq4LfxV4ktJr+O/mkvfJaRri3I2MVdSsiPGSAi45x83zNlyAAuTptO1w1NfRfEmra5e28T6Zaz3UBaeW0jiikjnaNy7F0UAshOd2dpZdwPU1NZ61qviW9crevEjTuEIkC+fcu28FFH3lB3AdVyueAcjmrPTrnTZotF8U+Npnu3iZXs7a2kRGY5nVWZlfyxt2jJIyVzgBsHoLS2h8Ka4NY0CD7RHCuLOW6YQzOpJCsT82wng43ADjg91Uu9ha3P/9k=",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [45,33,59,62] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [38,48,66,85] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iivrf4R/8ABH39of4y/DHQ/it4c8c+CbXTtf0+O8s4dRvrtZlRxkBxHbOoP0Y1E6lOmrzdhpXPkiivt1f+CFH7UzkAfEn4ejJ6nUb/AAPysqlX/gg7+1QcY+KXw1P/AHEdS/8AkCsFjcI/tr70FmfDtFfdCf8ABBb9q8j5fib8Mj9dT1H/AOQakH/BBP8AavI/5KV8M/8AwZ6j/wDIFH13Cfzr70Fj4Tor7uP/AAQJ/a0c7h8TfhmPb+1NQ/8AkGl/4cF/tZg4PxL+GR9canqH/wAg0vr2D/nX3oLHwhRX3mv/AAQF/azcZX4l/DM/9xPUP/kGg/8ABAb9rJc7viX8Mxjr/wATLUP/AJBo+vYT+dfegsfBlFfdz/8ABA79rHGIviX8MSf9rVNRAH/khSj/AIIGftZHA/4WZ8Ms45xqeo//ACDS/tDBf8/F96FdHwhRX3if+CBX7WPVPid8MSP+wnqOf/SCvm79s39j/wAe/sWfEPTvhj8RvEWgalqGoaJHqiS+HpZ3ijieaaIIxmhiO/MDHABGGXnOQNKeLw1aXLCSb9Q0PH6/dL9hW+trH9jD4ZfuevhK2JCgdSD9PrX4W1+5/wCwzI8f7G/wyHlqV/4RC1xu/wB015+df7svUadj1y31K2uXEaA7j04rRtbd5VwpGazGu3Q7orPK/wCz/wDrqWPULxlUQwMh9zjP618uCdjZh027DjYQTjgVO1tdREB1A4rFg1DUssHMn1DdKe19eSjyxcEE9t9K6JujTQ3KcMOPY1GJ55GAE6jnOMHP86yfN1SE8Tk5PP7yrS3GoPGGeRTke1Fybs1EuJCAm8/hT/NlHG5gPrWOLvVgSsMkAHYFsEfpVy1n1sj94YSPUOKHYV2Wmlk5G4nFQSFnfJkYewqYXF5GN0yIR/ssKZJqJ3bWg7eo/wAalpENNkaqy8LdE+xzX5L/APBeeR3/AGsvDofqPh7Z/wDpdf1+sj3VjP8AeU5/2cf41+S//Bd5UX9rDw/5cm4HwBafh/pl9x/n1r1cl/31ejKpxaZ8SV+6X7C8sX/DGfwxEgGf+EStcew2mvwtr9y/2GLMy/safDCXzDg+EoOCfdq9PPXbCr1Nuh7HHLbrgfJxyeaswyQuAyxqQPQ1WTTYwAfM/Sp4rIKAEmI/Cvk+ditLsXYI7RztaMDPuaWWwtQCY1APrmoo7CZiG8zPHXNTf2YSvMrZqeZmbUuwz7DAzZMg9uafHbRR8CVfTBH/ANemNpMrH5Zj+NRLplzk7pMAepo5mQ1PsWXtLdxncAcdRT4oWRAqT5H0FVU0i6k+YTAA1Kuh3WAFuh+Rou2Fp9iykKsCHk/Wmz25x+7ZTgcZxUB0bUFyVnBx7mmnSNSJ5dT/AMCpXkJqY+G1XB822UH2avyX/wCC8Uax/tZ+H1VNufh9ZkjPf7bfV+sx0S8X70oH41+TH/BeCGSD9rHw8kj7j/wr+0Of+32+4r18jk3j1fsy6blzO58SV+6/7EWj+INM/ZD+FK6joksVlc+BrSa1nlgZfNLbmO0nhlwVxj1r8KK/fn9lTx5qeufsS/BAXcxlXTvhpY2cAcjKKgI2jHbj617mcqLw2p10ZRjJtnpEdjHtDFcAr3PNWLe0tlIwwOfU9KyJvFFuAPNgY5/uEUy38Zac832ZYnBU/MWxgZ96+O5kac9JKx1McFsili6+3NO3RfdyvPasVvE2mwxbncc/7Y/xpn/CV6YWwsq/jIv+NHOieaFrm4whOOQOeMGu5+JPwXf4bfAofFDVpWk1K5Xdp+mrL8knBOCQpJPTgHvXC+DfEfwxhvri/wDHp1R4IbYtajRpYS5mBBAYScFcZ6HOcV5n8Sf2tviNqOsDRbS8utY0jSY3n0aC3aT7JbyyM7RpK29lLhQo2YT5gSPa4QdV6aHdg40JXc1c1fg18bvDPxcW/t7CHyL7TJhFe2hJJjJzggnGRkH6cV3UDRHO8D25ryz9nr4bal4ZuNa+Ivitrcav4muRNdRW0flpGq5wNo4DEkknqepJJNemN9lRS2OT6NRUcIytE5ayp+0fLsW2FkUJWZQfQtSxCzx88y/g1U01G1jG0orevz09NYtwNi2wxn+/WXP5GDSZbljtkXcsmRnqDX5Af8F8mQ/td6DsXA/4QCz25Hb7ZfV+vC6rBjAh79mr8h/+C+cyT/tfaBIi4A+HtmOv/T7f162RS5sevRktJI+HK/dD9hyznv8A9jP4YLLdghPB9oFDt0+U9K/C+v12/Y+/bP8A2cvB/wCy94A8HeJfjh4X0/U9N8M28F7Z3mrxI8DgH5GBbg4wcds4PIxXrcQU69TCx9lFt36ehHM4rQ+srjwZb3UaiV0Y9eJSv8jUtl4NmtsJbyoqZ5HmE/zNeRp+3V+yeV4/aW8EhsdT4lt//i6Q/t+/spWLNHN+0r4NIONjR69C/wBfuscfjXyH1fMdvZy+5kNy7Htr+BdLvXRNQlhY44XJGePY1VvvAPh+WMxrIyHA2mCUYx+Oa8Qk/bq/ZEuHZj+0p4SCsxJU63Hgk9+tPk/b1/ZLjiyv7SvhQkDouux//FULC5gn/Dl9zKUnY9ktPAHh+K5WR7yZ1VgWR2GGGehwKov8KfD0XiC61uwkSNbm6E4tQoWKOQAjcqLgDAJA9Aa8hk/b4/ZgB/c/tG+DyMEnfrsef/Q6Iv2+f2WC/wC//aO8KYA4K67F1+m6rWGzHpB/cxqpNbM92h8M3qkG2vkKngDeRU03hPUWAM98Dg9NxNeA3f8AwUN/ZjsQv2L9orwo5B+7/bEZ/rV/Rf8Ago9+y5cBhqX7RfhSM9s6tHgn86Tw2ZdKb+5kOdVrQ9tTw1LFyJhn2yKlTS7uMhCAw9d1eNj/AIKJfsm7Sx/aQ8Hcf9ReL/Gn/wDDxH9kyKSNJP2jfBjeYoK7daiIAPqd2FPscYqFh8yW9N/cyFUr9UezCwmcbTuH0/8A11+Sv/Bd2FoP2ttDRiSf+EBs8k/9fl7X6E/8N+fsr3TbLf8AaW8DIQMkt4ltl/UvX5of8FifjD8PvjT+0noviX4ceONN8QWdv4Ltrae+0q8SeJZVurtym5CRkK6nH+0K9rIqOLp49OpBpWe6ZqpSe58mU7zPam0V9pcY7zPajzPam0U7gPWUqelL5/8AsfrUdFICTz/9j9aPP/2P1qOigCTz/wDY/Wjz/wDY/Wo6KAJPP/2P1o8/P8P61HRQA/zh/dP/AH1SPJvGMY/Gm0UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//2Q==",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAr68+G/wDwRl/aX+KHw+0H4jaD478BwWfiHRrXU7KC91S9WZIZ4llRXC2jKGCuMgMRnOCetfIdfvT+x+Ub9lb4X7raJm/4V5o3zMcn/jxhrzsyxlTB0lKFtX1C6R+esX/BBf8Aa1ljEg+JXw2AI76vqOR/5I0Tf8EIP2qLKNprv4nfDYKo5P8Aa2pcf+SFfq5bzzRnKW8I/wCAVdttTvEyEghPrkf/AF68RZ7iv7v3f8Ed4n5If8ONv2lNof8A4Wt8NAD66tqf/wAgU4/8EL/2l42KyfFr4Y59f7a1HH5/Ya/XA3dwPmawtj9UFRyTC45fSbYj/cHNP+3MV/d/r5i5on5K/wDDiv8AaZO0r8WPhgdw4A1vUT+f+g8VOP8Aggv+1XKv7n4mfDQkjIxrOo//ACDX6ypIkPCaPbj2CCpTqk6qSmkxA+wpPPMV5f18xOcT8mo/+CBf7WjjB+Ivw1B99a1H/wCQa+cP2x/2QPiD+xX8R9O+GHxK17QdQ1DUdCj1VJfD11PLDHE800IRjPDEQ+YGOACMMvOcgfvm+s6oqfLpsfJ6mvyN/wCC891Nd/teeHpJ4wjD4eWgKgdP9Nvq7ctzPEYvE+zna1uglK7PiSiiivfKCiiigAr97f2O7acfspfC7agI/wCFeaMTt5x/oUJr8Eq/fX9jTUoLb9lH4XRzfI3/AArzRvmJ7GyiNeHnrSw8b9zSnFSep6TFbzEbtpA9T2q9b27ZACZHTNRwXkFySsd0pyfWr9rYpIM/aQPxr5TniaSowRA1uxIxCCfpTPs0rHiEH04q88EQAC3Ke4LYqG6lvbeKSaz0y4uvLjaQxWcTzSsFUsdkcasznAPyqCT2BpqUCPYxbsMS1uCcLDn6rTxb3WD+4B/4DT9V/tfQJvs+s6bdWsw+9BcRsjqcdCDgg89D61nXPjvTtIvY7DxHIunvLtKrcbjIVIyCEALMMc5A4ByeOaXNF7D+rO70Lq212OsAxnptr8if+C9wdf2wfD6SdR8O7Tj0/wBOvq/W67+IPhqCXZZ6gbpW+7JHbyKP/HgDj8K/In/gu7rNvr37Xeg39srhf+EAtU+eNlyRfXwyNwGR79D2r1ska+vadmZOkoao+KaKKK+xEFFFFABX7qfsmvPP+y78M3kbaP8AhXmihRuxwLGED9K/Cuv3J/ZMunP7MPwzhljYAfD3RcOHH/PjDXz3EUmsLG3cabSuj1SC2n3eZFcsDnoJa07J9ThBEl4QO26SsG1MTMQbluTx+8qx5kVqPMur+XZ0A64r451JoHUnY31vpU4e8jJ9Cwq1pXiTxJYWF3ov/CZanb2GoqUu47LUnhDKRjgIwAOAOevArmrO70W6bMd6dxPOQRVLxBJc2rqNPu42AOSp6ml7WV7ijWnF3TPoa5/aE+FHhz4Z6V4Q+G3wlsLW70Cw8rR01GWK6jS473DuwDFmb52wAS3fGK8E8MeGdUfS7/UfiX4zn1LXtQ1SS/urqGTMczuAAHDc4UZAA6fSqunzXF1GJZIE4OGO72q8uSPkVVPruprEVIvS2ptUzDFVFZsjuPD8d3OBBqUUYB4BYD+tflh/wXHh+z/tX+H4DcCUp8P7QFl6f8fl7X6jarfX1n89vZNKf9lq/LH/AILaSz3H7UPhu5uIGieT4f2xMbdR/p18P6V7PD05zzCz7P8AQ5oTlJ2bPjqiiivuSwooooAK7zR/2of2kfD2l22h6D8f/GtlZWdsltZ2dr4ouo4oIUUKsaIsgCKAAAAAABxXB0VMowkrSSfqB6On7X37VMeAv7Snj0bemPFt5x/5Epx/bD/arZtz/tLeP25zhvF14R+Xm4FebUVHsKH8q+5Boejy/teftTTEF/2lPH4x0C+L71R+Qlpo/a4/akBz/wANKfEA/Xxjen/2rXnVFNUaK2ivuQWR6TH+2H+1ZEpSL9pn4gqD1C+ML0Z/8i0H9sP9q4tvP7TnxDz6/wDCZ33/AMdrzail7Cj/ACr7kFkemL+2T+1ci7R+0t4949fFl2f/AGpXIfED4mfEH4q6zH4i+JPjnWPEF/FbLbxXmtajJcypCpZhGrSMSFBZjtHGWJ6k1hUVUaVOLvGKXyCyCiiirAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//2Q==",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [51,50,68,68] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [39,44,74,55] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwC+bKwNos0mnw7pELKDIUKj3wKy5r6+uUJkkiRD8uyJeBjnnPPWrmqyO5RYJOnXI9qom9lg3W67dkn3iw5P5fSoi7ps6HYhtLdr65Wyvmwjyqq3EkfyRknGWPYc9Rk8dKdd2dpoN7cWBVL6SOQjfAxaB1GMMOmRnvx1psuqXVlbtFEg8lmyyNyG+ozzxSjVpZxDcTTvbBWzG6qSuRnGBnBX1B460bsnZGZObP7ObO6jwQThy5YKfTHrxT0s4dPtJ7O3votoXzGkhUkHjqSBx17nGSatK1paXys0ZdmOTJzwv6e/ar099Olo0Gn2xENw6zO8o5kVCeAeO+ePzPSlPltZjV9zETSrlbM3UYClWJN3PAxWNcdtvXv9KyrqLU763ddNld7abAmlOFD7TnJ9vYdPStuNdFvb77N4n1KVVeQiGDzygRQCQzEKy+3BznPbrk3uraFdWI0x32rbMQrQjDFhn5s7SHznuegGMCpUdLg3cvaDpGl/ZTpWraNKZ3COkscB+cZG0dOQwzzxnJ5qjrHj9JdLbTtK0VrUrgjzR/q1HJ6YIHvmqtvrl1EsgspDHFKNkeRyRyBn6dvoD1FNha0e0Gj6XazedLu81w4KspBz1Hy8Y5z296qNkiWrlbVYLuG+R4JDO8sbGOaMEqwOcjOOCR7dxVO0sdauLxmgspN8fzPtg+6M85IGce+K1XlsdPga51e+WUQrgQwHJUdOeBzn1Pasx7/W763SG306VYpVOwxwHDZ7+nfr71ze1lJ6bG8aXVmhLZ6lNYlHkgto0zhJGMgD9m4IBIOD17YqS/v9OtLB3uNOZ7RUUEMpZM9x8pzgk5/GuesNKMUxiu7qcW6n5sIWVTjqcADOcd+9R3t9cyaKy3MDRRy7hEWhZd4BAyM5xzWM1KWiZtFRpvY9wubDTIAFXUVV2cCTe2QF9Rgc/nWNdaFMUW9V98G7BnXkZ9M+vHbNbAtoZEQ38ocqMuTGqgfiDk8eoH49azTKCPLjlOxQSiGIYGTzxnuMf5Feit7HHuiqY7OfUIRCss4aQCRFBUdRkZ2n+R/GtO7hWaZIri3t4Y4CBEUUsAuOc55JJPPTJHSqU00dvZhZrXygMhZPL27s8E8nmq0w1C0iZNOvkeKRQpZYgy4yCcbh8pyOoweo6E5ey0JJNP8AEOjabNNcT6DFdysxMdy0hKA9x8w4HPT3qhqV/qmpau2sLcAtOciGIFgq8fLk/wCc9Kvmy1ExK+t2000AkJUjOCOCfwPHNLpr6EkAnmh5jLIVhbDZGMNtycL9OtRKaihxp82xk3F7qNwjaVY6HDdSyAEgRbm4OeMdPf8ACtKz8B+KLO2j8mHTbJF/10jyMZAmcnjHzAZxnAI4GeafJ4m0iC3ntPDd1++4PmRgoTyuRtIB6d8VS1HW9Wt9UbV4ABdmPyxOudzAAAZ98Ac+1EJSlC7HOMYrTcsa94d8TeFI5tPS1guk1CQmZ4kVy5UIwAyNygFc8HrnkiqN94mhvbBNM+03LSxgf6OshMSDJx8vrg/rXYeEPgL8a/FmgDXLTwxrSR2rM26a3cKOCeC+AcjuDxg5Fc5rOi3F1C4vZ57aWBwsgkHlndjkHIzn5u/YdB25qjTd4yNqTbai0cvqq6NHa/ZrKyRMRgb85YNxk9OvHaqWmW8bzO0msmL5f3e9yNxH8PGT+laGswWkckf2CIyeXH+83SBix/ID+tc1ca6Irt7caI4KyfK2Tx79K5rSlfqdukJXasdXbi4t5lnXXGIDgpAibzkc8g4Ujr1Perup2cMcdzZaO4vJZyApmsY8lWAyAHDMmCXHy9dvB6GuWsNamurxY45mjwpYl0ULjp1/Gr1jrF7f6j583i5oBGHlYyxYZSAScE43EkBQM8k+mTUxjWWlgqOg9Ud9fwXVtIrthcgMQeeoyOn1q0NDh0m0fUtZDvNIALaOJTsXK5+dsYzz0HoalvI7e3RTEHlUZyuwsEHt/wDrqa7axOkkz37rcSMCtj5RZAAeCxI+p4/rXsHlX0Kl3ocUOnrdxhLoSqX2rMVxxkZyMjr7+xPWqljNqWoZtJUiiECKqRxZO1CRzls54zWnF/ZotDpV3cfO0uQlu3K47HGQwJOOM9D0zWZrztbXn9j6fZPF5zO0zAZGNxK4wARgdiTUrWwtbaGhrGoR29ogkkXccLHGOoXjn9KwNV0Se+Vr6BGQxjDO+QMMcgdO5PFaBvks9EFpaIzGA7nldM9+QfTj9PfpkXs93IAHIWORxJx39BjPTmiSHBtu4/8AsGy0sfa7uZ9zRgrwCWBxgZxkDv8A0r6z/Zh/ZT+G1loln8QPjC1rd63M0dzpugy3u37Ko5UzKpwzseSjZCjAYZyB8o6OtzpZg8cNBGkAnKQr9pVQ0igfwZ3EDIOcYzjPpWhrHxd8b2Gof8JZL4jklWd90Mbk4GCQQB2HP5/hXHXjVcbRZ10YwT5pI+6fih8aNA+xvp2mXcEckRKpEoUqeAMDGM8ZPQc18pftGeFX8f6qfGmna3bwOsUUF3A1qS8jfNtcBRk8AA5H8I57V5qfjX4g1V5bvUr/AH7zuEZcgKeea09A+J7T2N5I0m6RYdqASMcsTle3QMoJ9Rn6Hk+q1IK50+1ps5e78MatYXP2nT4bc5tvmDSqH2k4yu7HqOBzx0qoND8QyEzR2SOqgs/G4D69sU/UPF326R7e61NCjyA4S3dj16nBx69hwTilTXpjbGzEJdBxCyRlN3XBwACfxz1qneLTsEGpK1yeHw54Zlhk1LxdM8tzKVCxQsTEBjuynrwOF496yNdmtJLYXM8FuIoIxBbpFZpDuA5Xd5QG9sDl2+Y556DGpp2saxZaa63FuyK+4CS4XOQeMjcMZz0PtVC71K/uSV+zb0CN5JRgSTj0JHXjqRVRqSTvImVGP2T1K6s9PkZDaaw1qc5OZBnPtgik1GwhiukMkVzdF0Ly3ExO1B0C7skk59x1qqfDcl9bQ6hDazorJvFwUyrqSBuIyMDOORxUENp4lVP7POqWcyqxIhkBmZVJOBypIruUpPZnC1FOzLX9nWTu135e1oyuwI21mJzwDg5/Ks7XL6VdWSK3uJUiaNWkQyEhuo5PfpU8k93pQSGeyjDbz88YIUMPTPX+lSTW/wBtdL97WOWYxkFmYhhzgYAIHQnr60lUgl72jLdObfubHM3F9eyxEQqVjbcJlHO/J4JGOOOPwqYQ5toJJAJDjHkgc44x+n86v3VrNokW230ZZnfLAqWLZHqQCP5VC3ibS1hEmq2cscrLiREH3WHbk1nUrOS9w0p4dQfvCXl2mrwNaNoaruACSsDvBBz/ACz6Vq2fgnS/EPg+8iuFh3WRIVnGGUED7v4g/jVW2kWWZbuG4jL9AWGSvH04OP0NXUk1Tw3HPqcEqpHLA3njAbcOuP1rFyko2vqbqKXTQ8u8UaFL4eu3iilYxsDsPOPoferPhTT5dS8PX0u3ciOgYkZUksMZP4HFWfHes/8ACVypFYRNthcm4LgDLHjjnpgGut8I+E9vhmLT7OcW5up98yeW8s23aSMRgfTnPrXRJydK3U5+Vc7scXpeh6fEh+0ebPIZMM6DCp04PB755rSm1TTNN0ue3t9LsjJCyus1w8rSMQNuxNvy/wC0QQOVPPYzy6hqGlWs8CWoaSQvlbl0KbiMHcMEZHXHBzjPasnUNQudTuEsLe7jtyzlYgVCJnHOeNo6E5PvWLjK1xxl0TL+m+K7DX9KubHxN8l3BNmF5Sw8xGVQBuCkZVsnkYweSOpq6jcadot8dN1CF7JLofLPDfxssK4wfmUMQTz6dRxWVHYX6W81jfXbzSrL+6dL3cj4ODweGGOQQfem3eiiezkkurWOSUQs0UsrsMEDO35CPryPxp80GuSQOE1LmTPXbjXr22nTTr64kgguokWU3DsUCA43fKDwpyeAfp1FZ6PDbwz3NrqMisG2+bCwG8BgB1QdiT0rRMkciyRrPLBO6DzMxZzjpgntz29eaytSutYt42ubi2aWMnBmMfyk+mcc1vGaexLptIrHTb/zl1aF2nt5Xy3nS7nj9Sc/jziorfW9D+2tbxXE0cgJ80+nsBxV/S9dWSIA27Rpz5e4bQMdcY69ay9Q0m31HU/tZtRCn8Uo+Ut+oz1+tZykpztJFKm4wvGRtvq62fk2sLG6Nwcq4RscHJVgenHoSPerJkh1yaawhsrd98bH7MkO7DKM7VL5IORyR79qyGubewgkjTWA7bcKkaDP1A9f8KzzG8121rHePHMc4juB5ZJ6+v481nNwcrJBCVWMtdTf0OHS9IvbbVdNlkWdV/eWkqR8eoP3hjkcg81iXt7qsepTtcKEjmnaT7OFLxYLEkEDOAM//rpLXVb7R7h47iMOSuMl/oeT3HFWtGuo9VjuLK5jme6cobO4jZUEZzlgwOM5A45BB9c07WW5bkpOzRzscMlvHd2un3UMonnjaWJzzhWJ47jqeoFTazf3yyu2p6KgQMFQ2zLGgUDAYlP4j3J9foK6DUzZidZYYgo8gEh8OPfD9SeB+lVUKygT6hFDJYsuP9V3z3OfX+lL2thukmrHJRSWEoS2LTbWfDFJgVJHHUAgkc0fYILe4eTTryWQ5+ZDtbb9QR/QGuqkOlagUt5NRuLiGLi3tWkAjiGB8oxyBkZxWP4hkktbh5tD0CN5S+JSISSAeh45HOKlz9pJKJUaLhHmbRhS2F3PmR9LjiO/JZY/KA4xjHAx36daUwajEdgdiOAyB+D2wealvtT1bXdV+xarYJFc28RCwiDynGB93GMlj+tV01DS7CV11GK7hkP/AC0eYFUPPVSPX8amUWnZslJct+h6nbX1xA5s7ssCB90k/Ln684x/9aorwxiBVtWaQA8+oq5DeWOoz+RKsrHA/wBZghe3B6/nVWSMwbpbSAtg4AjHX8BXRFpTvsZpSnGwxdYmhlIbT4FV4ihVoy3UYJ+Ykg/TH0qrp2sW+kXjXDWrOxGHVpDtI47Dp0Har9jHYy3LS3odwiHfCWVQpwfRGJH68VFazXV1ZES+GbdyGeOKSTcPLBxgkjG49QK0ajOJknOlIbd+J4ri5kvIbCNiRtAMQU4z6ke9MOpR6hEFureMhCCimQMyEfqP5U7Gi3jNbq/74OVkRZFUR4xyBkkg54PFVYrXSYY5ry1juFdB86zTr07ELgHnrjJrGrS0utzanVV9RLvUv7LkAmsy1qxG+RDnZ7kde3XPeqd1eaD9rEEwktd+MXMcm9XOT8xB+72OPerdjfm6xcSbFXkBCQMjGOfXvUMGi6bcjfY2iSqFOAzBhnHTJ6f/AKqyg0viRpNczvcmdr+3tTJp0EF7GIsLL5KOu04Gdr5APPVQGB79TVSx1iWJ/s2qQSqN3K5YSdOOvPWq9/cXFgTbPCqeU3ywoB8o/D8PzqIyf2zCmrW99M97uwse8YAHfJOc1s6UHDQ541KkJ6l3W9M1WQRiCGC5SRC4ilkMUgBIxgYO7qPToaq6rrV9oc8Ut3fAs8REUigOnIK7eBnI9x2pt/LrOtLFHrFlII0XabmKX98ecndu+/8ATP09473TNfAgaOWGa2X5WDghnUnPzcct1GazSUVa5o5Tm9jOvPE+p3sTNG8TTs2+U+URnnHJz16dqq3fiOz1S2KaijRTqNqSRufl9fr6Vv8A/CA3HiK9js9K8PSvcS8C2sm3OzDPRScnjmsceBjrEb21pE3mYwuYRGBjk5JOOgoahPW+pX72Ksmd7Hb3kkrSXcIaN1wuQyMuPTgZ/HNNd7mKFGhBGDg9Ks3jyLG7qqrkg537SoHTG7qcfWiPXbF4/KulYSkEKcbhj6DnPWuiVOXUyp1IpW7kGr/uJLe6RCiyAAsfX+tDwanJcxz6PqM1thQsk8YIbHc5B/QYzV2R4JI/MibC4+Yen4Ulrcrp7E2l5LGxGN8RG8D2PGPzrJVHF2tYt04OO5jalbahHOtpCxvJJ5tguXtm3yrnI5KkqPYHGcVJcf8ACV29uulNZTNGjFkt3iLKDgAsmeQemT9Panajf3M03kwyXBUrtDXBBJH0B5qtN4l8QyL9ivGMsSMQjlfu8kkf7uSTjpWyqJmLhZkq6pp+vlLu8tghU+Wq2looKgAn7x6DnGKzdQ0y7s9ThTRluRG25plfBOARkEAcYzg56/mAj3Kws6QtI3nJtdEkOxh6kAemRg/X0roZvD8y6NHe3Ejz28SbMwrGwjBHzElTkcHOSDVNRexCbT1MyGwnnDvcxxIgiJXzog24+nsfc8Cs/RWvtLlfT7yygt5GTfClnFFI4ORzvTcyjAbjcBntzzqWlpYTuLbS5FVlUlp2lAIXPQ8gHqPfjjqaVINZsbeO/W1hEUDFo3eQbwx4+UDk/h3rn55QdmjZx51oYYtLq9vJ54XxvkLO8z7/ADOSc7lCj8h3qayvtLDSWl8QXjO0lFI29e5wSP54qTVLbUkSSeymlg8yVwzmXauSRgqc5B55GOOPWsjUdN1ErG+pwXrKARJegs6dODnbnt+ntVyhSqLUmE6kHobssGj2IEsdxcDzSAZ0nK7MnGRwc4x+dZWrpqq/6NdWaXESH5Xit1YEAcnIHXB6+3fFUJdR8R6XMPsFws8KDiGaIEgn/ZIzjnOfepY/Ec0wFvpNu3zAi4jiZlKNx3/Ecfh3rndJ0zXnVR9j/9k=",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD0u7jhSzZZo3RhgKqoAPocHNY99e3tmqX99ZW7RlsRqR0/I57d/Sr1xqaRp580wuDICSgAGD6k8kn61ns9vfWDRJYclgTJKxPPPIJPXk1KTW5u3fYveH00TV9KudQ1HWzDcLLiK0MRKyDAI5AOO4Hb1x1rI1OaaItBayhFxzubOOewxV23tBb2/l2aKML8zg/T+tZl9Ki3I+0qBGw/gGD/AF5pJK7aBuyQoXUbfJjvFb5TnCcsPz/Kj+0pRC0epz3kxwfKULuUepwWGKJJJImS6ihMoRQTuHA9M4PNWVkOr2pudSngtmUkRxlmBY+noB1/KqWhN2UrOF5LFpWu2DMDwpxtHXH1/Gs+5QwssULZLNwSucfTNaaRxBTbWZaRsbi44Xpzwf8AGqzwMk4/dFyFJBDbdvvQ2gS1K91pNlEWZ7ob84ZPK6H67v6VJGllEFW1tpiyuRxLxjGM+vcjk0l5JYwfKtornHyMm/5T9CTkdPf3qOC/McJVZ2h83G8RI3P17H1/OspJuJpG0XqNvL+OQG7ugsPlNhY1TLNjPYnH8qyZGga5W4vdOE0kjZSNpOQB1xgH+H1q1rl212CFtoyshBDsfm69MA8fjxVHUtJ064skcwNLKW+e0QnKYxkglcHPoC3TpjmojDlKlNtWKuraddXLCS5gtiJmyhttpCHJznGMdCMEcccVWtWj0hTGFWcKMDc+OfrjOSBjOOPp10p7W5huLa3Jcm4QiG3KruRSSgLBfuk8446VW1a60TTVkt7u0QPb7I5Nn7zeQDl85Gwk9iCemQKuW2pC3PWk0MPINzso77R+melPi0+1tyynaQepZhwaadRYRtK8rHgbsggZ96rtd+agWGKNu7MVwa0cZMlNIdd3Zt4zao0UaohO7gEn1zjJ+lY93cqZPLeSNiAPnjGD69TU9xGbpxMbgBw33Rzj+lNitVe4JnkXGfmJUkk4z71pZJak7sjgivLmB0jxsZfuDvzUdvDGVMcsBLY+XgN/Xn8avC+ihhNtESoI5AbJquJpSUlijMHOFPQnPpWdylFETBzshMQjTd12DI+uDUWoQxRROHBZ8H52bav0GBz9am1FfKmRpboyNx5hQ4P0yar30j3UweOcRqT8u5wu3AGMk0cvcfMkUpGhYG5llKDGDHE33eOOP8mqN3JAjlwoQKvLJJkfUirdzA0j/aPszSoFxlAQox71VuNKnlZR9phGULLh8YHp1pOUFuxJSZVF8kUUrlQQVIz5ec5x1Pb+dV/t0d1Fvuwm4cR/O2QcfXA/KluooLEP5TqwMuX3yEncAfw/n9e1Vm1C1EbRW1tLMdpLGOAkjnAOM/dJwM+9S2uhcYvqMuWgaGZ7u6LmQEyblALDAAAOSQDkjHTGOvQQvptitp/oxMqOuVRnIxn+FeME1LIXQF7+CMbAN0SyA4xwBjP/ANbiqK39xeXUaIZY0jbdHnB3N2AHArDmctTRuK6HtLKZX+0PsAII2EY4FRSTQxSbiIypGGGMnPqO1TXV288gZLwkH76hSAp9vmJIqtNb2zvlwsjAD5weAK9A5SWWeK4uJL1Izukk3NtQYXPUADiqdz5UA3RybVDZ3SL8x9jitCSF1i2TKiEnIEXBbpiqWoWdpC7PMWk2DowA/lUSY43IWvFghJt7WABTnfJArknjswOPwqOS6uZkGJyN5+VF5P4CnmeFtpEQKL0Hp+FS2FrrfiTWUtNE0+Rp5Ttjht4uRxyc+mMkknA5PSo5ox1Zdm9DDu7maecwklT2Zgc/SoxP9ncASA8ctIckZ68dzXtb/sfajbwQ3fin4laNZyTKGlhtlecx55wWGAT9OPesvxF+zp8NbC1mOj/Em6mnTBgeexURggHIYhs9ccgcAHr2yliaT0uaKjU7Hk7XN3dHbaylgijy1dFjQeuAMD9Pzqm7XUMf/EwtljVxhpGlXb06ZB/Cr3ijwb4o8LaoNN8R2b27SxiVJvMWSOdD0aN0JVx24PBBBwQRWLrTqo8hYE2oBhxgkfmOaEoti5pIpvfS2ReGG5LrtLEJINrLnOMNwevfpgYqJdQeezS4NoMJcqplaBPkcdOerdfujPriie7sYA12IJ2IX92Vl2lD3OVqPUbq11cyThEMko3ozYj2tnkqg+Uj73AA5wQeDV2TdiNVG5ly/wBoTaobEsqcn967EAY6HpkZ+lJpTtY3kly8yuWDIHDHBOc7R3yfYE1q6THYNaGafUJ5URgwCIASR8owcZUbiAcEZ+oFQ3MqSWT2/wDaMFo0cZ+aWdvOcAAsFHCgcdvwzipslKyC7e57DHbTq4kXaRJ95/lIHsDmmCxuyfMbEaKcO3ndT9B1z7VLHfXjWvlRRtC4AMsCuCDx0z3/AD/Oqw1i3BEMkAV1GGBH/wBeuhTTIcWaAe4eRkSAnAIYzEZz3781jXtnczSsolQgDO9Gyv51owpbyyKwnD7x8zBz+XWpp2i0+13yZXccBUOBj3I61LkkVGLZmxWtpY26pNdYd+doj5/GmW1zctdCDTLqZTIcO8ZIIGcmiRXuZTM8eQRyxORn6VqWer6Jovh6fEMZuHOBsDAlQOp7A5+lYzjZXNINORzmsfE/xTaXxtZdTuCkJ2Jlz8wB6mn6f8Tr6a7S2lnYq3LDPTiqUmn2mrWq3V7KoMm5z6qMmuX2XEbS6hBA5iSQqJByB/h2/OmoQkrWDnlGW57BeeONG8S+CpPBGuxny5GWS0k2g/Z5QwJKnqAwypHPUHBIFeUXdvDOiRfMgYAGRXDKGPqc/p+nr1Zg0228PWeu6iWkhkjlRY0QErLt4JyenzD8Vrk76TUZpjZW8DMx+aJUJ549+gxz6UqcFFaBVfNLUzn01ljaG3RJI42DNO7kDk9MfTnHpTdXuLKWCWW3nt22KIUiQrHgNnAwxDlRtOW6gsMn5gDfl0m5ktp0+1xB0QL9pi3ttbHTjqM4B4Oc/LmobKw0zWpI5JbS4lAXbciVViYnbg4CngZKgHg9zzWpjuZ2o6hq2r2B0mHTI7WOJxITYQbVdgQu5vbOOwGSOnFLH4Y1nUClpfvb28BlCyS3UXJJyQAMbucewzV3V7OS1uHXSJx5kUn+ok5jBbnA6ngdOeOKr2x1y9KXGp3C/ZwAYomdQN2W6Dgk/MfU8/lD5ubyKXKkertfW1xAEiURNkbs8En1yOR/KmRQR3ly1xNAm1gMthjzjuetMvbe6lOUtowCoCsGxg+/rTke8s2W2njB2xjLEYJJzWiSegNtIrkTNvghkkTZkqrPhW7ZGepPt1x7VJPLfwqqXzMdwCqeMEY4wehpk17Eyx25ki+0TOcKeAAO2T3/AJ1PcWN2YR5wjUSEhYGb5yfUYzms5RaGpJoh/tay4tpCyOv8BIT/AMeNN1fUNKNvb2FzBGm3JuBDcZ3jPuSRxx6ce9V47SCItHOqu7R527yMDHXjj8/WqsfnwS+W0jkHgPnlf50c19ytBjx6OUa1E+QVzGuRn0x169Me2ahsNOQ6Q1n5iRK6EPDOduWP17/lirF7FPEjPZXyT5AMkRUh0Pp79eoqv/azG2+xajoo+VsiSRTuHb/PFPVC0fUdaW8sukxWuoX8gVVwsIYbQeeefY1SAgt7sSySbl27ZJJJVDbe4Csw3ccAHqPSrdnqN5ayyXVqY3WSIoEJACjPpnAPHQ44PvUZ1m4iuBc3WnRyRkL80cYd1yencD+tHMkibNlFLu0S5urmXzyl2XUhlBkyf4ieityecfzrP1C3ljv/ALNbM0VsriWXyJwGJycAc7sBSBySeSOecbKXkZ3q6zIAD5Zu1YNz0JOBk9Txis/XNPuLy5+2wXqF5FRUzu3hQckkgevoSeO3FJTV7sbg7WKGoX92bqV9PRbcshOEI5zwckdeox/Kiy03UJ7SO+E7Ha5WKEl+MDO8kqVUEnH3gSQeO9LaaVp0EzxDVLcOF4ikXgDPJ5FWBayIpZtVuVg2EPInzrsHPGOD0B/KsZVlKVkaxoyjG7PT5WuZWkDTokjANGONq+v+FVJ5b+QmS4VmJQArFuA+hKEZFaOmLaazKY5LyC3WAlXZ4SSwOTg7R7Hqfanx6dosVmsUums5LkKRMw49Pvf4mupRkpGLlFqxg3dtBf7p9RgjWXoi+Xt756ADFU9Tt7ySOO6htySQVfGWZQAO+TXXpPo9iUiXwy6QnLLm5YyGTnBLsuQO5C4/wgXSdFv5tkP2m3umyYwi70lP4sD7Z7c8HpVPm6EXi9GcraX/AJFvLp17F5TxkhPNQ4U55J/DIqQJcrhI7ddgXEqBQB+fen3s0Edy9peKIyj7WzHyPXmporO1eV5JbpXMjKXZPlwADnjGOeOgPSoSUmW24pWZSjjs5JxPp9u0cqEfPC+JFf1AJ6Aj1HSoZ7yYzhUuhcbm2mORAc+3U1rXGmJcSefApZFlxHL90ggjnsSckHgf1qjc+SLaSzttO+0TKdySxwl9yjGc4J2/QjIPpWMou9maxmkii0KDEQ2RMSHVogM8dCMHilub7U75DpzM8KW8A8kQ25Jc4QFA8anBAyxyQBtOTk8wXEtsk++a0OQAu+Nuh9D+X+cVPKsN7ZiOVw6bhiRYgXXsee/544qU3F2ZTUai00KOox6pfkwwSgx25+7LEFEgPUhsZz19M46dqq2GtWh1I6f591AQQcXEeQee3cLjv+lWbK0nivWkXVkWHzNsfnNg9e4GSBj0yM8Gi00mLUZLi6uJEDADH2h/lI5yRty3BA4xzzwaVTV+8tBRXu+69SG9k0eVXS/0hVDSYSUnZwM5PBDYPGCCOlO0y00fTUdbJzKVEiJF57lEbAIdWXII/PvkdCYJbGS7ysN5YiQHascbZ9epwCv5GqbaU8UxtrK4EO8AfZmbII/DHGcDn1/PF8rZqnOK11PRbe2vY5pL+zZZw/8AE8nQZyAeRz+lW4NWurSQvJgZHIVwVXP50p05praOFL0CFXyImX5o/cDvSLJpSB4LeZEEhBmkkTc/4DIFehedzjaiOn1O7uUS9sXk27yzK0hYlRn7o7DOal0bXIL7V4tZvtWkjnRCCtyCVckEAbsntjgiksorW1vJJLS8aWIMPLkYbMDPTGT9OtZVw1rpmuTq+mebFLNyN+NvrtxnjHQ4q0zNrUPFNvHNKJC0UiEnCx9D6c9u1Z+mfZFvBBq8jQ2pYb5kTcUGe4HJA68YNactjpggkiRplYwsyMCMbu3GPbn69qzdPghuFmW3kuJnRdxZmVcDPXaQc/8AfVTZxloX8US3dX1v5r29pq7SWkJJjaLcokHGDhsH8DyKy7rVc37QQKYsNnzDKcsMc5PNOvpLK0spvMdic4CKm0jkdf1rFjcXSGCWfcgbcqHgnr36gfzxQ7OIkmmab3E8ypLcCGRD3I3bQOMdeOMdqJPslx5s9pMY3HVVTaD+pFUpLeKaKNYbtmkJO8Rw/IB2GcDn6ZqeOzJlAe4Bdm+UsQ3IHQEDI/lXPKMjopyTdgitLW4nSO7Y24LEtJ5WS3fjn9fxqu1jp0/mT/Y7uPG4mUvhQg3ZYgAk9jgZ649KnnsbtLZreQgMsgZC46H0PcUPpttdgz3czphNojBcZPPzfKOSOvNSp3dmOcHbmiZ01harcCS11LcCSFlihVg5Bxw277p6Z756VVuZLO+UNM7RCAkpKzbSD7Zq/wD6PJNcX7+KDb3YJeJZCQz5IG1WUDDcnqAuBjOSBVa41CWWOS1vbo3cEJ2xmRG5TGAQBwCPc9MDtilKkpaoI1ZRVpLQ/9k=",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [51,29,78,71] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [41,42,72,70] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+in/Z7j/ng//fJo+z3H/PB/++TQAyirWl6Freualb6LomjXd5eXc6w2tpa27SSzSMQqoiqCWYkgAAZJNbPjn4P/ABa+GH2UfEv4XeI/Dv23f9i/t3RJ7T7Rs279nmou/bvXOM43DPUUBZnOUU/7PP8A88H/AO+TR9nn/wCeD/8AfJoswGUU/wCzz/8APB/++TR9nn/54v8A98mgBlFP+zzjrA//AHyaPs1x/wA8H/75NADKKvSeF/EsWjr4hl8O3y2DyiNL5rRxCzndhQ+NpPyPxnPyt6GqyWF9Lny7KVsddsZPfH8yPzougsyKinTwT2s721zC8ckblZI5FIZWBwQQehBptAGx05zQKOKB7CmaHqX7E+nnUv2uPhvZrB5m7xnp7FCuchZ1Y/oCfwr6y/4LpW/kn4YuIypZtbGT3A+wf414b/wSZ0Wx139unwdbX0SsIYr+eIsuQjpZTMrfgR1r1D/guhrl+/x/8IeEGlY2ln4OF5FEclVlnu50kIPclbeP/vkVD+JFfZPh0/SkzjOBSmrel6RJqe5o3GEYeYo+8Af4ueMfjmrbSV2SU6Mkdq1z4Wngt5riW6gwiFkUlgzDdjcBjHvyR19ciny+GLZHgja6dWkiDOzJwueh9cdTWftqfcV0YoPoKXOe1X7vw5f2sTzB4pFQAny3zxtyT+HT61Qzgd6pSjJXTGeq+HwfEX7K2u2t7MVXQtUhu7UIB8zedHEA3HTF7KfXIXnAIPl8F1PbTCaB9rDOMjIPqCD1HtXqH7NyJrGheM/ChxNNeeHrhrS0fB8yRbefbgH+LzDFj/a29wK8sCs7bFUk+mKzp6SkvMp7JlDX7uHUNdvb+2tVgjnu5JI4U6RqWJCj2GcVUp9zkXMgP98/zplarRGJ6b8T/hC3wv03S7i98SWuoXOpefuisonCQLGUCnc+1m3bjxtXG3vnjJf4V/EqPwYPiMfAOsjw+ZRH/bX9my/ZQxIABl27RkkAZPJ4GSDXsVp42uNE8TzaXp6warq6WhtdFvJdJZzbBHbFwkgLSRlo0LOFV2eNio2kgqeI/jl8SdD+Fmt/DOK9fw/ouqFIrzTo7W5AudrsRtFwfkU7wFjVV2JEoAXMol8+hiqrilLf/PyOmEaSnKNRtf5nR/8ABICwnm/bZ0i9RDix0TUpZeOxt2j/AJyCul/4LZTrc/tR6A6/w+ArVefQXt7VP/gkFDFD+0frGrSud6eErnaGBzg3FsCfTnP6U3/gsQWv/wBpHRbiBs7fBFsCvf8A4/Lv/Gu3m94jZHyKVJOPet/Rp4rW32Wt+B5ZJDYwHB67l9eSOv8ASsSaJ4Ww64yM1o6DLBPcxWwtgrscb0i3knp0HOPpzSqLmiQzctEbUocPqMcdxLdYiCuMjj16BSfTjjPNR3+yC6guVvEkZgVlC8hWBPGMfX8McDoOk0T4IePvFVspMSWsZZTB9vLg46nG1SR174/WobX4C+J7vWLnR7TVrN7vT4iXgEM5Z3wXEQxGTvIxjICnPJGDXFGdLm1kL2c7Xsc7qMltCk1xboHQwFTGP4RgcZz7muU/D8K9On+EPiZIp7bVLy1tpFLoVNwGXK4DhtuWyuTlcZ4PFcr4i8BavpBnQafI/kzsitHE2WAJw2MZweoPpj1GdcPXo7KSYoyR2P7HVzBb/Ge1SaTZ5kKhST3E8TfyUn8K81aKbTb2SCeMpJDIY3DLypBweD34rr/gRZ3Vl8UNMvGdQq+duBJHWF+Offj8KrfHO0gi+LPiO7gjjjjm168KIjZ485xu6nGTk4/IYxWya9q13Rp9k88vjuvZm9ZW7Y7+lRU+6/4+ZP8Arof50ytjI9s1WV/EfiKe9dZpZrgia3vI4FfdkOyySb2YAs7EEMcEvywxk0fElnH/AGRLpslzFdXNoALO/TYRJGF3uoyQFGSTkEkkHH3jn9Zv2Kf2Pv2B/wBp7Vrbwt8DvgHa3Ot6rDtk0m+hv5g+3awHmXl5GpAxnOAMgHPArif2mf2bf2APCOuSeGLX4DW8s1reNBqRtzqGniBlwXCpHPIsjYKELlQSRlh1rzo03BJ9F6mrjLm3PkD/AIJVSpa/G3WZntgrnwvcAS8/N/pNrkdccYU9M8nk9qv/AAVQmlu/2htNl8x2VfBtsSyqcKPtV0Ov1r2Dwv4V+D3wZ+LifET4J/YdI0jUNBNg+iardT/aFuGkWVpHEsjFDiMoURnQbM72yCeM/aOv/hb8QPitpWqfFfxoNNhnsUsZZ9EthcbYBK7BjH5uWOZGzlk46c5o+srn0Vy+RuJ8Yzo1zD9pkDcHaOM5PH9Mmu4+Bmn6V/wkkB1K4CPLJtjk4IU9gQ3qcCv0l+Ef7BH/AAR48QfCuXV/Fv7bGta/q8eoQKmmabo8mjmSJ4kMikXVpIEMb7h5qyOGAwI89fPL79gj9ii51uKXwfrevXNvI5EUkuqiNZGVlUqZFjIjznKsy/MPmCkA1tUqL2fLJpX80/yFFNSPL/hr8SU0jxfH4Ti8PpqfkXQjnhV0UxAuIt+4khR5siIScj5gM5IrzPxZ+0T4y1PxHd6L4ge78P2FteS20+maZcPFKBvYSRP5R3Pn7hG4KQMEnaMeleMvgH8OfC/jnUbPw5NKIZSqySSTSSuybhIEeQlRLghGJ2j5gDtyBS6T4F8I6LfNJYaPp81wzbmmFqIpFIPJyuSepPGO/rXnQ9lG63f5G00+XRnil54v1PxFqtxf+HtCSD7VcXE8Fho4dktw5DbFQuzqAqquTlyqjJJwRUvfDnxJ1fW4nttGvorq6kaSVprY20I+ZWEf7wKqgEdDxkcA9T9FQ/Dy3uG+1SatcmLIYCFiQATgLkscc44wfrWnH8OYLWHy7TUrWSRsf8fYJZeR0Cg/y75oSjFXSOWNLufK9l8D/jLp2u/2pZaHHgM7fudYtdwDAjGBLnvVbV/gd8Z9cupXufC00zGVpS/2iNj8xJySG5JOf1619XX3h+10KHzLnVdLaYkhLeBz5owTyVYAjpjkcfpSw+JtVhvDHHrb2aFSYztALgEDaABknkHk4AB9gdViqt9vwOhUo23Pz313TrvSNbvNJ1CExz2t1JDPGequrFWH4EGqtdF8X52ufi14ouXm8wyeIr1jJjG4mdznArna9aLbimcr0Z+z37AXxA+J37I/x40D44aPMVtIZ/tVvps1qbf+0bZ5GikSGSVJBtwJFMgV9pVjg4Ir6K+NP/BMvU/FHwZ1f9rDxB+2Et1qLeIJ7rUvASeE7SKSxd18yRp5klVlARFYny0G3njNfG3w6/4Kl/sQ+Fv2a5vhP4h8YNqms3PjHSdVn87w7qEFrFbWaJCYrd4hiOd4kw9yYN7rIyMJCscifUvwg/4K7/8ABKg/sfeIfhr8X/29nl8Qapqt1erpP/CtteK3KTRQwi3lmSyIcKIvMLblZ2YEnrn0aeDyr6vHnrNuydrPdpXXy217EynU5tEfG/xr/ZC+KWgfFWLwj408PeINL8RXely6h4W8NXHhu4Mmt30V3EktkkhCoAIPPuDPG0seyMAFmcAec/Gn4XxeB/G+rfDrxRFa37aRqEtmt09gCkhjba2VbJikBGHTO5Wyre/q3x5/4Kc/swa9458P+OtC/aBfxPqnhmVYNG1a68A7rlLGGB4beG5kubILdFUd8u0QeVmBkYiKLy/mS+/aU+AiSLHY+IEMNqnl6dELW8ZbdC4ZgC0fzZyT91eVPUksfCzWjg6U7YSMpWe9nqrL9b9tvM6sNKTXvtL5nU+Hp4vC91v0i3EURlLKHvHYFuBwrAhV9lIHfHJrv2+N3iGw8MDSHeKON92J7aYpIcn++jIRyO3brXhll8fPgRM0ct/41TdtcOH0+6AB7HakPPU9/XpxW3p37TvwHgkSy/4TXTIokYMsr6FeSheBnBeFmB46AYFefCnipO9n+KNvaU4ncXnibXfFjtNY2bzBTuMcOPk9cgL69885p8Wi362Ru9aa3shx8zXAyT2GFBYHocYrmdY/aP8A2aLuMa3YftAanb3uAstjDpl+YZAoGMBo9iZGQdqjOM4B5OBcftPfAm8t0x4xuxOr5kub37XI8igfdKrAEGf9nA69M1cMC2tUJ4qy0PQhrVkLmayu/ED3kkLRmNJACdpzkhHJbAOMnC5z8uecR+JfHVx4ftEku9auZLaRP3kKwsqjrlSW9sYBOMgYHNedT/tFfs93rxy33jbUm8yUm4gt4biCMDacYKRb8E9cEEk8kjgUNC+PvwW0nVL25tviBcQwSShraJheyrxxkqYeOgOCW+vatXhZJaJmPtm9z0TStdsry0bVoUbyFkKvLLHtVDgnB9OnXp05rTtdS1JIU8qCGAyOJBMUcSxr842DL7WBO3JI42YUjLV5zYfHz9nm23eR4+t7YnbxFo92ikr90kJDhvQhgcjgjFakv7Rf7PrNA6/GoSO0C+ebjw5dEI3GQCsQz+WMZ56CoeGq32KVSJ8tfFtmf4q+JnZyxPiG9JYqFz+/fnA4H0rnq2fiPqWnax8Qte1fR7tbi0utZuprWdY2USRtMzKwVgCMgg4IBGeQKxq9ePwo5nuFFFFMQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/2Q==",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD8GFxnGTX6of8ABHTRJbP9kq+v7qHYLnxZctGT/Eggtxn8935V+WMfJxX7Jf8ABMfSbWP9hrwSyQMrXC3csp24LMLuVM/ko/Kpnc2gfm1/wUf1yz8Rftp+PLyxcskGowWjNgj57e1hgfr/ALUbV4cQO9elftiMX/at+JTEMMePtXXDDBGLyUV5scU4NqKJe4nJODnpSY6gDFOxjikz396piE5BpccAU4Ruyltpx3NN2kc+ooAMcYJ6UcZ4PSl60mM8nrRdgGBkEHtXt/7IT23iBNZ8AatcyJaalE1sxg5kUXUMlu7DPHGUIz3rxHr0Ar0T9mPXpNE+JsfkSFJZrZhA2AQJEKygnPshrGtZ02VF+8jz+SOSGZo5FZWViGVlIII7EHpW78OZkuvGOl6Vd3NzHHPqESJNaybZYnZsKVY5wNxGfp7Vp/tDaBceGvjh4o064CgvrE1zHsPBjmPnJj/gDrXHQzPBKssTlWRgVYHkGq0qQ9Q2YQjLAcda/c39hjwza+Ef2Rvh7pSOVb/hHluNq8Z853l/9nr8M4VYyKqsck8cd6/dj9n+8W1/Zz+HsYypXwPpY4HQ/ZI81cl1HE/Fj9ojXovFXx58a+JoGDJqPi3UbmMgcESXMjjr9a4oknqau6xO13qM104AMkrMQBxknNUyBjr09qEtETcfaRLNcpE8buGblYzyfpXRN4XiFqtuVULIN8Uki4YDPILDrjp/wLpxWdokItZ1u0aKQMNrKT8y+49+K15Lu/is5LVZfOjfB4UE4PY/j+Vc9aU7pRIk2RP4VsUtpbS3W5adJQShdWG08dh1yRyD+FS6lb2UNjDHFaw4wDv25LAFeG/L2q5PoOpHT7ZzuEsaB1XYdpJ5C57nGPp+dVdW06eKwi1G4ZVeNjvw+c5PXpjHTHbg1zKbk1dibZTu9D0m+cSRFrdwoDqqDaMdWwBWZr2iDR3R45/Mjm3FPYA469+/5V0uYr3TiglCysRvfoGGOmBxWJ4ku4msorR1yQSUIJwOma2pVJuSQ7tmKCcZxmum+D+pjS/iZo1yYg4e8EGD/wBNQY8/hurmcMTg9KveGdTGi+ItP1hlBFrexTEHvtcH+ldM1zQaKTsz0j9rzSYbH4m2WsQ3LSnVvDtlcSbxyjorWxX35gzn3ry2KF5AzJj5Rk817Z+2DpVkNO8H+IractNLZ3lnOvXaIphIv5i4NeN2txJbt5aybAxBJZc1FFv2USpblmytZL3V4oY7bZmVd3H3Rnmv20+E1zNp3wY8K6Q0mBaeGrGLGc/dt0H9K/FTSftj68lwgkmmd90jAEgj+Jjj0GTntjNfsv4av1svClhb/Koh0+JQOwAQDrSlItH4p3WfMJI5z0qI46Hua07lbe8HmSgBs9enPv7Vb8LeAdb8e6+nhzw1DB57QSys9zcrDEoRdx3SOQqjoASQMsASM1o5xS1M0m3ZGbpNi99IIoZX8xmCpGgJLE4xjFezfC74HzQga94meMukZK2NxKmVPGHZSQQcZIBB4Oc56Yvwz8HXnh7w0/iaRIVma5ZQQ5Z3CHquPlMYK5PPJ9Qpx6l8KdJ1HxXPJDJA5mWQymQRnaV+8cnBHQ9PfpXlY3FTi2oHRSoJ6sWT4f6lJBJcWFrFMGRgFnsAFB/urz+vXO7jivD/AIseFr7w1eDHmx28sjAwMcqjjBKjt/ESO+DX3X4S8AprOnpc2ul3AYqFXZAx35DAo2COTkHHI49ea8t/bY+C2iaA2k2c8SwSTakEk3SZZFFpufbg4+8FycnBAyD0rkw2ItJSki6sI8jb6HyZbSIYAm9uQN6g9WH+Gf1qrrdpJcsibApVWJ6EkAd69q07wz4DjtIre309fLu7eJFilhlBR/ORTmQdTuXfyvTCg5IRqKx6Jrtk41u0tbeWcySbrUqskYUOpHX5er4B6gdMVvHMEpNqL0PNU9djw+4s2hQSqcqe9RDG7kd+cV3us+D9CjW2tPMlgSVFZJFwxcNnbk8D73U4HGPbPOzWllp94bWRDtjHy+YAG2k5wff/AD0xXp08RCorI1i7s9f/AGntIfVPhj4f8TxTqkVpqV1EysfvtLFblQPfEbH0wDznAPgys2fmP517f8QfG2ieIvg3pnhJbtZLhL6G7KLztxbOvJz/AHio9a8Wv4WjumiIX5SQXQ/K3PX6UYeV4W7Gktzb8NCW31LHnSopGC0DfN0xt6jKliAfYng9K/XayvFl0GKMPwbRQM+hWvl/46fsT/CiXwNbeP8A4BeHrqwvZXaGDTG1V5LOKFJBm4aY+cZQ43AFJWVcZLKUZK9ki+LVxp2ixk+FkfyoQskn9pKR0Az8qE9fSuedZcxahZXPy0lLG1EzW5UMTtbZx7f59q2Ph3a3+paxFbQySqs7tA6xnJkLDO3A68qv0IU9hXv3gH9j/wAU/FXxlZ/Dzwj478M2Fxd3UUMP/CVag1nbyO80cUcaOA25i0inYBkKrN0U4+8/gn/wbK/Gfxh8P7X4kfFH9qLwf4fs/tlm9xcaNos19bW0MoikaR7qSWHYRGysXEbou5QW3ZUb05VK8G6cdCPgep+f/wAMfhNqOvaSNH1TUr6w05JDDHqCPHGu2TIkJ80gfdLYweM5HWvoT4Nar+x98JdX0f4cXXxKbWNZitZP7T1AWyMYX3ldhY4AYq33BuIUHcfXo/jZ/wAEfv2e/hXrl7pfhD9p7UtSmt55ja3GpaGts9xAr+XHIkUjjbuIztbsV2ljwOG0H/gnh4T8CXcvi278Z6h4huYn36XbJpMcNqw24LTSxzb1IzvXaCpwAwxkngqYf3mqkvO22p0Kemisep/Hz9pz4VfALQNJPgy8itrrX9XNvukQjyIY1G+Y8dMybc/7J7Hn57/br+K1j4h07wpHFfW09ysVxLO9vMH85XA2uScbQQO53dMdwMvx98KT4q8aXl7E0c1sZnXSo9YiN2IYQ7FMkfxHqRnkk/hu6joUmq2GjLqvhrw/DLpOkrp0L6Xo7wb40eRwzCT+M78E5wcZwOBWEVFwTa16hPWLifN9nrL69qMQimW3Z4ztkuJHKs4AP8Ck5ZlwOMBjyQBkT3fh3x1LMItL8Kagsc25LhbeJzG4J6hsdOTnnGPfNfRt/wCFpdTgie0lntmCgyKZcJj2VE4+uT0qNfhzcQxhjq8szEZCQndjPf5sH+tbQinZxRyezsz56vfhL8Qry6jJ8MpbBYQcm8iUJyedu7OfwqXU/wBl/wAbajItxa+INEEkgwQ97IvQYH3oxjtX0xB8OdesLcoulJcIy4Vn+zyMeOxjy2eO9V7Xwlrsl+loPDNyqq3zSGzYZ984/wAKmNarT2X4GsKSPnO8/Zr+ITabHD9tsHMeNoiuWy3GOu3H61Tuf2WviSwBOlRyMW2hY7nJx64A6V9Tvf3vh+ylt7YQwyq+CERHP1IIPp6dqfHrHi2e3S6Osyw20jEI8sQQSAEZITGMDkZ6E5Gcg4KeKrtf8A19ku5T+MF1N4KgmstKNxaxS26kx2jOiOSgONycZBJyOxyDzkVy3hPx54wvdDhS41y4Db3iMikqGKhTyRgDh1HXsM9efs79qv8AZd1bxv8Asw2Hxr0Pwqll/a98tjZCKSa9uLvUGjlljtlkidhcSShGjMcduvkytDE8jSJd+X578TNe8O3H7OVrqfxI8JWcvi74kRaRF4e1DRPDEOnRWy2VtaS3ct4GKt57i6dvPVCssUds5JjcBPYxmR4nBqftWrpX/wA1p1Tt96OeliItq2x8deJfhnfz+IU1yHxpcm5eTJF/+9Ln+6XLZI7ZwTXfeAPH3xX+GWmwnS9V1SKSO4EsUOg660Kq4AAfJeEB+ByMkYPPSqcNxcyyPbiOSSKORwGCclR6D6dc45GOtUbmSCGUNdRnLfNE2TuYHuMHA4rw6deotn6nW6d2ey+EvirPeWxHic67dBoirifVYJHZBj5Sz3P3cjpnvnFdDrPxH0VYHPh7VGgM4LTvf3ck0qNk8rHgxkkMRv3hht/irxDw7dWJm8m3tGFwyny9yqWbHJwDnntjHarQ8P8Ai+8SbUlsJ4oYl3MbubyQEHVvm2jHckdql1pte7o+6RfIrGvqup6Vb3Ak0+J4YicLliQfc56VVnv7m4YSQXbyY6DIwTjtTdN8P+H9W+YeLNNkOORaXqSkdMjrVx7DwR4etSEupbucJgxrdBVJI6/KQV/Pk9qzp0qysk3cJTpdRlv4zaxU2tzpqmV8oGjbYB6ZG0g/hitCz8Q3Ntm/uLaK3CtgCSF1L+oX5z091P41ijxi0VkNUt9KtIFG35l2kpgdeXKP2OG3A45BBIpPFnxsur7UUOv6loaTQxYSKDQbS0fDKG3lbWGPfxzuYEDsQOvTGlVte9zB1KfRHQSfELTLiNrGawmknJzFJLISnsMLtB655weOlY194n8RXET20OtSR2/GYbV/LXGOQQDkgj19a5HWL6+8ZaQ0vh7xJp4WWMKkQuP3xJzn5j9wjrwCfpjNN0GLWkGPEOpX0HmAgB7TYhK8Es69B0ChSvGSM5LUP2ltWJNG9Lq9lYQRfaJ3RHbYjzSbcZY/3s4Gc4JwMY7YrRgutH0aFbrVtRR0luFihK3fm/MUVuQnfDA7ckgY9QTT0Xw/8pm/tLKKjPG0pkeN+D905J54A6gE8kDJqa3W9s3dra5kVi2WEcnJPoOMYz296yk5p6spWO5+Lf8AwWB/Y+8aXNwmiaF8WZ9Pa6nuLfS9RsLGOJJJ0ZbjB+3SmIThj5wjKrLhS6vtAHz/AK3+3j8DpLGew8IfC3VdJRnzG4hhlZ1HQOWk+9ycsB/wHPNfJdFfQ4mVTGSvWm303OSEuTZH0lJ+2T8PV09dMh0fWmhQkosljCGGckncsw5/CqE/7VHwxMUSWGkazbmMgEPpltMrJgDbhpcjoMYI6dO4+fKK4Y5fh4yur/eavEVJKzPpqH9tjwJbsFgg8UJGvRFjhH16Tcfka1vD37cfwZsZTPq+ieKZCT8yw2VuCfo32gY/Kvk+iuj6vS7GTnJn1d4g/a3/AGSrqS3u9F8FeOVniTzJBPImx5SMMvN2x28L84IY+grB0X9sv4X6RZXljp/wxuNPivGHnRwKJt4GSDl5Rg5J7c5r5vooVCmg5mfSdr+198IGxaa/4P1fUbJABFaSWMKKABjn98QeOOnQ1a1H9uL4e/2ZLY6P4N1KISEbYo7W3hAGOpYO2T06jtivmKiqVKCFc+htI/ar+EunTS3kfhHUYJJ1Hmi30yHrjn5vPA/HaM4+mNCP9sb4XxPvj0jxEpwOUtYByPpNXzTRR7KFguz6j0P9sX4CQy/aNb8KeJvMTBiextbeNgccksJgev8An0ZJ+2D8EoJ2bTbPxh5b/MVvLS2mIbHTLXHQknOMH618v0UnRpvoPnkgooorUkKKKKACiiigAooooAKKKKACiiigAooooA//2Q==",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [40,44,65,62] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [29,31,60,62] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+vs7/ghHpdxq/7cj2ltEXb/AIQvUGwPQSQV8Y199f8ABt5Zm+/4KKyQBN3/ABb/AFM4x/01tqunLkmpdiZx54NH61P4O1GE7WtSCOo24qSLwzdqdz27dele73ngyKd/MntfqQtOt/BGkMpWWxGP92vS+uKx5/1bXQ8Qg0ABv3tr+S5qwNChjQt9lP0KV7DdeBdHhyY7Rl9OeKzrzw5p8eR5AIPtTWKUgdCyPLzo9upMYG059KF0ZlyTKcduld5c+DtHv5yjExtjIZW6VUk+HdwzFIL9Cvbd1reNaNtzB029jk00hxgh+O+asw2GBt2npXVxeAJ1iz5wLgf3e9Sw+BddlxGloGX1BHSq9tB9SPZVOxyf2IQgMwxmrdlYM5B2H24968v/AOCiFn4x8C/s+XM/hvU7vTtQmn82K5srlo5EjgUyyEMhBxtXB+tfn9pX7TP7RCrvtvjh4tiK9x4iucfkXxXLWx0KUrWudNPBTqRu3Y/V+LTyeBEc/Sud8X/FD4bfD7WodB8ZeJ4rO6uIPOhgaGSQsmSM/IrY5U9a/Ny0/bC/aw0+2b7H8c9fkAPy+ddCU/TLg5rud3xD8UfBKD4p+LNbur3XdQ1Rru5vJTiR42PlKPlxwFVcDGMGuermvJC8VqdNLK+ZvmZ+M1foN/wbRZ/4eRSYQt/xb3VOB/11tq/Pmvrb/gir+05afsl/tqx/FTUPDUmq27+Fb+xmtYZ/LfEhiIZSVIJDIvHcZ5rhbsjpex/SuVkP3oMe+KWPanBQZPqtfItv/wAF1f2JY9Ql0nXNL8X2k8CTGZxpMUih0HyxgrNklyCFONvK7iuWC1dc/wCC737FdnpN1caNoPi+/vI7oxWlq+nwQi4UbP3odpvlUhmwCN2UOVAIJxdeENyPd35j7CuYRKoIhBI7haqvo1rKczQMfbFfEGlf8HAH7Oj+Hnv9c+BXjO3vxcBfstpLaTQrHhcsZXkjYN9/C7D0X5vmOPQ/ht/wWJ/Zp+L+uaT4W+HHw68c6rqupzSrLp1tpEJe1RXwrsxmCYK/Ox3bUHU5xmoYinLZktJ9T6ai8MaTPdES2o5QY9ev/wBerKeC9LLA/ZsemGArwj9q7/goJ8L/ANlzwSvjbXdLkklmjZNP0550Wa6nJXbGoBI6nlskD3r8tf2rv+CiX/BXL9ojxhZeC/D+m6l8PtO1uye/0bQPDV5FBdXdivmbnknEhPCxOSrMvA4HIzt7Vrqaxw85xbSP1n/aB/as+FP7OPiCLw3rng7xHrV61uJ54fD1hHN9mU/6syeZJGCHIfG3djYd2MjPxNP/AMFC/wBq+71WTWLTx/No1resbqy0PVNF09ZrGCQ744X3Q7iVUhSSzZx1PWvy617w18RNds7nxf4qvNWe+NyVuU1bUJZbwyAElgjchSeeAeGU8ggnZ8DfE/46eELSXWvD/iOSFrGa0gi8HapaNcw3eF8lna3m3oHJXLHAyzkqUJUVhjKnOlyO2nfd/oe1k0adKpL2lD2ml9tl3P1Bi+O3xO/aU0a7034r+KrLUIrbTby0tRa20UQRp0RCW2AKzEHj0r40s0gSEW9zbqGKMCSdpVhz+PTFe8/svfHrwV8YJJfsHw/srDWbGOC11Dw5pqeVaRyFiTe27MCXTLCTafnRkKkgbXPeXH/BOKDX7EeJtO8SvbxXYacW3lxqsGSSVzt6D61xUa0kv3i1DHxozxDdFJR6WVj5NiiVh5S5XHXnpXv3w38Jar4++CxuPE0dtfaPY2TR3MF2kjHezzrFsXcI0CiLOQhJIHNVPCv7NXwb8ZeOtQ+F/hj4yaJq2vaXEZb2wsrsSvCgbadxRgNwPBXOQeord+JXhzxb8M/hpqHw08LeJ1hskFr9qa2hQtMxlbHzSrJgAXD5Xue/AorVIStfQwo05xdz8TK9T/Y/0PW9Z+K89xo2nXdwNN0K7vrz7JCZDFBGoLOyhSSoyOnOSPofLK99/wCCa2jazrn7Umn2Wiypu/s6c3FvLM6R3UGUEkEhX+B1JUg5BBwQa9J7HnxpqtJQbtc7u38J+PviN4zv7XwP4K1nWbmEK11a6Tp0tzJCu0Allj3lR15Nd1oXwK8C6NFpGo/tC+JdU0Ow1S+a3t7ex0+GaYbTIC0zSSr9lDNE6qzo4OCSoCk17Jqv7K3xz+ImhL4W1PR9A8Os+h6bd3PiF1V5JtQxdiaF44No3I0sZMjF8CNNu4u7V87/ALU/w48Y/B7xlJ4f+J9tY31xGsUjajb6eVt9UypV5mBUK0gDBnBUtkg5yVNc1WnGqlHqdGHwuHpVOatql0d9WfTfhL9nn9iLV9W1HQrk+Of7Pi0xp5/F8+p217pFiWSRYvMuLGN40feiBUfG7z4mxsfcKcfxv8MfCL4PDWP2QfGVp4dvNb8i0j0q/sLZ9V1Rd04LCNdzyuPJcIm8/PIpIwUDfLfhX9vL446B8OdS+HGk+PbzT/CM0NtbNpdnFHsgZMiJkwobISNUJLZKxxrnCAV7N/wTTu/D/iLwzNNJ4sWC98MeI5b3RE0/U2t5V862VJCqKylixSMEkEYUL2ArkrN4Ck6t249Uup6mGhhMZX9lGnGOmjs/8y38Sf2cf2xNb8BeFYPDvgvXNc1rwvc3N7YW2qxLAsUdy0HlB7W7ZH5MFwfmXjc+cZr1jW/gh8WPFC23xJ1/4BHRtbmidptKgvYTI13cRgKkUiuI0RJAFYuU2qABkV3ll+0t4H+HHx91GL4q69q19qVzoFpeWE8tsbqZy0t0szNK2SuCQB8wBD46KMeOftr/ALcV1448S2XhH4Z+ONR0rRhYAX8Tn7NJNOzsTlwxyqxrHjnqx7ivCwfF+fLOpYXA0koyS96Svp17o9urkOVUstVfETbs9k+p8va1peu6h4tl8I301vEtnJOjfajFcsDGTH5UYO8IAVcgpgncCCau/EnwP8W/h3b+G7/4j6RDpCa358ym31a0nkkijIwhMEkhiO2aNSHUcn7rFWq78IPFN1aeIPEmo3v2YQXcvnHWzc/vEWPefKTarNlzIgzlcAEnpla3xH8V6Z4j1fRpLhoUja4itp7k3XmMsZkzna24japHygfe3EAkivZbxEqvI9eXXbuKlmSpRrVoNRdZWduivsl02toex/sfaNH8Pvj54f1Hw94i0Ke68Q+Drma4tr/WS405Q7qYCBBEPNYwwTEhyBFKwOH4r2f9ub4oW3hb9kzw9+yr8APj5f3Orxs1z4pudKv0nmfSWE7SQS3MJ2x72kUCPO8xrhsjO/5h8afEbw/8Ar2LVPhN8RtO8RXWo6X5Qntxk2qJhgSi87n8wAehjIyAQTg+HfjbFaeFZU166u/tCNI1/FcCR5Ll3J81ckMd5dlY7scIRn5cVMq2JnepKOr7I8r2GC9pFc+i3uS+GYPB1n4XGr6Pfr4ev/Cs4eO5jnntzcJFLG3kLLCP3Ssksj+Y2cGNgfmYV9+fEfQtB8V+F9S8X+Dbi7ttEtrLQbXTNOeEIPKmQbGZWUOCqwjHIPJz7fH/AMG7vRNZ0t/E3w2+Ka6b4l0vVDqFtpL6P5klq0bxNBN5jMEZfNOcdtg/vcej+GvjB8arSTXW/aH+JN5r9trVxZtPqFkVtPICzR7WMEb7XMSF9rhd6qXwWztLiq3s+aqtF/kcuMr4ZVVGl/XY/J6vrD/gjRDFN+2E6TKCP+ESvjg/78NfJ9fV3/BG0lf2wHIzx4Tvs4/34a9eo7QbPMw+tePqfrJJZ6cVz5En/bOYr+Vc58Sv2Yvgr+0F4WstG+KK3s0Oi3RuolW6kzDjhZMjIP3mVgcrjb6mtR9YO9Y4YW4zuJPBqGbxhrGiXkWqaKiGWHJCkbgQQQQQeoIyD7GuCNVxlc9mtRVWNj4K/bv/AGJfhv8AAjw1Zf8ACk5fEd/aapq5/t03GlNcnTY12FJQQF+XggA8tjliTR/wT9/Z/wDh/wCHfjh8LvGq61Bql3fafqb6vZT6FcQJaSNY3OxTLK5inJVmGEUACMHndmvvS8+L+o6fDDHe+Fh9nuwTa3Q2+WrgjdEe+5eCM9VIPrjwj9vP/haPxn+EsPgz4c21jpd7/asN21+908ZCx7mBRo1LBw+wg8Yx1rvU41InjSjKjI8M/wCCkekvY/tBQ6d4U1S8s1nRYIUtb50jhDkLtUKcIpYZKjjvivmqfUxpTwL4kkvbyS6VEc3FwEdZQV+ZmKsc7VKY65ye2K9m/bK+Lt54s+IehXuteF/sOpCUie2tbxpZGEbIVmV2U/Ox3g5DL+7U45bPk/xf+Idx430B9MuvD11ZtJrTajlooEV5zGkTH93BHgbI1AQEIpyQuWYmJ0YNXikn5GtKvJP3m2jofhjAPiC+sTWWjXdlp+mWbvPIboPExC8pnYoywPOSe3Y11fgrT/DP/CMv8bdZ0CK50+MMdPtkRVWaYj5EAHfuAK8o+H/xEvdN8JyeBvtk8Vupv5Z9t2224lmSNRLs6DEcQHqQfasvw94317RfCun+Crtpki0y9a9uIHfqokMYUY6Hlj7DFeZXwlWpU5rnrUMbRhBrTVdTo/2ifhLr/wAL9BsB4t02S2vl0m0uZreZgZA03JB56jd+lex/Bb4M+K7D9nvUdcPha6vdSGnNaxaVpaeZdFpY99u6iMksHRlOByOe9eWeP/G+sftPfEnXb2WJQ2sXMNxErjK28UUiB0AJHAzu6/d6mvsj9lr4j6n8OP2kfDaf2LLLYeNtB1STUrl13QRrZSXCNnIIXYbdUPOMSpzyKqpQqzoQTWt9fQzp4ihGrNp6W0Ou+AH7PGpfGDwFp/j+71Y6Ks+i2cVrDHGXFyoi/wBe2GBG7rjHv3q38SP2CvG/iiyNlpvje1IR9wYFleQ7cYJIOAPrXW/sAfFqfxz8CR40uvDs1tZ32tXS6P5keFlsYisMR2g42jy3GCOoJA5r3ix8V6IHYPp0JHqcqfyNW8HKcbXsYzxdOUeVrQ/m6r6w/wCCM6h/2w3RnIB8JX27A6jfDxXyfX1h/wAEaLiS2/bCeWMqCPCV9y5IH34a9Ct/CZ52G/jx9T9VWghsrgzKWyemcf0rrvDHwz0Pxdog1N9XuA7HDIm0gcHjkexri7y5hu3G/UEzjGEfcD/WvRvgzfRw6Je6dCfMaOXzVK8EEhR9eitXBSjGctT18TKVOF4klt+xd8Q/iP4Unj+HngTxBrljBqAkW4sdLkuEhu0UHG6NflbY+CP7rg46VzfjL9mX4j+D9CB+JPwp1nw/CiF3n1nRZYAB5sUO7dKoBXzZoY8jgtMi9WGfavgP4A+HPib9qj4eeKPEHgTRdS1bS/FmnHTtWvtPSe6tiLpHUxyOCYyDgjbjB5HNfNP7GvwP+CWifsCaX8cE+EXh5ta0fwJ8Pr+O6Nh5fm3UuqaVbSyyGLaXd4Lm4j353jzWZWR8OOyEFDY8yUpTVmeefF79k7wkuvq3jn4aWB1WGBDDLf6QFmEToHRvmXIVlcMPVWBHBBrzDxh+y14E1LT59EGhWFsssZV3trBVYZHGCuDxX6p/txeHzN+1x8RvF194a8DT6Rpy6DbC88bX2pJZaY32T7TLcLZ6e/23Vb65jja3SC3khiiih84xSmOUT+T/ABA8FfAyE6t4k0nwPAvnfADRvGOmQwWutWlj/bF34lXTYmNpqQg1BLJxGPNgkZJjDcSiGWJvJmTdMwtyn5WaX+wh8LPCt/eazrF/4guBbWDtpkejSKkrXeIxGXMsbr5eVcsAMneAMAZrw7xL+z/480r4laprH/CKXF7BeNPLaWZCCTLtuGYz8yhcnnHXGK/dTR/2d/ht4x8D6D8db3wn4X0WSP4UeKfE2t6DaW+sHSb290ye5jt8xxS3moLCw+zmZLcyylIZfKTe4xj/AAA8D/sh/tWfEb4c6LqnhrR9Xm1HxNdad4k07wz8LvG2kaFf262aTRSJd+IIEEdyknmboEmdnSaFgAElLnUd01Y/Jb4f+CfEHgafwN4+8C2t9Y3Ph/SLyS70y5QIst/PFtfcRyFLKoPBOEUjpUPirSvj98QvAPhL4EaHPc2s1hYX8Wu62hKwTQ3uoJcupUYbCtCmVGd3Tpmv0n1JPh94p/Zc8P8AxEufgT4Q8MeJ5viFY6JL/wAIR9vjsvst1o+qX+1or25uWd4304IJFaMMJCSgwANfRvC/hPwV8GNH+IifBfQfEur6x40vbC5u/E1pfy2On2FnZWztEgsru1ZbqebUImWR2dVSykCpucSImrisjhPh1PbfCrwnpHwqt9Eu4IfD+i2NpBBew7JVtzawyW7sMDHmQSQyqcAMkqsOGFdbb6vp+ofNLbPHkdV+YfpXdfFS8+FPgf4mfFj4o+INI0PTY4fEvw80LQLDxxpniPVobKK58DWF3Kr2vh+1ku7q5SDTWiQs1vCnmyTSM5ijt5sXxX8ZP2fNDtfGPxG+GPwjn1yHTPhp4aurGLWPDviXRdCj1/U/E9joLSWw1SK1vr21hM32mSMMNwnNulxG486NivY/nEr6j/4JC+V/w1o/nMQv/CK3vT/fhr5cr6c/4JLxyS/tWMkT7T/wjF5z/wADhrOr/DZph7+3j6n6lxXCQSEQheOoYc12vwr1KdNbe02SYmhD7YXI3BT0OPYnmvOI47y2GU1IoT1CkjNdD4L1QWfiexN9fNKkrtEQUBDEo20c9MnHT6d64YaVEevWi5U3c9ns/HXizwnqlt4m8H3rabqenXKzWmqQQRyfZ5UbMciiZXQkNg4dWU8ZBGQeN8JaBF4G+Ftr8B9A1G+sPC9rp+m2Nzp4CP8AarXT5IZbaKV3Vn+SW3gkJTaxMYBJVmVvUPBQ8d61p0Hw/wDgxeXWg3erTLcapr3h26+x6hNDAh/0X7fDIkljZrIwmmeJonbyU8yUwrLHLn+INb1P4qePPG37QWjeB/8AhO/DdprtjY+Ex4ctljs/GGsHTLWF5U8iFTHp01/BqN7LdRhi9ijTQF3uLWJ+48rQ8+8dfH79pDw78SPE82rfFTxLqV54q0fS7Vby38P+Hr+IW1i8nkMIL20kt5bnE0iPc3Ecs5QqokCJGF5DW/Hn7Qfiy81CXVbbxNdHV9Ds9Evb7XNfs3b+z7fVJdWjtlURsY4/tkjuqRhRFGUgiEUEUcafTP8AwUs8OCX9r3xdpk9qtukkWnvorNFsjKLptqhMfYpvDKcccMOxrM+Gfji8j/am8Efs23dtKngefRvDui634Oa8lSy1SXWdMsb681GdUdTcXIfUFSKR2Y2wsIPI8r955kxumN8rR4n4W+Pnxq8J33hu+j8XXGl3PhSGaLw5ZQpbmOx82SWW4AcRq0wkMjCSOUupX5ApQtnMsPip8ZvD/jTRfiiPirdya/4agvYfCd7a+HdHsYdES6MZnNvZWVlDZs7GGItLJBJK/lRh3ZURV9S/Z0+Kba7p3wAufD/xbtPCd58RfhxpviW88J6ZpM8ttqV7e3mqxKfE0hnhEmktHbw2VtCn2gpIb+V4AMTr5Ql5rnwy+Jjx+PPDGiNqOheJpLO+0aW0aXTor+3ujHLYyx+fKWhEqNCR577lBHm5O87JowaaM+z1W4m8Oad4Oj124TR9P1iLVItPVIgkl7FZ3NpFKzshkJSC7ulChgp80lgxVCvU6V8TviHoXhq/8M+B/GsejpezRTyzyaDpmprHNGTslSDU7S6txKFZ0EhiLqsrhWAY16N4dk8S6z8M/C/wV/a78d3nifx58S/E2h33gz7bKUk8N6c8xgv9aW1WRY9J0y6VDbWtmgEc0gMkUJjs5Z472v3/AIy8c+I/2k/hD4q+IO/RPBt7ql74R0+5jQWOh22l+JYLS1tLG3AWOzLae72bmEKZ3k82bzZMPTdgTseXaZ8T/i9oF74l1/Tvi5qs+seLre2g1/U9cgtNWa+W2tILS1eeG+gmgupIYrW3CyTxyOzx+Y5eR3dsHxTJ4v8AiDbXy+O/ibq2uXOtQaRDrN7cx2sX2m20y8s7yytUhggjgs7eO4sLaQQ2kcCblc4/fS79vx58To9U/Z+8NaF4Y8GaRoGnW/xl8Pw313ZTzy6hrU7eFvF8s0l5OxRPIEkEDQ2qRAQGNmaWd5Ny+w+F/wBr79q74Zfs8XvizRPi/qQe4uYfBfw6sG0uzmt7C6a0eW41CXdExaOxsYmaMSI8cl3cWMcp2O+UF0fzEV9Mf8En0L/tUsAxH/FMXnIOP44q+Z6+kf8Aglfcra/tQPKxP/ItXYGB/txVFRXgzTD6Vo+p+nQhdHyH5/2mya1tIuHs9Ysrq6clVu4vlRPVwO/1rmNN1C8nKqZBnPGRnvXRaebw6hau8kMhF3FhMAbvnHHT61wpJSR69RtxZ73f6h401/4N3nwx0LRPAF9oV7q0c3iK08aaHq12b3aqtBbObDVrASWwdZZDbzCaN32My5jTFbw78Rf2gPB+qX+k6Z8Q9P8ADlvqV2J7ey+H7ajo+nohjRQzxS6ncymVirEsZiMOFCgDJp6fe6dY+GpGs9HvgxuYmaVHG0ALIMFBheS3GcnrTrvxVbzWtrLbW0YuEhIl+bylZdxwMlQdxJfJGQOxNdknrZHlRXVkHx8+NfxG+NHxN8S/GTxHpvhu58Xa5YxafaTvZ3f2XSLSGR1t1hjN/GzPHHJMwDSmEz3U8rQMrtCb/in9oH4kLY6V4u8LaF4YsvFmjaDFpHh/xxdadcXN9pVuPPTzljNyLWa6hilVLaaWF0haJWljuQsaR+fX85kvZorWWWKe3uDGy+YJAoZhwc8nC9xnnnnGKLFdUhnudDumE9vcqslnuQg5IPmKMKOAeQOoz1PRZbG0bvw2+KF14A8K6J4e8HfCrwPfar4N0xbLwXqviHQbq4a0hiuHuIbOdLa8tvttpHJNdyJDIwYSXL/PsZom5/w54t1uO4tfE0Gm+HfEOr2upzahq2qeL9MurqXW9TlZZWOoQQXEVtNbST+dNLFHDEzvKwWWNMxlkX2ez1I6RetJFNEVljdnVRIOg2+vIAPGQV4I76moT6dIia7pLRCWWPZqMLyhEfJ2CUu3TJYAk87jxnPApa2G4XRzXxB+LnxV8VeNtT8R+LvBHwyt9X8VeIBqep+K9I0bxKNTmuyY87Zr7xBcpH+7hjgjUwsscESRRLGsUQS58YPjFrfxT07WrBfh/wCGtFufGGqjUPHep6Pb35vNbmj1SLU4/LaW7eO1jN5BBNMqRnzWjCr5MRaFneJdEuZNKlAt7q6tCo+ZGR+DwcYIwc8Z9uD0NcJd6g+iPHpd1dsbWbfHZ3zDczYHMbnHDAqTuAHAGSetbJ3RhKPKJe6trN5o+meF7TULMaVbeLrTxFeRNZtJcXFzb6bq2nxIsolVYo/L1a4kYGNyxjjAKANnpNc+IF9rdr4U0uePTobPwla6rHpn2a0lW7ml1KWzku5J3MpjlUDTLBI1EaFNkhZnDhU56ayS6tzcWGYFMy/MC2Oh27c8FVHoTnFJlpC+NquUJXKbQjAcq2MEseTxgDPsaZB//9k=",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACv2M/4JG/8ABLH9gL9pn9iTwb8Xvj18EE1rxHqx1L7bfHxVqdqZvK1K6gj/AHdvdRouEjRflUZ25OSSa/HOv3W/4Iua/Lpv/BO34dQpcBG36uUGzPH9r3veuvBwjOq010/yOfEycIJruesH/ghL/wAEqCiywfspF/7yjxvrvH5X1aulf8EIP+CRN8ixyfsoIHY43jx9r3/yfXunh34h2iWiw3k7pMBguqHB9+lWLvXxp7JfW06oC2WKjqK73Qp7cq+44/bT3uzxpf8Ag3m/4JSzwfabb9lRXH91fHWvH8f+P+pbP/g3Y/4JVXtv5n/DKwjcPgr/AMJxr3T1/wCP+vpH4dfFyzNzHb3Gqbg2RhkI/pXtdk1hqtpHdWLBleMMMdRkZrKVOMN4r7i4zc9m/vPgc/8ABuz/AMEnrZc3H7LJcj08b68P/b6qD/8ABv1/wSZScwN+yS+c8EeOte/+Tq/QK8Fhb8zsygDJAGRWDqGvaOd6eWMDodtNQpv7K+4TlNfa/E+HI/8Ag3//AOCSCNiT9k3Ps3jzXh/7fVo2X/Bvv/wSAnwX/ZGGM/8AQ/6//wDJ9fVlzqls0jlHJ2tlR7VcstXgEIZVcjPJC96p0Yfyr7iFWn3Z/HDRRRXjnqhRRRQAV+1f/BILxDcaZ+wT4BiZGaNTqvT31S8r8VK/bX/gkL4UvdR/4J8fD6+gtpGD/wBrYZVJHGrXo/pXfl7iqzv2/VHJjL+yVu59W6brEV9tkh1Q8jlGOCtattJ4gUEQ3TzxHpG82f51h2fhLVoI97WnGOSQa2NN0q8hbi3YZI+7kV6149DzXdbmr4Z1+/0e9Q32mXKw7+WK7lB+tfRPgjx/bDQoJDfyYMa7VU/MBjoa8G0S51KzYRwxuTjoWqzf/Euy0S+TR9Y8S6dZ3TxiRLa4vkSRkJIDBWIJBKtz7H0rOahLd2HByWyufRU3jLSdRU7rt/cMc1xHxI+Jvw2+Gdlaaz8QfGdhotlqOoCysrrULjYktwY5JBGD0zsikbnshr5w/aZ1n9o/Wfhnqvif9krxk82t+E2tpdX0TS9BF/cagtw4VIoS0ciGVFVpGiUGTYyHjcgfhbT4ZfGu00Wx8cf8FO9a06F7qSTQ9B06S+tYksre/wBok842kaxmVpbSFw3mny0XcCjqVPk4rH0sM5Qhq116fmevhMueIpxq1ZJRvZpP3vuat8zd/b7/AOCoGk/sw3PhLS/gHqPgDxnc6/qfl6lONcN++nQpgyF7a1dWG5XUpIZMEo42HbmvoPxv+2x8DdN1pPh/8JYLrx94muPMjtNP8LxKbUSiMMjSXbYi8gkgGaLztgDEjjB/IH9sX9nnS/gt+0Lpmi+G/Gd7q1+jXE5kl0WS3w0bttRZiWW6dUCszRhVDPsPzBtv2/4Q8Y/Cz9kD9mFtQ8axXWla/wCMLfV7eHU7IC0vms7VpIUltGJkUCNTbyjcwLb2kZCQVPz088xnNKzS+TdvT+mejQy/K4znz80rbK9r+un4K3qfzp0UUV6xxhRRRQAV/Q9/wQw+JfwH8P8A/BLP4W6X40+KPhTTtSt1143FnqniK2gmjA1y9bLRyOCBtkjOSOkin+IZ/nhr7i/Zn/ZK+Jnjf9kLR/jB4O8Nw+IluNH1aKLSHu5zNHi5vIvNggiQedLE375IzKAzoAUlBMLzKUoq8dyo05VXZH7zaB8UP2XviXfDSfA3xx8D6xNNuC2ui+KLG6d8IXI2RyEn5AW6dBnpXy1+1p/wVg/Y7/Zvv7/wZ8ONH1P4ieJdPdjq1voNi8VnpyKoJdrqTYkvJA2wlh97cyEYPwb8IfjbdeO/jrefCTxV8KJ/hxqzWNpqV9pWlaFFYuk1ost3LZA29qk8dpLtt5gtzNIVSzx5kkkkcycb8Vvij8CPFvizw/4S+GVnrMWh6e1lC+o6xqck1zcwxxyECOEsQiwhjDGis22MKM7QFXnlmVSlU9k1K9m9Fppbdu2u9kr6rojuw+VUa0faSnG17W6t+m9u7007n0h8dfjpp/7dF3onxi+CPgDU7bUNMsDY63p2ki5muLNDtlt5JUKhoxIz3AVwoRtjKruY2xL8M/AGpfEi50fwKmo3R18pfpq9l5DNdyOs0ccCNLM4jRw7bAGOSEKEx7C4+ePgf+1Gf2XPiPqfxw8FeBYIJdWuF0jRtObxBcPbxPJHCCZ7N7oXF3GAFO+VxGHRtpDbPK9p/Zv/AGnfB3wRkuvjh488Ja9f63qfi1tVS7WO0aK8VL2eS8TNmpW0Ml15hbKkFgSqKBh+Ovi5uCcn/X6nVWwuGw9ScofAttPPqru33s/QH9kbR/it8Ef2SNcvb3wrpWiarN4vEfhmyTV4b6OKO4eyto7iWSBnWd0mS4crkZK7AUXhfBf2kvG/w0+BXw5Zvjx42uPGXjrxB42udd8J+J5NDu7W1+2wxxxNbyXWZY+DZiMwxMu4GJBGkZ31nD/gq74n+Jfw/j/4Vz8ELLS/COl6vbNeaxeXsl86zw3IuVhiRI7dZbpyVCQbl8wtgMOSsMf7VHgn9oP9m5YP2ifBvifwh4fGpPPqLRachh1PTnuANkkj4ktXkfe+yMiRUj+8y7s5WlVw3PG7gutna/n8zkpVfrEnGNk5badF262PgD4n/Evxj8VfHU+r/EHWpLzUrjVJHlv3khZI23FnWMxYTbuDHanGFyCc5P1d4Z/b48Y3H7NN78MP2gpD8S71z5cGna7ao1rp9ssZAle4hIuLufcRglgw3/fZsg+C/ErSv2cbX4iJrfhH4h6tqWip4qnji0eDzHks9PTcLOJPtB3zP+7Id9+7Drklq8k03VPH1trrza/FdGO/ZdjSHyo58XEfyMFYBVGE52sB8vytgrXjVac4RspJfM4HUnhqjbep8f0UUV9oAUUUUAFfsf8A8EnrbV9R/Yg+Hul6Pfx21xM2p/ZpXyNrjVLs5yAcdOOOtfjhX66f8ErvEUujfsc/D+48whbabUJCAxPTVLpug/l/OsMQrwXqdmCbVSVu3+R6/wDHD9nTX9Q8Qtb+E/DunWXi/VVN7Frfh3w0Jbm9hhhWOaG6uIYCyqyyYMbMrGLdtJ8tyPh/xF/wTV/bg0fVdI1qH4cz30WpLpT2t7p1jcyLeXTxzSWAjjZC85uAG8oQqTKoYqrc5/WbV7rQtBgh8QaZ43s/+En0cLd3Ojaz4cE0Ns8sYksipkWSC7Z7cy3DwuqmOKNHOPPtXl9FufGn7VFno9/8VPDH7Uqy+KbbTvDratoNrFbRahKw0u61KzM6ySFntDZC9CyylhdzwyReXJsEtXaLjysz5pRlzR0PyP8A2eP2f/jB4n/aL/tD46/sya7FoV7psN/o4bws1qllGZ7eC2vCrjYbCR0e282MtD5t0yq437h9hfs/ax4p8NfC3V/HOu+Br/RtBsrmPR2vJvDZs7ae+trRZr258lUJtrxppplmgkZnBt1JUEln6lvi74R0DwcsekeKPE2pCDQLbTopE8C2L2lvO2rma4s3nF48sAS4PmJP5XmPiaORIEQhu9/bJ+IfjPxt4gb4VfFP4y614y1Dw5rfiKDUbfVvDzWkVpHJfeQkttcDdHdQ3Atpd0CuPshtxHs2SRu6VGjFWSCWIqzfxGHb/BK98TabD4HvPgfdatZ6gNOvv7Mh8PicTS3VlJcW0kkcaECd7YyOEZQ6hJQVBVgvKeLf2Hvhh4vmGt6x8CvEKrfW8F/HcwaTerHKlzLttnE6MkYE8uREDxKVcIG2NjUl/aA+Jz+DI/h9ceLZn8PxXVrdQ6PHDHHBHNbw+RHIqKoCts++QP3jfPJvf5qzdI+IWm2YZ4ba2humvY7qHUhZxm7tJVuBcB7a4A821fzlSTdEynci9QoAl4ejJaoPb1L6s848Xf8ABMj4I6tfTXk/gvxrpklqZVkMS3yJtjCLK6rNGyOkbkQl03IkqtECHQqOY0r/AIJA/CS+1u9vtA17xY6WtpqKGbXJiLaX7PpovLmWKcpFDciK1mSUlfMAchW3HMdeuePPDvhf4neMtd8eeJXludU8SaneajrN687oLq5uYBbzOVRgql4lVcKAoIyMHk7tl8Q/iNp+nWWj6X4geSysr651GzscDalxd6Xc6TNMY2HzM1jc3EHzAlRIxG1wGHPLAUHGy0Dmoy3gj+eOiiiu85wooooAK/Sz/gn18e/gx4H/AGSvCvh/xd8X/CumX9quoedp2pa/bQTx7r+4ddyO4ZcqwIyOQQe9fmnRUTgpqxrRqulK6R+92s/tsfsxz2D6RaftS/D0xtGvzjxjZjdyvB/fYwMDk89cDjNc6/7WP7KkKKH/AGjfAO0gW91BF40sFJhHKnKybXAwABz0Unpivwzoo5A9r5H7V+L/ANqX9my5uI7rS/2kPALxuX3wHxZZqTxyRtkIBOAQWI6beeGGQ/7V/wCz+l0zRftHeDt3JSX/AIS61OT65MnHXvzX410VS0M27u5+1lh+1H+ygIY5NW+OngS/PlFpbi68e+XNISc4KQ3qRgjoMKMhQSSSSaM/7Tf7MccDNbftBeDXLyllWbxpZMIlb5tv+syQCSv8R4BySTX4w0UlBJ3RTqSasz9l1/ar/Z6sl2237Q3gsEqTgeLrPGQRlf8AW8dSQe+Kkg/bQ+Ax05tMuvj74MMb23lMR4ns8lf7ufMJx7Y9PqfxkoqiAooooAKKKKACiiigAooooAKKKKACiiigAooooA//2Q==",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [42,23,90,67] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [52,52,70,68] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAor0XwT+x/+1n8SvBtp8RPh1+zD8Qte8P3/mfYdc0bwZfXVncbJGjfZNHEUfa6OhwThlYHkGtmP/gn3+3lKY1i/Yp+LLGVA8QX4damd6noR+45HvSuhXR5DRXr03/BPz9vG3m+zXH7FXxZSQqWEb/DvUg2B1ODB0qrB+wv+2xcki2/ZA+J8hDbSE8BagcH04h60wujyuivVU/YU/bbkz5f7HvxRbAJOPAOo8AdT/qe1JZ/sMftr6jcvZaf+yB8UJ5o8eZFD4C1FmXIyMgQ5HFAXR5XRXqbfsNftqpqX9jP+yH8TheeUZPsh8B6h5mwHBbb5OcA96sv+wB+3ckSTv8AsWfFgRyY2SH4d6ntbPIwfIwc0BdHkdFek6n+xp+15ot6um6x+yz8RbS4ddyW9z4KvkdhnbkK0QOM8fXirQ/Ya/bVOrxeHx+yF8TzfzkCGxHgLUPOkJAI2p5O45BB4HcUXQzyyiu5b9mD9pRNXTw+/wCz742F/JfPZR2R8LXfnNcocPAE8vJkU8FMbgeCKhH7OX7QZEbD4GeMCJmKxEeGrr5yG2kD93yQ3B9+KLoLo4yiiigD+jj/AIIJPG3/AASY+Gt1qFvHLFZS620S+SHYZ1q/JOCeRnp9G5Pb6kl13RdM1WHQzrFm1ytsb2w0tZwu20kYEOqkkAbtq8cHGOO3wP8A8EfP2jtN+Fv/AAS5+GehaX4Ja+1Dy9dWee41CQwknWb1kH2c5WQANyML0POTXvlv8dv2o/jPerpPgDUJNOjMw2adp9vEba3iMagO7BMxAkOSNxKkqBjBFcvtKcarXUwmm07Hson13VNch1GLT2iawgmEkuptsL5yPmzhmUgYBVTjPOcA159pniH4XWWsy+IvFnxw8OW0YFzHf6P4c8iTzZolcoiySMx8xQ+SvlqWYru4XJ4YfsyeGvBmrNrP7U3xs17XROJJo/BWnalPckB9gaQeYcW6N86NjYr7V/ebjtqdbVvAOrtov7L/AMDPCmj6iyCaC8uBLfXondimyK4n5BAKnkiNWST5iGDHZzSV5Dp09UjprnVvDmv21rqXgv4c+MtZsQZZpvEes+dAqwhvlMTQDbMNrHgJwOGzurKXxJ+1t8XYo7T9nP4WQeGfD0FwyTa1cGK1gJYP8haVCznevWKIkFxkV2nhb9n+Hw3r9lrv7UPx91b4j+NY9Me+f4YaDq8VvBdQCXyGllsmaGGVMuqbysUeVcne5Ltzvjv4i/H/AMVfEqyk1/WbPwR4d0FPP1Tw5YTQ34uVRd32aOaOLZNJJ5zREs+yPZv2uybSOavubKmm7mHB8Ifh3+zfdJ4k+I/xv8R6h4+1yFbLU9MsfFMt1cagU2s8cgUoUtlSbzSQkYVB5nGwsPHPij8bfjt8a77XfCImv/BXhXS7yazkl06xnaNrJWIE8l3KzMWKNtwXRflYOgyM+p6str8RNSTUbj4e+HNCuVv5dPu7nTtNltI7l/KRD5iqGgSIyFnjTkh3kdt7SFjZ+P8A+zxLqf8AZHwu8WX1p4Z8P3mqiC98QPOAbkNuna2t1Vjvyo3MzArAIpN7Hai1k5PmsupShpY8l/YP/ZJ0r4RxeJ/idarcJrKDVNA8CQrp8sNzcaxJbfZ7i/JidSkMCTMiShiQ8qFP3hRX98+Ff7P/AIK/ZR/Z4vdQ8ZR6z9u8SzRiAy6hILhnmupDNDAIJMec2ZGJYjzTKBIwVCRa8G/CD/hP/Fa+KvCfhnTrq5s9LFroMfh2/hEttbpvKQLLIMQyFhdyNIwXzJHy7HZEBlya74nh1uXW9W/Zj+JfiXUtMlks/wC1NY8Xuk9gxjWEFX0543hiK2sp80qMmR380eaScpxlUl7r0LVOPKnI4rX/APgnd4si0Vfir8D/AB5Zif8Atj+09Cuba3mtoHhaech4rlQF+0QvvBZB5JiMbBx/F5t4J/ZQ+LPxP8TXmsfDrU7VNMutaubCz8Ua7cxwJNK24SFRuG52MZzGm9wZAMHDsPoH/hef7R1r4e0rUfBHwD1PQpYdONn4mvPGYv8AUwq71mjit4L+7mkuIeLgBSEDPGwXaPN2cR8UPiV8VvEE+u+HPEfxI8RXWqahG0fha28M6hPY29v5xuUunFvHctIY3MkcJjcPIPmJSJWAGtOM47sicYW0R/OTRRRXSSfu3/wRn039mq3/AOCa/wAP/EXj2bX9S1i2h1iW+0OztnELhdZvtmJI0Td8gB2PMD97AGVr6s1Dxv8AFbxJZRaX4EttP8D6Xayq9zZaNHD53CRkp57LsDEgjcgUgHBLcEfP/wDwRJ+Gvh7xh/wS7+F1vbSeI2u7g61c6jFBbJHZHy9cvggMgUFwUSRWDMCC2BuBC19Wazpvh2z0yOwk1+GyiS2kiNvFKzzyvKp2HzVBSIh8M5JBI3D5eGHnqclOV1bVjl7NbHELa/C6PUNT1z4j6lrjySXTT3WmWnkf6ayMG/ezLgRRuzjPmtHw4ywXG3Q8J+MrfxZax+JvhvbaN4R0NNahgm1e9izcaj82JIoLvBimmKrKF8j7ZvzjdG4xXMeGPBvhHxNp6+Ofi74K0WzsLjVHj8HaDJdTGPUCkLGSW9Xc73ULEIRCzbWLONux/mu+LdX8ceJPEFxqdzPf3M2rRtb6dKsijzLVlj328XlkKqsqruUDarq5b51IqnWVrW1KjTcWjh/2lfjV8QfhBaaZ4L+FUOr29nb3CSa3411KZrzUdXRIlhnmSC8DRQSkNkTEvcFFjjSWNFVF5jwr+07a3t54WufAXiiLU9GutXOgSeII9Pu4dUfVJrlWgQKsRVAiiMncygefGdmTIidX42uPF3xV8Jav4G168vlljuIICkFw6XECKqhIpcOGVWRCNoG1gNg7KPnK58OeJ/gd8RLPTdMf+2408VW9xq3hOCcyw2UkiTW9wiysZIVuniupEwInMDuCWQmRCRpzcea9munR/wBdzZy5NLf5n2j4A8Mxaba/8JLrt20cd4IlsV0+zcTXEZuEJlcrISy+ZKXBwZSNuMAR16B4G+IOnypaP4s1C3iuNLvLqC20y6kFuDbEpGcRSLGA6QqzGLLsY9wyQTt8R+Ffxa1qXwDpNvf6lBeo2n2sVvqFg8JSN5FhnV5Wi2NHIEQo42BoSu2QJKwQejx+GPD/AIqLXur6ggkJhNlbW6Q+ZDIGKSRoNpY7lljAJG3L5BG7nWLVSK0C0o6lfxjrmo/Cq08ReOPD+tavfxadHNqFxocOlxSG9nWRTGRAI2zOEhVmbZuPzFed2NOw/ajstZtNJ0Tw+mkanr+r20Md3qU93NEkdrFNJJExiRXDFXeUxlmbBjJ5VmU5XiNfCen6Dq+m6qF8nUJJY7W2eWOaV42IEbHaEbktGWA3EBlAY4DH538Qa94s+EEM1r4ah+22l9M0sy2l8PNImhGZLaV/lViE2svCzAnJQhJY9qeHhLcl1Jx22PVPjN8WfGnj6aX4daf4ha6vLOK1tNRKTxtc6aqK20SwqrN5bkfJKNm9UQ7yWZV85+CVnA3iHUvDHxDsLm4srNn8iaW7IktZgio80MgK/ejQLjdkqhDE4BME72XxhgsdU03TtGhvoYp2luJFaKSzlDCKSEYVihQSLIjbXHljegkWZcs0TxB4A0eS5tvE2vXulSLqFxDZWupTRWsMkcluH+1EqQXAY7OOmdxxErMvTCjSiuU5ZXbP58qKKKxLP6D/APgiF4W1L/h1n8MPELpbPDM2txI1220CM65eB40CFd2TGCSwZsnG5VVQPoH/AIV5afEvxlKnjTWZLXwtZXUc12to0zPfySSOsdsCAThuAwXkhtuTvDV4B/wQ9uPGFj/wTC+E502w097SabVjC7xMX3jXtQD+YfM5GCuAibsA8kkCvqDxPBq/w28FaVqml3a3V/qQu7lngjjO+7MZUfvGBSLyw6qUAYuGJPl4TfxVrxTaXvdPX/IVNXq+R1euXnh7W1ttTvb+zktNOtbi00+w0uBoyZpdhMr7s7DGI4NpGcMSCoUkNd8N/Dq9+JHxD03xLYW811ZaNLIbmyCsVljYKBC5HLZUiQKBt3InGQCfEPhv8Rdafw+2seKfDeuRarO8iSJcTlt0kcIhV97IFkHlEEkL2Ycn5q9n+HPxs+GnwG8EQHxF4it9PTU0ML3aIDJez7WCCKLG5zI6+WERZcs6juWOEcNKEbnbKrKVTll0Vj2XxF8H/D9t4bHhWTWbTTnktp2mvZLsQ+ahkHmb5fN3SKZZlRQCceYAuA9fnL+0N8HND1L9oyP4Ua94dXWLXWIGbT7Cz8PpJNcKrSFVaC0jzLOWibaqBiCVRVKqor771n46aboPh+51fXby1jTSrRhezJfpF9n3dZJBkrwoVgcEjJAyCcfH3xl1HUvjJ8ddL8UaDp2tWraTptzMNWmtIJba4E0iRum24hkDo8JnOIsyKzKY2R9jBUFVVZyb0sVVUFTt1OV+E3g6G4+Gp8QReMb280258S3k2lP4ujS11D7CreQtrciKRzC0Mkc0O0SEeXFb7RtIUdZcandaprF3qOsanDc2l3p0FnII4be2ihiQM0U0pQgHK5TaHB2hwCF3AbHhm8fStAXRbryZYPD+l2+n6GPED4Ny6rKkZuCuVa4SEKC4BBeIYXectFdvZWfht7nxJeS3N5qW4xXghZ5pJPLiaUKHAEe2QN83LAM3zgMRXQueL1M1OPKkcx428Vyaf4Tj8MXdwkV1YMjW93LH5IMaRRlQM7TvLnaDnauT3bB5T4rPKPD8es6zFYxRPCZNin95bh2YmNHH+rO0uPuHawVgylcVtQeFR9hvPEAtWub6zsZZ1nS8j8oMo3rGSpyW2ndhvmPcnnHlvxM1saRCuq+MXex0u0u5BfpIiGeC0+QbzGhIV8Zj8xmba2Mg7Tv66U09DGaZzmrav4o0ie31nwz4u1LydXm+zalBYwxTPdRnmRZIXLIzYwy7h8vGG+QkenajZ+JYviZ4k1KX4f6M76lFIVuYbe4+XZIIo4kmkJlEYYS5LblR7vAVBIEPG/CzwR4N8drd2PizxToKRSWXlWOj6pO8n26KS0crdRW8kjMhMU7TAsAyE5RWBcJ3Hgwab8KPgjb6heamuveKrTU5bebTbm6dmW3gUyyEQfukjDWuyJHWLyo0BWB/3MclZLF0Z4n2fX8/613FKlKNNS6P8z+d2iiityD9hf8Agl7/AMFcv2NP2Zf2AfAvwL+Kvxvl0jxFoJ1NrnTIfDOoTmGSXVLy4jYyx2zxsrRTKcKxwxGcEEj2G6/4LK/8EzdV8Q2Wr6z+1FNPbx28v2qIeC9WSVZQJPJEeLIpsyYiQwyRvXg4Y/gzRUSpqXUVkfvP4y/4LP8A/BNK50w6t4e/aMjbVooALfyvCWuW4jOCnyAWhDHG1ssQAF+XHIMGo/8ABYj/AIJfaHc2/ifwv+0e16LbT40tdIufBmsJMHRNjSOfsnlpM5VG+V3UgNukBJB/B+iqUUlYIrlP3w1L/gtb/wAE5bvwhdWHiX9qqPWr4rlPJ8G69Gryq0hDqTaoFP75vmKj/VruVsDODaf8Fof+Cdfh/R7iz0r4+tPPcIzLI3g/VhtkKkAtm2GSCc9+QDk1+FtFSoJIpybP3Etv+Cyv/BPtLm4Ev7QkaRSIrqyeBtVd3nD+YWYtBjBfaDwPlViPm20/Q/8Agr5/wTe/s1NIvv2kp7f7GPLtyvhXWVgeE7GMWEtizruQAb1HHfgY/Diik6cWUptH7y6p/wAFff8AglDrNsl3qv7QBkk0vT1g0i1i8NeIEYyJICMubU7YyqbSwPmMshU4AIbH8ff8FVv+CXHxK8L65putftXSxanqv7mz1CLwjrsYiijJeJZwln8y+cqPkBzjoiMFKfhlRSjRjFtplOtJqzR+vvj3/gpR/wAE9Pinqtja+IvjilhCl1Fq7Xmm+G9TiVdRZY0lEhFg0irhN2Yhj5E2hWd5B0XjD/gpp/wT5sNB1nSvhp+1lpUN7qGord2d0PAer28FhCqyn7PCg007Tny0jACKiqhLEopX8YKKapxUroXtZNWCiiitDMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/9k=",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+ivqf8AYS/4JF/tG/8ABQjwBd/EX4M+PfAumWln4hl0eS18T6lexTtOkMExZVt7SYbCtwuCSCSj8cAn0T4k/wDBvb+258NbqDT7vxz8NtUuptxa20jXL53iALD5/MskA+42BnJxgDJAM88L2uF0j4Uor768Lf8ABuT+3f4p8KjxbF4z+HNlCZGUwX+q6kkqgTeUGIWwKgMQzLzyqlumMvs/+Dcf9ua+W5EHxD+GRltrxbbyRq+pkzMzbUaNhp5RlbIIO764IIC9pC9ribSPgKivvGD/AIN4/wBta78VWfhKx+JXwvuJ7wFzNBruoPHbxjdueXFjuQKq7mUruUMgKhnUHWvf+DbD9u+20u41m1+I/wALry3trl4JZLXWdTIDqyqBk6cAN25SM44PODxUxrUp/CxOcE9z8+KK++7b/g3O/bfvbgWtj8SvhdM/mFJRHrWpExYYKzEf2fkhdwJwCQOcVF4j/wCDdn9tzw3ZtfzfEb4Z3MMd6tvcPa6pqhEIZS3mvu09cR4AJbtuFXzITqQXU+CaK/RTTv8Ag2Y/bt1UM1p8X/g+FW387fL4i1NAVJwB82nAgn0OO46ggZzf8G337cIe5Rfir8KG+zzzQo413U9lw0TFW8tzp+1hkHqRjB3YwauztcfPHufn5RX6A6X/AMG3/wC3RqvhjU/F0PxF+Ga2emQLK7f2jqzmbcjMFj2aawLfIwKkggg9uazbH/g3r/bLv5721h+K3wqE2myGO/ifXtQDQt8mMj7B8wbfgMuVJRxn5Th8kuxKrU31PhCivvBf+Den9sx9Mm1OP4rfCwiBGYw/23qQkkAdUGwHTxv3MwAxnuTgAkchc/8ABE/9qpLZ7qw8e/D68WG5MNz9n1i8XyCADubzLNfl54IznB7UOMluHtafc/QX/g190qw1H9kjxXC8Be8m+Jd8tk0lvvjiZbDSW8zP94AkjpjqDkDH6A3mi6Dpeu6K3xD0PSfFF1fNev4f0bU1it4rEwE/6U4DBhFtSTdsRigY/IwO1/zd/wCDbS68XD9k3xDpng+C6e8uPivO0ElqrFodtjpm9lCsATgrkN8rBSpDhjt/Sa08BXOn+EtbuvHPiC10m+v5gpa9uZJpLezmDBwuCwRnEUxz1AjclkD5Xhna8mxtO9kZ174J8W2dmnjTxBcXU+myWsC+Gba4i+zW8gWzjRrmCB3ZoN0pUKjn5S2f4cP0nh+JJZZ/C8Phy7s4ZJGljWe1AJwquHO5txwWJ8zGCwIGQOC2Fldz6Dqt14av9cttGvPI0y4t7KSe2hjBEbbAgKbcoVBzsGQwwAHHQR3nirUNfudZ174crpdnbiK082TWEYXbGRmE4QZEJXe6twisoQZJ+7NOMnqKze5g6xos+kRjQdSCXf2xP3LfZo0l89CTgu6HevKHBOMI3ALHMkGgaZb20uo3MYGo30LBktplK3EMYG3cGAZByRxhTvbBOMjB8Y+IvEPhWbSrKfxT8PLSAagZpNY8Q+KHhuEtjCTLHHELXbNIG3NkyxYTqBjJ5zXvjh8JrTVLDwyvx08G2lpMvkkf8JiHmkLRMY0jkljjB2hJWRQ2SocZKritoU09RSpx6m5Lqlvoei2Hj7Q9CuVkku5Y5hYH7xOxi7GNf3iAEBivGRkNgE1ka/4ol8S+EBrtv4jlmu4tPaaw1SNWDyBgpWQRbSTlSg2hm5xj7ozzviD4x/B2LxFo3gMftQaXd2V5exWo0rw7obXUt88hCxok0ckyR7sOCVQbjJ1B4OVH8Tv2PPBcc0On/GjxRqcVxI11JDZXFuBHIs0kYBEkSPHjM235gGUE5JYF9XG73J9kpHoOjeNvHWswNpT3H9lJa3UE0mqXVuYlEL7DIhZPMTOwqpQd2LFgSwrnLn4si28U6lHexaFLosSQzW9vcwusrb3I2ssoOGbkkhVxuAyQ+KyPEPxA+ElrNF4o1PwN4g0exaFJbG5vNTU3M8L/ALxZCkd4cKyTMVY7RneoyUIrzHWf2wvh8L2/8DfCT9l+HWr+KJigFoL5pkUEiSVFhEkmWwPvHG4mrUoqyuJwbZ6VbfEj+3PEmoWfhvxW0lvqNssdhYWhNyw8sOWCRgAbWSYnKqWCxqWI3ErG+q+KL3Xbhk8K6u8j6dHJKZ7JkeJYiu7hgd7FVICjlioVTyBXA3E3/BRb4teItD8WRaZoa+FLC5b7dovhaXUdFuL+BJHMkEk97ALiJCqq26KBWy4GeN46PVfjj8JfhXqc3hz48eOf7I1O9Pnf2FaeLta1OfTYz5jGKVooSseI8NlypKrG5GXDNsq0dCPY3joZ/iTSfHt1qp1LxV8P9XvNMtbfzdRvLjSpD5cSR7QhUleMLg7iNgII2/drzvwxq+j+F1Og6fpXiPU7jU4GlSKHTzHunjBUocmUs3GSwJwzL15Y8H49/br/AGbLv4nPdN8BvGni83siCabUPiDqKIBuDFNrXTIy85BdgBz0zXpkn7VN54w+B+q/GDwbpy/C7whpGuCxGsX9l9tN1eMA5hjSOF7q6kiR1fMMGEMiAs2RhOpC/M7E+xX2TK/4NZPiR4Q8C/8ABOHxnLqugy6vfW/xp1K4j0+0hEsmxtH0lQWU/KFJD4L4XKnGSK+2fFX7dVt4T8a6BDefBW40Hw5qc3kat4ikiSW602NmK+Y9rGPMdAQjP827bvZVdlCP+fP/AAbjeN9P8Ef8EuvF14Phx4q8U3k/xw1NE0/wi9q1zCg0XSWMxSaWMlRgrlckllAGa+wtZ1b4aa3btL4r/Z+1eHXbTzf7HsvGXjGCeC9umQnypY9HuL+SGPcoDNJbkJg7VZlK15k+d1HZpI71LpYsfHX9pXWdV8eaj/wqT4tXr+GJIxbWMMdpHBPKyYEl38xLBJQS6DKFE2lgzbxXhviCTx38SNXVbnStR1PUVuTaxSRyz3EhxvLRKXyCyKsnCs3HcDalfSmk+Mfh9atPF8Jv2etIvrzSLae4l1FrKCxt7KKON2neOeRUdnVUIZAFZwTtLYNcnpv7SXxz1ixg8PXF9otgb1SralorM9xpEvlSTMoZ/OhcRgIm2RCSkgIDMSI+Z8qnaU279tilC6ujhNB/Yn+OXiLULpNR0ltKtiIBFe395GwWWHMax7IzucZkl2uE5V/vuApM2rfsX/s16Dcw6J8VPFus6tqPkPFp9h4c3Xc6ygkFjesnlR4jO0+aY8Ej5gz4bqJoJviRJeav8ZfGuuajZxSzPFpWqiQLHdW8phhmktEaK3AEkZdxlGABcRuVLMnhGH4K6hYz2vjGy1+3a2R4E0jw15026ARqx2/KY1hZeMxN5ZO8k8Bj1whTtovvIcZJ6nP+O734X+ELZo/gf+yB4QvmluYxBqPiS4TUfPUb1RNrORalhEG8wv5ZyCckjNn4a6B/wUD+N+qf8IT8HvB/hb4ZaHpU91bG4tNCgsrW4lEwYSwmUTGWMknDwxmNvNbL7hgcz8XvjNbeJtJtb79j34aacLm3uGu9WnkktNR1CyaUvsQQW5upYWkKnDSJHGHjGA4Y1U8a/tKHS/At5cftD/FDU9b8H6vbWlhL4V0aA6G2nMLG8t7+2/fvANUju3tPOCSmdo0n2NbBVadM6lb2NSKvo+ljppUlOk5dfU9N1yy8GfBq+v8ASP2r/wBpm9+J+v299DGPCGi2cMS2ckxU5kt7aKNUZ4p4XxcOdysXRfnOcv4df8FBdesrbT9Jtv2W7rwr4Ltrpbay1DTrlJEEjF40EcRjhEsPnCCB5c7IHljed4o2aQZXhz4+aZefEW7svDGg2fwr0zR/CqRf2bpGmxx3M8issaRSyW0cH+rIjQxYwgY/KM5XB+I/iSXx/Y31lrV9/bumTwraR3eqXrQiKOGREmuiSTIWYCIgs7MqqF2YlBG0asp6kOny6FH4k/F/4n+ONUhupPjLq+t6Jp899cbdEg/s60IWJma3uYY40F0CTbzl5Jmt4o3aGQTHzTJ5B4v/AGW9B+Htlq/xct7m6tv7Okt4pzptujwtYRbYYzkIUf8AdCQRAEK4WRB0Oz6J+FcnijSrnRvF/ijSYL+PTwxvvCh0aCMyWK+WdzkPB5CpHEBJ5gA3Sxs8iOkgdn7ZXwv0rxJpul6r4nuZ/HN55emm/wBI025kitrdY4o0unlujukjthLMJEgij8x2NvCJeWcw3NzsnYlQVtUfOPwy+HXgP48eBR8SPFOu2nhr4faVrdzeeLdensRFG1lEtuqyeZD5rtcO7X6x267vNJgRTv6/Tlz8EoP2i/C/hDw7pvw7eP4f6Y7aN4V8OXklzbWszzW6zm+1CeE+XJdthzNDCkIgMoXz3O0JPpfw11bxT4qTwVpOiJ4Q0pNNOmaT4YOnKJYZLu3iheXyl8xYEYXIeXzmmnBaZVDtHheb+KngDxf8O5II/FnwC+I+vnUbKNH1DwRfTH7RbNb2qJbyiDg7GCuu9MsxQYZU8sqrq+WP4jjFLWR8z/8ABuFpS67+wn4n0280pru2HxcvnZSu9U/4lmlhjtJwMjrgBmAIDDAI/Q3xL4QBtYrBbKC+1G0BubC11S0aBYrhXCO3nxIRHlZoyygBxlyFZck/nV/wbgfEP4VeHv2K/FXhn4jxa/p7z/FC/lsvEGmxeZDbu2m6YAuxS58wFNwZoigyvzZOK/Ujwl8LrDXYdN1DSvi9ENOYSyxWmr20r3dz5iORgtIhjIYkspj/ALwAQls511CM227ChCUtkcRp2n+HPBfie20nS9YvYbyxuJL57+5226XrxS2ysqBJDIEkaXaUYqxjf587w7XtUk0DX7zUvEeo2Wj2ur3073GqXVqt5KLKRtjnZvgMU0QJiCOoRgRGC5bGNvx38HtFvL+FY/EGh3gtpVeCW+lkeTzkw8cgVnJRlwQMEYwSuNxrzfxgs/gazutFu/E1ndoF2WME0QkjaCONJHSMxMQoOOjKoDH5Tkko4QjKKcbCbnB2l0Ivif4g8B3Xgi91PxD41uTLp1opvRcaRbW8BRU2Qyx78yuAzA43YAVmdfkYjnrH4VeB/F9rYfFP9ofwNp2l2tswvtC+H+jXzwC6haVzbTai5Jmdd5l2I5keQnnODEvX/Bz4GeFtW8UWfxS+Nc9nc6vp1vbzaF4GutTWBYmAWWO7uEcM6OruzqrqxRn3kO+xo9/4k+E/DXiHxddfEPxbpNnazavEjGC9hihFvpqRzpDBK8UsgleLLS5l8tyJpiBz5UeVSShNJLXv0X+Z0UablSk3K3l3/rueNeOfG2v+K/B0vgyGK30Hw1bDy7bw/wCFkg0+w8h44m8vyIy5ZSY5ZCJDnMpVeASPkD49/DVfD2j/APCwvh5o8eoPoMO17OGFXM8paGcySRPuikVZRCxgcFZmtkLjByv6H6R8KoPiR8Q7rSdH0SODwxa6PuT7GWWFAmWjiSNZMyNgOQGBjVSgHmHIWj4y/YlhtfDuoeE/FHxEm0a1vXkuLW3nt1uS5jQbnCqxkaMGTHK5VF+dRwW1pTje8mJ0+VWPzc+DfxG8P6l4Qm8J+NPi2s11daBcXNuNLlt7K3uNumRukMk0kMYs7iBYHR3QTS3M5EUVu0p+0N9efs0+CvGPjDwHZaP8Rfh5rOi2U8TNLZSq/wBsa3cSJbrKXiCwqsGUYiNd4jVgrDaW8K+KXws8RaN8VdGvfgT8L4NRktdVFrpviQa0/wDaOr6tNG8LWlr9huIpLZl85VMEMjSKWiMr/OUX1zwY+m2nh2yk1d9Oj8QQLJZ3cctoizapKVjj86RlK8ssPmGbdvlYsCyh1WtnzSqc6d7/AIvv3uZxaUOR6HqrXGvabq0OneHNBFtaalYQrC+ixzOI5CxRZc7H+0PtdyxO5uQMEIYz0ngHxz4e8GadoPhHVxA2qaVYGAwN5JhuIUv41mSMpc/8fAWWaVQQ+7yh84YKrefaX4p0/wAWeO9P8F+GPDeo2+THcSWMEZzBIjYaG2jT55G3KwUDa0iyBiV80RRaNj4N017TT7n4qfEm7guI7ieHTZ9Xt445Z7O4DXDQusZCeTsEq8LGzbQ+MqxOslz6MlPkLGt6nrlx8XZdf8N/E2x0dV1V54k1TS4oY7e0Z97ea8zh0kmdVhLYyVSI5/dBTu/DP4teFvjH4c8V+Cvihplq3hPzYrK3tbiytyzLGixs3lSQuLdwyghmXc26B02kDdy/hXwHd3WrXOoaZqkd3YSmYPeXlrI6O3l7YczSu0hAC72dQUdgdqAdPn3X9cvPBni/VbOfxROmjagXn1qHTGDSEmUZlSPapl3KSknCeaqgIVbbJShhoSVmL2s4Sujzn/g3SsfhpN+xj4h1Lxj4FTVLyy+Kl/NBNNqDxIqDTdLwNoYAsp3MCAWzjBXGa/QXwZ8X/inZagX8U+CPD2gWOlXM0fg6W10a4Mt1iN4ra1RXm3Qz4WZQoD+ek0SAQuiR3X53/wDBu4fD0n7GvilNX024unj+KF2xjGpOihDp2n/OkSoQXVlBJY4YFRsYA4+5PGZtfHuixeCfEVvHc6Kt20N27PKgQMzKHiKAAsFV9xIZVLMMA7a5KlJ1Ksr6oFU5VpuepN43+I2vLL4g8SeHrGSdbhltY0s23RxpEk3nsRPsZcthcldzHaR8p25WieCPFnxKjk1LxD4eguNM0mwudQu7KW68g3UrBGWJvNCRpG21X3ykbd5RwVOI6Vr4/bSNKnOieJVntdQZYV1S+QzShY38ozs2FeRw0EzMGJdiT93dHu5/xN8UfGMHhXVtQ0MpBo15BFHqtlugnTbHETG4SaJpY9rglWR+HZN21+t06MaFPlpJL8ES5+0nebf6lPx38ZDc+KLP4fWF1p0HiLUZxew3gtri8VHE0cqTwSTtskAjt5IUSTyxHujkUYBjk7PUPEHifWddsNEuLe81zVtQu5S1v9sjkk8j93DPM6EII/3jLuZiFVmVUI2pjzyTwW//AAj1jb/EHw/JFqdvIL6wS6hDyxzXSLJCpePcYsLLHuh28NGEkVyNpk+E17a2E1jNczG7vg6addy31zAsUSKSY2eaZ/umRbks0vlou5NzEyoS6WGpcunXX7+vzLnVUrJXv1v/AF2PsD4VeAfBehfDjTW8b+GYtQ1Saz26ml6qyzypJHITE7EsiGQM0YQkK4kbltzFuxay8Oahc6jZa/p91dJb6QZ59HSzZDc3Mp2o/nu6RhSyXGVIJywY7CrK/wAkfCr4w6/8RtI1CbVNcsrLw1caPPLFOGQ3JuBHJE8KGXaAiK0iszjmVAiGTa3k+h+JP2goPCHw7kltGdI7maS2itL6eeG8CxK6qchmkYkRhgwIJ5ZsscjlrYaUrx117HXTnHc+P/8Agqf4X1X4cqvxY03Q7e8vtMlMWorZaTcgK8c6zB0lt9jwylVVArSZkBlCvuUsKui6VqHjD9oHS4L3TGnh09ZrrVLPddMrXkiyC3iWZEcpI7KZV8xEy9vMmQxC11/7dGv2Xxv/AGYoND8K+HvtMOoTxWl0dPXdDtkZQqBVwUdUkbLIyMN0hVtoBD/hxE/wvu9V06C8tbXUdc1l7ibUtV02JBcOYXhe1e4yrfZ1EP2fbuYeZ5rRsBc/J0wpzhTj5K35HPVlCVR2Mq+8F+JPAviq/wBZbwAr6zc6ReT+GrfV3uIYzaPFJIbiHdII/ndIzHOgZ9kiqgfcJWqWOreNLXwfoqLq0kOsW1xetqNvaTiZkkmBkMknzFY2Jk+YvkuAMbCGrc8TaD4Y1jUYPDfhHSrpvJvrBnvZbxlubeQiR3hYgbGiDP5jkRxyPggqysrLzt/pdz4Vn0q0mibT7e4umR2luxL5kiRr5eAo/c/6lQY1YIrLgDO0noi5N3ZkrNWRr/GTx7P4g8NxxtqV9awLE1tZQsY0VQJMiONMBlxIDmPIQF3J+8mOH+KFi8VnK0l5HMkAnjsyqkkIIYmjjBYKrKIsKrLzmEbQpXApeItc1Bzdwxagr6a8qIJZpFMoLSb2KxlmC5aRdxXaGZh12kiXxbpvgiDwqL291MylLZFkS7tkkYFDGgkjUkAtllJO47gME/KNvVDQxbex/P1RRRUFhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//2Q==",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [53,33,66,62] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [53,41,74,79] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDQs/Dd74C8VwaPoHie2vdIvrNr3UNO07RbpI7RRF5yR3NwYYoHuVABbydyK/mKCBvFcv4y8G6rqdloupxeFp7m3j0O1ia8tYWmjVliU7N6/Lxy3U9c9OvaS2nxNvBJpreKIb8gESwz6jECOAQNsj859uPXGK5Sy1z436NfTaXo8s9naqB5K6fbqqMg+4AYhtbAPQdyfevlo8T4ef8Ay7f3o9d8OV0re0X3M5W7sL6xtJLi18CSN5cZc7bKUttHJOM88Z4/rWf8O38Tar4ai1TxF8PdSt7l5HYxTWzqdrMWUbGUEYVlGGAIII7V3k3jH9oYRGCLWtXEIb5pFTOD6biM+nGahn8f/tACTbFqGrccZ+w4IPsQlXDiKg94P70RLh7Ebc8fxMgJeQ7ftHgCfyy2edO5I9sryfx/KoF8FeHvHGujw3rNpq2iWlx5YiurGxYzPMXVEjB2sAGJHb8ea6ix8UftR3RSW3u9cKqQyStatgfQlcH6c9OnFek/CX4P/G74z6Td64nxYhtdat5TNBoep2HlreEZ+R5FAKr0YfIy5A6EZETz+jOLUItP1ua0sgq0qsXUkmvmfBv7RGhftEfBr43aL4e1LVNQ8T2lvPPpmiWs0r3CyWcEi5VEbcY4RJO+3gDfvIGDk7msfFLWtFujplz8HdQjtnceYqI6RFk3MCwEe1tu5wCc43EA8mvtb4gfDH4n/DvwNqfj/wAQapDpd5o9gDq0+nWkd2br98qiONCc8NIcfie+B5X4m1D49eGnjfxnPGLW9Uvp08NpBIsowD/cIBw68EA9cdDXRQzuFKkuaLbFi8mdWram0l8z531v4lXQvYYpvhJcylkASSOMnaAD1/d+xGfes7xd45vbO2NndfBy5vUmiPmK0G/nuoJjJH6da9+GufFO3hH9m3zwnP3hpkIOPwirWHjP48W1uZbWeXzsbkddOhzuHJ4EfJ/POa2fEOHSv7N/ec7yGun8S/H/ACM746609voni+207STdT2fi8W80aHaZc2NlJuG0E4G5Qfp714nofxVl8La600vwnM8stjPE8TOVCiWJ4s48vqNwYDHUA17P4Y1j4+22q395p1lf288lxvuGs9ETMhMUaFm/dEnKKgP+6PSrmk+Nf2h7y5Ot2F5qd5py7ogy6LG0JkBwfnWEcg5GN2PaohxHQSd4P70X/q9iXb3l+P8AkfPV14s0rTb4WzfC4OzzbjJ9pYlSDkEHYcEEZwDgdq+h/jZcarffEq/8Ua54RuCmpNGLadmYeaI4448hjgFfugHA6iqOsfFT9orSpY54rq6aJGH2gmxtk8pScbiGj5A5yOvFbPhb4p+PNR0u61jxxrt3c2NsQ0dhDYRAXzBhviLKq7BsL4kyfLYK+1iqgqXEVCcNINP5FR4exEZXcl+J+i6/tGfs/ZE0nxp8Fbgchj4rsyQf+/lRXH7SXwBRjK3x58GJuPX/AISu05/8iV+Uj3SRsUKAk/Ss7XbkKiFV6k5ANfSU/ALLZP8A32p/4DH/ADPFXHtd6+wX3v8AyP1h/wCGk/gFv3/8ND+Dc+o8X2f/AMdob9o/9n9mEo/aF8HFlzhm8X2eV+h82vyMjlBb5kGPSrEYRlyIwfbNaLwAyqK1xtT/AMBj/mH+vdZ7UV97/wAj9am/aL+A1y2yX9ojwY6g5AbxhZtj/wAi18hft4fts2Xwl/aK8PeLvhd8RdI1uJ/DUYaLT78X0Vw0VxcNLCzQ7lhYI0bBiQQSM5UkV8sWlrJcXC29paM8rnCRxqSzH0AHWqmr+BtR8Q+ItMvtO0/+0NPFvl3tNPa4MLDz/taymJmURIsULkSKAWQ4P7uTb89n/hvk/BlFYiOLlOo78sHFK66vTse3kefYvPcQ6bo8sFvJPbt06n13on7Ynw8+OFzp8HiRL7SDrV5bx6vZX98sNjDtkhMlw3nOsbqhYS88koCoyQD6x4G+LHwx+Hnj+bw3b+OvDvinTtSG7T73TdWtrmW2jGN6SRxsSpXIwcAMOeqtXxTo3w88ReJ/AcbeC9K3ab5KXVpc3dxJb+fbCSWFFRbgjzpHEKPI6ZC+WiMziMynjLHVLrSAmr6dPJbyq58uSJsMCMgjjrjkEfhV5BwLhuLsvnJYrkqK/uabdG+q1LzniCrkuLUJUXKnZe9+nY/Va8+LH7OllMz658R/BFu8ajel3rFmkqZwQCjPuHUHkd682/aM8efs261B4Hl8OeLvBt8sfxG0u41Jrae2l8m2BkLzPtPCA7cseAcE9K+D4tZl+MHiO2tNdlsLK7itG3atdOw83H8LYz74xyOe3SrrmhHwp4hvtBuHiuSlkzQ3EEmUcELhh+BNZYbwiwtFONfGThXgruHLdNXteMr2ad9OvdGUs8nmNSNKlTvSqac6eqers4vVNWP1Bh8W/sr3cImh8ZeA5U/hP2izP9aZdL+zLfZhe78DzkjG0paEnvjH61+U86stsHjVQeMn1GKgWITJl/K565A/wr6Gf0f8N0zCf/gK/wDkjyHx8qcrex/H/gH6l3HgT9mPUiEl0fwNcDPyiTT7NsZ+orj/AIy/sp/Bz4jeGTo/grXtE8KzSAt9q0XTrZVmJXCiVUKmRBk8BgcEgEZr87NNs9lwgBUAsOFNarW0RmKuVx7jPNZw8C4YaXNTzCSf+Bf/ACQ14gJ/8uLf9vf8BDbvBn2heeaqajbmSIZHQ+tfrm/7Mn7OkknH7PPhQE84/sSP/CmXP7LH7Oc8YRvgB4UTnr/YcRx+YxXpQ8f+GYtf7NV/8k/+SOJcD5gl8cfxPyA8srwVx9DVuAKo6elfrhF+yL+zbM2G+BnhMnHP/EhgA/IKBTW/Y1/ZtLE/8KL8NDPULpC4/TpW3/EfuFprXD1fuh/8mQ+CcyT0nH8T8qZ9f0jwX8O7rxFbXMK6tdXElnC07Y8hDGG3DjCllEgBPUqQCM4PI+B9cvPCNnI+rzQqqW80ECXt0YvspnZCZBsdG3IyROjZJzEi5KALX656/wDsH/sreJ4IbPU/gZouyG5WYLDZtDuZQcAlCNy5PKnKnHI6EfOnxl/YX+C3wo8U2ujyfD/S9QXUfCUFrFrOqabbyXVxLbgRuDIRu5AhdsnBaUn1r81z3jLJ+Js2lXoufvbKaWi7JpvT7vmfc5HgsRl2EjQnFXXVdfP1PiT4V6doc3j2+8V/DzUra6gja3ubAaXaw3K20qeZkn72CqNHt3glTuIArvbfxH4Y8eeGdT1C+8UxeIrjTVMck8+o+ZNHMoCiN3U7twXChTnAVVACqNv0d+xD8O/DnwIubO41rRbKBb2xMVzFIisftL21rqIAGOFW01SyTHXdHJ1r3Hwf/wAE5v2Q9U08eMJPhJDK2v2tvfTpa6pd20Rnk3zSTKkUy4Mhm5HQBEACgYrDLc8y3I8wp4utUlGKf2Fdu3T4o6P1+R15lTrYvL5UVBNvvtfvs9j8wpYogvyowOfUYr1r9lT4DaT8cj8S7nxBrN3anwZ8Hdd8V2ht9p+0z2fkFIZNwJ2MZTkjnjqM19/T/wDBN39jK4jJb4JLn1XxLqwI/wC+bsV6H+z1+xV+y18NLjxnb+DfgzBZHXvhzqmk6q513VZ2urKXyfOtiZrt9ivhSWTZICg2uOQf1et4z8KZpTeGo0qnNK2rjG2mr+03smfm1HhXOcvqKuppcvZ91b9T8criCAoVVTjoADVXyYGi2hSDn1r9Zm/4J5/samAMP2a7Bz/fPijW1J+v+n1nSf8ABPb9jO3BDfs12HA6nxfrmTz7ahWr8dOD17vJV/8AAY//ACREuB82b5lKP3s/LHS0jW6QrGeD61rsEfkRkHPrX6Vp+xH+xnoEpkj/AGXtMJY7t0/ijX3wfYNqBAH4VXvP2Rv2Tpp2aP8AZd0fGMgJ4j19eMDnC6iB+lJ+NXB9VX5Kq/7dj/8AJB/qRmsd3H73/kfQkmpWav8ANYFGz3dTn8QTTZdX04gK1n+O4Vzt3qX2iQFSfTDAVBMFmUFkP/Aa/jyNJs/XW7HVQS21wN9sjR4POV6/rUkrbFDl3OP7v/665OC6S3+QqQvvUn9qyKMx4x1HFbxoSsZuWp1kd4hUFoz/AMCAr5E/4LDfGPRvgx8J/CPibxNZW9jp8viGW3/4SVo3keG4aAtHZhIgXxKiTSbsbQbYZIOAfov+3NVLkRxR7fUj/wCvXzp/wVn8A/8AC4/+CeXxK0C4vNNtrnStITWrS61CMbYnspkuWVDglZJIo5IVI5Jm28hiD6WU00sypKezkk/noZ1Kjp03Jbo8l8UfErwzqX7Nlh408C+GtdvdZ1D4XeCtU0q303T3j8vVVskeZFYf8fN1c2V/p8EcEfmb5Y7cNt2b19o/4JLftQf8NQ/szar4wt7W/is9F8cXOj6YmosnntbpY2NxlgmQv725mUDc3yqOR90ePfsH6t42+JX/AAS+0Lxdf2VhZ63ongvTP+EY1yW2VLe0fStZutLW7kMm7cbe1h0+ViRy8O5eQK8j/wCCU3jDSv2Gv2yfiP8AsP6xqN9e6B4p1K0m8Dak9+ZLWKNIZp7UlSqqJbmzuIBIyHImt0iIf7y/W5jlEa2WVVBNzjr90mnb5HBTx9SVZQk9P+Afq7PqroNiabMfdSa3fhnqFxcahr6mGWPHgzUiobOc/uRkfTNebwa5DDzCwz3G012vwa1gXs3ii5JBEHgnUdx24PPl4A/KvlckpSWYwflL/wBJZ05g19VfrH/0pDLW9mmgUPfNv2jcoUd/UUTohPzsT9UH+NZNtc3cTm3a3LEDGVx/U0TTaigKyRR+u1nGfrgHOK8h8zkzuVraFLxNYSXbh1aQKFI2pn19jXOah4emeLy40mIySBIW6munEskD4aLdu5wO361HdataIVia4SOQttEbyLk+2M59PzrohUlGOxDTZz/2m9ztW4A/4EQM/nSma9CYMpY+qsayodRSJ1ilE5Z+QCrEfn0q8blzEGjjmzjOBHmuhQSB3K+pzXcUnDu2QOhNUU1XUIH3CUqAeRk/41pl0mhEk8bA/wC0MVn3bWsCkrsYd+hraNmiWiKfxrNDmNpAWHqWriPjVpeifGT4Z698LPGl/Mmm6/pklldNbEb41cYDLvVlJBwRkHp9K6m5bT7qQqdinvtVAf1BrB8QWEFsnlRIZCcHc5B/kK6KTjTmp7NakunKa5e5wf7JHwY+H37N3w9n+AnhXxjqOqaFqz6gkg8SC1nELXsEcUi4WFAYd0UT+UxZAwY8l3LbGk+BPhb4w8f6Z8ddQ+H2nS+LPsKS2+u6jZNHdQLMzTtwQdshaeYs2N5M0mW5rH1X4f8AiTVr0ahoaokkXMchmKkMDkYrqdBtfHLqL3xakL3zqnntaELGu1VUBVLE9FBPqSeB0r36+Yzr4HkdRuV7t+TWxwwwfs8Q5W0OwmZmbeNUhRsZ/wBY20DpycA/pXpX7O1qbzRvHaRatC6SeBNQSRwxbblVyc9h+Ga8q0/WL6G3+zssYIYsAgIOfXkntXqv7Nk1zeaN8QWvHQkeAb8Dy1K8bPqa4cnjbMI+kv8A0ll49f7K/WP/AKUjm7aK8t3BivXIDcpsBXr0yRnH5fhU91eLHD5cWl2Y5zsCFM+/DCsDT9euXdkXzHI4cyK4/Lp/UVak1pkBMukQs5OScuufrhq8OSTlqeglJInu9dvYYC1rodjvxwzyOcfh5gqS18QQPEj3FlEku0eZ80m3PfH70msp9Te5UkWUUeOcIxOR/wACB5pjPcPEJVgTbnvgH8sVEqegLzOoOmSlArvCmeAGkwT9M9aRdLuYGLRY54Jz2qw1j42lW4t77w9pFkfNKWtzBrE97vTHDtCY7fBz1UP9DjmorDwX4lvLGS117xcY5cgpcaLo5tmUYwRi4nuATnkcAcDOalSTWrFzya92D/L8yGXR55R8rHP1H+FU73TZomWH7ayu44BgBA/HdW1p3gJYrV9O17xR4l1VGORJdSQW7g5B4a0WE9sYzjr61Ba/D3wXo8m+0vte2q5eaOfxPfzhj/tJLcFT06f4CqjVp9yb13tD73/kmYEvhdxJ55bezdXztz+HNV9W0CKG0+030ttFGCMzXCKwHtziuhvfhJ8G9emfVL3wLo9zPKfmuLzSIpZHPTlmViTx3JpbX4feG/D8Zh8OadaWcB6w2enrGNxIycrgdh27damdaCW5cViH2X3/AORxB1L4e2DLFfeN9Dt2bO0S6jDACR14LYzUR8S/DmCXKfFPw8oc4UDVbdjn/v7Xp1rp6wQFBeTbgMIoBHPQAU6LR9XmYf6BdsB0AUnr+HepjikthSp4i+6+5/5nmFt40+HsUTTn4l6NKFOD/wATCFQOnU7z/k16/wDs2axoF/4Q+I1/p/ifTJobfwTdefJFfIywAxSHc5BwgAU5Jx0PocQroOoMN32C5wOPmjI/pXonwa0+7sPAvjtfshVn8PkJGwxu/dz5P4D+de5keIjLMYq3Sf8A6RI4MxhXWGbcla8en95eZ87R+MvhPbEB/H+hqM8yDVIAT/wLPP51Yj+IfwinUx2/xL0STPYa1bn+TV6Omg3kabPsMvHGRERSXUGqQEjbOGPOGzk14kq8OfRHoKOJtq19z/zOU0/XfC95FGtlcWc/mEJG8ao+48d+55H507U9J0uVS15bBQe8SKp6ewrflspZ0aO8sw6tkFZE6+vWud1r4QfC3Wbg3es/C3QrmViW8240iB2Lcc5ZDzQ60JPsChVW9n9//BPQX8p/3htX+XnJtxQsUjgSLBJg88W4qWw0O/8AEDPDo2l3EqxLunlCDy4V/vSOflQdeWIGAfQ15P45/bS/ZE+FMdx/wkPx303UbyK3EkOm+EIm1aS4UkYEc0Ki0z14a4XGPz9HJ+HM/wA9ny4DDTqekXb79vxMsXmOAwK/f1VH56/cesxrGWCy2Up45zFipZltJlVhpUbGMfKZg+V+mGGK+OfH/wDwWH8AaVcXdp8HvgZqWo7YgLHVPF+rJCjv/EZLO1UsB1Axc55yRxtPkfjX/grT+1f4jkiPhj/hE/CiIrCWLRfDMdyJie5bUTdMpHbYVHfGea/S8t8DeNcWlKv7Okn/ADSu18op/mfN4jjbJqOkOaXoj9FJre3nl2x6UpYngDJyfbqatQeDvFlxFsfwHeFMbvNg02U57d+MV+Sviv8Abm/bF8V3M8+oftN+NreK4BEtlpPiCawtdpGCogtmjiVSOCAoBryrVtW1bWbo3+rajNdTkAGa4lLsQOgya+vwn0dak0vrWYW/w07/AJyR5s+P4X/d0Pvl/wAA/ZfVPiN8G/DOqTaP4l+L3gvRtQtnCTWGt+MLCxnVzn5Ck8yENwcjqO9Qt8e/2f8ATiDd/tH/AA+izx+6+IOmygY7fu7g/rX4ypOxJAPT2oEzuxTPI56V9Dhvo78Nx/i4urL0UV+jOCvx3j38FOK+9n7CXv7Zf7JemWxm1b9pfwvCN2CkN+10xP0t1k9uf8DXpPwB/aM/Z7+Ifw++IviLwN8Y9N1nT9A8MPceILu3tblV06Aw3DeZJ5kSkjbHIcLk/IeK/DRGf14r7j/4Je2v2j9iv9r15Og+F5C4ODzpus5z7dP84rfF+CvC+Q4V4ulVqykmlq42tNqD2iuknbzONcY5njH7KUY2327a/ofU+m/tZfsj6vbLNp37UPhxn6st1q5tv0nWPPPuf61qwfG79nfWGMsH7S/w9BC/euPHOnx98fxzj1r8aZlMUjRr0U4BpiSyE4U8e4raX0e+FJq8cRVXzg//AG1AuPczT1hH7v8Agn7SaX44+EviXU4NH8LfGbwbrd5cPths9E8TWd9K7egS3lc5ODgdTg46V08/w319YDdXGiXKxD+OS1kUDjPORxxX4fW0jODGW5/h4q7ouu6z4c1FNV0LWLuxuoWzFc2Ny8UiHPUMpBFePivo55ZJf7Pj5r/FCL/Jx/I7aXiBiV8dFP0dv8z/2Q==",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD1nWPg/wDsX+Griyh0vx3qmqxX2qpb3LT+PtOi+ywMrs8wzaFXVQoAUkFiygHNS/EX4f8A7E/hHw9NrPhfxT4g1q5RYo7bSbb4gadEsrmRVYb/ALO+PlkJbcCAFHCgsa53Xf2xPiH4h1Sz1HVf2iPE87WVwbiB38A2YdZSkiMwxqIz8sj9e5z2FU/FX7W3jfxroY0Dxn8d/E99YLIkhtz4ItVAdTGVIYalkYMaZHRguDwTmVLTc81UpXOZ+Ldr+xP4U8b6PrvhjRviFqsGoaFILi0sPGNh5KSxzX0cUcsMmnuYXZooZGkVgwjniKrKoIbwf4/+Cf2ataXSPGN3+zz8WrwTWkqGDSPjDp4kjjADBHjGjT7I8E7EGxuH3RrhS3q/xA0L4FXl/wCAddn1LXW1BdNAtXj8PGNbh5davnO/bqZEQMjsMBJcAbhnd5a1PjV4c+H134ztrjxF408UaJLfaQnn2uh6JDdRXEXnSqDK7XkLKwG4bQpAwMMd3Evnck4s7aUoQXyt+JV/Yl+GP7Hw8O65da7p3xK+HDxyW8ipqvxO0yVb0nzBtP8AxLbY5QBehON498+6/Dfwj+yd4sudfZfjZ4i8NG2v2it5rj4g2TzaoUVV87CiPPyCIAgscDbkeWQPO/CXxH8I+A2iuPCHxV8VRulslu0o8FxB5I1DhfN/4m2JSPMYBmDMQxyfXrPD/wC1fH4VnvdQ0746ataT3kiPNJffDWAea4CjjytSbAxGvrnaB0zjVTa0ZhV9+V0eB/t1fDPwdovxW0mf4d/FTWPGtjfeH45WuyFvHspBc3KG1Z0lYBsKsuMjiYHHOT5B4n8Pa9qvinUL7UfDmqJNc30stwdO8OxwW6uzEkRRQYjRM8KsYCAYCgLivZv2wfGWufEzxX4U8a6ddDXFuvCgEmoQ6B5O5o9Rv4yRCxkMeBGq/eO7bu/irzvVE8UaPq08WhaLPqNkk3+jT3ukNDJLFhMM0cTssbEE5Tc20oRluCeiNRxjYjkdjk38EyEgXUGtRkrnadEmz/hVyx+Gmr3Vs4stL16ZHdOV8NzMwIDYAIGcHdyB1+X2r3T9mK1vNW0HxbqXjHwoEa1s4BAZYHRWidZzKrKx5A2qTwD8vBwTnyZdY8e29s0cfhiSCbcpRYrJ9rKwIYFhIdpHy8Y5yeRjBftZMFT7n1j+yV8Bb/WPgZp+ueIf2h/EXg6W2vJ4LTQYA6yiFCh+0PD9siMQdmlCgqCdhfJDc9r4f+DHgXW/EWp6PY/tN+NLGaG4jmudQn0/y4b9mhG2ZXj1L9+VWOOJmPK4jQ8AAeU/AL4xalpf7PGkDV7TwVa6lJ4p1TTni8SeFLy8ubuMJZyRKi28MzGTfdPgEKSGiVQSCKraVrPxO+EPizxJ47+N3g3TdI1y+1O0SD4d6z4dt5LKytG2xxzvbmOV4mETG4YQuhzwQ7jZXDWxdOlVjBvWT26mtHB1cQpSjslc9hn+CXh+08WSaMP2hfHzTy2iPLrVvo7pA6IzhIXnGokllMkjCPB2+YzDG4k1tf8AgzZaRe6fLF+0n4/1GU3Zig1HT9LM5sW2FS7M+oo0fy+YCQvTK9SAfPpvjZAmvR69b2vwoi2ROhsrXw7qcVvNuaNt7Ri0GSvlgDoAHkH8RNUPif8AGG4+IWkHQhfeBdDQzK80/hmz1SwlkVQ2E82K1EiDcQx2kZ2gHKkqdrrqYezlbQgHwa8fOgkl8M3KLkkuNSiBGOvG3HH1/LFW/CPwXudV8XaZpfijTb+30y5v4Uv7pb+EiCEyKJGbaCcBdzEgE8cA17tqX/BMjX790Zf2gtIhCy7itv4MlG4ehzqByP15rUtP+Cb1tFava6t8X9NmLDCNZ+FZYWXPHU3r+/6dMV+ax47oaNx/CX+R9i+HKNv4h5aNV+J/izw5a6BqeoaNYeH7ESTReDdX8Ll7dd9zMym1lgspPKlQSuVmeRGXcjeY7K1cb8WfhXqviq/sPEmgaLqN9bpp/wBmkWxMYaCRJpDtdMFl+V0Izwc8EkEV9FJ/wTg8NadFbafonxJtreKMKjRv4fkYeWv8C7LlQnsTn6Gsw/8ABMLwvE88t58WbyZpZSVEOkbQi+g3TNznJJz+AraPHmHl9j/0r/IhcOUYqyq/h/wT5dsfhb43lmltrn4f66saPsj/AHaNvXarFwdoH8RGD3U888Q6r8IfGX2SQTeCNfIbLR+XEuD+JTPAI7D+lfTM/wDwS88Pojz2nxPuJCqMYYJdNVAzY4DOJCQCcc7Tj0PSqSfsm+Ff2fNB8RfFjVPD1zq9z4d8L6le2trrcdrc6c7rbv8ANIrAiUbSwCMqnfhugropcZUK7tGP4tfmhf6u01r7X8P+CfHvif4Ea5L4A0LxRp58ReIdZtVaz1zT7OQypaTb5HZIomiUW0ayebmIszGSUknIcnA8W/D3xF4r8UXd34Z+A3jHTLa6v3ntdLt4WcWiF42SBZGYs0a4CgtlmAYscmvpb4PePLH9snxHonhLRvh/pnlyRTSXuuNbzxpdCO1k2pMp2sEkyqmZPMIlaOYEtGN3XeG/2Dvh94j8STeCvFPxKvtD1td01voV/p8fmzQAnbJDJ5gE6DaQzoCARyBkV0/60QwEfZ1Vd79dvkiquSQxNRyg+VaaW/4J89/s9eE9e8E+BfG+leJfAHiHSTqFjbR2EOrQvHPqUqQXPyQgEljkgH0LDuQa8zt/gv48t2kEvwI+IUiDJY/2fKpUfKcDkDHPUjICkADPP2i//BNPwZ4x+Kk3hh/inqUC+E5LW9leOzSX7WLmC7jCYLqE2kbv4s4HTNdGP+CXfgfTVnubf4lao91JJkSR2EUQ2gnaCAxJIznOeT2Fc8+OsHTdmui79dexlRyGnVV41NLtbdnZ9e6PB/2bn8BfCPQND1DxubyRdC1fVNe+wQ6kklzMBHaRSWYVUcZL2yI4kaJjHMzRFg0UlZ3jLxX8TP2mvGMvxS1fwRdst1HFaaPbaRo7SW1jaQKI4oAwQZZAGDHjBGMADAj/AGt/2OPi54N+IeqW2hvpR0m78ISJY+JZbuUXVsoSdCqW5ikWSVDJu8sSBSrgEguRXpfwf/4JmXPir4O+E7rxT8TZbeZbANqUFz4fVZ7sM7Mj5WUCI8gjIztCjGQScYZ7Rozjj680+ZWW+i+49CtlVKeH9hT91d97nj+p/DH4mG6/s+38D6yZ0iWQE2Q2Kp9SpZS3+wG3A4yB0qK5+GHj+SRIpPCGsjexXd/ZjADpyeeBz1PHUdjX0hqH/BNnSYpWlj+Kd7ktjaLHqPdgxz/+uquof8E5tFI8uHx5csMYD3NrlTyDjGSe3/663XGuBlovz/4Bxf6t22qfh/wT5YNhGCJfJAI6HaP8Ka0Eok8xXcEd81+jf/DpP9nsyfN4t8btFngDULINjPqLYjoPSm3P/BJr9miIc+IvHr8nI/tiyAx/4BV+wLxo4Cf/AC8n/wCC2fCy4Q4gi9En/wBvI/Oa7nkERn6s2AxwOcVha43m3KuY0OUxkqOnpX6Uz/8ABKT9mDCxzan8QihOSseu2Kn8/sJ/lUN1/wAEmP2T5VBfVfiQDzx/wkVh/wDK+tqXjN4eR3qy/wDBcv8AIqPCnENtV/5Mj82LKICI+VEqbvvBVAzU+s2OgWmiwx+L73Ubez1ljbeZo1t5l5FE2VeaEmSMJIvOwluGAO0gc/o/H/wSP/ZXRQI9Y+Ibcdf+EmsP/lfUOof8EfP2Vbuxulsbrx2l1cY2yXXiGxaIyKPkMqpZRtIoIAIEiHBIDLnNeVxD4rcH5jldShgMS4Tlpd057dUnbRvv/wAOvSynh3NMLj4VMVT5or+8t+/nbt/wz/Pzwrqfh7TtBu/hpB4ZuTosLW9zZtpN3HbtPdQpd28cnkuzL5ZjKqCCh+cMwk2LHFU12w1bwdepLZ6sm24jbD2rMjlCcEOOCM46dOOpxX1N8Mv2efhj4DvPG37RkfgfR7zwXrMVtoVtZ21gM211JbuZ5pAAREiu9rEJAAC0oBIO2vdNQ/4JU/se+J0XX7PxJ8RLwXirIl2vi3TPLkQgbWUppxDgrggjgjnNfM8G8ZZJw3WnTzHEWoS+zyOXvd1ZO3n3033XvcT5XicypRnhqb9qn8Sklp9+vl/V/wA4Lrw7q1toFjq19oc0Vre+e1ldSWhVJwpVG2MRhsFcHBOCMVmQxyR7XEbITwWVAP5V+t/xa/4JrfAvxn8BPhl8PLbXPFkNl4Vs9Wh06T+2bVpds9808nmn7IFc7mO3aqYUAHcfmPg+v/8ABKT4RaTcOIPiB4i8oDIV7m2Zxg8jiIZ4x2HXvX6Bh/FDgDD03Sq1tW5SX7uT0nJyj9n+WS/I+RxGRcRYucZxjZKMY/Et4RUG9+rVz5N8UP4K/ZpuNK8O/EzxjqsVx4mtIYL1NL0YyxaZcXHzrASZU8+4aMhmUhI1MbL5pLEjQ+JXh7xh8Pb2yv7Dx7favo+qW5uND1y2u5UFzDuIKsjMTDKrfK8RJKt0LKVdvcP2ov8Agm94Y/aS1SS/vvivqmiX1msd9YakULq+pRRokcjRxIxO473PKbSDtOGAXotN/Ylt/Gnw/wDDvw78T/EZ7e40F7ua4uLLQGSOWa4MW4qskpZUCwx4GTyWOecD5vL+NuFsLjp4uvWUo1WnL3L2922iS5lZpJb6Nt66np4vKM3rYOFGnFp007e9q7u+rvZ/1Y+TbTxV4rjYSweL9WRuzJqEgI/XNSz+NfHjO0g8c6uzAfKX1OYkceu6vrq0/wCCVvhKRd6fGi954+XRIz/7VpJf+CTVtPd4tvj2Y0Y/IJvDCsQPci6GT+Fe8/Enw45tay/8FT/+QPKWQcT9n/4Gv8z7Wj1GyClf7RgG8kqXZfl9uEz/ADNRTa2EjDLrFnIvZUYAj8wK41475k80NKSDwQmQfzFRS3ZVMyXUwP8Asoa/jtYZWP173nqdZd+I2aHzINRZyp+aONkw/t0/rVeXxVdq4LY2f7Tjj8xXJPqzu4iS+uSCeAyn/CnSPdPF5Yu3LEd85P4VUcJ3E2zsm8S2LorGNRzuBXB/pTofGVoWxEzM2eOCMH8q85mOrxSkLdOoHGASP51l6xqfiqO3kkjvBiMBgu9RnH6/lXTHBxb0ZndnwfL8OvFWmfss/tNaj4z+Iusw6J4J+JPinRfDenWjiKe2jt9OhvNOlkltkWWYyXdvozE/KQLaTJ2SzK33L+wP4r0if9h/4QQ6VrME0Nv8NdFtpJLK4R0SaKyiiliPBAdJEdGH8LIwPIrx1tJ8GeDvBviP4c+EvDVpYx+LviDb+JvEVrf3LyxarPLcxi/yszkP5kBf9wuFYJsVCWwfU/BVnpGh+HbTQNC0220yxs4QlpYabAlvFAn9xI1wqj2GBX1WePD4rA0lCNndPp0VndLu9V5HDhfaxqy53c+mPEWqxx/D7wk0jxtG8N6yu5zk/aCDnt2FcpqTaPqQMhthv/6Zjk478DFU/EWrC3+E/gC2gvpIz9k1GTcx4ObxxyeQcYP865jUNW1JvLd9VuZCBtBVQR+O0ADr3r5/M8O44lWf2Kf/AKRE6cI/3L/xS/8ASmbV3oXh9btp4ELOwAkKvyOPali8LaK5R4ZblZM9Y5x/n865ka1Ox2XErO0Z+VknAOc55GTz071fs9blT960soPQ+ZOD/jXHCFXm1Z06JWOpttDhsl2i6mDZ+YiRM1dt4I4gsi3MpYdpFUg1zA1y9kYN56AnoPOA/wDZasRazMAf9LjHPJE2Ofyqp05N7kXKXlOkW77HK2DnBmyO3vjv+hqpcQ+exUgW5zykjMT/AOOgjH410F/Jr5iuF0Pwaob+z0uLC41KWK1t7qRgD5TY3zwsBy2+EYx3plvpGszavBeSy6T9kaDbd2lvp4mm87+8s7SKNg6YMRJxnIzislU76GvNf4U3+H52RzsWhSyIGkSXJXht4GP1q2mlZAjV1cqcrh3/AJV0dh4FCaZc6fqfiO8vEu8hXkjggkgUnoj20cTL9clvelT4ceH5PDv/AAit7Cl7ZhNhGpxC8Zxx99rjeX4AGWJ7VUaytqJqpLZfe/8AhzkNQ0m5khZ5QcKNzMrfcGM5JxgAVyx1LwRqNxLolv8AEHRZ7vobZNWhMgPXBUHPcdvSvYdG+HmieHdJi03wza6dptpET5dpaWCxIueuFjTaM/SobrSoLlxbXTJnO0OLV8fnjFU8TGMRKnVb6fdf9UeZ6X8MLOQm7ijjk28hmdeuOoOPSnS+DRpuf9B4PAMELOfxwvH516RD4YSLNsQVU8gpGOfxP4VsaX8PL28jBs9O1CfjI8m2z9elXRr16ukYt/ewk1F6yX9fM5XxZ4eS++HPgOER3KlNPvtgMUi/8vs3DfKPXv1rDl8DEx+ZciUonzOwj28fQk17f4l8Aa4/gzw3A3hzUG+x292JGW15QNcMw35+71JHsa5C98LusgAt7lVHYp/ga7819tHEJuD+Cn3/AJInNg5x9k1zL4pf+lPzPIfEetfDLw7MLHU/G2l2M7kBYr28hV2YnjCkgn8K2dK8N297BBdWOoW84lwYXEQKupGeMP7131x4X1FOFtJhtPIdMfzBqCbwa+uQPpup6Il5bzrsmt57ZZAwPZlKkEH0ry44lLodXs6j1TX4/wCbOdPheRUzLBESOTsGP55pV8ImUgJCoY+x/wAK6XSPhlofhbTm0Tw94VtdLt23BoNOtUtwCRgkCNVwccZGDVeP4ZXFho8mj6DrGt2QlfcLw6gLqdDznDXYlwOemCOOlVKvG+rJcan8v4/8D9S7Dp+uXDOLjSAuDjJZefcc8fpVy30W9DhjpYPOeGOB/wCPVbVo3jTDRAknapd+T+YzXk/7df7UuofsZ/CDSPEHhPQhceLvG73kPhjUJIka00lLbylnupI3LedNmdVijZTGDudydqxt2cMcPZhxZnFPLsElzy6vZJbt+hWaY7D5Tg5Yivsu3V9Edd8Vfij8L/gnpq3vxi+I2jeFkmhWWGPULpmu5YmcossVpEJLiZNwKl44mVcEsQASPmjx9/wV2+Ffh+E6X8JPht4l1stZuPt+u6hDpyQ3PIU+TGLg3EPQnLwsQMcZyPhLxP4s8TeNNcufEvi7xDfapqN7MZbzUNSu3nnncnJZ5HJZifUkms7bgk7s1/W/D3gZwhlVJSx/NianXmbjC/lGNn97Z+S4/jbNsVK1C1OPlq/vf6WPpXxn/wAFV/2rfEV1Y3nhq58N+GDaxMk0ejaCs6XZOMNIt+1yMjHG3aOTkHjHmnif9tb9rXxF4nm8YzftDeK7C+nxu/sHV5NMhXAA+SG0McUfTnaoyeTkk15rmmPxxuya/TMFwrw1lyX1XB0oW7U43++1z56pmmZV3+8rSfrJ/wCZq+M/iX8Sfibqh1j4j+P9b8QXjYLXeuarNdynAAHzSsx7D8h6VhrGUJAAGeOnWpVBz0p2VJ4xx1Ga9+lSpQVopJHFVqSluz3L9oXVLef9j39nvw6FBe28PeIrg/uVxtk8QXqY3Dk/6o8Hp26mvELS5urO5F3aXDxShsrLGxVgfqOa9N+NOvQz/BD4J+GUtnD2ngPVLppiPlYTeKtcUKPceQT/AMCFeZDhgwIrjymKeEldfbqf+nJCxEmqunaP5I9Dsv2pf2mrLRYfDtn+0V47h0+3TZDp8fi69WGMdcKgk2gfQV3Ph3/go1+19otlpujP8T47+x0ySNlh1HRLOWS4VD9ya48oXEoYEhiZNxB+8CAR4SrcdB+dSKUI2svPY5rLF5BkeYJrFYWnU/xQjL80zSlmGOofw6ko+jaPtPwl/wAFiPGqy3knxE+B2jXgkjQaenhzVriwW3YfeaT7R9qaXPGACmOeTnj6D+EP/BQr9lX4o6guk2fxDPh28eby7a08a2i2Pnny97v54kktYkGCo82ZGYjAXJUH8qlmZTt6gccUNcsrZxz71+f534L8BZzB8mHdCb+1Tbj/AOSu8f8AyU97BcZZ5hH70+ddpK/47/iftLHdalE21SQSc7V3AH8K85/be/Zrl/bC+B2m+E9EvYrPxh4Pubm78LSX8jLb38U4T7RYu5KpC7tHE6SvlQY9paNWLV6ZaW01vcATpG27+EAMB+Q4q+kgiUJHaIox78/99c1/FfDPEOYcL5tTzLBNc8O+zT3T8mftmaZfh8zwksPXWj7dH3Pxb+KHwt+IvwZ8cX/w3+KfhC80PW9MmMV3YX0W1lPZlIysiMOVkQlHUhlJBBrnXbacV+2fxA0HwL8VPCreBfin4J0nxHpQWQR2usWYmNuXUq7QPkPbOQT+8hZHzg7sgY+ZviZ/wSc/Zp8bagdS+G/j7xB4GeaZpJrG4tV1e0VT0jgV3hliUHPMk0zYwPev6y4d8d+F8zpqGZReHn1dnKF/JrVfNH5PmHAua4aV8PapH7n9z/zPzj3HOc0FuOa+nPFv/BJ/9prQUtv+EX1Xwf4nmuJWWW30nxAbZrVQMh5G1GO2jIPQBGds9sc15z4j/YY/a68N+IZfDD/s7eK9SuYYhJLJ4c0l9Vtwp4H7+y82InrwGzX6hgOLOGc0inhMZTnfopxv917/AIHy+IyvMsI/31GUfVM8lJJOQxpCy5xk5z3rb8YfDnx38P8AWZfD3jzwZquh38ABmsdX06W2mjBGQWSRQw4IPI6GsdrZlb5lyfpX0NGrCavFpryZ5879TvfjKbhfh58H98QEX/Csbry5AfvH/hLPEeR+HH51wSSGu9+L0bv8PvhDGsbBV+GV31U9T4u8S55/DpXDLakHHlHJ9q5cra+qP/HU/wDTkisTH94vSP5Iejg8E04v23frW34F+E/xM+JeqvoPw3+HWu+IL6Nd72OiaRNdzKuM5KRKzYxz0r0Twn+wN+2B4u1n+wIP2evEWlz+SZfM8TWf9kRFQRnEl8YkY8j5QS3tVYnMsuwcXKvWhBL+aSX5sVPD16ztTi36Js8hDHsf1pSWY4OPrX1d8PP+CRPx88QiG4+IfjHwx4VjW9Ed9ZzXkl9dpAGAaWIWiSW8pK5KoZ0yRhimc19BfCr/AIJL/sx+Bpor/wCIOua945uomYmC6RtM0+ZGTaA8MBafcpywZbpQTtyuAQ3xGceK3AuSwbni41JL7NP32/u0XzaPbwfC2d4yS5aLiu8vd/P9D//Z",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [45,36,62,76] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [48,38,57,63] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDz22+OFtpfiXWND13xQLTTJlt47Czl0iRJA4AeUvIVbIY+XtIKj92wI4Utv+Grqbx7qJ0j4faZqOvX/ktItlpunTzOQO+FQ4GSBk8DIrV8deGbTw3rlx4LltU+yaW32O0jLI2YYf3UTZT5TlEU7hwwIYcEE8/Jp0dufMs5nULj5e1fLTajv0OicZ05cslqhdD1XxXf6FDD4tsVs7xJZDNaC2aJ4juwFdW+beFVQ2e4PFWHBABP1qtLDCqqnlKCB/BkY/KoQ9zHJuFwWUcbX5/WsZSU22KrUdWo57XLvmzgYVx+VRSNPu+Q0JOGTey49s0xsjLiTqeR6VkYu5cvNE8R6bYxanqOj3cFrc48i5lt2WOXjI2sRg8c8VQdl5Jf9ajfAO4AAnuB7k/zJP41G7NnrVXXLYRKXU9zTHkCkcnn3qGeZYYjLLJtVRkk1hzfEHw8p2Qx6ncMDgfZtFupFb6MsZX9aSTew7M1dauIpvC19f6ZqFvcvHJJaNb2V5HLcxTeSzgtCreYq4GA5UIWwgbcQp8v/Y10fVPB3wY1Cx1yzvLGbUfEQnlg1CwMUkiJbRCF9zMcrmadVUAcDcc7wF7qXxe1zaymy8M6zvlRgFFj5bE4x1kZRn0ya8g+I3jP4jfCP4P6dr/ieG6uPsmp2Au9IeWIRmD+zkgkhLICGzdK0nBIBKMOcgejhoSqUZUlu7HXQjCUWr2Z7k96mRhSeeKFuugEf51n6BrMmpeGNKvr9PKv30+L+1LdYiqR3IG19pJyQSN3QbSxUZChjYe6Eowr8jrz0rz6lLklZmM48krHTaTrHiWXwfaHx9JanUBJKYBZ3KzBYPOeNULjPRUQ7QxVTv4DMwFe71ISDy7fOD1bpVnwZ+zH8UfCVrq+j6L4YOvxQ3U+sTz+E72DWIbK3uG81hO9i8qQFJGcYZh8pXhcYrMMTIDwQfQ111oOU9TSvVdao5vdk6NGBy2cjk0F0B61CrHb1z71XnOXJdj7c1hKlbYxLxlXGC1Me7iTKtIBx0Jqkrqox5mfqahlVd4KkdKzUGwLr31uSNsgpj3sIGd+fcVUAypYMOPekwRyX/ShwYFr7XCOsuPqDUb3kXOGyfWq7yAdxxWTf67rFvqaWVl4TubmBseZeLcRIq8/3WYMfyFXGEmwudXZeGfFWtaFqfiLSfC1/eWGkWn2nVLm0spJVtYdwXe+wHALEAepIAyTXhv7Q1h4Y+J/w7sPEOt3eqaXDbX7JZIiACc/6x3DoXXYYYiVchcFXXkMM+2ftC/EHwj4Z8QXvwz/AGbvH3ie48MeNrC5tdWsb3W54Et3gigYwQ4QSILiM5lw2HEJViV2rXBXq614nihfxe+m6tBIBMzSxyGSUyRskkhk3bt8kckgLjB/et17+tVw0cvqRUZ3la+juvvPVVPBU4RcW+bq3ta3Za6O/XXsjShJe0ggtNU+1qluii9Rsi4wo/ej2b73HrU9tBdwHG4MPUmqqKEOy1iW3iHEcMf3UUdFH0HFS/aZRjMnT1rzZ+9Js8ub956nUXlvHdkGRsEYwR7HI/Wujtfj18WdIubUah4tbWorC1+z2Nr4os4NXt7eLIO2OC+SWJOnVVBHauVnuAyYX8Kh355aoXOupK03O0tPiJ4CvbTTNM8TfCGyEdtMz6lqWg6pcWl/qAIPykytPbRAE5/d2y9MdKiOn/CHXLa4lh8Uazod5LqG2wsdR09Ly1itzj55ryJ0kLDnIS1Occelce0gHb9Kikc5DDp3Fa87e4Kx2dz8KLid9Ql8JeO/DOt2unKC11b6ylo1wSM4gt77yLmY9sJEa574maF4i+DNzp1n8WfC+reHJdWx/ZqazpM9ubgGNnQqGQFgwUhSBgkgd6zTMM5BNat38A/jD48+HFp8cvCN4sujeFfHumCz8OrM8P8AaOoebbItw8nyrGka3L7pndUjWMglPNOd6NJV5WitT0MBg1jqjhzKLSb1626GU8pQZ4NNa4crweK7XV/jTZanrJutb+F/hLVdNtY5YtM0+XRvsKxoxJRpJdOe2muHUYw0sj55znOayYfEPwC1O2sLHVNP8SaHc+ax1XVLS8g1GLb2EFm6QMuD/fum49T1y5I30ZxTg6cnFnI6z4g0jQbT7brWrQWsedqtPMEBPpk1m/8ACz/AIUA+L9PYlchUulc/kpPpXYah8Kfht4/s0v8ARvH3h29ma/8As+maN4ksZLO+ZD/y2d3R7KBeO90e30EB/Zv8beHtO1TWdF+GS3mmaTJs1PWvDMMWoafA2M4a7tDJB0wfv1XstCTzvwVqOl6xPda2urNLOmp3Ti1ulffFvchHjD8eX5ahRs6EtuAyM9TLc2kulwRKwM0crpyjBliAXbkngryVUDkBSDgBKpbEA2xKAPYYoZvLQsRnAratU9rbS1lY3xOJliJ8zVvQlafYMjnmoJbq63fKqkZ4GKrPqAPKDFOS8JGZOR9K5HF3OfQ6xpgvLcCmG4U/dP5VXa4Drgke/NRPOUIUEY71I7Itm4A6mopZ2I+T1qtNP0IJFQtfKJNm489MnrTUWwLolcj5v517Z4Y8dfskar+yNregeKvD9jZfFnRNI1WDwvrcuivJNMLmKVIlWeENtAeYp++2hd5K92Hz3ceK/DdtKbe88SWML5wUmvEUg/Qms+LV9Wl1ZbvwhctPBqkkdncsLDzFZE8yQqhZCPmKrtdTnI4OeK9TKsVUwOJ9oktU1qr/AIHoZfS9rOa5+VqLe9r7aX9NfO1jbkgt9N8Nw6fYXMYa1t4YRBLIA7fwDbk/OeE4+9l+AQrMMuwtjO5a4yB796csYMgklUEHkqec/WnzyIzBzlfpXnz1m2ziqSUpXRYyYk2xdjxSxXssEizRSFHQ7kdGwQfUHtVI3IXkAkVDJdSvwgxzSIO+u/2hvijrct3deM/EUHiW5vrdLea/8Wabb6tdRxLjakVxeRyS24AUD90yHA60SeOvhJrLGbxJ8GhZiLTzFbp4S8RzWfnXHUTTm9W93D1SIRD0xXnreY/HmbeO1MdJDmPzTVqpJPUD0CDwp8F/EF1ZWWjfF+fR3kgZ9SufFfh+WK1tmHRI3sGu5pifUwRinQ/AD4h69bWMvgaysPE8mpSOunaf4Y1e3v8AUJtoYljYRO13EuFJzJEnAz3FedPEycNIT+NLHK6EHe3B45rVVIvRoVzoDOwGcVFcTzFC8CgsF+VWOAT9ahWaTy9rtk9zTHuShwc1yWYzE1CP4u6gWSDV9IskP3TEjyMB/wACXrWVL8MPEeqEnxT4/urhCc+TboUXP54/Suv+1/WmTXO5eM9a353bQWpj6H8PfD2gWn2K0kvXTOSHvpAM/RSB+laNtoul6dB5WnWYgUHdiNiMn355/GnGc93P501rlugY4qOaT6jHG7MGEc5JPBJpxvFHce9VZXjkHIyfeoZd+0kOR9DSAuGdTz3+lNMyngt+lVopiFwz/nSs4P8AEOlAExmXoD+NMkm2gsBmod/+3+tRPcDpvJ+lAEv2vkjI+maBOAMt0quZIzkhefXFMDyudqNn2prcLXNw3gUZJFRm6V+WNVGuCUyAMU3zz/dpAW/tK/5FR/a2JIYDFV/tcX979Ka1zHng9fagCwZY+WPWmPdopxuHSqz3sQJU5/KoJLlXOdpFAFxrtMfKwpj3iEFS35CqhnHbFRmfk5Xv60AWJZkY7ge3emJNwQWxUDyk87e1N8//AGP1oAtNMFHyyYpnnL/fqr9oZ+NoFdl8Gvgh46+OOsXVj4TgtrXT9LhW48QeI9XuRbaZo1sW2+fdXD/LEmeAOXdvkRXchTpTpVK1RQgrt7IDB0jTNW1/U7fRNC06e9vLyZYbS0tYWklmkYgKiKoJZiSAABkk167deD/g/wDsk28erftBWUHi74geW7W3wqtrt0tdGkyVVtcuYiGVwct/Z9uwm+XbPJbHMbZfiT9pT4c/s42D+Ev2NNSvJvELxSQ6v8Yru0a21CVWUo0WkRN8+mwEE5nOLuQHkwKWhPzpJeeUwyck9c1+28H+F7bji84Vluqff/E+3kte7Wx81mefRoJ08Pq+r7enmeGL/wAFPlBGfgg23HIHif8A+5qG/wCCn5DZi+CBA7bvE2T/AOkwr5Por8s+p4b+X8WfRXZ9X/8ADz5/+iIj/wAKT/7mpr/8FO5iPk+CoB9/Emf/AG3r5Soo+p4b+X8wuz6pP/BTm7P/ADRhP/CgP/yPSSf8FM536fBgDj/oYj1/8B6+V6KPqeG/l/Fhdn1N/wAPMJwvHwYXOev/AAkJ6f8AgPSH/gpfdEY/4U2n/hQH/wCMV8tUUfU8N/L+LC7PqM/8FLLo/wDNHE6f9DAf/jFN/wCHlN3n/kjqf+FAf/jFfL1FH1PDfy/iwuz6w8Pf8FM9HtdbtLjxV8B7m905LhDfWmn+Lltppogw3rHK9nKsbFcgMY3AJBKsBtPYfHv/AILS+Ifi/pNt8N/Bv7Pll4L+HulahJd6J4H0fxI7wpMyhPtV3M0Ae+uzGApuJeQCyxrFGRGPh+ivTyzGV8nxKxGEajNbOyk16cydvkZVqcK9Nwnqn/XQ+jD/AMFA7nOR8Kk/HWz/APGaaf2/7k8n4VR/+Do//Ga+daK+l/184r/6CP8AySH/AMiee8lyxr+H+L/zP//Z",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDzRHbIIOTWtNY2kFlFcRa9azyOql7eKOUNHkZIJZApx0O0nnpnrWHambaUnKkr3XvV2Nl3EA8Adc18s0mrM0LIjA6sfbmkIHWmrJnq/FDPngfnWNSMIrQCQKCMq1MLENkmkRyvemmQMxG4cVkBq+G9J0rX7yS11Xxhp2iIkJdLnU4rl45GyBsH2eGVgcEnlQODz0rMnkhgmZFnEiqxCyKDhgO4zg4PuAaikdRxuH51Tdtx68DpVKVhS2LTzRElt4/OoJ5N7YU5AqOkZttS3cgUnAzTrdrRBI18kzboyIfJlC7XyME5VsrjIwMHkHIxgxFyRjFNkdsAA9KqLswHzOckomATwM9KYN3Vv51H5kncfpUd7qVpp1s97qF3HBDGu6SWZwqqPUk8AVq4uWrHZl6I5Gay/HniXUfC3hW5v9Dso7rU5SlvpNm7D9/dSMEjTBZcjc2SMj5VPI6i5HcQkDYwORwBVPXJvCkVxpuoeLhYJFZalHc20upzCOKKVc4fc3CkAtgngEjkcGt4xcpJI6KEVOtGL6tI1vCXgHxD4D+HWlHxh4jGrarq1ze3t1dDVY7owlbhrZrc+SzRR7ZreZ1SNmURyxnvUzSrGcFT1rP8MeFR8Pp/EeiwaJHJp+q6tbanpGsyxeVNch7ctPIERvKCyGSEFQG2PalUIBbdcmnRj1xj1qcVTUalo+ReLg6eJnDs2vudgMjFvvH86Qkk9efrVSS+UyeXboWPduwp8TyAZc5J9K53A5ydyQOKjLEE8dKaZCUORg1EWy2CeTUuLQbjxLtY8ZpDICc7ailchcrnrTRIe7GpJ5ScyADODUby5OQKjedFOGY1H9o+YnJx2FawQ0icyY6kVBfWllqKCDULKKdFYMqzRhgGHQ4PcU2S4OMj+VRi4YHOSa0sxnb2mo/AjV7Ows7rw34o0S581jquq22rW+owheoEFm8Nuw9MPdN9TWD8ZfBH7L8nhHU/Ffiv4if2l4e0d4SdM17Rbmw1LUFeZFKxCzkniQZ2MfMuYwdo7gZ81sviT421a/GkaZ8OpLRpELLPqV0IyoB6+WQGb8D+NWfFPgTVPiPoU3hLxpq8SWN4QXmtrVXNo6g7ZY4mwWcbivMoGGb1weinL3k5WRUJck0z2HSvhR8T9S0PRLPw9pun67c6hDjTNE8La5aapeojEyCNrW1mknjI34+dFyfeuW8UeH/GvhnXZvDvjLw7f6ReQtiew1CzeCaP2ZHAZfxFRarNpEOt3U3h2S+WwkuJDaJfspmjiLHarsuAx24yQBySOcZO54c+LXxN8KaJP4W8L/EnXNP0m9JN7pFnq00dndZxnzYA3lydB95T0FKUoVJ3e451JVJOT3Zgo0UK7VIHtmpBOcZEv612L/Gw6tqVpe+Ovhh4J12CygMUVifDselRMD/FIdJNpJKw9Xdunes19X+CWr6e8Wp+Bdd0vUprgsLzSNdjlsreM/wraTwGV8dt10D6k1Ps4vZkHP8A2lR1mX8TSxb7qdLe2QySSMFjSMZZiTgAAda6j/hXnwW1y/eHwt8dlsLeK3LvP408NXNm0j84jiTTzf7u3zOYx19K7L4DfstfEzxh4gGvfDrx/wCCIdR02zGqaO994jt7mOZobmBSlxBbSm6tlKSMQzxrkgL8pbcuuGwdXE11Tgr3NaEKdStGM5WTau+x88aPp3xO8YeOfEPiu28S2OleGPB93Fp93ol7fRJfatLLGczww/Nvhjk2hmBD4kjZVK+aU3mvJ/vIoIx3q38QfB+k2fxh8R6n4atbi8tTr+oaM15BBdSQLf6UFSe2jeVelvBKAy52JH5GwLGUrGu9Tjs1K7cnHFaY7C/VcS6TVmjfGrDKregny+ZakvZWwWiApwuAcYODjrmsiPUru7bdjamcFsVdjZAoUNk1x2RxliW7bO0nPHXNRm7QD5mFUtYgv7vTJrbT79rSd0xFcoiuY27HDAg/jXlum/Br4o3Gq/aPE/xOuXto33xiO9lmLHOcNHIAhXgZU5B6YxWkVF7sD2JGIHzCpYpAp3dapmQtgg0qTuvBPFZaNCLlxIJ02gY59aqubmAZVsqKUOWPzGgt1FSNXCO73j5sZpfPbsMVAy7X81TwByKxL/4k+ENMLi/1y3QISrFWLcjqOAcn2q1dgdEJ2/iANX9D8b+JfBElxq3hfXr7TppLSSG4ksLpomkhIBaMlSMqcDg8cD0rzl/jd4AkkCadqT3BHJPl+UAO5zMUH5fhmprTx+viCLybaBWinjOJLUSzMAfXEQRTjP8AER9a0g6kJKUXYum4qonLa+pufD34wazpFxfx6B4j1GC68Sra6trkMdw+2W5tmH2O5nYrsuJAkswBfljJI5yc576/+Pln4g1DSpvF3wk8G6sltCUn0xfCqabbyvkHzWm0r7LMxIxkSSnksQSDhfKfDWjWXh+S5trWO8eAyp5D3aRmQxqiqqEocEKFwDhc9doranm3D5AQAOK6cRiJTqc1vXVv87nZmMsM8XL6u26fS6Sdvkdsvib4Ianpl1Fqvws1nTdWuLjMF1ofidf7Ps4/RbS4t5Jpcf7V2CfWra+BPgpr1/Onhn4+LpVrBb7xN438MXNq08nH7uNdON/nqfmcxjjoK823O33qXzp/uhyBXP7RN+8jgO/f4C/ELUYbOTwkdI8RzalJs0/TvDHiKz1C/nOTj/QYJWulzjo8Sn2rk/F3h3xT4E12Xwx448Pajo+pwkifTtUs5LeeM5wd0cgDL+IrIcDOWbH0ro/Cvxl+LXgrw7deEfCXxM1/T9Hvj/p2kWmrTR2lz04lhDbJB8o4YEEDBpr2T8gMuK7dnCFRg1LvPoKz4rgqAAOfWpFuJG5DkfjXMLZGg0rKOlN+0AnYep6VT85/7x/OkMjHrQF0T6jaQ6haSWFwpaOVCsgDlcg+45rnIvhZ8OYMOvhSBmHaV3cD8GJFb32hlXAH44qMsWJZu5rSM2lYLla00TQtOZX03Q7O3KfcaC1RCPoQKtFmYlmYknkknrUbSDftPbrQ8yIOafMxiue1RPcFG259qa828/KaidgxzSAlE5J5wBS+cPaqsoZSWRzjvmmi6wDvboOMdaALbEOuSfpTGJxwaga6LgBHI9c0qs6AmRxigCZZflHzDp1zSiX+IEfWsxbkL2qWC5GDx+ZrMDTSTJ+8Pzp3m4/iFZouXbpxTxeoo+YHI9KBaF83BPU/pTfPb+8KoNqKnqCPTmka4EgwAfzoHoXjIuOSKjZiRyM1T80q/GePemyXjp91iAfWqTFdFtiAMqDmoBK4GAai+07v4u3c0GdQM1QyR5n244qNSM81G0vmcY6VG8jL09aAJ2ChtwFAkLCqv2gDgg/nSPcIeMH25oA+f0/4KM/BRWy3hrxWfb7Dbf8AyRTx/wAFHPgj/F4X8VfhYW3/AMkV8V0V7f8AZ+G7fiRdn2sP+Cj/AMEByPDHiz/wBtv/AJIpf+HkHwQ/6FnxZ/4AW3/yRXxRRR/Z+G7fiF2fax/4KPfA5vveGPFn/gBa/wDyTR/w8e+CA6eGfFn/AIA23/yRXxTRR/Z+G7fiF2fa3/Dx/wCCGP8AkWfFn/gDbf8AyTSH/go98Ejz/wAIz4r/APAC2/8AkiviqimsBh1sDdz7U/4eOfBLt4Z8V/8AgBbf/JFKf+CjnwRx/wAi14s/8ALb/wCSa+KqKPqOH7fiF2fan/Dxz4JDp4Y8V/8AgBbf/JFNP/BRr4JHr4Y8Vf8AgBbf/JFfFtFH1HD9vxC7PtA/8FFvgkTn/hGfFX/gBbf/ACRTR/wUU+CmSf8AhGfFWO3+gW3/AMkV8Y0UfUMP2DmZ/9k=",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [40,36,49,63] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [60,32,70,61] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDqv26v+CPlx+zTpup/FL4U/GnQbDwu8kMd0fEKObnQ1uZkt/LSUn99GzShd52sAVyDk18G+NNF8P2msQfBt/EELDTCLC/1JbHL3cK8x7T/ABoVIKYJ4xznGP6OPid4VsPH2j3XhDV/DK6lY38BjuY5oUeJ1IwVZZPlII+v5gV8Ef8ABQ7/AIJn23ijwFqHij4L/CSyfWdFhiurax01JQ+EkQOYlRcu/VmQYVtuQScA8lOriJLlTt5ndh6lJT98/KKHTPDXh+6R/AvxCljs4GMTJPD+6lYbQ2IjjDKAACc/4dZLF8Ifi5o1oja5NpF2jS/2qkDKqzIqIyzs56dGCjHXPIOM0fHfhj4DeD9QiuPH1hqOnXlhck/2PZXDmcN5jFklQgnB2EZ4I3DuDjj/AAWvg3xRrOoeK/DXhe+0fSt8jm/syCbVsA7CuclNzLwMheOynG1KWLoS96pzo7sV9Unb2Stp+I7xTd658UdP0j4KfDvU9N07w8IC6IWaL7WTMFVpWUMxfcAR6glskMK9y+C//BIr4o3+rXeqz/EyLQYEsIGsHi0uK4e6nli3h3Ei8KhO3YQGyG57D1L9kT44/CDWdZ034X2vw8s5dcW7todH1BdMPmXFw7IiqzEbgwbkkcdzhc19efGn4reG/g/8P/P167R9XdBBBa2FqZB5wRmVmYfIFUEHk85IxxXRisW3aMOt/wDgfifMZvUqU6KVNe9c+Qpvh58M/wBkz4Caz4jnuZZNW17XxZ+HdLntAJb6azuL2zh3Mm4DfcoZiNqqTHCvqx+W7cab8UfHWq6p43utGaHSJDcw+as4QTzs07IAvLYLSkjJ43MOBx9D/GT9o63+Jeqt4QGh6bPqWpBYljuYn22ZlVhNChXDFHld238ctj+Ln5hg1fSfhD4ml8L+JbWz8TXWnWQAkOgJbmIx24ij3DYqy/uy25sAk88DrxUcJiIe9UXveRngsPOVpN6nR/GCOfxj+zhpHxI1270/UNQ0bX9WtIjojgLFFstri2Mi8gqJZ7gY3HKqO689d+zx8cfA8XwwOp+Jfh3b6vD/AGouoyx2LLE0Mqwoj7FOVx+6jbqPukkngVx/hP8AaK+GPjz4d6p8PPCnwIs9ON0DdahdWKrGVVQql3BbCqAxABwBkkd6TwTongKS50zxFofiW+0iO0icELaxy2TKQ0bCRQrA8bu45AyDXXVwzq0OWR6k8OqqscHr/wAf/HOl65ceDdYutJ1DRb1WvLrT9UhjvI7SZj87xSEbkk+QBsHDBVDBgoA9J+C37XXhX4xWNv8ABv8AaA0K20ebU9Vc2viaeTNtEj4IUq3zRfMcCQMdu8ZyM1jeK/2ANaXTrTXtK17SdXTWLeSSzltrp42cg4xtPRskdcjn2r2X4T/sk/DDTfhTqOieN/BdtrN/5ksetPPF5dxaIMIgikYHaVCxSq6lTvOenB48VVwuCoWabflY5sRXWCh7yv6HtP7DX/BRb40/8Ex9U1j4ceGbax8TeCrudtRufDPiWU2gWVo0YT2V2jOFMyvEzZjkB24KqxzXmX7aX/BQb44/8FIvj34T+MMnjPwt8LbTwhZS22m2lrri3j2shk803DGWOPzycrHyEVQDjljXi7p8Sde8IaR8Ada0u5u7Xw7qt3p8viP5p5Zry0L5QDC5iCSQhG3HC5POTnp7j/gn98SPF3h228SWA0iI3Fud1vLcsuOX+bIOCSMHnA556VnKrQnDllt8jCtOirSbP6XLnR4k09ItCtYUhGcJvAUc9sn1zWPqOno8LQahpSdMi5MpYq3+zknAHUdh6Vn6bc63cyMlreSLHjMoD8kAE+v1q1FqF/LF9ouXW5tANu0Da5PXGT7d/eq9pFOx2a7nyH/wUN/4JUfCj9qn4f6h4r8A+GbHSviBYW0tzoniC2VIjNMuxkhuRtK3EZ2NgupZS2AyjBX8W/2j/wBnf4zfBLxNd/BfxToUeh38Rj1a6YackbmGUsokDcRtFmKRUGTgJhixGT/S3o9xpjRTeTqQlWKfyri2aUSNASpba4BODgg4PYivm7/goP8A8E/dM/bH+HU+g6f43bwtrK4YeJ9LsxLdSW6rIGsXErbTA4lfIABBweeQeiE9LM1jOWzPwd8DW/jPwMNF1/xrd3aabba+INYfQ2hOoWkLRsBcoY0w+GVQQpIy+c44PoWj/tH+AvD2j3ujD4g6jrNgNLWHQ1vbjzPMUMT5uGZSpOEPIGA2DnrXR/F//glR+2B+yodf8FQeANT13w82ppLpHinT3UxX6SCLazKCDG+MBlxgNkAkYNdl4C/Zh+HHw30cN4v8I6Nrut3iCa9ubuy82OBiPmSIMQAM56gjgcCumnTpSndjqRpO0panzPrPi3xNfae0kN3aR293D52YmZHIJ7Mpz6DGcZ9+awfDmn+C9AsrnVLuO6Oo3dnPFcTM+9xHMHjYAsc7Sq4OTnHA7V9f+LfDXhRLD+zIvDOnpbGFkjtlskEaqM/KFxgAZHFeL6t4M8P+CviNZ+N9KsTHBBH5c2nWlohj3bWVGVCyqOZST7jd1ArupyjLQ4qdZKslFWvoeMeCtV8N/DDWdcXXr+CLS9V02607VrVbTa0pmjxEwbJIUOpJBOOM+uO2+Gt3P4b+Beo6Dr0cGu6RDPCsSxuN/kEyOgGUB2kJj5TjPGT1rmfiN4h+HWi+K9W8B63o8k9/p14W1S5ksFaC3nHmeWskedwX5iMKQcfxLxnnv+Fp+IPh9pV54f8AC0EGtaDr/kGGB0Z7hJUSVRyMEIGkkIHHRck7Qa0nHmp6Ho6xdz0v4P8Awr174g+Ifh14c1HxEYNF8V6tJpuleMI4GMFm0rxtFag7lCz+f+5jydv3eSQRXpnwmXxSvxdl8N/Cn4jyatEutLowh1fLQoUhuCis/wC7cMotyrbSGUzIuTkmqv7Fvieyu/gtB4I1G4tftXhnW5ZDbtIoClpTNC20KAu0lgpA4Kk9ab+zdq/i3wp8XPFngbR/BWn6ja6k93e2c8oFr/Zd9dXsk3ntMQ++Ty3ZMKQcBcbQDn42OKp43EVaNSFuR2v0Z83VxMquJlGotEcX8SPip4m+EXi7RPD763DZ6rY3trdX+m2cq4t4vMRncTMT5xCbpCAWGMgHoD9d+Nvj38OPAXw80TxR4H8a6brcPiPSrm4062WEP5caFi06kddqGLAJwWkHGMkfOfxt+Av7Mlt8Tn0Dx/421G/1ua0aWOS4hmlFqod2hSQRklU2FEGWGUiy2M4rz5f2Wfj18c9V0jwz8I9Otr+wispZNP1PQZ2aIWheNEUwoN0CB+gPyDcTuBzjreCjOCaI5qeMw/PT2/yP6amWzt7uOyvNBupFkjfdNEcCMjBGcnvkjgGs+90eSeO5j07UVsk5cvPMy4wwPYHJ6dux9K6jxLN8Q9as1tbTTYoixzI6xYY4xj1rnNH8IeI7jUpE1q8liUFvMUSnJPqAQR19u2Kyny89kfS6NJHC6FpWpeF/G+q6hqXjKzlsdQeOS5eE7pWKptTcSeg7cDpV/Tvip4KKRwXFnqtvczOF8y5KNsQ9GbEhC4yDjGRyOxro9R0O68NX8epeRZalMA6iJrdZHj6YLFQNvB6EjPPXkHj/ABH4J8SX12dQ1W0s4bd8oUS1KAEjIxg9Rjj2zUw9pe/QxktTwf8Ab4+L848KWfhmyu1S11W7Mt0okx5iRbNi/exwxyOCffpj4agLyrJNM4OQNoIxivq//gpv4ek8K/DnS9SsZJIpvtawqzMxyrqGJUE4GSvXGRtHPWvkjw9cLrHh+K/yyyBSsgHAZhx+NenQbaTZTalTSMbxpZpPp0krQGQqchVzk9fT614t8QdI1iK8ttV0q2lj8hw7yfZy6qF+bByCACQB+NfQmoiOe0FjHaozYJ3FBuYkYxn0/wATXGeJfD09qry3SGIOMNCpxjoOmP8AOa9ujKDp2vY45c1P4Vc+RPiLqnxJ+JXiK6EUTWe9Gi2WSMxn2qCd+QWbAAYk+5PJJrnPF2i/FL4cXdp4av8AQopJb3T45rYaPaiUSnLLkvCuGd9oYnJY7wW5NfUmn/BnTxrc0qQXX2i4WcWz2ZCxOHj2MjrwRkHkgnqPSvPn12+8Patc2Gj6HpVrqNppKapHaX9vLLI0LLH5UssvI/eMzKPfA96h1LNo9Kg3UpJtEPgX4N/Eu71W31nwDoTeGdRksmt9Xv8AxBexxLJtQtIBFuYnJG1S3SQc4wK9R8bfthXHw28OQ6J4L+H2heHfE99DbibVNUupJIym0IZ1TJKfNk43ADB4GK8i1P4yW/xSS20Pxn4gitGuYokX+zjvtY5lkkwrhPmLnbISVLEEINpDA15t8c/h5Lo2q3fis+IY9Xtp4N2l/wClI4tyMH7PIoyfl3N6g7s8HiuBYelOrzW17mWLwUeTmSNTwy/j/wAUfE+58Z6H4tj1jUdSDWt1c3EhlWTecYUlcAscqN3QPj5sDP1X+w94U/bU/Zp+K7/E/wCEfw90iyvb3w1JpN5azsCI7WWeOXzG3LtEqGONRgA/KTVz9g34Nfsi/ELUdF+M3w18B+Z4ia3EfibQUuD9h0y7M67Lq3IQmLYkYIVgctkgr3+i/iN8S9G+AmkX3jHx1Ppug6daHy5JvtvmGcZwBGVQrIxPPUAAHkniufFYn2CcEfPY/FuEPYx2a1P2H1iymtFYB2dh1JwAOnQVz96kck6yXuuRWzAjylkG0Zzxk9MdfXp0rvLz7FPdeTJBId33iFGBxUU/h/TJWE6/uyBgH5R/SuWpSXLc+hi9DyvXLm6j1LB1QTKxCGS3nJX2xjHc+grM1yy1q5sxPDq1z5e/5VnhOM4PRiAM17MNN0jymsr+7ilicjMUkoI4ORx9cGuQ8U6J4ct7r7VYyp5jt+8ku7gFfZQT/jXNBNvcUmmfCP8AwVHgubT9nDUdR1G8kuJ9Ju4bi3Xyj8qySRiTJGQB5Yk5OenHOK/Pn4KeIjo/hCfUbu6j8q71SQwEHkfKo5GOOc9fTNfrp+0d8OtL+OXw88Q+B/EsEFtb6np72NwIWBIbkI4xkEBiD1PGa/G/4U+HNestXuvgbrH2X7dH4sbSrMbSWnkM5jQbskZLEgHHOOlduHmlFp9BRWuh6r4c0+Lx74ssNNs5VInmAZvKLq77lwhI4UEFsk/7IHXFdx45tfH9kBovxD+G/wBjsoQv9lCWIrLMmWQuxKh2GYzgsB9WyCee0n9mHxP4P1238TxX1zavbyYD2xZXjPJ7xrg9jzmuhtYYbbUZNE1Ka/ut0gaUxTeXJJkBjtdlYD15Bzz61MsTJ1I8r0ujvpxpezaklc8s+I3w0vdKtjOukTWzNjCSAgFSGwy7uAuRgMpxnpXzH8ffh74W1K80iK5tzNfadbXFnE6fK8dvJdyXDRliSWVZJZWA+bG44AHFfe0Hwg8LeH9FutK8N2GoIt3KGmW81SC7JbB6GIHk4HB/u/Svmj9rv9nPUXtDrlro8zxJI0rMoUSRqDuPboSMcjvj3r1KVRT0MlF0pJvY+ZfEGj+CPgrqsHi74c+KdU1yXUiBdTX96qMshc7gfLJEind/EOx6ZIrc0jWrXWfh1B4b1L4faha6pbXstzaalZ7jHdwu58yFixYDd5jA5GCpwOCwGV4z/Z3+J3gXX7O++JWizWVpfxC4lS8cLIQMkAbcgk7WAIGMqemCBq+FE1650HUNV+F+srpU0BZr6z1W3w0OAzKGLf3xyAFGccmkpPod01GUGj7E/wCCeN9F8Hfgn4pu/HvguDS4LrVpNW0mXcsbzWISONluHHTbLFOVIBZlPAzyfmz4o/tQr498Yw/F/wCK2sJqlnbXU8ngnRtFPm+RALiaESyxlsK2QCFIDMFRsn5a6bXf2i5fFH7NIk+Ibx2drJHDpz29tqJkjnv1Mzz7ZAFK2wSdGWM8gkg7gqk8/wCOvDHwC+DnwY8KeOfgh4HuzbeIrYzX2r6nCwL3DwxPLCoPJgiYlRzyy5G3kVwY2nSlRldNya0S7s+Zx+Bw8KjnFas/qYmt0WXzAo+brVbVW2WTFXwf4fc/5/lWrTTECxLDqMVpVg6kbXOzmOL1HeqLJFc7pD95WBAXp1PNcLcHxTLohl8Tw25uUUiQWrERMRkb1DEkAjnB/SvZJtI0yWRpJbGNmbqzLkmsvW/CtlqNu9tY/u5VG5fnJycHAOfciuFRcLobd1ofKXxq+IWifC3w/c+KPFE6Q2MciiZpHIUM5OzOAep46cd6/Hvxz8UNH0P9qG9+I9mjPF/wmj6lbxRZUhluC6MCV4IJBGQK/bf9pH9nLRPjD4cvfAvjLTYZoJ0GHdWYRybhhhxg42j8q+F/ib/wS80rTNXTVvBvw6037fah9t095Kd4IUHKsSMnbnp3qKVWMJWmNWSsup5L4y/awgkkbUNPafE0hItmJbYx3HJyoHHA4JrK8N/tM2OpaosXifR45PMO1rhVEflDBG48Hdxjjjp71vePf2OvjpbWqiz8JQRRxoF8uIgYADckBf1rw3xd8MPiX4Gmk1S/8P3VvPGcwSJCW3uMAFcA5wcU001Z7ExclK50nwr+JnxL/wCG09a+G8vi6bUvCmirIdTtZ0jEbzqgMXlyYMkbLI6sUViriM5B4I+orz4I6D8R9QSfW9bVNNMTfbrf7O2fKbrhgeoz1wfpXwV+zlDdfDvXb7VvGum3H9p6xfu0YjjQtLEu1A3UZyxOMZyK+3Phn49tLmzj+3QztClnGZF2KDuwB61q60qTVti3VqWavufMf/BQv9jP4vaB/bXxO+E/xF1PXNEju7TUjoV3MZNQ0t4Ylje4ikZS0sSxwq7JuVlCnluo+ZviR8APGfxX8M2fiOL4o29zqsixPd281oESVkjKxs0iDczhG25bJxj3J/YEeGNQ8VWkhvPDQ1e0MO3YfJ8sJjB3RyScggYI5zjpzXzT8cv2FdN0fRdY8VfBKJ/Dt7aaHLeW2kzlmtXeBHlMKhg4QlEYBV4LbVGP4tFjYxly9Tro1E46n506r8B/irqx8P8Awi8c65JY2egWjOJYZzLFNHI5eR0P3UlLSqArDJJGM4xXo/j74m2X7Qej+JvHWraTp/hPRvCWkOfDXhKG0227mIwJ5AXdhAEYKq4244FN+JHxs0DxZJqDTfDoaPqlpMYreytrMq87sQxHmFsuw68YZvvNnO4+Z6Z4pTxN4fumj0qa5Etw0EkaMVMjEI5EiAFdu4AcfM2zJ+YtntUvaRUhSpwqSu0f1/0m4btvfGaWipOAbKm9CoJBPcdarG3mhY+SNxIwWc84q3SFV6kVjUp3Wg07GRfeGbDVCZLuMlj1IC+ue4rnda8C6b5Re2skEYU5yF9vUV2kqQjLdPeoYNkNuF25J7Z681xzjDZjtfY8iuPhpo9zevNe2cciEnbEyjrnr06e1cL8Qv2afh94s1Qfa/BKSIg2KsaAICwAyBjBOSevevoaeO0nvS1zKI25C59M1WvtTgtXbTQYpdg+XkgnIz2PNYOFkZyumfHuqfsA/Ai+bdZfDu3EkMBCIgHyr1IGB8vOOaxdW/Yu8GeGvKTSooLBZSkSxypvG5sbVPrjOT9K+xH143Xy3UYx3yRj+Vc74i03w1r2u20X9nNJNE6siJHjYepII7EZzgdPQ81h7HW92Eb3PmfT/wBnPV9EfEP2O3kiKlvtsyIu0cq0agqWH58ioNQ+H+v2+mx3WqvEtrN80rJb+bHc46xqNwCkn5gWyAF6HII+gde0HSL6W4msLUqsm45k8t1wRyV35IYduBz3FeaanFJbWsunwhtsczJHZ7ZCIzk/vNq/L6jr3pVIxlO5vGTVj4t/bK/4Jo+Av2tbaTx58PPCN/oXxB0xJYbKR9Nkt01Bo3d9snkyNlyS22bYOH+f5MsfzEvfh18S/wBnu61f4Y+P/gH4h/4SDQtXcazdaHdjyftEczSRqHVWBRo1jJK5UqcZ5Za/eKbTfFD3Et7p9g0Mkbrl2k2kc4BHHt+teS/tX/sd+Ef2uPBz+G/GmmW1n4imcpa+KdMvZLa/VTt2xuUws6AqAFl3BV+VQoAI7KGMcGoSTsdlKolJXP1Oooor1TzgoPIxRRWd23ZgMeMEbcZFM8lRjK9OnFTUVFSlBoabKlxptjc58+2U5GDxj+VUT4W0NbsTf2SpZP8AVvub5cjnvxWqTk5orkmlZWKTZjw6Bpy2536FGrlujndx9RXI+MbOyS6+zppVmCjhi0cO7dg/dbdnOPSvRiBtOT2qrNFp5y9zGjY65jrT2alTJe55XJYeH7+ERRW7zYB3Bohhc/hxVODw3FbXb3FnpmCYygYQ9FznGcV6FrFhoN1Ak2l7EUhslYyP54rDvryLRPlOmvOGxtdXC5BHXk+1cfJHnsxxk07nmuq+Ho/7VNjcqAGXcS8W4KMDqMeuPzFc34p8DeH5pPtV7pSnEJjZofl3IcnG3H45z7Y7j0zxr4hePT5ILfRU+dlIbrJxjjIz6/pXKx+JNQiYQTQQSI2cwy2pDHIxncT0rJz5ZcrOlPmR/9k=",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD5IHwl+Inxu8M6R44k8RRS2mm2EthNeW+iajdeQkUrLmQQBg87R7N7OkS5wSe7Q+GPAmkaF4+0q18M6WtncaVrDXSx3t6kM96A7FbmFQBsRAqvIuWDwYDbTnGzo37MHjfxV4pv/g/e67ax3MujX174P0vwXMHhv7+PYIyzzfKsLGUBuhUCNQgz8ufdfCf4g6fpunTeDdHlu7C3u7dn1XVNPuPJ/duY2P2ssYYfu/KjlcsQFDAgV01asHNwvqdjoqcbPU+kNN8P6x8U9C0/x1+0B4i1nWvFzTi1ukmvEsV00M6rDOUtXVfIKJHOvmZOxwwXsPmH4j+HPGPiy+8Q6H8JtD1PW9K0qWS3vfEF/qqvHObd3aVV81gzhZC6oduAUbBPWvSdb/bJ8O6HpF58FvAMotLbS9EeS11zVNPnnSa/klEstvKsau2/55I9wUYEYwDjDeV+Jf2jPid448AWPw50LTFjeOXz5XsYZYJbdl+XcS78jaVPKrndjB2knx8Bg8ZRxEpzd4yeivsjw8Pg8ThcTJv4b7djnvgl8UNMX4v+Gl1S3mmhm1zTbPXLS5czLc6esuJlw3CYQyqu1lYFsg5Fem/s1fDi6v8A9rCW50rxddLp2gtcTarorXEtvBcSAx7QVGFYl5FZojh8wsxBCk1Hpfwusrw6OPE2j20WtNa3MOnWq2scbapI4fylRSeV8yRpWdVXBByQpIrxK813XvD/AMG9tlczWV7q/iWIXG24k+0n7ChaNix+ZR5k5wM5DQ9sCvRr0ViLqLtdNHoSpKaal1P1Z8QfGzRz4C0/xR4k/sCC30KDypNPguUkZkBZYrWNAxdWCGNcHLlwASQTn4k+JPxg+L+reEtW8Z/CeTVRoOt6hqMc8Gmxr/pNkzteSI8rxsUKb2IIwyHeBgNivSP+CY3wsufi/wDD7VPid47upNQmPiC6XT7a8iCwW83kwGeZg6hXLqFO4FgNp+6c59F+EfiuLVYz40tNViufC0180015PMYLcbX2yTB2KgALyX6FTkHBBr4SvFZJmMYwg533fTpufLQnRy/Fyjbm1PiHwVqH7RfiH4oeFfht8Afifql3cxBm0K3tdauRHorzrIjlSFR4AqTsVbbkB+AQcH7I+FWlfEn4XePLTwn4m8Qf8Jf4q0G0uDqWp6jK0kNjLORPPsJQlVJEhSLIUEn7uc16/wDsu/8ABIb9sz9kn4/fDv4h/G3w0dY8LSeB/svjyDwTDJfytN56yNp4jgZWBZQ7GYJsBKhJFYnHr/7WP7IPwa/Zt+PbfF/wB4J+LfiZIrWPU7Lw/YeHr+20uzvJVaNXkv2SG1L+UPL2uzSouRLvLRge3nH1is4Tp2UFvp71/wDIvM3Xk7wVo9dNWfG+pX2ueKtV8OfHz4veGP8AhP8AwnNqsvh240BtWn0z+y7uVwYNUuJ4XBlt0RikkeVxlGy2cD0r4C/8FL9D+GPhJ/Dnh/wy/hiS/wBPu/7PXwJrcUU9usFy6eZJvV18kiJsbkOGHXDAjpvDHwT8efth+EPGnw+8N+ALZtZ1zT7W6uvD1vqlqqyXNuYzi2luTErYMMQLkK21TkYyK8M+J37Jnxl/Yn0k6v4t0mGTVta0k2MWj6no9wqRtIPkRcgeeFkfaHUY3ZHOMVwZZJxw0JVG21opLRP7tL6nNhPq9emo1E09vI9j/ZH/AG7Ljxh+1LYfFT4var4Ynj1e/bR7zW/G9t532NA6EzADYEkRSpyMDqMgHI/ZWbXfhX4u8B362dzpPiXSJdNk+12enCPUEu7dkIZPKTd5odcjbg7s4wc1+Rn/AATw/Yu+CnxP+Adz47/aN8D2N74d8NTXtn4gXXNJ1KG6hkmMcxl86wdHtlRLeBpJWJREzuwH3L9vfsk6d/wS00Cws9K/Zxh8Ng6N9ptdNv727u7iax/eN5ohu7xmeMlgcMsgJAGCa9ijg6FCq+V3qS6v9WduHlQwlScLaN9T8u/2kf2HZ/8Agn7fp8Vvhx4r8Sp4St1T+zdQQ2V2fDl0Qpy7zPHIiSgSAMFljLMsJRWZBN4PYeCNS8Q+BPP8W/GrStQg1eCS7srLULO5mm8olGSWKOaHEOA2SIxtjXkN5e1j+8GtW+o2+mXWl6p4Wtbi3vI2SZZmDLJGylWQgqcggkEHg5r89P8AgoF/wTo1+5u5fi7+z0x0TTobKWTVdE0WURXWnyBgBJp48sqkAjMjSW6un3VWJeQo68LUnOd6y95q1/Q+upVlDQ+C/GHwr8N+JfD3i34oaJpPh3TdLur9ryz1ObxZNf6pdyefuEwktIDb7t4PBijOWxkk5PmHxA8Da18K9QtvEUGh6vZ2+pI08lzqdzstL9g5JeG4Q7SNu35Qx5445A9C0rwzqmqeJrjSbjx1p9za+ItYjc6pZWvz6kqo+Z3DxiMsC0L/AHhIMgcM25ej/s+78NppUPw/8mK1e/EFw1hqFyl3qM7Eg21w8EcTFQtvIEXDFf3hDZLV7EJQprl3uVOMqiu9DyrxN8QYZfGGg+O9Q+LUUXiGXF3poWJpxpi7vLxuBKbRh9yjGNnXkVtfED4HfEH4neL7Hwd4L8MaRrep2Wjzztp+l6lb2UcjuN5uY3Zgo+aRCwL9WGSPn2ej6bpfw7tvE2qeHfGP7Lfja38Tx2F69vd27SxnUUjmLtCryxDfKqrGAoVmby2GNw54/Svhr4W1Lx3dpr3hjUtRsNE1b7PNP4atWNzcz4gIitZhHIsm7zoVK4ViWK/KGVmcnGk3pYxkk43uj6n+EOrWnw78BWHw08D+CE8PeHbHwRLqHjHTYru0udTNylzf2N0RP5s0bNLdRxKrBWIjRQAmPk7b9o/x18Gvh/8ABe803w9renzXE+j20Osx6G6Jb2MReJpLcCNkWFjjhEwwdlcpivCvF37KH7RVl4n0S80m+0z4Z+GNYhih1LS7t4Yre308GSYSRrBI0ajayfITnerDIyynO/ba8E+IvhvoFv4Z8NeKtY1/RvEjrENK1K3QvZCLZclo5CP3aM6+aU4/eSSyZ3TPu+QxuEw+NxyjzPmbu7baHyuJwtDEYm9F63uauj+LvEv/AAUN+Jvh74CfGH9o7xhomi6Por3Wn+F28SNdWUfkNAkTWSyBjHL5Mx3CQSmERtsfy5PKi+0PCfxL1v8AYK+Fsmlfs9aq2mw3l6pumu4FuTdOwJMhiwsZlY4Csqj7wGNvFfEH7KOjfDTQPD994k0OPw7qPi/Q7e3DXDqs89rNI7sFsLiOUiGYrCCZVPJQAZ76F3+1v8bvGPxG1rwFfeJ5HfWURBr2vReVD4dA8qNmRUG2XcZE+ZWyHkU4OPLONWtUxs/Z0lKHK2ndJXt1XWz6M58VQxmIxKVJtcvQ9B+Ln/Bbj9pzxN8Uh4b0j4qiNNGaONvD134X0w21/eyfKgM/kb4gc4cg/Jv+Vjywv+Kf+CkH7f8A8O7bR5rrXGm1qbVLmfTYNI8Oi7GhQpLHCI1wpcW7HZLIGEnmFAdpAAHyF4v+H+lfBTwYL/4V+PNJ1DxNrsssl94m1hooxDFHsKrCkUkrRyNIXO0qZBsBA+ZTX0NoA0T4enw/8avG3xSiu/D93eQf8I/4bs5457zULQZH2mddweBomuGd1OXeUMrjlXq8ZSw9CFOy5k3q3tprd/M9HE2wVON1zNn11pH/AAV8/aB+K3wN1jwD+1V8DfB1jP4stZdDsrfT9ZaNLmKeF4vOZVkchnc7CA6L8ysr9RVT4hfthfCr4/6LpOpaF4mu/CGpaHqP2fX7jQ9JW4s9Rd5l3y2++WLy5WYsHDE7mORyPm+TP2i/i7ouv/ESx8TaR4KGp+ArXTAuuanZ2gF7NIsqTwIiyOpQJKgUk7eWPJ4FcToH7RfxU8b/ABa0zU/hpZXXh7SLRmOmRnTYJI95jYYkYqw3EF/lVhx9K0qRxeMvKnNLb0svx1POq4eWMXtb27+R/Q14t8FrfGSfULpirZEiIqfMPYY+X35xXm2ueCbTSAGtjDFDtIjj2YAx0AA4A7egr37UNCjuYmMP3yc8+tcv4p8FC+icxWrB1xvULu/EAdfXrXbVdaED6o/O79sn/gnd4N+J+lXnjH4P+FbfSPEKTPqt7pPh+ePSm8Q3sUMyRebcKuPNKysgLFVJCbmQBifzS0XV/wBoH4b/AB6/4QHxp8P73SJl8UWqw+JNV1TUjcWZhBmSGUyyrsLK6gLsC7XTaTEVB/e3xx4T16KdxYiIINrZjgK4J7Eg/L34x2r4j/bk1n4MXvj7RoviF4RttY8T+G7iVtDnjtzJeRyTKgMMca/64NsjI8xW2MmU2gturC42fwyOijJy91n58fEf4UftH/FL4oXGv+AfCdlHoMuqhrjxPbXPlzXyyKkk0rzPIHuI5A5G5CwJMisMggdD8JP2XfBPwP8AiFZ/E7SfFesNNpupXV3b2PnRmzt2meYqYoJ0lTdCkzCIyCTa218FkQr7r4r+JXxE0/Tp9P8AG3w21Hw/JcXEUWnW2qQ+VdSnIYEhwrKuHQDI9eeK5bxjBHIGsPJfz5CTgHjP+RX0VGdLFwcaiucWOhUoLmp/D1MT9oH4z/B3xxoupP8AEabVJ9U1UC2Nxf3TvBHaiLy/JhhGIRIx6lY0Qgj5QzPXzz8QPiF4I+JM2r2Pjfxbqml6Zbam0dhqNlJdCN7mUbWS5+0CMlkjjQFwjq3Tcdtdt8Uvhrr2vxkLaxwuvNtJKFfy2ByGA5GQcEehFfPXxu0D4YeBxZ6NeazNHqa2Ih8uGNplkkUsPPyegZ92VB45xXHRyqjh6jcb+XkZ5bThGk+U+lv2cV+Hfhvwf4q8F3eu3OnSeFNqSas8L3ovlw7Sta+TBuQfccBvmbeME7SQ7xrqnwg8M/CfV/ipoGoamqWQR1v9V0/9zOQ+XiliUrIyMfLIBBIJDEbl214h8GPCnxZ+KEt/p/wr8cQXUkvh+GDUtRvba8gnOVCkFbeCVTsSIqJGdGAbk5Ykdh+1H4p+Jfhfwu/hWz1XwtY+GbaSzii0OOxumlnMeAWlmljEbSOYmkdAc8secc+ViMkp1cd7WUndmGIyn21b28ZNar0Nf4e/HT4D/Fnxl4g8Ia58TovCHguDwfc6loDT+F2uBqWqQx+YmnyohzBuXzdkvzKGiwAWdMb/AIEg/Zcurv4f+EfDeq2l5rer6E6s1xavBDqd8W3XGLdflBClME4YrGrFUbco+bdT8K3lzpzfEPQ/Aw0ue/kSOO605naGORU3pII2GRnAIOcHa3XpW98OvF/xE+G3xAsfjr4O0HRNVu7HVLqdtB8zzrNIp4iokby3XyyVYgY5VoU3DgA9mJyqk6KhDSP5s2r4JVKHJF28z7gXwDaT2+r+A9R0JrtZ7Frm7e1TZbxxOF/dOQQN5YMwB+YDJHAzXnukfARLDwVdeGvhn4jukltfGq6rcXEskLGwcQiHyfk25VUZ3A4bccsTk59B8L/GH4xePvCF34t034LtAL3SrWXQYhdyuzTlSbh5ysGwIThk2FjjIbBwa5f4maHoOheCNU0v4QeMxf3tjIZ/FF7EnnTzu6sW25ZIxMwXG0D0Hy8546eH+r4dpaO3Q+WpxxNKs6UHu7M/oeyPWormAzLujfa4HysP5VKQD1oIBGCOD1Fdso8ysfZnPatopvn2zSpG5X5xIx2kc/hnnP4mvPtZ+EPw+udZfWNT8LWJuuR9thKo0ZboSwBx0657fXPr1zCZYWRFUsRgF68q+K3wx+I3ildRt/DOu29kJ7N4oJiHSSFmU4ZSh5IbBBPfIPoeGph7bAnqfm7+1T8H/iD+2N+1nrI+ANrbpo3g66h0rWNRupQI7K5Uv5vHDy4KkYVSc4DEYO3w743/AAm+Kfwl1G20/wCI+lWltdtiOa5sH32t5JwPMjZlDbXI3AN8w3bTkgmvv74e/Cxv2Ovhy3w78Ks91es7Tapqt0uWvblmZ2kKscAMXbnPHFfJv7WPir40eNLOSx8ceKfCmp2NjieK3j8LSxX8cofKLFdR3AjRQCeHidmOeV3AL00sQoyUY6JfeVdylZ7HjHhm0tdfv77TtNGm33kWkHm2Go3n2eQI/mkzwbhiV1KDEaknBJPUCvOvin8K7XxZos6abon2uGG5ktNTilt3imspVKieJDJtAYY2FwdmQcMCmRn678QPHXgDVpPFOiafJMdNURXkcQ3OBKwijMcWdzHzGUFkBKoXJrb0n9tP4kiSPQNe+A4vRZPHDeXk2vIr2a7ASzwhN5jGSdjBTtZc7dxI9DDYjEzbTXu+upt7KkkmnZo+f/gz8MNA+GOr6L8U/idb6Xd6DLK8F8L2VLmCwnkNwvmllO6FkVbY7uCjXCkMyk7OO/ab8U6P4h1aKw8MQrYaDY3MZeeG7mm8/wCVmju7jIJmeRHyGO4Y6HBxXZ+PbfxH4v8AE3iHUNA0qO00W/u49QjnnuktrGyRUcSARu/lO0hIYA9MHA5OOL0iRtX8M6rLeyWjaho1nFZXkaxKkZQ3H2cToYVBEflywKrbio8lyUwyvXUop1Ocbm/Z8qRz/jL4v+D/ABJpemeHzfalHpcMCvNZ2Ttbec4AVRlg4BXc2OMEKOhNe9f8Ev4P2GtS+KV7eftgeN7z+ytF0yS80nSr2APb3V0GVfLmLPtO0EMiKNzsOg2gHxfxDq8Hg7xFY/E640gW9qt4scMdpbrfWNzJBGwMTltqo33CybmOyQtjoDlJ490fU76/1W309DHqUkM+svbhYVulw7SxKm5iihn2DDDcsak842xXpRxFGVO7V+qdn95jyt6M+2P2g/2k/jr+1F8QH+FX7NnhzS9I+GkNin9n30V19mF5gKGSUMEMAG84iZRkLkE4IGmPgH8OPA3w2fwh8XfEWoWt7dq8er6b4YvWWKeaWUyF3ljAbLM7MSD1frnOfHv2E9a0qYeN/i9qDx23g7TtJWC90/Urt5VWZfnjk+bJZ0QMAM4O/oSARf0z9pfwVdXureOPh9oy/wBjTXw+x2+rTTSSahqG0Fni37xjCrmMsEUEYAIZT4la2Fn7CMXZJa7/AHs+cxNOpTq+xoqy3v1v6n9PtFFFdZ9AFMO1QxxnA6U4EEZFDL3FKybE7HnvjjwXpfjCOWG78L2bh1ZC/wAwbHTnBHPH4V80fHn9h608caZLbW9taRPHIWi8uEo4/FfoM44OBkEcV9qT2NvcgeZHgjuODVS78NaPcxkTQsCR99TyK5nRjzczWoz8Qv2ov+CavxJi1CK/vPC+papYQysI5dHhaSRV4J3oiswG7uQOB1rxfxR/wTp+O/j3QrseHfgDBOi2sk9wwkT7YNuCbhVuXBkbAbMJXcxPyZ+439BesfC7wveRFhpEbE5OXZufrzXMap8JbCItcwaBYW2UwrW8Sqzr15Kj8fwqPbV6FnHUfPO6kfy+3Os6J4x8S6n4cvNP1jw/oNisNtZj7TIzJ5OFjM0ao8hJZWLHaWAPTqK881HxT4ouvGaz2ngL+1ftFuYZrcXU/wBojIUGPzJo9jOVYJJkjy22ONvDbf6Fv23v+CRH7PX7WEl38QC7eEfHD26o3inTrLzheCNCkaXdszrHcoFwu8bZgERRIFXafxZ+P37OvxD+BWt/8Ix8Rvhd4sgDXEzPqmpeHYrQzbX2BUcFT5JYfuygaNjvIbP3u+ljaU4t/h1O7DRWJlyp2Z5Hf/Emx/4Re68P+IbVjHJLGbRtEt5AILwjHnL+9jVnJG0grubCjPFR3XjLwDcfAnR7jWPAfiBvscE9t/wkOn6NHGDK0oKI8p3AoMsNp/vDknro6NrnhGxvL+Gbw9qlxaTlYJrW+iZms94DLKGBZgRguN27cVxnnIs+HvgX8R/2g9nhD4G6Hrc3hq/v0ivtaishcQib5WAknU+UoAH3QeMnPYnpo1KdaCbul56GlWhVw8mtH6GT8DdM+FOqePtOtPGmj6nd2kghey0LRYBPcaxe8NHGUMgCrliN2cjqDxX6mfsf/sMfsSfFDUNU+IX7Rfj3SPDV34OtrWafQ5bhbaysLR0GyWaYsIYyzxybmI3ZBbIBAPzJ8Pv+CQ+m/CtbbxF8TvH95eeTdbltI7CGJrdA2BI0m8tuwOiNwzLjIBJ8n+N/xL1Tx94v8UfDObQr3w14Qu5WbVLT+zgtxeiA+bEt35OGkkKzhlErN+7Kj2rxs65syh9Ww8rfzPy7aHzNRwx9XkpvRfEf1VUUy3uLe7t0urWdJYpUDxyRsGV1IyCCOCCO9PruPTEx3zS0UUAFFFFKyYFG6kvI7cu0SEn7xjzjFY15qVvead5DTtHKjbJAwG9M8Z9OnORW/cWXmEvE7Kzfew55/CuS8W2eoWEQv4IVC7to83gnPTp35xXPUhyq40rsoan4RtNWI8rUpZYiuJR5mWB7c14R+1p+wv8ABT9q/wCHd78NfiAl/A7ustjqWn3DR3FvOjBlkV8Y5xhlPysO2QCPY9P1+5tLjzHby2JyfQ+xq1Jq9zqF8FlkjkjkAHlheW9MdjWEJQveK1F78HdM/nl/4KCfsPftS/sf+LrTw78T/HLX3gh5FbRdT8NaJ5K30SO6/vmB3W93ko5hAlT94drNsyfOP2Yf2i/H3gn4h6cLCzvJ4LnUEsG8NTy2tkl27K0kUIuGby4pH2nA2gsSQuNypX9Ffx3+Dngb43fD3UvhL8Q9Nt9R0fWLZobm0nAOVI4Izna6nDK3VWUEcivxX/b0/wCCRf7U/wCyL4a8XfGPwvrEfxC8Ax2Iu70W9rBbyabFHOrN59mBsS3VX3tNCMqIGkd4QmX9KlWhVpcj3N4V3VvGTsZP7UH7Zeq/EzS9Pu/CbnSrLZNDDpi2Yung8onzZnkiLblUgDhhgqD2BPy3d6lr/iPxm2ueCnj0q8tUlh1TVYWihurlid6sUZBJ5fTG92UFBt2kECz8KPhH4/8AGvxCsPCvhP4Yy6VrptGvV0rX7+G1N9EI48xp9paNC6KwmQjDAbic7QVn8NfCDxn4b8e6rp3xFkSN9C1Jn8RWM+sWsoudyhREkiSr5gOdyBCxwhA5raGGhh1ZbmmGwsKFPlgrI/oC/Y//AGx2+HsNp8MPiRG39jySn7FqDsWezDAfKRk5TPYAEZJ56V9oWt1a31tHe2VzHNDMgeKWJwyupGQQRwQR3r8mpXuAjEhgGIJZTw2O59a+iv2QP2ydT+Ha2fwt8cRtd6Q82yyuSQGswzEnJ7rk9D0z1AHPHCV9GYON1dH2/RVXRNc0jxJpUGt6FqEV1aXMYeGeFsqwP+enUVarQzCiiih7AGQehqG9tYryEwzruU9VPSnlmBxTgcjisHLnVmBwfiPw/oGmtLM+vtbsqktH9nbJXGcDFcbdatpmoM0USzuSuCxgYAjHf8K9U1/RZrlje7UdguCuzt61yN/9rs5VjEKKmSGGzG/+eK8+acZ6aFNpo841WXUNN0p7/SryIMk5KLLGZHAz0IOMZzxgmuW1vxDqWoaZIniNTLDNkSINuxwcjBUjPIOMZr07UjcSzu0unoj7f4o85X61wviDQNemKGSJfLEm+N4rQZUhiQSaynRjo03oSflR/wAFD/8Agmjb+EF1f4rfBHwwLvwvc3EVzJ4T0OB1uNCvA6ZurWGNGEsBBl3RoY2h3KU+RDt+fPD/AIz8Faf8N5fDej+IzceItQ03ztC1K1ghc2t0rK8az3Vjb4kmikjCnz3PJb5yVzX7V63DJayfbb3TUuz5rfK5Ch16fdHQ/wCea+bP2p/2NfBfx+1SLxtotraaHrto5aC7XT4XfJbL/M68MxzknrnPUkn1MLiIJJVG2zqo4pwhyM//2Q==",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [35,24,79,80] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [25,35,65,70] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoorofhH4b07xl8V/DHhDWLowWmq+IbKzuplRGMccs6IzYkZEOAxOGZV9WA5obsgOeor9QviV+wr8KPhv4L8W/Eixs/AsbaFrsNpaWOr+HovKZIIgbqYuYXDLFcvDb7Ah+0PcIuF4B+aPDuk+HNE+C/izSk+GnhS6uNfW3mS71Lw9ZfabWGC5QN9llkVponLOqmO32M8bu0hKx4GNGs6ybUdiantacrNW9X/wHr0Sdtd7bnypRXvMngLw3DqhgufBEVqqO6y2raYjeWA2MMzkMDnjJ6e+MV2ngD4NfDHW9RufDPivw5FZ/bbVP7LvNM8OpeyLcCRcKF8xCUdC43fON4VcAZdW6qir2OZ4pJ7HylRX2voP7PvgXQbXTj45+FdhJBcamLC9vm0ZI44mSVASsp2o/BO7GPlK88kn0b9qr9lD9nD4X/slfFvXdP0GNPEej6Jpc2nHUvDdjpc9rez67p6N5S7VlkQ2jSqqxZyPOdljQLvI1eaSST1OiMpSpc9utt1f1tvY/OKiiitSwooooAKKKKACuh+EkMlz8VvDFvCW3yeIbJU2EBsmdAMZB5/Cuer0D9k7w5J4w/am+GnhKJI2fVPiBo1mqykhSZb6FADgE4+bmlK6i7Ar30P03l/bO/aF1fx1rHi7XfD+galJqMSW9ja6v4Ts/L06FbOW1Vo0t1gi85Q8cqsI1iEsRcwt5jg87f/GbxPe/ED/hNvg78Ph4F1fw1omjARfDWwNpYXWo2E32lb/UbK2kMc8rbhM4gjiSH/XLEdyqfqvUv2Jdb8MWJvLXwhprzGWOOCGzgvZF82SUIrN5cUpSNS4Z3K/Iis207SDsfs1fsm6rDpGpaldQ22px6/Pdx6vaXluLk2HmW8mnXlpFJFEI1uLfbIiPj5LiOJ2LNG6twUsXioyUnHReSLjHGe2XNTaXXR38z5/+NH7UH7Q/7QHiL4ca98Sfhxo2u3vw90HUtOjv7qW8eO4N4yH95a3k13BiERqYyiRBm271YRqo7X4T/HHxP4E+HKeBvDf7O/giy1eOaOXU/G6+G4/7VvUW4aeKKYlfsuxJREyiO3Q7reJyS+5m9f1P9mHXrXV5fDmneE9TuJ1tknaOREmuEt+VWWWRUQDzHSVVyEaRhIVGEYR6Gm/A6EXw0lYNNhukaNZra71W3RwAoHzB3DZO/AAOcqDx8pPn4jFYtyfIpL0uv0PPxNDMJyfLdb7KRh/DH9p34h+D9Ttde0LStF0zUtP1EX0eoWNisEkdwsIj3AxIFXES+VtA27C6Y2swPh//AAVz+I3/AAlH7AXxJk1Xwh4ci1HUU0UyahZ6FapcbY9TsERVlWEOoEaKmFYfKNp4yD9jaB+y74p1e3Ed5B4Yt2SIsIBq9tHvdSeQBLhmP97rwc57/LH/AAWX+FOveC/+CdHj6TVtH8mSFdLknMURkiXOr2KgrKh8tc7hhRkkFiTxivMpU8VPGU5VHP4lu5W3XfQ8+GX5hGvGU6krJp681vysfhhRRRX2Z7oUUUUAFFFFABXQ/CT4k698Gfir4Z+MHhW2tZtU8KeIbLWNNhvkZoHntZ0njWQIysULIAQGUkZwQea56ik0mrMD9CP+Ilb/AIKAqCsPgv4YID2/4R29bsB/Fen0z9c0X/8Awcpft6arYvpGqfDb4S3NlMrpd2Nx4Uu3huY3ieMxurXhBX5g2OMlADlSyt+e9FYLC0Vsvxf+ZssRiYqyqS+9/wCZ+kvhv/g6I/bq8I2UeneHvgB8DrW3jmaRYIPCuqIm5nLv8q6mANzFiSACSxOcnNdTaf8AB3R/wUbslCW/wG+BQVTwP+EZ1j+f9rZr8saK1VOMdivreJt8bP1cH/B4N/wUnMRin+AfwGlz1MnhfWckenGrCvH/ANuH/g4q/a//AG+v2a/EX7L3xe+AfwW0rRvEpszd6v4X8LahBqVuba8hu0MMs+oTIm54FRsoco7jgkEfAdFVyol4mu005MKKKKZiFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//9k=",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD9MtR/4Iu/s4NZs+k+NfHiOvmhpZtStJQuEBV1ijs/MlGWGQvPIA55r54+Pv8AwT+8JfCmzstb8O+I9RvbGWOOS4Emq2kspjkG5GAiTCHHBVuVYgHo2P1b0jw/pXiWwNt410u3vdOheGzuYdVupzZzW8rEt5ixyo5jZHdX2OsgRhtK5DLwn7RfgH4bQ/s5+Efh58M/2dfDOt+LIdUiuvGfiGLWpokvgEmMiGFJbeERmWVWRIk4FvGGLAHf4+MxlPD14KU2m+mln5tu1revVaFV/ZwrRvK3l95+e/w7/YP+B+ueBri58V23jIa5brJNMtp4it4o7dJEje0jkifTmwzIly+9ZiWwFMcW0PLT1D9g74K2epajpw8XeJFbTYZZrnz7m3QQohACuRAfnJ4Axn5hxgE19I+KbTw9oOv/ABG8SWGpQsviTx/e2mneHtEjnIsona4MUSyqkizxR+YgMJ2SRlPmYYaN+j+Huh/BHwMun/8ACc6el5pVzqbTX7S6zva/tIpgPJd4iHiDqV5wrBW3LsLHOWOxGJpVU1J2aVremv438ziq+0jJOOzS2v8Ar+mh8K6x+yh8PNPV7q38QaqYIpU8wyXkIbY2Tgfuh82PXA/nVj9uL9kr4R/s0eAPhf4m+Gvj/U9cvPG2kXV9rK3ZjMFoVFs0UcTLGhLATOsmcgOhUHKsK+3fBvxg+DvhD9oK78VN+z7p+p6A2nWjnR7fxLKsauspnd1MsvmyeXIyRqjTkLFD84ncrKnxp/wUbnvFuvDNlplppth4ae/1i90DRdKmllg04TvbtJDG87vL5a4jRVZ2wI9xJd5GbXDYirWxEE20t+lno9PluXao6kb3S9NHofMlFFFewdAUUUUAFFFFABRRRQB/Qdot/daSsNn9nvL2N75XjZ7hgFkB3BQjudyFV4G0KCFyVwu7pvjB8ebrwP4GuNW0v4JHxHdqsqw6JLrVvZyXBEbu6LIkMzbkRGcIUDOE2A7mBr81z/wXjRZLPyf2WJY0tbxZXK+PcvLGCW2HNgUzkjDFWwEQYODn1Sy/4OerTSL+zudK/YanVI52OoiT4tTK13GYI4xkQWEUfmg29qBLJHIyxRyQqFWXK+VjMDLE1YT/AJen9M65RoVZqXOlbun+h+gHhrwX8ItB0jRreP4IRMmkyLbaPdxwaasenxOgiCQICVhJaRjM8eTM8s8rq0s0jPrfEOy+BOuXlnp3iT4V+HdS1e4gnbT7XU9NtLkkK8YeQHAPyF4g2PlH2kbsHYa/Pqx/4OptU0qd7fTP2J7iLT0hVLK0/wCFuXO63O5y43CyAKY8tUUKpQI3zMGATJ03/g6H8VsJb3xV+yTdahe3Swm5MHxWure2jZYlVhBD9kYxxs/mSYd5JAZCpkZVRV86rk1eo7uTv3/pnRGdndYhfdL8kvuP0euPCH7J19K1vqnwe0W8NjEYNPzpdq8OEc7VQOoccMDtLZUHoMGvy4/4OLtK+Feny/B6b4YeC7fRUkTX1uobWzSFCB/ZpQAJwcbm55OSc+g3bj/g5W0q4uTcn9ibUlLH5gvxovMfl9jxXyt/wUt/4KTWP/BQo+CjZfBG58G/8IgNRDfafGcur/bPtX2XGPMgi8rZ9m7bt2/tt50wGUVMLio1XJ6X9Nmu7DEVZSotOupbaKLV/m0fLNFFFfRHmBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//9k=",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [54,47,70,64] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [41,41,60,60] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD7ovfD3jSTSptKl8NeN7a01GIQ3tpH4ziSKVCCCCFu1wpBI2g9O1eb3kmpwzS6RY38Gl20d68LjTlkv71hkgeZM5YRPjjaxdNw+U4GKwLPwf8ADSziZEu/DHkqpIktfgnfOf8Ae3lvmGOwAB4IxXJfEPxX4h1fXrq20kTfZV1GWG1KWr6fbSQMzKPJteZQrR/wSnjJB5Hy/G4KriKjak2/U+pxdGlCKtodDqmtaDo+tfbFtJb68gwzy31x9pZHAxzHF+6jZuzck9OMYrITX9Nt9Q1HxDq3idPJvwMwWUZvLhYcAiOTGyGF/lAODjHHNc9pnhTx14ueTQNKmmgjI/dwwW7PHDtBUny0dEIyPuvIhyeB6emaX+zfo2r2OljV7PVZTFBJ9qtb+OOZYn89jFsbGzcIigLLGhDbsM3DV7lDA1Ki1f8AX3nlzxFKmjD8FfFfVfF7vpvhDS/PjkRzbtdSBXuMIP3ok/1ezOFOwTcspyMFT1Q+A2i+MdQu/FXjq1iub2/S2LQKuPKeLcchwckEMqlenyZHUY9J8GfDLT9JVItP8MmHkEusTF3+71Y/Meg6ntXSzTaFoV3HpktnPPfsARp8IzIBxhm+bEanszkZwcZIxXr0MJTw70POrYiVXY838I/BfQPD2Y/D+hx24ZwfLVvlUjH3V3YX147knvXQw6TeiAtptusqKObxs+SvH8J/5akc8L8vykFgeK7a9s9PuLeObV4l4jz9hilYxKcfxEgGXGAeflBPTODWLrWsPeSNCsrPjIG49BzxzXZTiuhz6vc5e8t4bFAqSSzTEEGeV+cEnIAAAX8AM981SZZWyAPc1vnTZ7k5MeR9R/jTo7BEYRsuO3WuhaGbOB+IGs6To3hmey8Q6DPqFlqMb2t5bw5AMMilW3P0QHOMkjrxnFfnh4j8Saro/iO/Sz06D+1dIlWCa6u4CvlRlmhkB5BxHIHBGT8rrnqK/RD4vfGj4XeALmTRvH/hrUpJrNVuNOeOzSSOaTC7WRi2Nylh94fLkEA55/PLxbqev678QW8e+Ir2S/s9d0ue0JeAvcTXF1IuXdsBiyiCKQtjiP7owxFfH57i6Tr8kndWs12I9tGDcZbHBSaNrE1s/i7x1aaaPtNrMzq4ljhhKof3uUbJ4JzkkFlwOcCpdU1Twy/igBtI1azmivbqy1W/aVJbZ0EEsYkCDBUiRUTGed2Scdeh16Dw7opGlaRY2d/bW1nFJrumzzblsYSmY1YnK7y24Mp6lSw5auAb4jap4yvdXsPAWjRWmp+cI76xtImM9xGLiKRWbPEmJFTphvmI6OVPwsedxkktLnje/NSsup9s/wDCDfH29hJ1P4l+KogT8wa98snjqNi/L35HSvRPDepabbC3XxToM8sqgm8kS+eRpyVIOfOLSSHJOA8vGSMgcV9pa78WPib4/smsNQ+K1stuhDQLbWd1bSDAwd7WdzCzA5zg4XIXIOMVV0v4X+LrjWYtd1nWrrUYYYdwMninUQzv2XY8j4TBPDM2OhJ61+oUfqqfuRsfXVZ1Z6SZ458O9I+DOt20MUGpLat/DFcI8Ozkdw+3OTngnv6Zr1DRfhT4btoUvba83wFQwuBdllAwDkPvIAx+VetzeNPC8Mcv9sfBXwizx5CyNYoTJgfeJ2cc5z3rzTxFq/hmfxVN4kTTdL0+NFP2bRdEtxBb78k+bIEH72QNyGbgHtya7oO7sjjaVxbPwta3UYl0nUfscDKwTVmkJZRyNyAn5mxyGIxznmm3UvgnwJpr6V4ShVt7lrid5GkkuJMMC8jkEux9SfpgViav4uu9UkKLJhCemB7+3vVKO0N82Se/WumNLuZ6XGavq99qspJICH+EAe/496prZyyHIj6d81R8V/Ef4e/D/wAQWXhrxj4ts9OutQheSyF7KIllCnBAYnAPsTzzjoa3tIvdP13T01PRtQguraQZjntpVdG+jA4NWtNEDutyrHBNF8qxZz1O4VHq15qGk6VcXOl6QL28EZNvbNOIw7dgWP3R78/StQG35Qyc9CMGvMP2i/j3p/wg8Ps+jvaS6ibuCI/aZ1KRFjv2lA29mZFbAAGAwbPaubF1aeHoudR2SM5yUVc+Z/2vfHHim/8AE15D4sRdQWGxTiyQfYbR3ZxF5TxuZJJVKvlWUBw4LZ6D5I8Q+A/GviLxknh678R3Tx21obuKKPKGyKOhifbxtLbnUkcjZz1Gfvb9oXwrqnx8+Bln4k8Baxo2kX1pY3tvPpFrYrHc3eseWZLa2SVwNiSSOpznaoklkJY7RXwN4g1TxT8O9fluddayv7wXtxpQ1C5lWZWYzBBMqyKSFVELAlRkHHGa+BzGM1Xc4vRrQ4rXqc8WO1T4W6M2u6q03jyax0fxRAlrHDYXC+c0wwYY2y25lkdCN4HVSATuOa9vffDfw5e3l1rGgnSdV8o24lknaV2u4xhiyJjyw/mBvmJBVRjBJrf1O7+GcfgfVNF8S3cutW93FaRLHawJaz3BaYsuGgQFdjYK5zz6jAHMeJ2vfA2rR211enVdF1PUDJDpviFA09y6xqA8sgVSAMJjJUFgoIJJB+f59HFnJKV24n7nWXxJ+EvhyFF8OWWmiWNdouJQ0jHjGeVx6Hj8KyNd/aHhLSWmlK1w+DzaWDuiHkYLAYH09K8stdNiVggjLdsluSfWtSz0naM42qe3X+tfr9PCxiz6GpV5jT1D4m+KdeZk+zXMYOcg+WiEc9gxOee4FUoxrV42+RbZSTkkuzED6BV5/HHvViK3t4MELkgc8mp0mjVckY9BXWoWMXLQbaxXkX+vv1UHj9xBtOPX5i3P6e1eF/8ABQH9rXV/2W/h1p9h4FvZZvFHimSeHRDMAyQJCI/PmKqBuZfOhCjoS5J4Qg+7pIjtgp175r5n/bZs9Ns/2jfhp4i8R2cV7YJoOrRWcFzEkiW8/wBosPMkVWBOSrRgnA+6MZ5xy46u8Lh3V7HbluGWMxkaN9z87PGeu/EDx34ki8W/FXxDrGr6tqNwZEvNXvJZppVGMgMxyAMADGBwAOmK98/YX/a68e/BH9oHQfhl4o8T30/gvVb0aVc2FzeGSO0eXKwXEZfG1BKUJ/6Zu5HYH0z4k/sK/Ar4teP3+IMfi/V9EmeXzvstlMBCpJy2wMvy7iScdsnHHFeVftqeDPBFj4q8Cw/BvT47XU4tctNIZwyql3APm82RjhVaPaDvPO1jn7tfP4XPKVWooxV2/wA/uPqcw4YxWHw8p6abeZ96fE/9sr4TfD29uNEtLqfVb+EgBLFA0RJH/PTOMA9cZr5h+MXxkfx7rF54r0zwxY2eb1Lje1mJZZDtKkuxzuABUEEYGxNoHzE2tWvfhz4WsEuE0Y3K+VGYdSupvNjZWUFXD8gr0II7dOK4XWTrnxBneOxhSO1AGyOJvkYNkcMOueMD3GK+ezfG5zWqclSHLH0Py/EyxEpOKf5FXxx8ddf1UW+k6744v5CtzHMl7FMRsCIYlUj+EBWPXn8q8Y+Md7FqGh3uj+E7aG9eS7nK6jcOy7xIIyTtOMNmMEEeh7Hj23SPgHYatcG08hllEO51J3fPkDC5PByevpnjNdRafsn+EVijTXIUklhJdofLPyyDK4Yk8nGfbmvF+sQhK8tS8NP2dm1c+I7HUPEV+ul+Hhp9wmkzX7NrkVtbgRyybXMRVsdiq8Z5YE4zijTPiV4n8Kahqmh+LVWS013UDZ3F9q0KvcQ2ouTtmVQPv7Y928g7uCckCvvC8/Zz+F9jp8MR0mVhLIjukM2xcpyd3B3YLDAHAKnioh+zX8MbXXItUm8G2pngXEJdI3lI3E9cZ6k/ia3ni8LVjZx/FnXOpRqp6a/M+z3PkgBDjHamG5mZtqdenamQW0jPvlOfWtC0s5JiEt4SxPAAPJr9f8zcrR288uPNbjOegq1DbrGN7uAB3Pal8S3mk+AvDc3izxpfR6fZQkKZLk7QWP3VHfJPA4r4/wDiR+1v8XPGuqy+HvhWt9aW7eclxcXAhZRG3BOFjGNn8JYk5xznO7zMfm2HwHx/1+BjVrwpbntf7Rf7V/hL4GwSaNYxjUtcawkuba2Vv3KBflLSMOeCQdowT6jmvhjxt+0j4z+Lvj7+yPEfjy5trrVo5Ftb+MAmxc5KCJXG1UyoBUdQOfWuF8XeLLvxWmoxXWqyvNZancxGWTP74ozKe3AY889PSvmr45+Pruy8WQ3Gh3532k1rLuQDI2JI20/i69/4fevqqtCjHIpK3v1I7+uqRnl+NqRzSnU6Rdz9Enn/AG2rL4LNr0Pi7wlqF7FqJtEup9PIaaAJkOSDjd/DjJHHWvOvix8Q38GeH38Q+PU0bxBq+k6Td3l0yWbQ26XJEUMe1Q24MpmJyD8wUg8E14J4Y/bN8QW2kwyT/tFamkUVg8x0+9hEoFyyBWj2eXtYFRxzweRgkmvOfFX7RDeL/Dt94etZp7iTULyKS+uJhgeVHIj7cHk5Kj8M9c1+b4HLKscfByWiaf8AWp+qZjnuFlgnyN3a006/ifbPh79p/wAS6j4KT4fa6NPv9JuLhWja50mF5o2C52rOY/NjU5ZvLB8tiWJXdzXCeIvG2pfBrxkvijw9bSvoksw/tPR2nCrIvGVUgcZwdpOSpHoQK8j+Aq634/kstF07VTG9ppdkl28o4WRYVJbjucjHrg8jFfR154F8L6r4LutK8UqZ5JbZ45bsOwdcr1UnIGOoyMe1fulfAYPOcqlTnBarfrsfhbr1KGN99uV318/vPp/wlp/hnxNptl4h8J6wNSsbqzS4srpWKKUkAK5APoOVOSCMHoRW/L4Vvby0Ntp9xE2PmO8ldkncdORjjPv0r5v/AGKviMk3wRbw94d1Q3MXhrWJbKXSLoK95aMXkkeNtu3eA24pIqlXV8lY2R4k9nl8X3NjOZbiA/Zwx3M+MKefTnI69xxX8x5lgI4PGzpJbM+jdWEFZnV3Hhixe3WVp4xaxyLN8o6sCMZIOVJ4zn0GelQtD4ajiZrzS47m4Usy3Nud8ioxYLH9cA46/pXP3GtpZXDaiLsAxybGtypPz7yrHpjvj8Pes/WPFOlzae1paaqbYlgsihSCgByW46rxjtXF7NN6IiU4bo+ub/R9L8OaLJ4h8Q3iWtrEoLTO3rjAHzck9hXzR8Qf2xPiJpPxGtR8KbTThpEMy+Vc31u0jXhIyRtOzaowcEdweScER/tF+K/jR4g8c3Hgrxbr9m40y4+/bA+UnzHbiNlB37QpIJO1gQeeT51b/D8x6rPq2o6xdanLLtmle4DGFNoC7EjHBwqjI/2fQHPv5lxJUr1XCldJfec9bFtT5Ynpfir4teKPijp95pnxCS31aJwZ44J4dttCCEb5EjZizAjgtyD2GBWJ4bs9JgQImgG0sxhVMcCRqVJySVzl8DByQTz34qldeKLyWwWw00Q2ZiUktcwhRLgYDbQFAPsDj8qoaf8AEay+0LpGr6ncSywhwZ7dQcA/JhSvQg+nTHrxXzlWvWxE+aoyYtzn7x+dPxU8dw2nxa8cxRxTwW114q1CeyR1+9GbiXYcY4O0gc9u/NeE+P5bybW7rUYrGXyZW3+bIoXLHjj8a/SjxD+y58KfiJ4g1TURZLY3tjeyK7xQI6zfMXV8fwkhgTg4BJA6V8l/tzfCCy+GHiCwt9Ku5riKaGUsXjCrHjGAMeuW4J7e1frGF4gweMw0KFOT5rJWa7L0t+J9JHI8bhqaxM4pwet01/w/4HzJI8Mqt9rlcEZ2qijr7+1T2N2LGZRBcZXaGYbOvTI5/KsjxKLkXTLATkscKFyScmvU/gN+xr8cPjN4G8Q/E620e7OieHTFEyqcyXMzqzFYkwd/loAz45USJnAYVSVVSvE2nUoSja35noX7Jvxn0Pwxc3Nhczqk89xGVVjwAEVOePZvzr6I8T/EgzabHGjqWmjwoXpnaeny+4rwH9i79ifxN8Y/jvfeCrae0lgtvDUV/bXZl/1ZllEahguTGwaOZcHGQAw+Vhn7Q1z9h7xl8I/DVo/jCSCeCOb/AEWSxkL5kPI8xeuPlHb1r6DB8RUqFBUp1FGXZ2/yOCHD8cU5YiUZcvRpXu/m/wAdjx/9ga0+Ikfxe8U+OtEtoIfDeoTPb61uuRG7XkZEkTRgAb3USspJwAlxIBktivrY39hpttdHUpHdLjEzmUBvLywO7IA4DAe/HfmvCv2UfG3h/wAFXPjG1jsoL2c+O7hxFLDvgl8u2tgoIPBXIdSB1A7V6zFqNvq9v/acj2jQPKHuwB80SswUjJP3dzBRk8kj1r8q4irqtmk3F3tY8LMKkKFd049DZk8QW32g+G7fUY1vGulSOzjk3GccH5iBtUcMRk9V981T1zT9au5JLk28cVjDFvtUWyMknmeXuuA7chxgo4XA2q/Q5JrH1TVdG023SC+tYbhY4BcOEjDMq7VQlRwcbtq8diTg81e8FX1ta3SWzale/Z5k8+Z42y4BLK5RQcOQgI65wvoRnxYcyOH2s2kjY1OXWrpxeX8MMl7LMvnXRkbapPzMQW27gCSMleueoxSaNpd/ZolxqmqebcHM295C6wk8ZGTjaOTtGBzxT/Evi3TNSdtSjt1ZcDG59qyZ+UdMY6g4Hp1rH8RNZanaS6bE7eVKiGIRAK2FG8tkrycjnI6A1jGnTWqR2SjTjsS6vpSXUQN0lpMqorzLIQdqHPzAE7ccHBYgcGmX9hoFh+4sjAiuVkt0iQkbMEfKFP8AEec8/wCOPrN7KuyNVjQyRkxmTlcgE49vUk8ZzwetZd9Pqd3bPDBrdoDJCE8oSDaDtI3ZP1PyjA59sV0qzQKfN0N8aWLXSLvxp4eUyxSgNIoCh22qBnHTt2zn1ryG41yL4kvqurTaaRE4WB4LqIEMUDEZBABHzen8q1fB/wAeJNJ0298GAm4t0eWOOYJyUIC9+n4HFYOn38dzLqE0TER/ayEQjlU2gjn/AIEa1wVSphcR7Vbo/ZoUYYjJqVK+nKrnlXjr4U+GtKu31RtAsYVT/nnaIP4jg8V1+neIPF2i/B4eFPg7r1rpMZ0+4Et3KW2x3U6kmQ7RwwBwGO7btQYOABz3xu12xs7RYYJN0szlAo6g564PYAmuET4r2ng3wtLpNvbCS4kl82SV8gc4yMY6jb+lfSU80xFVdPl/wT47N6GHwMfZwd5f18j7d/4JMfC/wn4c1HxBqVvqaXmotHZ21zPDEFjRYkkIijwAdoEg69Senp7/APtmeI10P4fTaXpeoi2vLyBo4JRy0Z5G/B9M56j618N/8El/jPq2uftFa14aN2Y7K609L2ZUB5dJfLA+70IkH5c5r6Q/4KD+KW1OC00nQpSRaFDqM8b7SPMG1UGfTGTx6dcnHg42EqmPVST/AKR9tw3WUeHH31sfO2gfDnwv8KLix8E6Brtw3kTW8mq3jnL3lzMEJZzjABBwOoAHXqa9CW+8NJoL2VhcSSXFyVWeadT5cauyuNu37w2xqeQfmORxwPMfHPirwd4wvbCy0m0eOxs9Og06C4i4DrESFcYOeCWOcc/lWtazaVBEqKY54mAEm+cghO7HBBBxU4pOdZyXU/F81oeyx00nfXc7F7C1ttPktbm6lFyiDzpWkyqLkNgcdBx3B9PWr+oyQ65p0+r215C8j/JJHboAFTaCCAOucN7gk+tYGh3Wk3tjO0ZeFZJdm4u0qyEYKkliTjnp7Dmo7m28DxWEMS3EnlvjzrqN5BtTlecHglgBjHf6VMMO5I4VFtWOtTUdekthZXENraXu/eZAjSxtHvxgdBkrzj+97GqxsvEd3GLlJGurhp9hhjTb5SkDOADjAwOOnU+tbk3ib7RaeXBbkIJRBO27Bic8DnuCc46ZIrLHiCyaae0OoXQaylDXMUagGSMMucN1B6d+d3PeuCVeEHZnZKNtjm/Gv9rz+Go9OvNMnt7uaZ0aNxuPG9UcFcbcMRgHrkcnIrgdc0HW47GO0vprvYeJZPPwyEDIbAYEZx0649Qa9OtIrrUdTN0Lu4mEdm7oL9xHvAdQWXGck84GMfKeeareKbLUn0p7z+x5J5wh8mARq4284JweF75PPauqlGE4XBRg0eFyeE7241mSLRdUeKeKMSY3EK6lm/I5A5rL8W6d8Vn0yRPCTrNKjNHMhf5t4HJGPvZ6f1r1fRvhD488b+O1GgaXKTDZmR51g/dIGOdpPReVYYPPH4VfuPgt8VvA0d1qeu+Hb20sYr8tLfrZmSB1YoF+fGFycgeuDjoa6Y0mmfoksRiqfDdKdJap2+SPm66+DvxR1fTZNY1a7Mk3nbPszqQ2MZJx2HJ96Sy/Z78U39vi9sxhl+bIIAGPY+9fR97Z3DvHc3Fs0DJIGe3lOHQfNhTjIDZGe/TmsjU1vIismnWzuvn+VEI1yY/nLqDk8/LhM++7Ga6YVnTdrHxdXGTr1OapuO/YN+GNl8J/HGq6raIHur2K1hcBvuYd+hOe7dP9kepr1H9qM3en6XJ8+2a/uFJ4ByFDN+nmEdv5Yqfsxz2Vr4ybW7+2UBbVTKZD91mIIOO3Q9u9O+Oms3Xjz4jaotkzPZaRbwxMdw2K0ue46nhevPzCuSpKU8Wp2P0PCYxYbhKU09bOx4ZZ+F54baKG30y4LRtmMCPcrJgbR3JPH45q/baLfw3g1HVbC7tESDakeVVJGydo6bgSduR0AIzXoOh20F1cTG7gZDEyIThj83GWA75LKce+B0qxf2WrPYrpg3xSOit5hUAntkA9M/59a6pTjezR+YVJRlN3Od8B+GbiN3bSm1KZ45HMUKxuybWUBeANxxz6jb1z1OzPcX+g6gw1TTptNvFUo8jRNHKkuFy6MhDcYXBwDke1bFhrnxJsIV0qy1O/hgRQVe0maMu2CWdgpyckhfQ7c/XK12W7n1H7T4pjle4kgIWS7DESdw3yjhuH564xnJBJ0hOKVkRaHQ//2Q==",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD5o/aN+Ag+G/gO6066kS5E3i22ks5o43UrE8F02w5JyVOASOuAcDOBkfAz4cWjWGoakLVy8EMbKS7YGGY+n+zn6A19v/Hv9mfwh4z0ZdA+Knxt0XwpZR65HcRzXM0YeYxRvGVAleMA4kJ4LdeRXI+Dfht+w78LEvtL1X41avr9xcxmFjpljL9nbAbHzRwOBkNjO/H0rhhGs4Wmej7WhFI8N8U/DvUdU8Z6mmjtFIN8NwbeR9rN5qB8c8Yx6n1p9l4Y1bwjC+o6ho09qqEBWFuPKJPGNw4zz79q73xt+0PPa/Fxj4D04L8P7C2htLXQdUs1e6uCBE8ly0mWKuCskaBTt2uSQWI2et/CfxR+z1440+dfDnjhtEvbi7KxWN9vX7OxAC5WUYYkgsdpxltoYkZPlVcvpd9TirUqc6rmup4BpPiu40S636ZcKZJ4QWWWVicDoQA3B5OT1OQCTWno+uw2xnu1vZUm8xTBFfNuRMYJ5Ubj2x2/mffrz9k271nX49butA0W6twjpHdaPdeRI6uyNny8BS2AeTuGG9a5rxV+yXoOnXIi0/xm1tdzLmKx1+MwM4CAMRIq4J3EHIXbz+J86rhKsVpqc1WjUSutThbO98T3Ynvw/nLBCJ7hreQHy1Lxxq2Acbd0iLxkEuueoq1r/iu407X7OARiO1FrbPOr8uHaFGdieAAWJYDtnHOK37L4VfHX4Pyi7l+Hraha61mzK2YS8SXym+1I2Iw5AEtqjkMFJVGHTcDyqeD7bxpqdxrOuanhh5dvMGdFBEMMUW9cD7pILDIHRuoFck8GvY3a1OeVCVSG2p1GkX0XiCzluNNvIJPKYB47iDpu6EN0x1/L8a6TQNTvrSMWfhbxLKsiYJtkuSwcEbjheQR2I/DpXEaO9t4IuptLt5JJII9nmLCmEPynk/MfbAxXX6NrnhzQLyPVdA1K1eRopWkX5URmK9CSoKryN2R0OOuDXCqMlomXTopLfU+hvhJ47/ai8c6bdaP4F1691R9JgiFx5lvEVSL5ZAVll+VQTLGGycswUHO0Y9P8IJ8UNU8XR+Ifjj4x1S30saHhND0PQY5LgzDHzLIqhQWHnHLB0y4+U/KK8a/Y3+K/i3XD8S/CGg6Rc6latHo7WtmLsqtsZ1eeSYKuSQ7WMCkqGKliwXBc17NY6nd6usZ1j4XajvMKx3Cm8upApAALDNspz/tYHJPJzmvVVdYSMXH3nbW7Po8DhHVjfmPVda+JvhzxdpV/4W8IaVrOnwappciyXuuWNwss5KqwjMcdsVj2/OpIJ6KQDkkeSx/AHVbq5trq88a2SyTuV2/2Vq6KuMjKk2eF6cnceeh6VsX0ljpiR7PBOuvub955CXtyQoHfyoz+eAB656kOvXw3po/wt1ZSyjEt3Y6nIFGwbW2FAF6ZwB15POa6v7erQekEdsMqje7kz8ndBv4fCeuaPq9lZJDHb+ILa6nAcIGxOkksjccnC5Oc5x7VNBZ3c0TJOzMQDjcMVn+E9d0Px7ejQtG1XTZbp33RpLcRYOAeBvIHPTk9+9en+HvgH8UdfkWSx0BJkYgmSLVLZUIzjIJkwfpmvqIzi1e58onJo8ri8NapdalNNFbrdqZ1HlhsNCAP/HuRnGe9XdP8I6mLpoo3hs3kc5BQox7Enrnr7da+mfh1+zH440xFtV+FEGo3dwS4BvYpJZnHRVCFh0z064rU+Kn7MfxV+G1pbeMNd+GOl6Bb30gt0W71GN5DMV3bSqksmRj5cdevUV52Jw0akHNM66MlNqLPFtM8PfEvTUTVPDvxa8Q6cpgPmLFr0q24cgY2ryVHAUckc9OmOy8DftFfFTT9OsvDvjDw1p3izS4t63//AAktss77duAMyZLYyfnIbnn66z/DyHUtNFzd3Gx/MjDx20K/uwSO5IyPvYHGSO3aOL4MX96Wtp7porKaPy5HkYLJhlw2FGRwSeMjIGc84ryHWqUdI6l1YVE7QR0Vz+1Fa6f4ss9YPwVl0rToBHOzw6pLH5r7ZEDorAoP3crgHHJ+vPfS/Fb4A/HCZPB9x4e8U2NrNLD9r18Q2LsQqP8AK7JEJCARFgqSTwBgAg8f4f8AAeh+H0jdfEl5coJlOybO0pklhsJZASQvODwD3ORrmHw1pNg/2G6hXy5TJIxhQMhJB+Yoqj3zgE5OSetZSr1pbo0p0azd5lvxL8Of2SrPWLi3b9oK9tJ5v3lxDF4JuJ3DFhgEJJyfu4G3pk5rI/4Zn+HOs6oNR8I/tCeC7yV7dzFY+ITPpqP0bBSRQACCARuXuBggVs2uk+Hb+e1uNVtPtqKfNEcoABYjg525A9AD3Oc1aHgbwsIzYSW0cSzShhLKznBOAoGD657dWo5Pdvyilg7u6LnwW8PeL/g1o+rHTfHnw3tplu/PjfSvG1pDFJGBOEVSuZfljlVfmBKkEA/Niuobwd+1n4tMc/w0v/D2srOqTMmnfGi7uGQHKnAEiMMMCOOh49K86g+D2gaiwaGykdNo/wBHVdvzDIP3sn0/Kt7Tf2fNIg1KPVNIiurSSP8A1Mqzcr2I3AjqCe3fB4JNJOjL4qf9fI3oSxlGNof1+Js+IdO/4KVWEAhu/hDrX7snAj8Qa1fIRjk/I5x25PqR61zni7xD+1rougrb+MvBL6ffXkWFtL3TdWYXI6/M80qjO3JwFIIxk5JA7Dwr8P8AxR4Ptrq10rxjr2mC6ufOnew1E25dsYDNtOSQOh7A17F4U+N/xO0NheXmv6zqnH7xJtcumDAgjOBKAODnPbGe1d9Cll83rS/P/M2eJx71cjW07x38P9Fvjo9prlnb3IhMxWOULtjBAJwDxgkdgORXeHx14Tt7Vbu6jDwSHLSSksDjv8xI9cYr8o4fhf8AEP4l6lJL4n8Q32p3t/GRItpkGTaxcK79GXrkbVzk/j2y+Av2gbvw5bfDG88Xa1baXYWyW1jaJqbMsUCRqscYJ3bVRRgKCAAAO3GCx85LRHiQqOXQ/Sm1+NnwQXRLrUl+Ivh+3aAPE8T6lCrxSAsm10zuU7gRzj2r4k/4KI/tc+F9X17w58MNDlt9UbTxc3t/dQIHhQySqIACp+YhRnJ/vjB4IrwrVf2efFEV3dy3uq3Fw8C751RDMdpIXkc5+8OOT37cWIv2afGsGnjxANAnjtnLASXIEZHOAqow3BeAVGPpnmsZ47F+ycIx3/ructaeJT91amv8Pr3/AIS7X4bKKfSYJrpI1je7LZl5yoJQ5GC2QD79O/pll8CvHnikLY2OvaRAPlldIbsySJGHPzY5IyVK5+ozXjsfgDfNBqtlpV8bpQkKJHchy46EBVXjIyc84zznpXhXxh/a8j8DazN4I+Honu9Ysrzy5NQFwFhjkB+aMYAYsuDk5xkY7VjhJYivPktc6MPWxUnaR9/2H7K2uWsRXUfEEHztkCFiCvzZ44PHb+tbWhfsw6ZZzR2MniaGKIoCIpMYC4I6kZbpjkk8Cvgj4J/8FG/ito3iOz8MeM9e+xnUp4rWyu5bmJ4Vdn2guWJ8pQHHzMQOpPTI+7fD9h+2deafFp+paVokKKDuub1oW8xS3zBjE5J4OAQp+o617SwzTtyM7XXnDRnUz/s3+H7GHzJ9cE+eUmjVSUHcD6/1p1r4T+F8AaS/sLmUwkRFSWCnOcYIIyRtOfTPuK2NF8Bulol34t8QWlhcpGwzpcSxhdzbiA0wbI5I+7k5yTk1Bq2r/DiJ41u/Fd7fzW0imOO1u3BJU/xC32g++7j88HrWAqyjoi44nTVmfqWp/B3wxM8Np4H1WVmIEc1u8sseT/tEkDoeD/XnQ8N2esXs4vtD0q8ghdfMt5L21VA8bKMZDHOec9O3tUE/xRWFgmgeDt/P+tvHWMfUbdx9OOO/407vxv8AEPUwYpNfjtkPHl2Vso/8ecMf5VtTyeUneQnjXHRHTv4JuprlNQ1nUo49ikSRxAhCCRyTnqAvB7ZNWbz4k+FPCE8kfhnwvo9xPE+NzXbSyMeeqcgHJ6VwB0W91KT7RqM0l245L3szSH6jdnHQfkK0LbR4beNdyhQBwqcAfpXpUstow3Oepi5SPEtU+J3gKWHyR4R1PzAkvk2+j3P2XYV7/uwuT0PQ4OevfMiv/GerwQDSvBuq2pmmjklki1m4ladQzLhm2pz16+oOMYz9GyeG/hf4G8uTUmtInRiUF1Ih2nB5VTznB7etOl+Kngu1kCaBpN9qD7cCW304xID/AL8u3I+mfbNeNHJqs370rDnVXNoeBeGNF+LsOpXh0/4WXLCcSKs92UmaRGXaQS5JGR6446YxXb+F/gr8U5rSYXunaZYw3DAvbXErMq4zgqsblVOeemeh967u7+Jni65DJp+h6fZowOx7mZ5ZB77V2qD7ZP6c5d5qvibU+dT8V3ZyP9XaBIV9cfKu4j05rrpZNGL1dzP2tmeXftk/DLxd4M/Zh8ReIfCmusPEsstnYaTPbzNELQ3V3BamQSAeYWiE0koOQMoMqcHP5f8Aw/8AgV4w1748QfCM/D/WYmW5jgN/cafK1qrqzebLI6j/AFQOzBXIxk88Z/W/xt4Dh8T+Cda0LTLK2F/faXcrZ3F38226MTGKQuwbBEgRt+CQRuwSMH4s0r9sj4YaH4bGu6h4uuLJg/kzw3GlP5ltKcHYdoIzzkEEggEjIxXHmMamWTi6cbp6H03D+FwmYQkqkrOL/A+Zf2n/AILXv7Ofj+58NeMyDa3ry3Oj6jZsPLlQsSQNmNrRlgrDAxwQMEV+nHwA/aosx+zV8PtY8VfF8xz3HgrS2uikRkneQWsQdnfa0jSFsljnJYtnPNfDv7Rnh7RPjVa+H/FGs+LJTpEWpxQw3N1aSxiWCSQCZ1jcI/KKO3bjOcj0bwn+138Qv2ftUs/gNpereF/EPhSwtra+sNKv/CFjc2sUYlZfLjFxG0kcW6OMhQw/hJJY5r2eGZvNq0cLPSTu/u/4HkcfE2Xxy6lPE0/gTS89V/mfWafHr4IalMr3vxHtCe0uryyRg9+soAx/In3rsNH8QeFNWs0vtM8VaXLbyDdHLBfRshHbBBxjg/lXx5qv7U3w/wDiOi2t18IfDelSWT/6TdaGLqCabc24rhp3ijIXIVvLYDK8MBivOdVu4dSu5rjSLmdfOjIeNnD78D7o6kjAGBnj6YC/o1ThJxo88Z2+R8BSzqM6nK0foxp+seCbvUl0i38X6ZLeMfltI9QjMh+ig5rb+yWtsPkIOehDZFfjj4y15rO4ltLqbMqEPHOjBcIRkDt69a+h/wDgnb/wUOudJ8TQ/Aj4y6jPfWd4Fh8PahvV5ILgqPKgYswZo3+VFPzFWKj7p+T5vF4J4RXk7pHrUa6qq5+g5aRUzGvJ6cUvlTSL5lxIqqq5bPGBXlXin9puW0by9D0eOAKCTLcZmLfKCAFXGOc55PbpXJL8avE3jDTZbfxRc3ZVC28w26iMr8pDAfwj0znGBnvj4rF8VYOjdUouTXyIniKadj1fTtF0nS5d2j6BDEzEZkjiGSR05xWnDp97cMWaFwSODt61vppmlWRxI4GP+mf/ANalkvtPgAaFA/HHy4/pX0tkdLcmZVv4cupMNKGH1H/16uw+HbWNP3u3P+1/+upDrjuGWOFBgd81VlnvrltwcjPYN/8AXpvQSujzX9uj4r6b8BP2TPGnxI0mB3v7fTIrKye0mMctvPeXEVnHcK2eDE84l/7Z1+Yvwy/bFsfDHgJfgxqPwwGsTT6kst5qEE8XmRwmMCPYh4LnBjywAAXht2QP1B/as+GXh/4rfs2eOPAvips2194Zu2EzR7zbTRRGaGdR3aKWNJVHqgr+frxqNZ8Qag19pouEuI4xlIJDwACev4isMXh6GMwjpv4r3R25bmNfLMWqtPqrO6PpX4m/tT2Wo63FpOsTi0s7SRGhtL2cRmDDcrjcQG2gAAMRjn0rz3x38dtJ8V/GmHXPD/iPbZQaIltc3ihR8yLNINrYP8Qi6d/XFeKa78K/ifpnhyw8eeJfDOpppWsQiax1mSFpIZwWkUAyAkKx8qQ7WIbC7sYwazvDN0uk6pG812dglHm5B4XJyevoc1w5LDDYPHxqRlqtNzuzTMMRmWDnSdmnr9x92/BGDxrr8H2vU0kgjvgshunUDzSF2jau0+nX0x9a6n4na5B8Mbe21LTtXZ4lnjW4WV1yoZtm7PHXIFYnwz+KmiX2jw3OjsskcSL5bYIVflzxjOP0rzf9qb4ltL4cuVh3OixidnRicqjhuMkZOfw4BzX7HVzSjTwD5ZXdj82o5fWniubldk+zOc+LPxWtLnWZTaakigR7WaNvvEjnov1/OsD4f/E/w1rM40rWrO3sIrnCW3iZJLlbmwkEZjSRhEWWSFZCHcCPzcIAj/LsfwbVPHGseL5mbzmjiduYgeW+pOfX9K6HRPEU+nItnJBamQnAijySMnueMfT3r89xmN+sTaPrKNCNOFj9oIvH1tpmhWGt621vZSapYxTQRxajFPHIJFUq0csbGOVPmBEisVZTuUtkA14tdnvo1vZ7u1Md66QS20V+heEl+WcJzgZB5A+6AO+Pn39lDwha+LP2afDGoa5dXupxzwTB5ZV2NaJHM4EJ2k5ETodpPzY2gkqqgesaH8ItLuL/AE+901Z5USYBfOkbzJMlTjnqC27HH8RIOCMfjWNw7oYupGPRv8zwcRzqrJLZH3H9nupny0hPsWqzbaPcy4EIySRn5hXgnxT/AGwfFOj+N2034S+DItVsrENFdPfTrEt1KH6RkspQ4AGTuUFuTxipdB/bh+JRtGlHgbS1doWFvGpcNHIQSrSAyHcoOOFAOCATnmvvZ8Q4GEnF309P8z2XiqalY+hIPCOpSoblpQiLySZBgYrjPH/xv8IfC2GaLULabUriNiGisXTahDRrhmbkH94CMAg+1eK+Lvjl8WPGUktvrHjK4js5UDTWUFyI4tn3mj2x8E9epJJwM4rgb7xVbqXm+2gLDc4jTjKspIBZiec7h7DHPevEx3EtWa5cOreZjUxfu+6eqat+0H8QPFt1d6U1tptpp10gWSFgS3lnh42z8pBHB7HJB618F+Ofgj8OLTU760OjRrPbzy2t09sDHHM0bMhfaOF3bQeMV9D6v8QLgxCTR7BJ3ubeRRIZoxt4GBhnHr6fj2rxzxpoQ8T6Jd65o2riO7N1K08caB8vubfxz0JPSvDpZjmSqXdVn0fCcKeMq1I1UpWV1f1PUf2UvFNxbfs+eH9Ov7KxhtLVJbCKC2g5eK2upoo/M45ysMROD82XJGSa+aP27/2avAfi/wCJWp+MvDetXljLewxyXEUkMZjBWJE+VUUFeEBOSSSSfavU/gR411DS/h/baa9ws8FpdSpazqojU75GlYnd94hnIA9j+O1478OWniaI3t/p6u7IfMcggnJBwccHv1r08vxdLB4idSab5vzM8vyivisfXjTduVngX7JH7G3xp07wtbeKxare6VqBnBZpVIRRIUVgjc/wZwD6+vHYfE/4GeEtX8JHwl4k8W2Oi2Op2U1tL4ivfLX7MJFO1trOuVDYOCVznG7PI+2vhh4K0rwv8H7K1QLHBZWMZyjYBzhj2GetfFP7WHhe5+LsGu+HtA+IcdhqhmSI6bJHi3uIDIJEQlOnzxI3APKZOMg17+XcTY7HVpYWEUk09ddran0ua5HDAZRGcqrt2SWrbWjfVJ6n5z694Tv/AAR4x1Dwfq2pW08unXTQtc6beLPbXAGNssUiZWSNlIZWHUEV2Hg2zRIvkCnrzj3rt7r4XeENUtrPS/EGpW4u4buW1ae3AWQMGIdS2SHQODjPIyMcV6h8L/2Y/glpYXU/Enim9ulhcubZLpFVwCDghF3889CK9GniKcXaT1PlIUalSPuK59CfsiftAaZ4B/Zq8MaH4g8JWcpGu3dlGLm7ezee2ZppftKzBHQKJpViLyKVUK/QqCPY/hr8YfCPxn8Ntr3gy2vI9OWdbS5juJo5D5gRX3B1IPlsHG0sqMcHI7DuPgV8Wfhl8M/2Z7TWNH8G6TaW7aCwe3urGJ3u7VwW8iQMPulCAVPU8kEjNfP3wuEzeJ9T8U+F9O07w4muavcXdlo1mViis4vNk8qMrjC5jIYx9EJcDgV89mNLC1ac5QfvX/U4s1y2rgqSdTeWp1l18QNbuL86bpUdvGrYErRR72Tjnk5wDuXqOpHWq8msve6hLZ3WqIIooS/2yckrCDuLEqp2jhm7Z+boMjPN6dr9laKG0+/LTIc3k7RbXZd+3cVz0y/AB5D8U/U/GukRWv2LVLm0R2YqILjcFf5trLlVIVxk4U9Sp5BHPy7pOcj5yNWUnc2Y/HWtaNqNsdBnEIixHHcSSkMDuDA/LwGyDg/7Rqp4uur7V45o9OmiWMN9z7SAyoJFJOSQenGeev0NUtU8R6fJp+yw0yAyuybZTKDtcbiV29QSATnAGfxrPu/E1zpcjyRDCx5V2kXiRuR8o/i+o9av2HI9dTRNvdj9Q1DX7yCOw0dIngt8tMkMGGOGAOSeM5IBP+164ryX4g+KNZ8AeKYNRSG6lttUhMlxIjgL54ZRLx6EbGJ4yXNegaT4yu/tDRzQs0u7EceQSVGWcDHIOBnkYBGT3rhfi9f6/rGoWd2bFHlbU1W0t415wU8vYGP9772Oee+ME9PsouGx7/D2Jlhcxhy9dPvLXgfxP4dj067up7PexZQrk5IXIIUDPUsp7Z5GPSvVdf8AjH4JgRrR9UAlPCFsAMTj1PvXjWnadqHhrxUyeItCnhEiROqzQ4A2lgcDuSH/AErmV+GfivUPGllrZ8X3psxqkMktlKgEZXzELJ+I7e4FOdLmimj63D5pSyrOK1OSu5tfjY/Qy68aWfhj9n3TtCiBv9RvrVYLaJZRhGbHLnqqKcD6cAdq/N7x7pHxFv8A4weI5/7d+w3K6rPGpQkHbE5iBUjOB8uRjpkfWvsnxFql7pvg5dQuC6LDGu3dwWIHAGemSc8elfMZ0rVdSvLrUbtW86WUyhWGGYytuJ+uTjHY8YFTl9WVKUpx0Z38a4yUMFSpJ7ts8nm+AU1pgaNDJNdyMxgErfKZcltxZu2ep7Zr0D4ZWC/ZQ2vWk1tNDIRNGyHIIbpxxjHRumMHvXe6BpFvMEWKLeznyi3llgr43Dk9ypBwOxB9K6KHQgloHaxkS4Vl3eQwaRshRhs8Z6HHHtjGB3VK8q2r3PhsFm9fBJqKTv3M59V8Q+LZ4beXWLqDSrU5t7COPiQKSrAnox9ux712eh6F4eaU6st3suG3yXlzLIxk3F1+cks2MqCDjB+bGT356OHS4JDdJKrTCQq+xcdeBkYyWyCevoMDBB24bQabGxOnPLCQ5W4R8Bt24Bm5yRznb7DoOuEarTsceMx2Kx8+atK/5I//2Q==",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [44,47,60,61] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [38,58,53,71] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9Vv7J0w8AoT6AUv8AYVlN+6WMAtwMiqun+GdeW+haW8QqJBuHPTNdNbaBcfaE/fp973r5s9Q47WdNs7RXtVj/AHhHysBxXlP7V3ilPhX8HbnWb1ZJDfRqlv8AZgCVO9eu4jt6V7T4s0ae3ujK0ykDsM96+dv+Cld8lj8GbbRXQs8QRy46EF1oW4HwnrervrGp3OpT7iZnyueo571Vt5B5oqt9sVvl2GnQXCiUEqauyQGgHBOKfG4Tcx/umq0dyrNgKac9yqRsxU9KtN3FZHG+NYF1CRoftEcW1926UkA+3HeuRj8PaZ4mvG0e9vtqxL5oeInkggf1rofGuo6ctyi39vKyPOFxGRnPNei/DH4ZeBLu1GrSIS0kWCmfmHIP9KoZ5t4M+Gmn6TqL3Ok6gXcx4cSscYyK7poWhtI4GIJU8kV1Pibwd4b0O0juNDiKSPJtcn+7gmud1CIwopY5ye1AGfcKVAz61Wn7VauWBAAqtMpbGKNgP2xPjzw4Rh7Roh3kZxhfeoZPHOnW/wDpNnC1yickowFeRxa8qyK2o7mtwf3wXqV71+f/APwUU/4LSeE/2ZPGep/Cn4WC4utXhtGaOQz7Fhf3Uqc/nU8kTJTlc/UPWfFena3n5XhdiMI4z39a+YP+CoGv2g8HRaeq5Z4kAIP+2p/pXzb/AME0v+Cwuq/tYaReaX41tIrW6tcKxa4DNIc9vlGK9Y/4KAX8/inwvaa753lRiNSsbfNvyQOtQ42KTZ8jJONw+U1LHcAODtNVwmDnNSwp5kgXOKSbLW5ahuxv+4enrUrTCVGQLj5e5qutu6HcnzH0FSRiVCxkhIG085q1uU0rHAfEMeWRIwztnBH5Grfw++K8+hahHYzW8siTDylCuBtJIOf0qp8Qh5wKDj98P5GoPhh4Gl8YeJ1tY9SS3NrF9oLNHncAyrjqMfe/SrJPZb3U5rmNFlJII3D2rN1I+ciqOMGtLV9LbToIpDOr8bMD6dazJzvAHSgClJas4ADiopbNlxlx+VXvL96hu/k2985oA/Uu08G66tq+sx26GO3UyP5nTA5r8mf+C1v/AASq+NXiH4v2X7QHw88Gm50zVBjVRbWWSsZ6sCG5+mBX01/wUW/4LG/DT4S/FOL4JfDLV3mvdSj8qWASGPyy/wAuBwd3X2rsPiV/wVNvtD+C+heH9W8MJeM+nq++6mwD8vQ/IatpHjTr1VFtM/Jb9jD9n34x/s1fE2K2XRXki1S+RGeaX7O0ALddmG3/AJiv0z/bw+Ill4Y8OeDfh7q8Pl3F3ZIXuDJ1O3djbj29a+KPjd+0U3j7436V4+QLp62mopKYbaXchGfoK+vf2oPh037ZXgPwr4g+HGoiXV4rSJEjRQxUjG45yP4Qa46k5crZ2ZZUniF+81ON+Fv7P/in4s3cFr4blZvtAbawt9w4Ut/eHYV6h4b/AOCcHxg1rV49PhuwjOrEM9ngDAJ/v19AfspfDiL9nD4XWtv42uY49S2IFuJEAMZOFPGecgkfjXpHgD43Dxv46ufCOn3SP9nOBJG+C47npxgV531ir3Pc9jTXQ+Wpf+CZXxc8M7dS1XVInh3iMhLTJy3A/jry79of4G+IvgvfJpGqWxkikXP2sxeXg+m3J/nX6E/Gz9oL4c/Aq/htvEfiR55NnmNHL8oBHOO9fHf7Xn7UPw3/AGmtLZvC19FFeW9ymLVG37kAOWzx7cYrWjXqyqpNmc4RUGfFXxDbyFMmM4l6fga4B/iZrmgXh/sC3MUzfI0gl6r6Yx6gV6d8RdBZ4yr3AGZRyBnsa5Twn8HoPEGvsJNbKYiLYMAP8S/7XvXqnIbXws8f+K9R1CVvEEzTxtB8iE42tkc5r0tH863SfGN3asu0+D1l4VsYr5tdDb224EAHbP8AerRnngs7VIYJPMwee1ADmbb2qrqEu3Z8vr3+lNk1I8fuR/31VfUbtmsZLtY8tDjCZ+9n/wDVQB6n/wAFgf8AgmB8J7nxjpH7TXha8n03VNNv42aOG1V0kKMDkkn2r5q/b/1XxR4O+Fvhq+tteaYT2iQtEYQvGOuRX6pf8FVWew/ZujupNPElvPcsLiUKS0aHqV98V+SX/BSPxr4c8RfDrwx4Q8Pa3HLqc+yLT7OP5ppJDwFwO+a9D2UH0PP9lTejR4h8Nda8A6vcRar4j+IFpF9nO64t7iQDHH+Ne8fscf8ABQqx+EPxPutG/tr7TpNnuNnexMSp+UjHTAr6j/4JNf8ABtJ8PPFfw+0n42/tZrqtxqGqv9outCYIIPs7KcYyN2ckGvp39qD/AIJlf8E/vgl8J7n4QfD74RW2nXlzCTFrjAedGwIb6c4x+NY1cPR9m9DpwsI0aiUFbU+Nfil/wVDs/i1Klpp18xtUdRNLDKS64YEYH1AFe4f8EpfijbfFn493skeo3ilIpW/fR/IQsbE5P0FfmF4r+E158CvipquhSQXS2s10RYyrHncc/KPTk4H419f/AAN+N3iD9g/4VL4+8Z+C9bGoeJowlk8VpiNQ/wAucgZ6GvDlSp22Pesj6d/4KveP/h3qRew0eRZ9SjZEba/QZ+bpX51N4qbwdNc3VrK8JKsfNDEn6Yrtviv+0H/wl+m3fiPxNpF8l5duJYGnQ7QuckEmvIdH8VW/jl3ittPEkjybDEQcBT1P1qKMY+1iZ1Yx9mzU8O/EvVvEd4lxDdSXbyTiI278BQf48+vH616Xc+EPGscMdxoEE/m7BJKIUyQnf9cVz/w58BaP4Y8S21jHb5Zz5jbgMjkcfrXvHijx5c+A7IahpdvDGxt9jFh95euP0H5V67SseYeLy/E7XbBv7J1qO83Rc4njKjPTirOk/Ea6u5HW1sPMIHIZiMV0moeNrH4kaUk2paHaLKk+4tEOTwRVWw0K0aYR6bYRKzfeGDlh6ClFXZM21EpN4+uIiBeaWE3fc2sTn9K6T4b6d4i+JeuR6Dp2iSbJJFDyIpO3JOK7X4O/s46x8T/FVppi+Fr5Yg4M00sGFwf7vHNfo1+y/wDsdfDz4NWt3c3Gk/a7m6jgKm6iUGIrv+7j13foK3jCLZzupO25Z/ai8I3n7QHwOf4Y+HWsLrWoJ28u0Q53jtkZzXzX+yB/wSP/AGddL+LsXxb+PVvdavregXovbbS7l42iikQ5AVduf1r41/YV/wCCmn7TnhT9pzUfiJ8QPDUd95XCaLbQzf6MAfvTBpSTjvgisX4l/wDBaD9oXSP2ntR8QeGNAsJ725vD9h0O1tLgmVyeEwJq1c3FXZ739kSjq1ofsh+2X/wUK+Fn7KX7Pk/j+LxJDaKIPseh6Un+veUEKqbQelfIPwy+G/7ZX/BRjRovip8Utb/4R7RpbgPajSd0ZaHOVL+aX5PHTFfNn7OHwX/aw/4KBftB6d8Tf2lvAUOn+E9FvEvf7IMEqA5yOkjuOpFfsL4N0vQPhpdWvhvTgbfTobFFXTxgRYAGOAAfTvXNPMaE4NLqNYahF3UT548R/wDBJv4Z3mo6F4g8YX/9oTaf8xg/dkzttIBb5ecHDcelb3/BQpP2ePhv8H/Ctv8AEmxtg2m24is9MeJPLfIChiMZyOoweor6QuvGPhK41S11a5SOM2zYXZkDDDac5J7Gvz0/4Li+H/Bfxk8YeHxZ+KNTji06E5isbhFRiR/EGQ5/SvM6Fy2PjP8AaE+I/wAOvGenXPhrwzp0EkUsqtHIUG6NQegx2rj/ANmH4Qab4n+KuneDdMaKE3821ppsfKCR096oar4N0nwxC0NlNPJt4DzuC36AV7p+wP8ACq81j4saJ4sjs2maK8UMj/cCZGTgc5/GroRj7aPqcNWcvZPU+ivHn/BH/X/A2lf8Len8XSzW0e2KCCF4+WZSwJ+Xp8p/Ovnv4yfCDxBq/h2W0iuUSeGbYozwRhhX6v8A7QXi/Q9I+A17i5l2RTRgxo/AbypP/r1+MX7QXx517UtevdJ8NXRRre981iQeUGRg4P8AtCvZcI22PMU59z6N/Yq/4Ja3XxM8Kf8ACQfEDxxc6RayjEUsQQqzZHHKntk/hX2Z8Dv+CT37NHwov5PEWtfEC+8SSTxKqW9yItkDA53DCA89Ko/8EyvEF54m/ZM0y+1G8Y3JuAHAAIA2nsQa9z1NJ1jXN7KRu6fKMfkKUKcHLYVWUlTep0nhr4Z/BzwoltHpGnwott/qxsUZ+uBWh4hi8M3M63FpcFc5DKhAA9O1eevFfuP9GnkbHXJoQa5Bkrzn+8D/AI11wpw5tjg9pPufip478P67+y98SvGXjax8EX3iDxf431CXTfDGj6PIrIxmJSOZ1Ck7MkEgEcV9J/sJ/wDBH5vgln9ob9p57TUPF3iBRe2Onoo/4lpPzAYYEhh9a6f/AIJa/sE+Mf2IPAeu/tMftu+Mpde1+WcyeE4dQud7QqoygVW7kgV7l4i/aCHi63m1bQ5NqBjJm6G5h/sg9h7V4FepUVGWvRn6q5uaa6HrPgix07TrfzIbdIkMQRwigAgYI6D2rm/i98VLxdXe8R4VdItgAU4wOnesjwv8UppvCs97dSxjbHk7VxXifxb+LkU9+8UN0hZjgce9fH+2qrVM4/Y0ux3WjfGTxP4uhvdMW5tkkVGMTKhH3Ru5+b2r4U/al+MfxHv/ABheJ4judPkt7aXapSJg2M4HVjX0X+zdq03jvxh4g0D7YEeCBzbMhxg7TnPrxmvkT9pn4VeOk8e6rcTX3mWiyMWUDnOeP1o+t4n+Zkyo0uV6HEPrUHii7+zXLjLZY+Xx0r9AP+CWPhXTp76D9wW8u3d2JxwARzX5leDbHxzHrjPGiExuVGY/4e9fpF/wTB+LvhvwJ4kl07xZcKgk0K4WMZwfNJTb/WvqspbqJOWrPLxlKnHCzaXQ9m/bl+JPi7wTpc/hTwHBaXNhfXam5N/E0jKdjj5SrKB+Rr4B8T/s96j4jbU9esLcR3jwNJKD93G4ZAH1x3r9Efib4Il8X/D668a+IImeL7aDaunA+65H6V83lVufPtWAVdxQ7BgkelfQ2R8mpSueq/sDftQfBr9nz9nu38N/Ez7b9sW42BIJQBnB7EH0r0nxH/wUm+BwCHSNA1K6XceEkGQPXpXyVf8Agbw9PCkUtszKsm4At3xUiaJpdtEsVvZogHdRyaLJFSba1Ppa8/4Kf/D3SQraT4B1Fy5w/mtnGOmMAVX/AOHpmiXv/Hn8P5l2/e8xT/jXzva6LYTE+ZGTjp0rovBPwv8ADfi6W4hvppImi2eXsk25znPbnoKuLdzCSSiYfxQ/bA1/9tX9qhvBWheI/O8A+AbtZvOgjEaNPEwPkMV+/nGOa3PHvj3TNN0q5t/D7rHIYiIgORn6V8k/st3Z+GHgO6vdDb7Pe6wjNeu3z+a7DliGyM+9es+E5r7xZfwR6jKZXkkA44/lXwFSvWcHeTP0aMpLRM9il+L17ovw8a3e9RZZ4AG+Ueorx7xPruvatcnV0uMqnzMdvapvicL3WL+08NeGpSjxuFmX72fXrXLfHH4jaN4C8Lx6P4ekEF4YQt0WO/J4zw2cfhXhKUrnQ0rG58G/i5eeE/FV3rXgy9WKSVWS/Z1Dg5UjjPTk1l/EDxc+v31w9xMsktwcvkda479m7Sxqmnalq7KWSUFpjuPJ6j6c4rG1nXNTj1i6KXH+qchPlHAziuiGs0Ruadh4e0rSp5Lu0twHfJYk5rPi8Y+I/C+uDVtC1MW81v8AMhKghsEfLisjWPGHiC1sTLBegNuAz5Sn+lczd6xqOqTxy3txuaKUSIQoHzDp06/SvbwlSpCrFRdkc2JhB4eSa6H6mfC79rnwh8bv2QrbQpdbtrHUdPmQ6gkiqC7qjjj0614Zb+JNIvZp7bS5hJIspZpVOQV//Xivjrw5rerx3c1rBqM0UV0++eOFygY/h0619DfBa3js7Dy4S2GhJJdyxzkdzX0VOrUc0rny9alTjSbSPQZrydwAWHX0qMzyN1P6UinccNUkNhPeErbZyoya703c8wbHdzxElG6+1bXga7nuPE1tHNMwi3fOEOM/lWTJplzaYNznDdK0fDN1aaZcPcyjDjHlnPTrmruyZJcp/9k=",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9bhBHHDhVAA6AD1NN7qe6nKn0PtWymmWisD57fmKc1pp6/evAPq4rxXibLY1szDWONDlEA+gpZP3qGOX5lPVW5BrYMWnDrer/AN/BTW/s9QQt6h/7aCoeLb6FKLZkJHHH/q0C/wC6MUNGjHLIDjpkVqLLpELF7i4ZgeMRMCc0puvDD8SRTOf4S+Pl/Sj6030HyeZlMiOdzKCfUinLyBGfu/3e1aH2jw5AMXkJnfqGQgjHpSLq3hVW40x8+mKn6y77DVNlOPbESY1Az1xxSTMJGBkQMQOCeauPr+mIf+JbaLEf4zJxmmt4ptYTi5jLE9DFyKPrDb2K5GU/NjX5fIFIZkI4hAq2fEqSfvIFRU7CTg0P4ns41BktZie7Kvyn6U/bMORlSSSMD/Uio/OjHS3WrD+NNLn/AHAR1L/KC3TninQ3iov2qJ0YKcZzx/nmj27JcGUh4h1LHN5/5DH+FRtq15Mx8y4zzn7g/wAKsS+CPFVpcG2uNEmBX7zY4HGc1oaZ4Ss47iKfVdY05IhgsspkOfbC7efxqI0Kl9UXOrSavcxvtlxIQiyZJ4AwKs22n6vKPN+ySMmcFlXI/Su2j0z4Wxoy6hPYvkfK9s8kRX8y3P5VxvxI+GHhnxjqdk3hD4s3Oh28Ubi8hW5ncznqpysi4x9M9u9a/VpdjB1uw46ZeRjzJLRwD3xUN4YrGA3F46xoOrM1T6H8OIPDulLp3/CW+HtUG/P2zVheyTN16/v8D8PSluvhr4Q1kBNek8CTBD+7D+HJZQM9eHnweg69e9Cwr7Ml1mjOtr/Tr0Zs7uOUZxujbcM+mRVpdOuJQJYbdmz3FaNl8JvAFs4it9T8CwqWyTb+BYLfB9co/B9+tRa38C/hlflv7Q8T+H45iwLxxWXkOOODxLkDGD75qvqqtcuNeSM2/s57QqJ49u4ZHIP8qqTMsbfOccV0nhb4VfDjwdbyW8XxDsZkmcuEuLqNBHk52qSxJAzgZPQVi+JV8NafcJFY+I7GfdFkKl4jsTk8DBPPtWcsO0tEbQrXepj6rqF1bWry2cfmFcbU4GeR3NcZq/iDxjcyPFbWcsOJSQwZTxzxXcp5NwoHlgg9mWnG3iUf6pP++ah0ZW2NeeHc8r8rx/5yOVnwGyfu+taL/E9Phxpn9oeOtSisrXzsG6vZ1jQFhgDJ46ivQRCoIJVevpXg/wC2JqPw98Q+MfBfwk8WfEHxD4ZutQvXu9N1Xw1o0F3LazINqSOJcrsyTgFSMjseQ40G9yJ1I9GfTWreFfiNeSzWR8VeNY5WO4QyWsUiZ+8BhHUfkOK5hPBvxtNy6ajZX13MpIjb7GxKx54DEZ+bpmvykh/4Lv8A/BVrw/JDa61408M3SEEiS78DxKr5BIz5cyYxn26d++xYf8HC3/BSi3AS+sfhzfKEAVbnwpIoz/e+W6zn8e9fQOnReyPKdOtfc/UrxN8M/EnjfwPd3pjTSdYhiaWEQae7vdMqkiMKCOSQAOe9fIXxU+Kn7QvwjQ3vjH4P+LLS25xc3OmFEwCRuONxA/DvzjrXiWi/8HEv/BQZGMmofCb4Z6hErAyRtHeQMV7qCsrckdz0961bH/gt547/AGnfElh8DP2kv2bvD2kaJ4kl+x3eueGdZmkurOJgSzokqFWPGPoSecYqXCNrWLUJxWo/RP8AgpRo3iu/uNE8N6vFeXlk+28ggvVYwt/dbAJB9jW3B+3j4ghJI0+TK+lxzx/wCvzo+LfhP4C/sZ/HTXNS+A3jLU9b8P30zvLeajCyTRYkJIYADcR6gfhXsfwp+J+m/FHw1H4r0Z1kspsCGcKylz/EMNyMcdR3rG8b2QKUZ6dj7Csv+Cj3jG3uUcWl6drZJcooA75Pave/BvhL4v8A7YVhYeNfEVnpnh3TpoAbPWdau0VriEcAIoO5huDEHABGO2Cfhb4Y+EYfFeqPPGxdLACe4jZQQ8Y+8OcdRnvX6OfCl/hv45+F2ieItFhhl0n+zI3tYrkhUVCOPlJxkdOKyqV6FJWkbQpzktC1p37CXwl0j/keP2ltMVnQeWlsbeLDd+XkcsPThf6DqYf2N/gn4Csx4svvjLBBYsmUu7ySGKEn/eDKhH1P41wvxX8PeE/hzeWOr6l4V01rW+kjR3jtRIVUjORjPr1FeJf8FD/idpfiL4b+GPgtpkIOlJK97ParK/lPs2mMMmdhz8xwB8pAI2nklKrQrL3NURJVKb97Q+sLrxz+zH4Uj+wXf7T/AINt4oFG4tqsJIz/ALshXkn171nt+0N+xMkjQaj+154HfYcFDq8Iww/7aV+R2oeGvDiakVh8O2ca5UYWHIGcf3s17B4K/Z3+EOt+H4dR1G3kMzIu+OJNgBIyfUfkBWypU+qIdWfRn6EJ+03+whdOLW7/AGvfBczyHZCh1KJck8Y4kJOeOlfOnxWXw54v/ah1z4gQeM9Pjt9B0CWHS5Q+/wA9ZMKCoHqJPrzmvHIv2f8A4OeEv+KjNtNefY3WYRyQooyh3BSccA4xnBxTvjv8QPhzpfwW0fxL8DbrWNR8T6zqqW+s2WuQJGkcSnDiB4+XHMYG764OKUqdNbIqMpy3Pzjn1a81JUkvLyeQoMLvkJHp0zimR3e5ynPA9KhuLBrC8MC3iThcYeI5VsjPH51fl0K8s7WG/uIwiTqDGfXIzWqqxbsbqDvYTWtZl0i3jFq7IZZlUkKDxnHetP4V6oj/ABS0LUNVuwkcN+u6RxwFIII+UdwSPx7dapeG/BmufFbxppngjw5GrXt7NsgSR/l3ds+nPftXsP7EnwK8B+L/ANtqP9nj40+Jm06whtrlb7VrB8m3nVMoBkd8kVommdlPBucUzxb4X/sS/tkft7fEXxx4L/Zt+Dd9renWuszr/wAJFcXUUFhapyQpmkcbmycYUMfXFeyfB79lD44fsd+FV+Dnx38N/wBna1aTFikc4ljlU/xI68N1xx3r9DIf2nv2df2cvgxo37G37EekaJBrc+vPZva21uXE0zNsmu5dwJBb77HJwxGMVkfHb4QwfCWWztfiT4tfxNfSyG7YX9onl2u7AMMP3tkZOD35GfpwYvF4fC259LlxyyrK7grmN/wT3+FsV9a694t1m1kETwG18tkBVwyg4+YEA8nt6V4aPj9+2lY/tU67+x54T8O2sugeF7xbXRoLOwKGW3bBUNJt6g5/TnrX2T8BPi98D/BXwdt4bLVB/bN7eiGDSI4PvMWw0rnphRjBwc9OMVs/ETwP4H+GvxA1LUH1Apd+NNDDR6tHFsuEmKZBSQHchBHUEZ6968PHJ1nv0NsFD2erXU/Pv9tf/gox+0xp3ii2+B3xC+EtxoP/AAi7pZ219bTsTKxP35CAwPzA8c9a1vDnjvx18QPDOm6l4/vmnuvs6lA6KpRWXGCFAGcVxXxDtvFPjaHVbTxTqtzqFxZalKsk9zcMzsyuVyWYkk8V0uj3rGxtOqkQopG7rgYzXTldKVNRV9NTLM5wlzO2uhf1K00yF2mmtiWXByGPt717b+zrqHhHxrpX/COz6pcWuoRIWWNhGFkVRzgls56dq8E1W7zI5eXjjq9UIdav9MuRfaXemKZSQkqNyB7EdK908I+kf2htNu/B3w/uI7S7MpviYIpIWVgxKt0q3+xv8CNL+NX7UvgzwJqdq7aR4R0RtX1lIslGk2LKik5zkkoO3IPoM5XwZPwh1vQdC8O/HrU9ehj+zteLNppEkaMMHE2eSvHBBBxur3r/AIJGaXPaeAPjL+0Brtky3pu57PSkEuM2cFuZE+bHGQB24296ibNoaJn5r+CP2gP2NvhhpGm+DtA8C22t69Hbx27NqLq2ZiACMcY5J65/Cvo34vfs7fCf4w/sgzfGey+D1jYyaNgpc6Mf3m5lJJO3Pr9K/LH46/skfEGD9p26+HXhy5uI4NS8Qnybq1YAKssoKsCPu8t04r64/a81T9rj9j74c+G/gt8LPijKnh+40lTrLPZktO4ACJIWBUgqM7epIzXxNOo4zUj7X6rC258oeLP2kbz9lv446D8VPBV3aazDZ3Mk8VqY2VmCqOGIYdc4B7e9fZv/AATig+LX7SWleKfjb4T8AwaR4t8Y37RaTMQWgtUkABuST02qzMDngqK+cfgr/wAE9Nf/AGoBqHx48UXMcllpcgmvLK0YqAIwXZQMjqEPSv0Y+F37THwc+BXw1v8Awt8JfCkOmXeoGK2EZYs1pAkWHxuyBuYYz15PNe1DHwjSSbVz1KVKCw0Vc9V/ZI/Z6+D/AOzdcx3UF3D4g8Rwea9/rV/CJZnuGYCVlcjhSwyMYPTmsD9tLx3D4r024uHvDugJHzP93p/hXk3hn9oHxFcand6nazlY0iO7aFOOV9ua8w+LPxi1jxNHJpNy8jy3krbGUc4UjoB16ivjcwrVsTinOTvrobRikjM+G37Qth4Y+KeleHNTnhk8zUkImY/dUnHXPsa9e/4KCftHJr2i2VtbeJX86BBHbtaz4d0Axzg8+n4V8qfDP4c67qvx5a28Y6RMDb20tza7gVKCMBg2Fxnqeua9V1xtF8Za1E2p4YswwSu4YC5PHQZAzXTWxj5lHTUyp4dN3PoX/gkL8AvAX7VfhDWofH99dfaf7SCSIlyqzCMDAf5lPXjk+tfcWn/8Eb/2ELXwbbeCx8NNWLWs++XVE8UXqz3BLbmBKyBApzj5UXGOMVzP/BO79lCw/Z+sNO8Y6O6k+ItLtp7kK33GxuZcZxwdoyOuPc19l28uGCserDtX3WDf7mPofnmYtwxE7dz5y8Kf8Eiv+CdnhCT7RD+zVp99MTmSfWdVvbwue24TTsp/Kus/4YI/YntmeRP2d/CsaqD8iWQVUA54AOABitXxR8b/AIj6T46k8NWfwpgutOSRQt7/AGyscsq7QzbIyvzEc8Z7fhXzTF/wURPjv4ja18P/AA1oN3EbS7uomvLhlBKo5Q/Ljg4rs5jghOpJ7HnnxO8A+DrbwV8U/iVo/hq1gt3nj0fwnp4Q/wChyM/BjGc/dDA8ng19TfAz9m1/hD+xLJ8LW1SHTtV8R6TcrqOoyWzSi3kuo2Vm2KVYhBITjOeOteIa0/8Awsr4pfCz4M/Bzw1dXXhu918zeNf7TkUGGOKMuHUqhZiTuByw7e9favjeKHUdImTe8P2WYRWkkbEYfaOcD6kc8Vz1KkYtanRsrM/mW/ZT/bW+Dmkf8FINL+I/7TvgmRvDJ0oItoI8xzXKhmSXcQckMFXOM/LjpXpX7WPxR8HfGzx3qfjn4b6i1x4f1XUTPBFK5Yxk7yFOeuFbFfEmufDvxT8QvGf9hWZklt725iS28uMt5WQu4jHXnJr0b4zfsv8Ajb9kk+G9Rs/F7atY6hGss0CEsLeUqSQccLjkV8VGrCa0P0WWHnFXaPrz9mPxPafDr4EalDp7sv8AaV3KEQnpgMMfjurgfhZZ6r4/8S3t07NJJc6hMqorHcFR2B/9BJ+leM/BH4ueILjUbzQry9Yxzu00CqMiInOR9M4r2/8A4Jz+LH1n4geMvD+uhkurSe4urdHGCN7Eng9uSKyqKfNobQiuVHsGvaRpXgfRGtNNui0skGZlU4IP+HSuG/Z/s7L4wftKx+HYI3ki06286RSc7DkZA9M459cVhftD+ONTsby68m4VVyVC7uBW7/wR9gbVPjj4k1d2O6CJI4woyJNxYk/hXLUSWprE+vvi98BfDnw/8MX/AMebzR2FxZ6WbRWRFBfzW2AZ9Rnn2xXw/ea5d2EpuLBihV8KCeB2PT8fzr9PP+Cl/i3RPBn7GA8I3VyPtmr3ECRRyEKflZXOB3PAz6Aj1r8r76drqdoYShdiojBbgscAD9a8z2jqVEyndU20fox/wSY/aG/aI8a6xc23jHxbc6t4Z0nTxDEb5i32QhP4SSSeMD8K+vvB/wDwUK+Afiv9pe+/ZasNSvhr9lCXS5ltyLa4lVdzQo/dh0r4n/4J66F4++ENnAut6M9vaXG0l5ThZkxkH2HOQfevFPhvdeKPBX7RmofGbUvCOqx6lceLrm6hu5LCRS1u9wT3HTqQe+a/R8LX9nRim+h8RmOAqyrSlGLsfqp8f9T8QPruh6/4LuLG1vNGv/tSjVLowQSDYcozrHIVByf4TkntnI+brv4RfC+08c6j8TNO8CwaFrWsuxu4tH8Xf2lY3RJzLPGjwo9uxfGVGB82NvcdH4u+Jdl4i0S21e4s54g9vG254yNxwM9fxrkX+NXwi0uK+g8XXV7DLb2Jm06ZIFMTS7CRuZmUAdRnPcV2LE031POWDrR+yz2D9iPwtpeqfG3X/FWn20r6bolssVo0pBPmuSM/TAP6V9E+LojNaWWjR3wS4a4aRuT+8xkgnHXGO/pXzJ/wTC8e2niT9ly/1zxwkGn6tq+qyR3FhBepI3lrkI4ZTznc2CPSvXfBp8Jr8eNcv/D+srKraNFGyvchznzCc5z6gDHrXnTqTqTSHVw1S691n8yPgnxj4U+GuuQ+MvG0ssVlYzoS0KF2G4hRwoOeWr6O/awvdD8dfDLwt4s01TLZanpoubV5FIJVhkZB5B5rgPhb+yX4Z+OPh+Q+OWuU0/crBbCcxmXD5G5scYI/SvcPiv8ABKe5+DFhpPhURvp3hPTDDHHdysZTDGoAwQpDNgDJOMmvncLRccJ7R+p91Xxadd01fsfFNzay6ZfQXFmDAQ3zNG2OMivrz9hr4U3lnJ4h+N7L5Yl05beViQVkY+3ryD+FfM8/huTUtQtrGNULTSCNRz1Ygelff8V14G/Zu/ZesPAn9qRy6vqNvFLOq8/vMAscnB6e3Y1TaaKjJpHyn+0ZqElzqE1qjgySsWRQuMjkV7B/wSCh07wp468Qarr86WgaNGjeSQEEcgnivDfGt8PE+rnUpSrgZAz069q2PhV4rvfA2ptdaexSN1CyhDj5c8iuSpBs0VRH2d/wVf8Ajp4X+JPi3RvCPhDWhdW+kaer3LQyEx+Ycj0xnAH6V8O+K9budOs7m4tpQrxhWQ7ehyK63xv42g1y9udVuJQfNALOmMfj7/8A1q868WTSa3NFb6UWdHkUTAdHFcWGw1pK/c6o1IKOqPoDwx8XfijbaPazaf4+1SLzLWMssd0QANo4A7Cs7x1+1J+0npFvHeWHxc1hpAeDLMrfzFUPAmm6gnh2A38ZGEVUL+gA4qPxB8N/EviLRbzXbDThNZadbl7yUZxF1IJ4r6Sm6rha500MwyyDUKiX4DdL/wCCiX7Z2hyDy/ielyU+62paZDOR7bhtf24YflxWw3/BTn9pC+sptG8XeCfBmtwXKkzyXNlIBJ7FCxAz1wOnrXmGm/D2PXZHcXaRFMb90m1fzNJqnwp1DTkSa2eOcyzLFEiThtxY8YAq1Kqn8R6VLGZHP7K+5Hpdt+2b8P755Dr/AOyxZxb8BW0fxLPbEDnJwpwT0x6c19F/Ar/gr/8AC34V6dFpyfBPXLVEiRC8GsrO2AQRnzBk4PPXH418gfHP9mz4t/s46fputfF7wcdJs9XYjTLp7iNkueh+XDZPB9PWuK0y+0e6j3rdQj59uC3fijnmmnc9COF4fqr/AIY//9k=",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [27,34,64,85] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [53,42,74,70] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD8wtV+L3xN8a6jaXFh451H7VJaNYTxav5dzHKvlom3bPKY13HcxYkD7zZyAD7vptr4oufD9r4o1D9mLSr/AEy+0eG8iufsESExSRJJHLshlYjMbAkZOCeTXzf4U+HnivSfFWm+MJ/B0EUkXi220qHQopoXSW88suB5LCT5PlDOjKY8OVKEcD1T4J6H8H/iF4KbxP8AETwe8/iOPTltjA+n3UNvBHbmJIiPJKKMW8OwkAjkcFuR21J4aVkrr8THMHia81KokrdlZetjz3xHqXjnT/iF4l0/wZPDc6dFFfldMubQRNHaJK9om5Mn5lQDAJb5Mr82Spk8N6V4L8Z2MPhrwv8ACHTpPFl5do8R+0G6ie0jihlKeUsSoGxE+Sq+YcuJNxYiupHj34Q+FNUuLGx+DWp6n4xNzEmjzw3rNaXcR+zw29oIHVneJYYgwcqzSSF0KsrBwfs/+KIPCXhjxLc3fweltLi88My63pFy+q3qW8i219HbxxvGssbGIyO8Kylt+9nG/wC+F6FToQoKc4Xunbp6M9agsJPBxnKtea3ilqlpe7emuy1dtbrYyPjPbeFLvVfCSeGPC9z4a1TQtLnj1q8hvLieXbGShhjikcorKEnl279rrcLuck4HFaN4A8Nap9uj0zVNYvLlZLOOFHiVY3088TXM5Mh2ok/2KOKPaVmMvDo8axv6tonwP8f/ABE0fXPGhi0JJfB2staS2mhypqAv0hdFuC6MxeTKyyOVba8qxFSruyKeQ+Cfxni+GOl2t9oHhuz1nUftB0+1uC0onJDSspBZcLHm4YbE2sw8sMAVBoo4mUpRjCmtfz7XbPLxFFVlKUZOzu3FdF6dC94t+EHjH4c3Wj+Hdb8TalZJ4ytozFpzTxXGGREjyyRO4XYsx2yOgURl1BBjLHK03Qdb+Ffji48I+JPD+qXV5Y6ybC7ubmyYW6SARnAZH2uxXDFQytsKYK/ervv2q7j4y3Hw18Nz+M/BcuhaFqWn6dq3hueXUDcSPbLbuwQhGKwxxJfLlTGpUzrnDOVpfgD4i+KHjTw7Z/CDwf8AFfSvDPhzSrs31zLb2QtRfXERtRFJHMkDFZybWBwZmIDRqBuVI410lTrNOdSnbXoZUlCUVSVXpbV7+T+44v4nm00/z01CeLxFZWX22HEWpw2st3GYpBC0kMZLrtlSGVolLgmPaxKguML4JQ+F4td0v7B4bvbzxFLaXbafFeaw9rieJZWVSEhy+9vlZAclFADIW3j6R+B0Pwj+M3wo1H4a6l8YNJfXNb8JyW95Yy+GLmSaJgIp7J0u7dHjlUOtssgnyEw2wmVYZh474Qj8J/BbxprHh3WfAkPiqUm605Ue4MQgG9EN7DhlM25Xmg2sqmMruWSMuzJOGjSlPTp0f5/IzoKVOooy1XrY4+W48ZaxdWun+LtMsbW1a3XZBqelrGzsbhiUPkxoXbfL5hGM4CMzMTk9ZbfEnUrjX/DXwxZ55/K1NbrULa9tLnUJ5LwbkE8aCRBOWZnMKDYmZEVndssMDWdI+I06QXuu6la6nIIHW1WLy5XLyHylaPy2DGTcQy7erBc8qANPwV4V1qHxZ9r1DT7C51e8ubS50iOKxImRbaBxLJHsDxKuUUTK8Mqum4nYDk+hXUKVJynKEUlu2lbzYsJWw06clNT52+m1vzv+hmN8OdJ1fTbO38NeINMh1e81iDTtMePWY7TzLaTNuHMpmfCtNM6vLKyIscBAd/MATovDkfirxf8AFVpbPxnBDf3lvJqsNqdLSG2JnjRvLtwp8i3QOzxsD5KW2wplQjBNT44y6VqukReF/wCy9C0F/CgLX1tdahBbalPA72dtawFJoFkle1S1CPtHMYMjRxMZ3fB0XxzpF5bar400+ytItH0aLy5vs8s141vDNKsUVvuuLiKNlOxArbDIiuXEqOqunK+arBSVSKv2aOrmwXtYRnF8ul7Xfrv1IfiH4W8ZeFvC4u4dUuI49MtWOq+HdVlnt5hCbkKC6I0b74pp402sAD1AUDYPfP2KdQ1G+8H6j4iufEfiC0t7Y3U+v6d4Ve8NlpxklkAE9pE0cFqx8qRlYuijMe0bhke2ax8Gv+CfupeIj4j+Lnjbw/bz2citG+teOb0eZHia4ZBlpVV3mSBVLLgSTB2VlDsnrPwn+Lf/AAS5+BtnbS2mtfBDxJb3cSW2otPBFqE9w8E0sTys01rbyu0kbRyRsZnYbJPMCtIIU8ZzjKiko2v1e/ofQ4nKcLTr1Fi8VeSdla8lv8rq2zufnj8TtI8c/HH4qa1q/grwfNLfz65e6doKRWsZfWorC0867MF2LhA80UL21wYkcsPPjGXK7TFZ+FDefD9NUtPh/Nq2n6dcWlgNREaeZqeo3BW4n0zzY3drSdI3/eGeRtnkESlGcRD7w+Lv7b//AASo1Lwxp+ieNPg94Bv721uLkR6rD8KY79VtSQ6B2EMibhuIHyxlAgB3jbs9I+Gv7Qfwp+FV1e3Hw9+BPjPTm8NzCyvvBdr8JNdsrP7Y9gLh0ulSB1tXFqJbpS4YbII5PIWNjGurxqoRUKqUbLS7X9aHBLLcDQqqeHr83vNfDtZ2u03s90fm14l0Cb4e+FvFvg7xL8R4Cms6K0dvrMGqzSadGsUkUd0TLJHI8pdbFkjREPmC52kAgR1D4G1X4lXepaDrHg742X+peFdVTRIL3SrG5u4DCLad7KKzuVmQJvjsoJmiZN4WCaIbhuljX60+Ov7WOv3P7UHhr9qrS/2W9c8O3HgeSaHV9M1HVdN0WHUraXTdOMsUNpqIieQ3cFw8yx+VKt3HqARI3KO8nzp8dv2rNf8AihL4h1jw14D1yyupfDN9bXA1C9trG2sJ5VWJZlTzpRsQM4EZGRv3Bgy7q544yVaMoUpJq+rTWj3PdwWB4druUsRUmpxjpaDanJ82j1XKlprZln4efsb6t4++Fuo+M/GWp+LNK1SNr238L6bpvwy1HVZdRjjhEkTSz6aZFjSa5MkR3CQReWZFDKy58cuPhJqnhm517wt468Tjw/qlhptzc6rpXiG9uY1nSGK3byUT5g9ywu/lRsFTncytzX3F+yD+0v8At3eNPhNoPh3Sv2SPEHjiPwdYvosPjCC+1m6mljiOoRwtugheP5I5nTKuY2NnyvzXCy/N3xO/Zl/b58VfE7xDpt/+yd4+v9E8VeNL/VDpraTqsMCzSsHKPKsaRouViO5wOE2qwwa2WZ/VoctSUeV93/wTwMwyzA8ylhozv5r/AIBzH7FKw/Aj48aVc+KdKm0bRfEN3pumPq7aDbXlhJpl3qptn1B11FLhUjLWdxCSY1YHcyMMZbof2kfjf4IbUj8cv2a/E8GlT3kUsF54e0++gs75LW5hSW1vZokkMVtLDIlpIyxR4V3aPziI1c9Bo/8AwSO/4KU6PeXt34Y/Zws7TRNZntJ9T8Pap430+4t7o27lkWaMXKFid0ilmBfbLKAwDtnnJf2Gf2mPh38ZoIvjf4D8O+BLHxNONA0jV/G6xajosSCGL7LDPLYpOpdfs8QTdEFLh3IQIQOB5pg5TSjWg32Uk39ydzLC5fjJ1fcoyb9P8z5502Hw1J4Wls0tNUufPEjWjQyopbkv5hMrEeWTC0ZO/egiMvluMrX0t8PfBGh6t8NfiX4j1fxjqet2Hw38HWU3hK9s5o21HSI79g20va3PlvGrRb/tKu8phhWbylbdaSetaH/wQD/bK0+O4WH40fC670q8tCG0uy1C7tYH+dp42Rxpsmz94wywUuY8qrL8rL678Kf+CUXi/wAMfDy6+FX7RPxn0u2m8SXxj13xBYWKNp19NPBDNFt33cLyywzaYieW8AUrqEroGzMF8nEZ9k1S8amIi182elRwmMppuNJpvvY/Oy0vfhx8QfFia98a/DPijUtFuvFX23ztK0F7aW4sNR3C4U3pimlX7PciGKIsJwrM5EUm8xt7N8CvCP7IPjPx9L8Pfiv8OPijp/w2kvrR7a90LTbIX9napbQxSaheTSaLEmqWn2rzJEMaxylIHMkUzbQfsHSP+CNvwx8DeO/K139trxJfWd3LO6aRYaRqBhitmeZ4oLN7G/EMXl+dHwyycwghEywPfar/AME5f+CcNld3V/Jp3jHXLu4nWVLuaPTJfLAIKq63dkROAN6kyrIxErfMSkJjwXFeS0lG1RtLtF/5GNXLMwqt2glfzOrvv+CXnwDvdHl0HVdavn0OddL8zQYPDfhwWkzacZjZzSRppG55l+0TeZIX3XGVFw0yoqjt/D37Dv7K/hnwRL4ItPBOrS6XPDbLqFrdfEHxFFHe+RMs0LTQR3qQSbJEDoDGVR9zqA7Fq2Pj5+1t4P8AgfJqOjznS7m90u2iudfk1XV5NO07Q7eXzPLkvboJIweTypRFawRT3c5jfyYHCuyeXfCb9rPx/wCK/gbe/tdeKte+HekeBL43M/w/0D4iz2PhPVPGFpaRt9vXTbibW9S8+8t7qJ7U281vbwyi5tpRdR5khj/OcFlvF2NwqxFK6jdWvZNvo1pf0f4n1GJzDJMNiPZ1Lc3kr2L/AIV/4J+fseaX4ku9CT9n6y+weXBd2s97r2oXcM7nzo5Yfs01w6BEUQljsBkM3zFti7fS4v2eP2ZtB83TfDf7Pfw8tmuIx9pisPBlhCZ8sG/eYt8yHKqSWyflHoK+e9R/4LffsSfaLXxR4E/Z6+It5rtnplyYbXUdHsoA9o+ySdUMF3LkhreKQtsIVInORyDyvwl/4Kl/Af8Aaz+KWtW/7VXxJ1b4G+BLHw1KPCuleHoNR1NtZ1iUlYrnUb3SxbX9tBbN5TraWphM7MRJdiNTDJ30Mg43xlVe3c4K2spT/RSbM8RnmTU6X7tqXWyXXr0PsPwV8JfhJ8OdVTxJ4E+GfhzwxqQKZ1DRNGtrOZdqoiZliRWwqxoo9AigdBXnX7UWu/tXDxxp/hH9l7TNGk1K/wBIku7zVvG3hO6vdEkkS4jRorm/s71Li1cxyZSNbS4MhX70aCSSL42h/wCC1fjL4YfEDxVoYt4vEmj2evtbeFJbRLqHRbvTIZobeIqt5DLq9tJLD9ovZLu5utQbeI7dbRRIZ4/uP9lP9vD9mv8Aa30uR/hR4xmOp2kEcuq6HqNg1vd2ZY7SpWTCS7XyjPEzqGGN2eKwzPh7iPJZKtVXtYd9ZL5rdCwmcYDGXhCXK+233Gr4U+HHxWMGjeM5fi9q15otl4ZePxVoA8OwiWa43CZrmGVbO1nSREDwf6jbICpWGJkaR7n7M3iTQYfANl8MrW41KTXPBmkabp2qWusz79RiL2MEiPKWfzCJFIIZwCxRgcsjYs/GF9Y8SWdv4V8HeN7/AEq4u5GS4lszClwts48mSVA+TujaVHBV0YYLDzCBE/zT+zjojeFf+CjvxV8LeC/7d0zSrnTklsrie7+0+beWFro8lys0VxJJLceZ/bEMrzyCOX94vlzEzSkckaax+WuFlGcIym9N7NJLvs2z08JhZ1p1Jc91FXV/xPtEvpLIyXNsBeuxPkmZ/MY9egH9a+R/+Cqnwz07xZ8HfC/hzW/iE/g/wxqvxF0+PxtfPdPaRjSRFdyTIsvlyxLPujjMK3G2J51hUncyg/XdtcDUIXD2FtG5hxJJNCR82OdgY4PPQndx2rw39sC20eym8P8AiKTwZb3zWK3lvBfRRmOcTzeQ0cAYqsMYlaILveSNPMWFDuLrjxMsryw+MjUjutV69BxqzpTU4OzWzM/xv8XvHniLw3JF4f1VtGeOz8yK0tp5JQ1wpWRN0x2Ps3qAdoXehZWBDYrg/g7430f4xfBLQ/ipHqdldX+sWiXF7d6ez+S10f8Aj5VVZ3KkTCQMrMzKykMxIr3nwT8H/g+mlwx6nLdeIb6C9iulu0vJoQZY40QxIkLIrQM6u/lStJzKys7qqBfn3/gj7+zr4/0L9mPSYPjPdeEfEeh3WqPcjw3qVnZ38unWVzDb3VtqNhKHKzQyRXC3D25AkIuty7J45Le49nC4CONwVaV/fi42Xe97/caKWF+rynOVp6WXfueTftO/smP8W/jd4G+LfgvTv7KuNM1hP7f1DwxoSvrd6yFLqCUXk04jgMctjbxRSKsUkRuHPmuu2A+lRn9qj41eJL7xV4J+Humxi0jhsrjQtO1GNbPTzDFDbOjW1tpSvA6NA4B8/YxJPlgtX09+2/8AtL/C39lj9nKP4q2Olt4w0VtcstM1ZdB1SO1l0fTbstC2oW3nL5czRsYlWFXiDGUHzUVS1Qfsu/FD4c/EL4EQ6honxO0LxY6xWN9bXmj6804tXurNJrmynjJOyWG7NyB94mCS3y7v5hr15fWoZDaVrwdtbP3WvzR5UIKWIdTlfK+uvxHytp3/AAbA/tq/H7xFqvxd/ag/ac8Lad4k1i4aeURwy6hcSEqmBKyJFFDyCoSLeirGm3j5V9E/Zy/4Nt/E/wAMvBPhv4n+LrHw94n+JOm+JruS+8KeMPEDWvhIW1u86WbTwWVpPc6xDJIkFx5MlxZhopEjuI2EcttLvfDX4Xf8FhP2Q/C3h3wn+zn+3Tofi/w/4VkS10rwJ8RvCkYtZ9MHmGOCS8jEt0oQyKEjWSPYkccayLFGsdcD4/8A+Cmn/Bdv4U/Ea4ufiz+xrP4q8Javaw2Gt+FPBjTSRxeXJIZrjSr/AEh21DTTNA0Y33ct2Y5EZ12Z8lPv6GeQzD3MJi6fL0V+V6dLOx8TVy6vhlzVaUr99/xVz6f/AGQf+CaHgrSv2hrz9t749/sE/Db4I6XN4B1Ow1nwAvjWPWoYLubNvcXckaQrp9rbPp/nRNHC5QrPIZEy7EN/ZX/Zk+GaeA9S+B//AATE/a4+Avi34dXvjOT/AIWbN4Wt9K1HXLLQLprsx6bPeqNRi1Fkjllji+3Qq7IjDztuUHyD8Xf2orX/AIKR/DSL4afFT49fs8arZ6JqV9Hp15+1CV8EeNfDF2twTLZ3Fzpt7BG8wZLJoWsbCS1uVtJPtn2S4to4Z/O/g1dfED9hjwZ4++Gtn/wVQ+Gvhnw94006znbxb8F9c0bxBd3WpSXscUlrm3tV11Hisjdy28aRx2/nSKDe2nmyM26p4uL5pS95WstWtH5jgqLoSlzLTp1forH6g/ED/gnt/wAEooNN8K+NPE3hn4aRnS9c1Hw5ok0WkaJYW/iLxHJO0CWMtvawwWuo3cE9tNAlm0bDzI5UdC6Pj8zf+Crfgr9l/wAReK7/AOC3gTQE+Jfxr8S+NnS6s/8AhDtR07WPD815bK7I+qfazZ6hAZLJWhhnhmMFvNcbZ4gjGue/aS+Bv7V37YOqWfxh8c+ItR+FXw10Hw3qPg74A/C+2NxFNo/h9tIu4lS7SOdmg8ywgAu2keSW62vAyRxeUq/Zn7Efhz4QeFv2Z/CmkfC3wHe6cLXT449Wk1LTlgupbqJmhLTq+4pMHhYmMyuyK0ZyFZCfKzbP6WWYb6zKftJRlayeifZ/15HbgctqYmfs0uVWve3Qs/s7fAq5+EPwb8N/DrW9Y1HUtQ0bSYYL/WL5pJWuJgMuQ8zs2zcxCJnCrtUAAADntA8B+KfCPxnfxhdtp+vaprXjW/uZL23sFsDpGjS6VBAkDKZma6LSaZYeZLyWcgqkaIAv0DDeTrOI7eWZ5RkBw6orA9yuWPHse9JFp9wkzXd5q0a7QSMxnA5PfJ4A+n41+PVMzrYivUrS+Kd7/Psfa06EKNOMI7IzIiba3h1B7IoZSPmCnyt2cddpPHJ/pV+bwpY+JdGutM16zW9tNRikgntWhE0F0jqQ8b7yEZCCQVYEYJHSpgsU8AaW5tp4nbKMsIJ56nkDH1H50kgRG+xhrj7PInzyqZHU8gbCoJPOfTHXJFYwmlqhuLPHPid+zFrEdu7fCfVdUtAwt47nTLiW4AZYVK83XmO0wbgsshZSXkySrbR5JpVz8bfhbdz32qeN/EelpeXVpp8WnXUkIsFmS0eeO2t8xtCW8rzndoSzN5LqzEW+2P670jwxp286dpemRyRug2WzW0YwRnoEAOOnUtz6Ul1HHBZqV0+J1GDHGkbbF2n5eXcAYIzxnFejSxtVQ5UzJ011PgP9snx78Wdf/Zh8XeEfCOvWk9zrvk2j20OkW0kt093dQwyIAI8BpN7cpht7lx853HC/4J+/DzWvhD+zqPD13qmsaXqWpajff23Zwa7Jb+RPHM9sRE0LbVYLAv7xW3ZGQ2NoH0v8Tv2cfg947i0rTv8AhUSW66Bq8V/aWtlrV7pdr5sMkcsJZLSSFZgrxxuqtuCEZUKSScjw9+zBpHgjw9rOoaP41vYNZ1jWX1G8v9db7ZbmRiilFii8kKohjSNAGUDYGbexYt6McdOtlssLzbyUtuytuddPF1KeGeHsuVvm872t9x9S/wDCT+HbIRxodyyLlHSbzUA9ypZR+NTR3Gm34S9QyRwOeZWCiP04J9+O/NLIJvOXTb28EW47jKjkDr3K9fpmqqxXcupSJbQwCztgQrRlWkLc4b5WBTvwQSc9q+JjpudXKr3TOd+If7P/AOzl8XZIrr4w/Bfwn4ouLVm+w3ev+GYb14dwAIRnidlyAAQpAPFcl8NfgP8As+fB34n+II/hv+zvpOh3cum2N3/bthoNtbo8UrSxGxgZIxIqxtZrM0f3Q90rjljj0WG6kUyMmo3EyFuRc8EY6AAjj0/rXCeLtf8ACun/ABN8NX02o6401wL7Q49OsADaB5olvfPuVPTYunuiPng3BXBMgI9SjjsY6bo+1lytbczt91/I5p4WjfmcFfvZXPPv+Ck3jTTdE/Y98Y+FZfDEcuseMNOPhfwfpiamltcXural/odtHCXePcQZjI6g8wxy7gUDg+ff8Eltf8X/AAQ+EN5+wJ8edZ0LSfGHw71a+k0e1sBLINb0C4mNzDqsDuALmJri4uYsoFMQjSOaOOXcG9b+K3wP8B/F/wAT+HfFnxC0CaSXwveyXOgxG7lto1uGUoZjDHLsmcISFZ9xXLbQu45wPG5/Zb+DfxT074gfEXT/AAr4d8Sr4fuJLHXNbtoEkh06FtswEzlRGCbkjbu3SZfAfY2O+jWjVyr6lCEpSb5tFs9lby3v6nJKk4Yj2raStY94t7qW5sX8+aZGVsxEonzc9Mrnn65p0fiC7ngEtndOkiPnypDEWkHptJUg+4r5PuP+CsX7Jlrdpa+Dr251zT3ie4mvPDwsbWKPaQpeSK/ubaUAEquSiht3ylgGwnj7/grD+zx4NPga9sNO13Xx8S55rfw++hxx272ciTJb5uUmlRYwZZF2urFHQO6vgLudPhXiDRvDySfdEwx+BqzcIVE2uidz6vuNcsIdQS+vbNPMaPPkXUiGQADnlVwQeTgk9etUL3VLiaMRWdokyScmB1Rs8nOMBvbH3fSvmP43/wDBRyz+CfxJ0b4VeK9OtdA1K405LvWrz4nahqFjJp0zTtBFaiPSbLVJLqdmV/u/IojcsyhGCu8G/FD9tH436ro/jnwl4t+FsHgrxP4R8Sa/4PvNB8L6r4h1fxWmk301rPYaba3E2lma9QJC5hmaJ5I5w8KyGOeKD0YcJZzCPNOKivNoyeZYJuylf0PpW41e+tQVuo3SNskK14I8ewXZz+LCuZ8WfF34beA7TRP+EzurPSV13WodL053hBWe+mVmjibAcIW2Nhm44xuyQK/Pr9pH9u74+fEH4DWnxq/Yu+PEM1v4bku2+Imlf8K+h0jUdNtFk0+3tr14LjVtVjltpp79YgYzG4kjPysu4r8ffEf/AIKf/tC/F6HTvCvxZ8aveHRrkanZ3ksRsPsV5CjpGUTT4gm8BnxIyFgZfvLtUj3cPwFmLSlVnGOtmtb/AJW/E4ZZ7glPl19bafmftNZ/tGfDbxl4d13U9D8TwsnhnXb3Q51sn3KdRtlDSwKrFTvyRgDhshgCrAnzHxZ+3v8AB34c6D4Gu/i1PaaJrXjDWLezvPDeoarF9q0a3nM6pqFyu9QltmEbnbbs8zDYZStfkv49/wCCq/7Znxo8P23hgfEHUhdrfRtbaXpekR+WgWNkzHKCZS2CflYOCZGbI2qB5brviH46fELxHqninxhofjHVHsdJeGS61+/M0lmVzMEeeaH7g81mEQ2MRJ8rDIr6anwNlVGjrUcpXXTT0PPln6WI+G8Pxufst4W/4Llfsyt4ATxx8R/ht4k0sNfvZ30FrrtjdG3cfMrBbi4tZniKlcyeSF3ZUbiBnybxt/wWV8deKvGMGhfs7eGPDGk6pe65aWmnwXxijOoCVfIa1uLq7MSoBNIJPNc28arF80hH3/bdH/bB/wCDfHQ55/EVn+1fYab4ps9R1OTw14k0L9m5tGSyt55Zkihki0vRreW4UWpjhcvMDLvkYeSJWiTwj/grr+1b/wAEmfjL+yB4e8K/sFeJPAep/FWy+LC6rqPiDQ/g2fB+ovoog1IATXRsraKYrLLZ5CMrSMqSeUCjFeujwbw1hqiqqmpO+zba+5q36ip59i5NxxKlZrRxcVZ+t2/wR6P8Z/2t/wBqfQvhLH4h8b69B4N1zS3v7XxZb+GPDFvdtZX050sadpqia4uIzff6VO6N5hScHHkgou75sl/4KB+Nfi/8GFtfjB+298QdEu28Ri2Og+G/A1nb6mbRIRIb039olsI1YloUijnBaVR5ghjPnD5l+C2ufBePTdQi/aR0jXtZuJPFekahayaN4mtX+0WSvOupwzNJfRHzJY3gZHw7BrdV3RqzbuL8R3eoXVxHJ4SaWzgPnb7a/wDF1rO0YNxK0S+YJR5mITEpbYmSpO0ZrXD8P5ZhcZOrCnHlduWPKvdstbO19d3f5HBVzLHVY8vtJW9T7I8Y/HL9nbU4E8E+Mv2nvHXxPsdH1WRtLj8V6VrN3p2pCPU3tIXmivdUjhDSWdz9vKvFsX7BDAzhpJ/M5K78Q/snz/C/X/iD4a+OGs+GtbE1rfeHPBPh7wrqtlevcNJdLNCStwbO0SMpDKESWaNluYioV4THHt/sh+Pv2XtN/ZGPg/4k/Fb4a+E/iLJ4h8STPrPivw3Z63OsDaVbDR8edoWqLJD/AGhEwkRZrcxQyXLBJpJIvL+zvgd+1X/wRL+Hvw4n0P4veKfgv4+19fFl21nq178JksnOiya1ceR5jWmiRRG4i0hrU7FgVXu4pUMojkWVPYjSpw+CKXokcU51anxyb+bPi/8AZH/aUtfGn7SngHwX4v8AhN4N1jw7J4mtm1Oy+KqWVhoYgWCWCS5urm6cxQtDBLO0UuyR1cKEimYiGSP4sfFS0+Nf7Smp/DT4XeFNC8MW+kQ3ujeD11qXS9L0fZYC5kglmvLOWe1lup2UfvIpZIZ5njSKQIyMPuLQ/wBsz/gg94h1nS7n4hfBT9nDTYZ3kk1x9L8IXt69ootITHDD5mhRfagbl7hTI5gKxQQtsZpXSJ3x2/aV/wCDdbXvh4uifCTSvhRpGsTa9pCtqumfB+Bbizs/7Ttjeyp9p054mZbUTsFdHDY27HztPVRxFWjVU73sXha+IwNR1MNNwla11vqfDH7Sn7SXx1vPidqfgP4oftD+NvFt94bs73SbC8stasNUt9OtriONrqC3v5LWDN0Fijt5biBFMzxyiOR43UyNvvjJPZ+ELHRfCf7anxG02x8O3dxeaH4Rhlv9Os9NmewvJCNOgsEltbcuJJLJyvlDz9QYBntmmu1+jfgd8e/+Ccnh3xfoFx8Zvj7+z/e6JpfgnT21y00z4HwSnXPEv9lyW96NiaDaGz04XjRXcWyR53eJw3kwyi2i9j0n9tr/AIIk6zp1pJreg/s2aDcjUbKTUIIvhXqOqxyWgitDeQxt/Z9qY5TIb9IpWDqqrbSPGxaSJfbWcZdypPCq/qtX31izxJ4DHSm5fWX93/2yPyYvbP4aXhjebwx4yVoixWRYrcH5sZyQOegqlbaf8IvD1pLaab8NNauWuhILqW70+F5nR12sgkGGVSM/dIxk+tfsR8Jf20v+CA0nw60Y/HDw/wDAeLxc1kp8Qp4X+FNzJpqXP8Ytmn09ZTF/d3jeBwSxG4/nb/wUM+KX7IPjL9sLxdrn7K2h+C7v4ezCw/4R19P0yDT7cf8AEvtRchLeZI3jH2lZQcou4ruGQQx1nnGW1tJYT/yZf/IHKsrzGlqsTf8A7d/+2Om/ad+HX7LXh/8Aai8HeDPg/wCKda8Q6LqOt6jaXN/oOp2dzFDGnibVdKg+aBdoEunWtndgEFWF2sqAI8Sr+iPj/wD4IGf8EwtP1XSraz8RfGG5h1G8MF3qWj+JrZ3ixaXEjz3MT6cQIwltDbo0eXd50UqMbj+M8XizwX5iyQ+FPCwdSCrJLYhgR0IIII+tdJ4C8YfAtvE8Nz8aPBlpqOiK8bXFrpGpWC3UqmWPzBHNN5iQny/MIYxSgsqqUG7enHiY4TF04+yjyW3u737dFt8zalPF4aT55c1/K1vxZ8Jf8LI8SdC8R+ob/wCKqMfEDxEG3CWMH2U/41iUV4h7Zu/8LF8Sf89o/wDvk/40v/CxvE2QTPGceqn/ABrBooA3z8SfEp6vF/3wf8aQ/EbxIf8AlrEPoh/xrBooA3f+FieJf+e0f/fJ/wAaP+FieJf+e0f/AHyf8awqKAN3/hYniX/ntH/3yf8AGj/hYniX/ntH/wB8n/GsKigDd/4WJ4l/57R/98n/ABpw+JPiYAASxcf7B/xrAoouwOhX4m+KUGBPH/3yf8ad/wALS8V4wZ4/xU/41zlFO7Fypn//2Q==",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD5C/4J6+KfjH4Q+CMeieFfBV7qVl458f3eh2EsXgTSL+O4vTYWeLc3t63nW7bXDKI12jqGV2WvU/2zv2Dfi0dXuvE3ibwhpeiX8dnCVu7jUPDq287Dcy+fHBbrhdxAbcW35weBiviHxL8VPifZ/CXwV4z0WyW3h0qW4m/s7Szcwrpd55kkNtqXmxMhS4YxypEzOdps8jGW3fcv7e37Y9748+OOj/s3+DbXS/8AhXumaa6eL77/AIR6CZvFXiOAR3J0+CWcXDWzxvLp4NksnnQyzyrM0p2Y3q1pVOaqlazOaOGk6kYLW586fsk6j4B8Gf2FoviD4U+FSPFOoSXMV5cST3b+ZZ/uzb3UdyrxrEVlkaRA/lOFIdPkXPhdvrv/AAkniXV/Ht26abL/AG617a+F42uTcWkIuIZt0Q2hJAsZdF3nIVJHIUhGPt3xp/aI+G3xf+GusaFoOt6KPGHiCWG+8WtFoctr9vu7OG6e5uJzGI42LmK1KtlwJZLx0ULdzbvDLPWbG4uYLfw7qFnJ/wAI3FcXV5qulRJa3moRrHEqxh5m3YREfGwEjc5KkBQM1irQabuz1503Vgqaiklobt1ofirwvq2mafdeFnmjGuXkMEGqC5tTIDFFtYNG0ciArhgAQSAOo69R4u8fXF14G8X/AAd+Lmt6/Z+NPD+gLpVlHa+FbCaDU7O1h2I9zNLKh8kQxQeW0ayOT5NwmWi3NxWveKtPvPHGoQ+HLiw0HRtS0/TRqWm20EFxc4jigmluYZ3DmGaZzNIRFtZftMkPywFkqt4i0rw1b6w+r3msal4gvr2K+sp45bp0uEuYW8vzB5LfOCsinG7HyzLtUFMQsalZJfgPCYV4aUpJKV01rZ7rf1XQ7D9iP4za54KF58IvCPiBLS31CRLufUtViZLeGR/s0MiyiOUmKMSFVE4Dtt6xjzD5fa/s3fBofFa7i8PfEd5YdB0OXUT4S8JeI7tY/tGns8scl7HI0CJMqspi88kBpYTh0eNEa7+0x+0z+0T8T/gB4B+C/iY6/rlhpOl2ejaXpOtaH9gNjHYKbG1QTRxK07W+4xDfOVV2nLw5kwnY/wDBMvX/ABX43/aItfiX8bYjp2jeGvhev9k6tBd2FnbW9punCxXEcShnLJFdv5jkSg27tIW3Ljzo4DD08ROtRilKera3fqaUa1KFLknuvyOE+JX/AATi8U6xFfWP7PXgXWvG2rfD+28nxyvhS0WMagkV35e9bKa5e5EhUqT5SvuCI/kpvLVt/ssfsjfHH4sa1q37PX7LHwkvbvxvYNd3Xie+fxZaRabGLK9hhV4LpyI76JozImI5JU/0x5o/kAVek/ae0rx1of7T/wAVNG+GWixw+DH1e1vl8U2erXWntb3dxpdldTrnT8vJ5Zul2TXEbxxKgUuC2D5b8JvEvjq5+J+sfDjUvE/g+yW7uUkn8WXujm4fRkU3Unkbpnh83zncb/M3yK6RqPL+dW7kq0XFJ3119Dz5qFSU3bRHtFj/AMEcPEPg7wlqniLV9R8F3fjzRnnl8TfCXQvibDd+LNGsy9s73RTYLWdIoJFeUBmVBKzGVTmOLv8A9nLXtK/Z88J+Lfhj4++Mvi/RtMudPubyRbyGTSJI7SCSZZpVNhezxyseu/5ZJSjbfNG3HmR/4KIftZfBbR7T4IeAPid4Y+IUNpriQaVq9nABqRRtjxWFuBdOhjG9I41Fu7IytGHwiofLrfw/8Xv2cdR8DJ8RPCuq6JjwvNP9g8W+FJHuCZrqV5TGs8UKyghUIZt2GkYFj8pHuYbFRdsPJ2i/I8DFwqcrqQV5Lo3Y+mPAP7a/7IPjDwfq/jX4gfFbVzN4g1i90+ZNX1GeU2TMpniMls9xHGUSJEiWeJWdvljXlnxwfhD4afsYeOvB2teJPgnoDTWhk26nourrJZ3dxFKGYI6pc3AtV3LlXWNsmIooOWx5R4s+J/w5+KPx18Cp4v0eS68BaXr1lqXiHRNft/7Nj1VrczS3FnHLYqWg+0QgW6YziSbJdVG4fXPiv9jqT4UQTfFf9nD4w+FoPCmraVLrGk6Pr6i81K9udNtnN1BbwaK+ohFRbrz0imnE8cBLzkraXNyDF4aN2qLuvSz+4nA4tUJJ4lK76XbX3pI/NH4UeJ7Xw9BqFr498U3LJb6ZcadpUERgu0gSV2E6RmTPlRyJJMC0DxOTKxEikknoPhxpvgrwVpkfxUu/FGn31zB/Z8vhvT9W1G7DyXUMEf2lt0MT+UYZnQRiRkDLGSrNtGf0XvP+DabSzblvDn7TUzzqgI+0fD53DNkZGxb/AKAZ5yc8cDofQNA/4N8f2a9I8JW8XxF8ReN77VomO+80e5s7GHqcfuJreUr2/jP64HxFXizhqOnt2/SMv1SPq6eV5m7Whb5o/HjwnJocXjwaz4wur67GpXuqW+qzaYViSSKWFo/MidsZLmV2wwTChe7ELrat4w8PaNqFifBvwxi8mPRJob2K/tY3la6nsVtmfzVVg6o48+MFflZumcsfvfQP+CSnwl+HPxCt/h18VbnW9Yv5/G2p3WmQaVdKzQ6E8JjspLj92m+ZGQ3EojwJPIljQKCHP2f+zp+wX/wTx1O/i8VJ8ENJ1HxaIDHrVt4juLq6Mzq3N0+n3UzxR+b8sgYRAYcYwDisa/FWVYWiq3K5Reia/wCCzpWVY1y5XJJ/efh38P8ATtS8aW8PguTw9ZJq2pSWlrHqF1FKqRLHcGZp38tTJLhAIxCiO75wis5Ra9W0rVvjN4EsLrxd8avAR8ITaJJDeWS6/wCGPssd3dRRXUUUam4nieQmW7bcsKOB5UZOI/MdP3ft/wBj39kDT9Tj1W3/AGXPh+l3CQ0FzH4Esd0bdcq/l7gevT1rrfE3xH8AfC3Sxaa3fWNpHaaXJe2+nw2++c2kbiN3it4w0jqJGCYjRjvcKPmYCvDr8eYRy/c4d/OS/RM6oZJXt71X8D8UNJ/Y4/a++InwUs/Hmp/CzxL4m8N3mm3er2GoaF4Z069ttM1Oea5uVtvscKXNxcAvLIFw0ZCSxpIsLK3l9t+z3/wT5/aW8T+F/EXxBuPg94l/4n+nGx0bwn4gvzocqm701lPmxyWUSvLZyzSwJJvjExjZglspi3/qxfftPeEWgv7bQdA1O7a2jjNlc+SkdlcSsCWjMhYyR7eAxMR++CofDY8f+Nf7TPi3Sdd0nX9Ui07R9HltNkmmRWd1f3F5e+bFHHFbPEyEzSNOoit/JaS42yGJT5cirzx40xlaahSoJPtdv8rG6yOlTheU/mfGvws/4I0fFb9obXtV8aeLvDuseHNOPh6zh8L23inVRFHfKlraA6gZLSW68uaV4JQbeVZ1DTpKzSiJo5PS/hD/AMESPibrnxY1TxH8c7L4T6Pp8cs8Ph+XwipC2Fk5vNyS20mmRpdzKtzD5czvuVrVC3mgADvPC3/BUf4YXXg3xPfeHf2jtMOkeFfDsF4I5baysHSFbZzHY2MN7HFLNKvlJD5eGcM45KDdVmP9tTw/oXxg0D9nSx8ceMNS1XxXp9xq9vq2na415p1rE8D3aK92kzDZPGitD5JeKSOSFlPlSIzPE5/xVBX9koL/AA6236vsXRynK5tJtu/nv5+hU1b/AIIM+EfFPi19c+JH7S1zrlpHp8Flotlo/g8WgsI4Yoo0MLyXkzkMIizCYzBmmlf/AFjl6+YfG/8AwTz0n4DeNJdI1HULbxPZw3htW8UaN4ntZ9Os2lmk8o6jYIILrTlVArSym6aFM8PIWKp9oi+0/SraWPRtNhhkuGDz+X8rSHn5mYL8xz3OTyfXNXIPFF1BZCAW0e10y0jygsG747jkdccg+9cuXcdZ1hcVz1Zc8e1kvusi8Rw1l1am4xVn3PzQt/2a9J+Ing3TG+Jl/a6bHq3iG3OirFpbOl9a3yQtaGK+85rZ1WNi6xNsut8zo+8hY48rTv2aP2qf2edWuvFP7L3jseKNIsdUis9V0GS6tb+FJllmWOyvrMmRGZ/KZha3CEsjKzRfOBX1r8Q/2bLT4j+GfEFl8JfFaeFYrbX3k0/w3/ZVtNoepPBDCGt57ZkO2Ca4t4kmC5idbeN2gkljjdPBLSH4sfs4/EHU9C8ReAb9z4vtb+G48L6LAmmaTrepzpdWkT2xt/Mur0t59lKEsmgliN5dWkdmouZWH6nknFeW5zC17T6p6Nenc+IzPh7GYB3Wse6Wnz7H7KLcQtfi2vLWaO18tnE8sieW2AeyMXAyMfc7ccc1XfTVvJf7Rso7WaIfKM3MjyLzjKq8RHfOCw47U+TXrqyZrK3Y+XwBGYgNoIBx85yvB9uPzpieJLe3k8t7uEGTAYCfJxn0AJP+frX82U+aU9j9PknCOp4F4n1nwx8KfjVqDfEi2t31HxHrTXfh+xmKNeyW8VnFbRzoIcIMFLo4YoI4ZXdyNjNXdyfG/wCF+laJbaz4Lu4vF2p3PmLaWWnahKltCQiHZczBJYrUtvhG3a0reZuWN1SRl474zR+MNC+NupfEH4c+JbYazrfhpdJ07VLlnEWh2sJaWc4MbB7iSZoViiJRNv2iVhIYRFLzPhD4eXXw08Iad4PliaK4tbVCT5WEkd/3jEGRc7SzE9BwfSvpswqTeX0IVIW5Vpbqnrqc9KMHUck7tnXeM/iH4z8TT3Nnqd9/Z1lLcAJZ6extWKJMs0LO3niQuBHErbXWORQ6NGUkaOudTS4xOsYuppbcu0iLvURo7u0j/IrEfM7OxY/eLsSSTmpZD98XsMvnBBiOFFIY8Y7gAd815/8AHr4n+JvCX7KHin46/B+zj1hLGJrOw1LT7lLiCK8eRYAQyq8bvGz7vKOQxTYSoJYeNTp1a9VRgt3b7ztTUdEjv7rSIGkV3khRFI2x+UqjIOc9CT36f/XrQ0qzhSx1G90LWY7PW/7KvIdC1CS0aaPTr97d47W9CZUs1vM8dwowPnhA3DqPGf8AgnR4T+N3j39mzVNeuNY1jxt/wj+t3FlFe6pdRf2neYSKQKwmnwGxKHw0hRRIoEhAAH0T4e+EfxA1HwQ95a3mm2HiK4s2eHw3r8/lTWzscBZmthMhULgkxtJuzgEdR0yjiMtx1n8cH/Wg6kYVIOlNWutUfFngjwCnwh+OHhfxR44+Jx8cXHw78LWukaX4d8N+CS9voVva3xjgUy6cRbzyApNG8lzHLLEzmZ7SbywD8wftw+L9G0H4t6XrXgS/1ODxTHJNcavq1t4fj0yETpNuhuIXQJPczlxM8l3N88rbSuxVEafrl4q+EUGh+ALrVfFXxL0fwxd2NhJe6pe6qDNptkI1Z5XZzJbvJGqBjvPlYAOQAvPinwC/Yf8ACP7RPwTv/jB8avEWp6Z4h+LmmyXE62OkQL/Z+iXCQmws8zQGSOSOCNTKykMZJCGLmCF1+xwXEFScvbYyPMttNNX5JGmWVMHllVc0XJJWtd7eV7nAfs8/Fj4v+Nvg/deLvD/g9dRF2YJtHk8T+IpZJbyINMXKzQrN9nkMT2iurRlHlgmKi23O9z0fx8kl1n4OXOg6p4r1Lwje+IYlsodZsJwkunzuVw2/aW2g/eKKZNm4oN22ux+AGjfDX4feGV/YL+Pfg3R9L8Z+HvBcWsy3/hbW79bHxLo8MiWq6gHWSB4JHlBhltm27yhP7yNgB82fsPQ6T5j/AAv+MMHg6bV9J8R/ZhP4T8H2OkS26q2LZZ47OOCO8ZTb3QLT75F+1yjceGOGHwCzXMOdaJST23VzhrShTjOpBOyu/Q+gfhlY2fgD4YaLpXxC1zSrOeS4+zNc6hqKL9tvZJTuSKQNiYs7kKQTvADDIIJ2Pib8Ipbsnwx478J6td6VqMUbzaM3hl7mFk3oyTSlonEcQba/mOQilA24YFfU/wAO/BMN94ZstY0f4g38mnSWQgXSUmi8iCXGJJimxisp5DKWKEknYWO46+geB/DWhi71+20i5lW7vpJ5Y3uZleTcoBCxTPmKPCghVVBxlQM8/IYycsHj6ns7pxk0ujWp3UnTnQi207pfkJ9rhg04SJpJs5958tom86KM/wAJI79iVAqmZdRk0+a1u7lZZT832u3jeGIDOQCrZIOeDzg57VB9otINQlvZ9PljaTbj7VFgJgYGGBDYOR3/APr2o0n1ZhHEVhXaQWMpC9zn5g3H1OPwrzoc0WYOCk9T5O+OvgKGz/aVufFbWNhDLrnhCC3t57aJjPc/ZLuf7UzsB8sY+2WQALfOWOAdhxvfBvwDq/xf1C80TTvE11Z6LoFy9jr2oRsklxHdPZiWK3tVmLKjoJ7a4aSSN4ghWNVdpHMHsfxj+B+j/Ebwa/hLxTf2lu1veR6hpeqRzQmfS7lAypcIUbcpZHkjYDHmRTyRsCrsD4rp938Q/gb4j1aGyt4DPdBmlsrmSSDSvEsjWcwtpoblY28iYG1VJv3bzLDbsrwSR/YrhfZpSWIpqLeqW3mRyxg1ZH0P4b+GHwu8G6tZ+IdF+H9hv064vX07V5w1xd6d9rk33EcVzOZJVRjtTYHCqiRoBtjVa8n/AOCgvx//AGb/AA98AvH3w9+JXxG0r+2ZPB5v9P8ADB1CNtTn3ymG1uI4c7njW6RSzAHascjYIjYjXl/aX+C3hpZ5dZfVbaxi1RbWG4vdMzHNG8QkN0xtjOLeBTvRnmKbGjYkbCkj/F37WM/w4/bs1zwH+0J4m+HNh4O8M+E/FV1pUGtasWnk8R6bdT20dvIyJAvkxRTxMrvM6xxi9l25dG83vyTATxmYJVL8sdW00OdSnQlGUtrq56L/AMEG/iDo9l4E8U/DPXPijostsNXk8QK1tdSR3dgskSRS3N1HPbFWtlMce+RJQID80hKSh4/050j4W3OlapK3inX1kVGcBJLl4UHBw5VWCZB5zggjOa/Dv/gif4r1X4M/t/8AxWgl8ZK3hnw94E1WwTxPDItpaTiLV7OOO6Eyt5UQkWGVh8+AocAkriv0G8C/tCfDLwdoesaD8JvjFpfiHQILoTnw94e1tNWutFywDxR/Z2Z2tVBZ0tfmaH5ooQyGGCL389p5ZPM5TWrdm38kY5hXWKxUquGl7jturPbU+jP2jf2WfhP+0Z8LNT+H/wAbNM8N+INBlk8xDeWdvII5QCqSIZEZY5gHKh4vLcbiFZcnNbwRfaP4O8LQRHVnhsLWMJHpr3Pm+ZICYwzRR7vmwgbfIBxtJbJArxZf2jvhtqOkvc6j4tuS0E+wqPDl2THuAAwRA3nKS4O7MgUgnKAEDjvEf7TXh248O32pWHhHWJ9ZggZNL0/U54ooJyrEKsk0TS+TGwwwKxyEBgCoOQPL+sqK5adPT1OT6nVqazkeef8ABU/4z6B8GPAuj+NtN8D2sWq+LtfsdB1XxYLBUu7XSI5jfNaifCyKjSwDEROwjzTjIyfN/gR8LvAQ1jwR4J0qNNT8ZeLvF11448b+IpJ5mjsfDtvcSQ22nJ5YRmeXEa5cnynZ9u5doXzv9q/9trwT+15+zXffCmH4BTaXqWr3yW2maprN3mDT9QiLF3hZQkspUBx5ijau9UdTvKCf9hHU/iP8GPg3p/hxdas7G7t7hzb63pksFxdXlpuJa3kW7tZAIWlMhGwqwxuDZY49eDlhspu37Od977rtp/Wh61VqjgY0VT33d9z7R/Y30fXfg18SviJ8M4XuW8LP4i/tmxutSsd1xeXFzbW5klWWN4o41Ekcu6JI1XMi7fKRBGfQNX+Ifxw82e2i8JeDbplB+ykeI7y2eds4X5TYylST1HmP3wWPJ+Vo/HXxA1v4gN8QP+Fja5aNKFiNjZSpBEYwNoj+RRlcEnJy2STu7Vc8S6P4O8capqXirx34b0vUtV1LTm0++1XUrYzXd1bMBmGSYjc8ZHylHJXjp0NfF4mFKpiOdzcr6t+fXcypVGo2cbH2NLDLfqsKMg8wkmN7N5Qg9idwB78ggemKuy6RJPbfPZm4jiAD7ZECkYHG07cHv27Y7VE2laqYFmt7u6IK4EKGNBIfT7mRn/e/EdaWTTLzT7sLdamsSPEGZBNvYH0yd5B47D+defGzVi5yV9DQuVgh0uG7a8t1UN++jubghgM8j5Q2eOf8OtYvibwpoms2K6fq+kQarZzSR3K2eo6U08E7JIHjHzowJWRFYHAIKAjkCs/4h/FLRvg38O/EHxD1oald6ToWjXWpana6fZC5uJoYImldYUlZVaQqmFU7QTgZGc15N+xH+25H+2j8GJviponw9u/Ddkuu3On3dlrGqeajKgR0lU7UVkKyJkEJhldRuADt0U8PW9k6yXup2v5mDnFy5epnfF39kuyufBusaF4R8ROtje6TcQyaFrWot5ahreGERLdtunjQlLiSR5UuGL3HymNI9jed+PdY+DNr+xWn/CzzYaV4msfBiS6ppWp6xBZSSXYgNwI2LgjdKyuRMZMCZcEZRiv09d+LJ4Luex0m90VngClmtrUmSPOCMkMyjgjrgYPoa+efHfw68I+MPjtZftT/AB48Sadd6Batp2meCxcW6W0NnK04Y3F6zquxlnMipvKrGW5xLjH0uRZhOm503G6krdrHLiqKmo62sz49/wCCdXjfx9P8TfEdg3w11u20DX7KzgsrpbaNbfRJ7UXUlxBcEhCzSXFxPKCgkAedjn5y1fZFvaXTWr2us60GYM2x45hGqpn5QVPUjuQefQDp7fq3wJ+GmtG6tdX8F2trPeX1tcahqemyC0urmWAjy/NuA6yMFA2FXO0plCCpweK8b/sq2yXer6Z8P/iDetc31x5lhPqaRXtppYGN0UcMCwyTpheGknLAuW3EAKfOxuLWIr3S5baHRRhaFmeXa1peksjwS+IvLIwQ+8YP5Ek/lXOzWlqElh/tJ5XDEReVMxUr2YlkXB9hnHYmvX7/APZf+IieNYrTRr3w03hf7JmfUdV1KVL6K4HPl/Zli2spI+/5ynBA2EZNeJ/Gj4ueH/2eNVt9A+MnhrUNJ1DVLyW18OWVhbpftrjptH+iJavK5yzxoBKI23SLkAHNY0qVWs0ou53QVBLU+If26viZrOi/HhPCMumm30/RLBRYuhIZzcR7pJlx/vbOn/LM+tfTH7G0Pifx/wDCjTLe9u9Kns7SxhjsbrThIZHRVK7ZIyCFcKq8hjuLEYXbubzL9pz9lD4tftJeL7349aj8G/EnhDw5oOgOuo3OsaWYLmZYEklEhhdVcFvNjjycqChUuCMD1P8AYvPw48E/BPR/hpZ+MdGfxCEe+vNGtdTtjeossjNG8sZYuuY9nOAQMAcCvrc4rYPEZJQp0/4kUk1063d+/wAz08fUy6rg6XstJpWa6evr/mesR+FrvT1e1eG6+0ROdtuITuKfwtjryCDjHfrWXqVq8zNaw213DMH/AHhunxg9DxtBHNdPq0NzYXG7WdEmN6AIke4jJlQsMYyeehPA9ahvfCuoW7vM19KWEJdg5QRKvXqxDcDv/OvjY0Km9jx2os+zI7Ke2aVleNYoxktcyR4HGScgfz4qa3f7Va5gvbWQMckw98ehACnpVN4tSa3JtLKQKBlmlfaB+Khv1r5i8Tf8FMvB+g6h420vQ/B9nqE/w7kvn8WW194je0uEtrWe6t3mt1e2MdyA9sMqkhcebGCoLLnz6NGriVJwtpa/zaS+9szrVqNFXmzf/wCCqHjK/wDB37Hev6Napfzx+KSdE1KPSlxdfYZred7nyWKSKGMMUgLFGCIXcrha5L/glT8Vfgv46+DF18MvhN8OtQ0DSPDF5HPYW2oeJYNQnu7eYHyroPGAVjMkU0S7lXIgJAGdo8X/AGlf25LH9uH9ke/8UeCPCv8AwiuneHtekZPEN9q9vcGWYWE0UyWlpI1vLdyQw3olfyi3k5ieRdjqG86/4J/6t8V/2Pfj3bfCaGW88Va543sILuw8EwaDBps9xHPbm+8w+VK8FuVidpSXCiNDMNo/g/SMNw9jHwxPDTh+9c1JarbT5dzwpZnhVmEail7trPR7n6ea+2jacLm6l0BJp5MnzJCQzcYG7GA2MemSAATXMaAtklxFau18YIp3njijnLCGRiCzKG4TLcnbjJ5614bof/BQW6+JGm+D9f8AC/7Ndzd2PjvVzp3gy/j1xIV1O48/TrZ/Kke3VsJcapawu4wiu0ylwYZgnkGrf8F0vgrZT+XH8L78XEICSRTa4VeMjhgX+zsMg5HAPP414MeFc8j9hf8AgS/zO15vlrfxfg/8j7ym06/vbfdplkyqxAS4vJQNvOM8Dn6f0rF1yw8S6FOmt3Gtyy+VKsIt7C4JDblb+DCj6ljgZHNfK3hX/grZ8Ide+Cut/HbXfDkunabpV2be3sbvXpg2pTrPYRNb28j2KRXE4XUFnMETPIkFtcSyrEixGba+A/8AwUc1/wDath8QD9l/9jTxl41k8NaUt3qUmkXAeG2ZpUSNJH8kNuYF2EcaySsIXYR+Wkkke1HhHPK1XkhTV3/ej/mY1M6y2lDnc9PR/wCR9D6jaS3Esd39qhdkLsfMl+aIsDkqBnJJ25wRwTz68L4w+FvgfX/ifonxS1awku9b8PWd1b6PcTuFS2FyY/NZV52sREq7s5Cs65wxrxp/+CpnhDUdK8Xz6t8I9Z0S58BiJfFWm6tqiWl5p0738Vj9na3liWTzFuJhG6bdyENuUEYq14d/bbPxL+CF1+0Z4J+EGo6t4Hh8WL4Ym8V/2/HBaQ6g5i2+a1xCnkQYuLf/AEmXZAGnjQyK7bB7VPw74vpNSVFa/wB+P+Z5z4tyJr+I/wDwF/5Gp+3l4R+Nfxr/AGd734M/BbxJomn3+sX1vHqU99dzoyWSMZWEbxI2GaSOFSMEGNpAete//CnxZ4m1PwRpNr8TPDGj6dr8WnINSk0G5kudOZ1GPLhZ4o2AK7cKV+RsruYKC3xHq/8AwVJ+DvgHx1qfg/xp8ObuLUdI1C4sNQhOpqTDPFI0bjcISpwykcGtNP8AgtT8C9L0kwW3gzUZBArGOIayVDdeMCEDBBx0J55ruXh7xpOio/V1be/PD/5I51xjw+qmtZ/+Ay/yPu3xB4rsvFkUeia0t5ew2oCizurRmgI9B52I2GGxkZ7jsccD4j/Zq/Zm1e3W6X9l/wACC4BXE83gzTnzyTnPksRyfX145r5e8Cft1Rfttap4W8JfC7U9N8BLP8VfD/hyS9v5bieW4vtUF6LNQYbfAj3WkoYH/lo8BOEDunsP/BOT9sPwP/wUQ+Nlx8BrHxDN4cvrfw7cat9t+zmdCsMsEbRFWZNufOLZPQgDB61zVOAeKaNGU/ZL3Vdrmjovv/I3p8WZHVqKCqPXbR6nl/8AwVV/4Kq/E39gb9unxf8AsqeBfAfh/WtP8LR6Y0Wra7LcfaLgXOnW12wZY5FUbWnKjA6KOM18zfCf9ozxN+0Xb3mo6f8As/8Aw31Ia3rWraxra+IvGWr2llD5MOqasIr4yTJYrBM51VoY5WMZa3LTFFhSRfjD4q/t/wDxU+PXj3U/in8cPFOi+K/EmsCMalrmu6Bp1zdTiOFIIwZHgLfLFGijB4CiuSf9oHTXfeNI8KDnIA8L6Zx9P9HyPwNfU0MlyrDtunRir+R5lTF4iurVJNn1t+0d4q+Fn7Lvxf1b4I/Ej9hL4ZSaho/lK9zpfiLXntLkPDHKrxPNcRuwCyAHKjDA+xr079g/w1+yX+2Drlj4X1j9k3RdDuL/AMcaV4S0WLwrpms6u8lzf2mpXhuLkf2zbmC1gh0uZnkXfsUs7AKjMv59v+0HatKX+w+F0BA4j8OacB0/64c12/wh/wCCjfx+/Z8S9j+A/wAZZ/Bg1Py/7UHhRbbTje+WXMfnG3jQy7DI+3cTt3tjGTn0kklY5mlc/Vnwj/wTy/YM+ImgnWtB8DJFpyaV4Y1Tdqvw61fTLjytc1O60y2Xyr3xJDM7Jc2shMSK0syvD9mS5aVI2qeM/wDgmD+w/dfCPT/E+mQRaLD4l+GN7460u50jwhdXGpLpdjBp91c7IpfEU8Kt/pyQ+a6m3+SRxMEeGWT84n/4LV/8FD2bMP7c3jyMdh/wlMhA/AtgUv8Aw+u/4KLhfKb9u3x4VDbgB4occ+vBpWiP3T9itA/4N6tT0X4Vat8DvCv/AAUA8ZW3gTWtR+16v4QttKZdK1C6jeLbcTWiXpglkDW0BDsrEeRGc/IuMG+/4I+fD/8A4Jz+BdZ+Mp+NniPX0vL/AEi2itPD/hS5TUpb0ahD/Z8FmtlqlpuuZNQazWIySqElCMJIgHJ/JKX/AILS/wDBQK6h8m8/bY8bSjOcv4mlJz653UkX/BaH9v6FFSP9tfxuPLDeUf8AhKJsxkgglSX+U4J5HqfWrg5Qd4uxEoU5KzR+mPgL9h/9gj4n/Cz4h/G7wx4OtLvRvhzdeLk1OeXwNqO3VB4dNqL+ewkj8SmO7hkN2n2eVXCyeXKGMTIRWh4B/wCCdf7BfxE8a23w38K+HvC0V9dSeVaXCeHb5be4Uf26N9sR4n825XPh675gic4liP3Uufs/5gj/AILXf8FD9ixt+3N4+YKc/N4tn59j8/8AnFNf/gtR/wAFB3csP23fHS56hfFc3P1+fJ/Guz+0syW1aS/7ef8Amcry/AttunG/ofsD8Cf+CI/7M/x6+Dfh74v6F4O8P6TaeItOS9g07WvDmqi9tlfP7ucW/iSaNZByGVXYqeCQwIHGft4f8EjP2eP2OP2W/EPx2XwV4M1J9NltYEg/svW4HBuJ44A6u+tSqGTzN4DRupK4KkGvy2g/4LY/8FCoXD/8Nw+POF2gDxdOuB/wFxWN8RP+CtX7Yvxb8N3Hgz4p/tReI/E+i3TI1zo3iPXZL60lKkMpaGdmRirAMCRkEAjBGaHmeZ/8/wCX/gT/AMyf7OwD/wCXUfuR6V4P1zw74Dlt7vwP441nRprXVrPVbeXTNQWBo7+0MhtbsFYQRNCZpTHIPmTzX2kbjnpf2fvjhf8A7LXjSb4ifAnx7NoOsXGmvYS3kdjZTE27ujsm2W1ZRlokOQM/LjoSD8lQ/tWatG5Yt4bwVwB/YFicfnEalT9q7UiwJbw5xzk6DYf/ABrFdFLMsS4SVSpJp76vU56mW0U1KnBJrbRaH//Z",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [51,38,65,53] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [45,41,53,70] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAor2nwT+x5f+NfC9n4ktfFN/GbuxiuPIXw8XwHQNhW84bgM9cDPXFRaj+yvo+lRSPf/EDUoWj/AOWcvhjazH2H2io9pH+kyuSR43RXolx8E/D63CWtr43vWeRto87QdgH4iY16Pb/8E/b17eya4+KsCT3t9HbJGmjllUvCJEJYyjryOnanzIXKz50or174xfslav8AB67jtdU8WJceZKqKwsdgJIJyP3h44rgv+EDUX8mnvq4DRkjcIMg/+PVQrHPUV6d4S/ZyXxVoEWuJ4z8nzCwMX9nbtpDEdfMGemeneoZP2eLtddOhp4nUsRlJGs8bvw31m6tNbsuFOdSSjFas83or0y8+AGh6Zdiy1X4nQW0rDKpLYAZ+mZRmte0/ZNivIFuIfiICrDIK6VkEf9/aXtqdr3CVOcJOLWqPHKK9huP2T/IBP/CfZ/7hX/22snxH+zudAsEvh4xWUPN5ZVrLZjgnOfMOenSnGrCTsmS01ueaUV3dl8GtOuGIu/G8cI4wwsw3/tStLxN+ztF4fgsbmHxwlwl7GzgtYbNoGMf8tDnOau6Juj64+C3xXi8J/CDwrGlnGzp4WsVy444t0HrXkv7QnxY1OPUIW0q0hY3PDMwPB6YAzU3wt1qz/wCFX6UPGlq7xwaXbLBJbXYiAhEK7cgoxLVn+JNa+APiC7trDUdH8QB1mCxy2mrwEZPAzuj4FQ5tPZlqNzzaXxjrd/bT3E6qkkY3RkL3zzXbfAf4zfEbxL45tdM8SeI5bmztZIbkhoxmPymVARtA/hYj8a7rwz8FPg342ddMki8Q2QgQRRG71S13Ts5JCKFQknhjuICjABYEqDV0L4Q/s56Zcma2svHsTyIUZ0ltx8uQSMhx6Vl9YptuOtzRUpb3Hftza/pmuQ6Td6JeXMy7zvE64IwoGcfia+dtQg1CbUfP060uXcouWijJXO0eg619Mat8K/2ctUsUs7nUPH0ezd5TfZbeXGcZyfMyfxzUdn8I/wBnnTU8s/ED4iQW6IcxR6NFgEcfwSH0qvbxS2Yeybe5514I1668NeALPT3s2F/cTSC3ilGOS2AT6DNaI8MS3sdv4w1NrhHMrRfLJhkYdeQenXBruvh/8Pv2NviZ4kXTPCPxi8XXOorCZd93p7q4CkDO4t2yPetXU4f2Rfhbq13oE3i3xJf3saiO6DWsQBPXH7yU/wAu9KFZ06l1G/fQ3hTo8rUnr37Hlb6BoWsXcNpLaJdyXB8td4DsCUJwNw45q94NFp4MhvNDu7yfzLeRna3kOfKXrtFb+rfGX9lywnknsPBOt3r2w8xzLqcUeMDriNGxWnoXij4F+J2fUIfhcg+1qMy3WoTyMUxx02dq1xNd1lbksiFSp20ldnnun/GXQdc1KXT443QA4id/4/8AJqHx3d2+qaNFApIxc7sH6EVN8YvCHgbTtVs7zwj4Ss7C3gjZh9leUGU5yC292PbFcpc69/aNmskkKxbJdoG/OaxhBJ6GE1JR1LFnpNsE5XIrpvFssGoabpkJIPkW7Lz/AMB/wrmobxPL+VvwBq5q13titwx/5ZnGa1aMDqvBFjHc/C7SoHGRJo1rkH/rktc5rPgSzjhFxGGV85BBAwRXt3we+E+g6l8J/C99cT3Ra48O2UjgSAAFoEJA+XpXWJ8BPAd1biK7tLhx73JH8qXPG+pvbQ+fvgjeeLNP+ILeJdQ1G6vNM8N6ZdavfwyXWAFgiYx9cnHnGIEAE4PTiuB0b4m/ECS7KSeJrhlCE4bB/pX2t4C+EnhDwDqc934T0qUXWowfY3WWZnSRXdQVYHOFzgkjn5R2yDy8/wCx98EJvFFzofg/QpdQayt5Df3UeoNHFC6vGDCC07F2CzwglejFlOGRlHF9YpU8XJT0ulb8TohQq1KN462u36aavsvz6Hy6Pi38RV1A2dtrpLbwqqYEOc/UVq6l8SfijpoVZdVT5l+YPbR/4V7TP8A/2e4JodYiVVlkSSW3K6pITIYzggAt14PB67TXOeOdI+Fuq2tlcSadqRtmvGguowxS4iYIw5DJsG2QBWG4thgVBq5Y/B073d2aU8Bja01GMXd/Lv8A5P56HDfsl/bI/jSZhYRpE1lMZJI1GAWwQBjoODxWp8Y/D1iPGfiTXLq1BYXJcvtGdoRen5V1vhjwZ4I+EVzD8QvC91dz21xcQRXduLuG6lELo53pGvl5O4xjlvl8wAgnitT4g3mia34Xl8W+H9AaWe6RWdy7AI6MoZduWG4rywJIJ4TqCcY5rQUm2n/XzBYDEThTdtJy5E9dJX2fbvqfOnww+EnxW+N91rDfC7w9Bei1EJ1CFtTtYHRHLBSqzSIXX5DuKgheN2MjPrF58N/iH8IIorXxl4ZltlSJQZo3SeIdVAMkTMgOQeCc13fg/QNAQWnxC8E2UOj3Nmxn8+2Z/Lcpu3wzx8nYcYOxlORlHX5XHpWq6v4c8S6NA3iGzktf7Ygd7qxvkZo2ZSpbDBf7wI2t86MV+dsEmJY91na2hx81ejUkoxvy6NPRpnzL8WbpYre3jY4zbkjI+teeaZaJqdukbltonYttOP4a+gviL+zVrXiO0ji0m/EN3sleOyupIj9lhUkMsxEpkV1OMgRuAJEBIY7K8R1HQtb+Gd/ceHPEmmSR3UUrBCqErImcCRScEocHBx+RBFdkatObtF6mlSL5L2C18PaukasUGGBI+btSeMNRj0+a2tmb5hDkjHvWrZ+I1nmjhmCqFtcnnvk1ieOZbISteOQzxoohG71PNb31sczTsfYvwHtd3wT8HOB18K6f2/6do67WG2YDG39K5v8AZ/t93wN8GMVP/Ip6d/6Sx12scXrke1YPctOxQe2IHK1k+JNPvrjw7q+l6fflJNTs0hDXUksiW6q7OfKCupi3lnDbCu7eScknO9q+oaTodhLqutalBZ20IBmubqZY40BOBlmIA5IH41yGu/FT4S3Fsy23xV8NbtvT+3IP/i6zqUoVY8slc6KNStTlzU7/APDanPO/hDwq1p4W1O7S3L3SzwtLl0lc+WrskZclTl2XceWBwchcvl6ybOTTjoer6y1xpV1pz/2bBfTR3EsS7Q6qpzt3hSwCghRsUBsbqwtW+MXwx0j4jJdjxDY3F5Anlo0DCSP5kQbllA28jPyliQSxyAQq6fjr44+E/AOsy23ivT/MN1EV+zMs7xMQ3zErIpwflXgDHHsK8OODXtIqLa5m9+yPXxVWrJe8rySWq777+T/Ha2pkWXhzwze+HNb03TfE1vHaT2MEYuZbVk+yOqRuQ0casyh2RVH3uxdiQzUzw/D4qtPhrqPgqTxulxaapE9zc26amYrUyE4ZJg8iBX8xEYfLyFUjdkAY11+1J8MLGF4ND+H2mxoeiQ6Wign34HvWRd/EfRPiTpso07wdBEA5D/ZEaF0PJyfLOD175HHtXXHLJRavI5quKxMqc1ZpOan81b/I7vSfGes+A7OOLWtU0p4VV5o1t9EtX8uVi0qssvk7k+dgFUdCzEYXYKtxftHaX4Z8NXUc2taZKsrtMiPp4t2gc9FWQAgH5jyRtzzgAbK8i0fxL4q8O258Oa7pNxq+gbHVLEsVeMMSzYwu1gSSSOM+oqjqnxD8Ijw/J4c0fw3PbXLLtS78QtK3k4PADbnLDAwAeOBwOtSsDVU1BXfmtrGVfEPFVZVZ9d13fX7/AJHoni39orQPFV5L4c0bVr3UNWluVhjMExj22ynIj+QK0hYBDnsAfu7mUbES+HvEg+1eJ/BsJnYlnm1CGKZ2Zjk8gcc9gABwAAAAPmPxvL4SvrS11HTdLntdXEZXUo4AJLaTphkcOSPoRkZA525Nbwz8VvH/AIYkttO0TxRfRwxlvIs3m823TPX90+UBPrtz3rSplMqtNSptqXn/AJr/ACPHzOniMXaMZpJapK6S/rzufQ+sfBv4Z3yH7FbXFm3962uGOfwfcK47X/2eZLjdNpfihJ2/hju7cqAPdgW/lXO6R+094js18jxBoNtelIgga3kMEhf+82QynIzwFX2rJ1v9of4laiG/s5ILJUOSbe13tt6gEvuHY9AO9TRwuc05W5/vd/0uebTo5rB259PN3/4J9x/s+AH4FeCgvX/hEtN/9JY67PaF5xX56eFP28/j14N8M6d4T0aXRxaaXYw2lqJdN3N5cSBFyd3Jwoya0f8Ah43+0djHnaH/AOCr/wCzr2nSlc9g+if27PEj2PwwsvD1tc7H1LVkEkWeZIo1Zj+Afyz+VfJU+mX0dw0Ai8xlPJiYOPzUkGmfFT9q34s/GGOzj8W3Fgv2FpDAbK0MR+fbuz8xz9xa4uXxr4gn/wBdeF+MfMSf61UabSPSw2Lw9CiotNv5f1+B29/a30trGRYyhkPLCI5/lWr4n8ZeMvFOjWeia9q0FzBZBfsu5Io3jAUjBbhm/wCBE/hXlv8Awk2qf3k+m2nweKtQhkEjwQSgfwOrYP5EGl7CLab6eRtLM6L0VN/+Bf8AAOuWyupHCLLGSTj/AFy/411/we8Xar8M/Gtrfx6vF9nupEt761VmbzEYjngFdynBBz2IzgmvL1+INwi7R4b07/vq4H8pa1dN+OOvaTsaz8JeHt0bBkkm0vzXBHQ7nYn9ap01Ywnj4yi48i173f6o+ztWt7PxHp4kMrGOVMrIhxkEda5C/wDhppwZgms34RgQ8IkXa4PqNvP414E37ZfxlcYMml/hYf8A2VRP+198X5Dln0v/AMAf/sqhU5rY4Lnq3ij4A+Dr+KR7BZrK4IOySAjbnHGU6Y9htz615x4h+BfifR7kzx2sOqW+7/l3Ply49Sp4B+hasqb9rH4szjEkmm/hZf8A2VVZf2m/ibN99tP/APAP/wCvWkfaIketmNLW4srHVZrCaaLbcWOp2hxIDwFD4znk9QoHrTtRmvdM8KnR5vBdqFDBP7TtSGSXGDgsuQ55/vHBPbpWXrPx08Y+ILb7HrNjpdxHnKiSxB2nGMg54PuKwIfGGtWtwbixmFuSCMQlgACMEdc81Wo7mXRRRTEFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/9k=",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK9p/ZL+Dnhb4saJ4vn1zweNXutHisprSP7RcIwR3lWVUWFl3OQFf5shVic460m7K4Hi1Fe23v7O7WOq3FtN8LfEUTTo6wwvpc80MBaT5GSVZEJIHHzKR94kHg1Lcfs+6F4R8JJ4g8TeEb24D602lSzsJEjgk4ZZsrL+8QgldyjZxjO4g1PtIlcutrnhtFdx8WPC/hXw9D5Ph2wjBivAjXULS7ZFaPeF2vI+0jp17GuHqk7q5PUKKKKYBRRRQAUUUUAFFFFABX0/wD8E0/E02g694jsoNEv7l7yfTgt1ZRti0K/aTvZ8bUxnI3MpO07Qx4r5gopSXMrAfot8Y77xX4Y0a+8R2/hC18RpZFXsLC6tWunleVlSWRUGSrFdu5iGY+TnPPy+J6l8bfi9NoMuj3Pww8QWtk4KW6xSXO61BdXYJ5kbn5nBJLBm+dgCAcV8q0VzLC01ubRrcq2/M9j/aH07U7DwNpYi1NptObUWlSK808RXMbyIxUO3JJCLtYDaMop25ya8coorpiuVGOl9AooopgFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/9k=",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [19,44,90,82] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [43,58,63,69] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDqrvVpbqby4x1OB+f0rV0HSCpFzcDLHkD8j2NUtA0nysXFwcuRkD06Hsa6CzHzYr6BNbHPO6V0dN4OttE0Mp481S1WS60uVm0cNkhLho2jaTAPOI5WXkHBkDDlRXzx+1L8WLm/vZ44Zt7MzNuxjJI5PK+hNe2X1u17p720b9VI6e2K+cPi58O21jxddm6viqxSkhVjHPqOtfpvDU6P9m/u/i6+vz/Q+NzOlN41VJ7dD2f9k/QNYH7OH2vVbVoIrxriS2SQYZk3sVbHoeoJ6jnoa8Z+MOmz2t5IrScbjsGB0496+gfgB8RdGu/hifD97Klt/Y9sLch2wGUL971rxz4ybNcEsum2zKpkysrH749QD2Ne3TqSnCVzhjH2de6Nn9j3wNq+nalb/EXVI4bbT3kdIrm4nCZUxuMYbHVvx+X3r1zwX4X/AGhvFfj3UZ/EnxA0G++Hmopfpbadp0Mf2mCN2Kwx7hCFyillYhm5U53A1R+DHwk8NfGX4G2XgzxOvmWkUiTMihg28BwOQwwMM3TnOMEYIPs/wk+E+m/C7wvD4P0e4aS1t3k+zhlI2K8sku3liSA0jYJJOOpNfleaylUx02+jPs8LJRpJo+WPgt+zj+zN8PP2v5/BPhTwv4jt/FvhrRjqlvf3mpQyWM8UiorqixybwQ130eOMEoSNwC59h+HPhT4naZ4w8U3HjC8nn0u41APoCTJGghgLytsUKcgAMgwfT6mvSPDv7L/wr8O/GPV/2gdI8OCHxbr1itnq2qi5mPnwKIlCeWZDGv8AqIslVBJTJJJJPV6noqAHHHr+nvXn06bWh1SrpyufN/gT9nHTPCnhPxJ4L8SalFqNh4j1hr57WztpLOO3DJEDGm2Zn5eMuWDA5fGABWl4I+FHgf4Q6JNoHgTTHs7Oa5Nw8L3c02ZCqqWzK7EcKowDjivXNW0ZCeV/X6e9cr4g0iRY9yD/ADx70eysVCvzaHE6tNE2VYfT9K8C/aY1/wAN+fZxNrFvHc2UzO0bSfMuQozg+4r3bxNaXMYwo5/D2r5+/aD+F9rrETavZabapdzSgT3Mxcluh6Kwz3/OuDHU/wBw1/W6O/CzUZo9C1v4meEPCt1HZa1q6wyyJuSJYndiucZwqk4yMe+Kjt/j/wDDKE4k8RkEHBBsp8/+i+Knk/YN8Q/ETVJdd1P4s2UeIQYhZ2LTp8oX5AxePGSSc47+9dj4A/4Jz+DZQy+NvHV9cQ+QyyLYWcVssLLjayljKfu8Nn1G3YFwaVW8jiaXU5qx/aB+FjD934nU5HJFrNgfX5OKwvGup+GPEytr+gX0dykiktJGW+983Bz0PTjFdp4p/YF+Ddrc3FloXxT1NJI93yS2yTMh5wDt2gn7vp+tcVefsveP/h9b38uha9pms6YimRhbXDRXCqqjLmCQfUfKzHj8K+r4azB4XGKE9Iy0+fToeNmmGVWj7u6OH8EfElvAnxKgaaIPaSzFZ42yQxJIzjkZHY4/GvTfiBqulXsD3yQ5EiEryRjPSvnD4grdW2vLcK3CTbhjHZmrurzxg2oeHbaSNsgwj58fe/DHFfplGUG2z5yrTlZWPTv2avj7YfDrxHLp/iQXMlkyMYxbRhiGwexI/mK91i/bN+Etkj3Oo2WsWsYA2vPaRnexOFRQkjfMzEKM4GSMkDmviDwh4o0nw34/0zWPEtgLzTYL+J7+1OR5sIYb145Hy56c19caj/wUJ/4IgeHov7J174M+Jbq8tyFnW20q5lUOCD1lukzz0Pt9K/PeIo0cLi+dpvm10/4c+iy9Tq00o9DtbX9s7wMBtu/CGtof+mSwOP1kFMu/2xvANwpW18J66T2MkcCgfXEpP6V57H/wV7/4I6wL9ksf2bfGDAfdY+HbdgO/8d7n9Kgv/wDgrv8A8EpiMaX+zJ4tk9PN8KaecdOm69PvXz8cXRk/hf8AXzPSeFrPp+R6f4C+PmleOfF0FpaeFbgWtrtn1KO6kUb4BLGrAFGyCQxXjnLA9jWrrM9rGlwl88aS25JmiSXeY1Jyucc8rg9K8R0//grx/wAE5LFWudG/Z48W20sqbJFh8K6YuV3A4JF5zyAfwqxB/wAFeP2Gbm9n1Cx/Z28YG5nVRLdf8InpxaUDoGdbok4xjn0FU8RC90ilh6q2R0XibxL4WfUV0lbwtPJjYoifHOOpx7Vwfxk8IsNHmLrgKoLc9ACh9a14P+Cqn7JniW5ez0H9k7xDqc0HWB/DFhKY8gE4Cu+3qM9M8de1W6/4KvfCnUb+XSLT9kTU0WNtpbU2soQTjJBXazDBBHTriuWtWpVI2sdVGnWhK9tjY+Bfx38PWvhiawup1guonZ5EEgO4YGCMgHHXnHUVk+K/2kdd8eeI7vTNC1qax0W3iEEjxqAbrIw3ODheWB45wenFfCtp4S+Kjxf6R8RAGYYPlQsoI+gatfT/AAP8Yp7bydP+JMkYA5aKJc4wOfnJBPTqD+NYU4vn5uX8TOdNONuY+y4/iM9sM/8ACYAptwI/LiAH0IQEV5j+0N8VtQ0qwt9a0nxFciS3JfdFdvhiGBwccY9R0IPSvB4/hz8cIwUl+LF7KrHpJZ2JI9t3kZx7Zqlq3wX8W3NhcXnivxxrF3CkTu8A1QxRkgE8LCF9+DxjivRVaaj8P4nLGhBy1l+B7P4y+G9l4p8KWfxKuNdtrSyvZSqqgLySMWKkBc5ABXGSOMfnR1PRLDRvD0dhYbmMY+eRjyx47dq8x/Y++O/hfwBofjTwZ4z1MX0FrcxzWUt44drJSjq43MCcAquAOc54PGPO/Dv7Sut/Eb9qa0sdDv7i40W7Y6dZwhAn2gl22ybRgAEtxnkDGcZIHu5dxNXrYynSlFcrdh4jI4xw0qkXqlf+tT1e8neafDnoa4Cw/aS0rwt4i1fw94oudHsZI9UWHT5FzbEpGTuaWWIFg+Su3K4JHVBhj66/wx8aT3jSnRzFGjgFp3C9c8gZyehqTwp8H/2RvBviibUvirq3ie7kdmuLi00jQICrTSN5i5knumV1QPgfulYnnI6HXi2NaqqapWum9+1l/wAAyySVKnzuotGl37+R418P/EOv6V8TrJfC37Ql/rYu47wxWGp6nLcxRIkMjgbQWJIUsN+MgZPTNfVv7LHgr4k/EH4TXHiJ7m1vJbTXZ9Ou9P021a7aGRMNvZ5riNijB0IO3PYgYFeaaz4v/wCCaUurfb9Y8KfFzUbxHQ3El9NauLlkGAZR9qAkIHy5POAB0AFd98D/ANvD9kb9nDQb/wAJ/CL4b+L4LLUNTe/m+3JHJ++aNEbBa6YqMIMAD6+3yGDi8PL35aHtYqrGtD3VqdV498GeP/Afg7XvF2oySW50TSLzUIra98OBUvBBCz+WHWd1QvjI3YYAE7T0PjPwx/avk+I624m8H6lbXFzbtJHb2kNtPFIEQszI21HxhWb8Pz9M8ff8FMPg58QNLk8P6z8OtfubS4RknjE626yIy7WR9kpLKwJBBBB+hNeWa58df2KtcnW4v/2Tbq6dU2ea/iiSHcucjIRSMgk846Y9K9N4qjF6S/A89Qm1rH8TovCfxi8F2mmeJ/iJGdRNuL6GS4um0ud1hiKRK7ytHG0ceCGPJHC/jWJ4buvhV8Tdcvdb+H3xW07UHeV5ZLWzIaSIZGTtLbtuWA3bcZOK1dI1D9k79oPwFqPgK9/ZtntdI0Mf2nDYP4rkbzJAsgz5iwrJxlhgtj5+nAFcFpVj+yp4bmW6+HfwBu9DvY1YR38Hi64ldNwI4EkZU8FgQynrxggGuVVOZ3la3zv+X6msbK61v+H5/odPYppl0Rhuf7uGrVtIYrcZjPHpXknhL9m/9pOfWUg8R/tFyeS3+sVPDVkHXkcAgYz1HINey6Z+zX4ea3ig1iTVr+dQMXs+tvbSOPcW7RKeSeAo+nFefTxTl9lr7jOtGlC3v3+T/wAieF4HjBIwe55rO+ILRp4E1Jgcf6I4B/4DW3p/7N/gCx1aNrrWdat94CssfjnVuAT0CC529Rjpj8K0td/Zq+COj2b3M0U12syl5G1HWLybJYHIPmzMD+XeuxYmUoWscidNO9z82/F8a2up6hJHHI0N9KsiyqwB3hs89yvB+X1wewrO+HfjbUPh58SdG8c6Zs8/R9ThvYhIMqWjcPg+3Fe8/tpaP4T0/UbXRfA9taqyTeWtvaoAAvIGPb/61eF6p8P9Yh1qHSNRgWNxCsz7ZA21Tnrg8Hg8V5vJUp1lKD1R9RQrRrUfe2eh+oNnf6J8UvD1v8QvD2txX+l3kPnWM8I+V4+mQeCencV85fGHxFrEfj/VNF8MQWlyYjG0rvO+Yyyj7yrG2DuVxjPbPevnnwh8d/iz8I/Dt14O8AeNLm0026GJbZyJUXjB2CQN5fX+HHPNXv2U/Gl34d+Oun6tr+oXUtle74dYlN0wkeBirOwbkl12hh67duQGJroeIxEsRecm7/PoRWoUYYa0IrT/ADNjVtM8e3N09z5unEuck5bk/lVb/hEfHm3zXn08e+Wr72t/Cn7MsKSBtC+1DI/eSzkkD044/SnSaD+zqqY09dNQHqjzNtP0LBm9fX8KqWF5pXueN/aLj0/r7j4OtfBHxHuV3JJZ4PdYnI/lUkPgf4iBtr3arnp/oOf/AGavuGGy/Z7iD2dhJbo74xCLtfnxzwAMtjk+1Ph1T9ntEMNzZwwBvuv5gH/suaz+pLuH9oN7L+vuPCP2O9G1Xw54j1e18b3O6G+0tkhkW1K4cOuOFJLY5P51zFh8HvinpLtLrusRPEWwudNERUDIzkSOOcivp+28YfAy3lMEHhhNnZlunB9fWrtr4g+H0BJsdBXzG6NFczbl+hDZH4fjXRHDe4l2MHi5ubaW56ND+xJ4HumyvifXlY/6xzeJ83rjEfFa1h+xX8MbWJVu9Q166xjIm1L5T+AUf5NflTH/AMHK37c0Q+T4RfCP/wAEOp//ACxqQ/8ABy/+3URj/hUXwi6f9AHVP/ljXFGtg076/cKVCvI/V1P2Pfg9FIsosdUyCOP7TcD9MfpV64/Y1+DWp6VLaz6LeN5iHBk1a4IBxwcb/wBK/JL/AIiWv26c5/4VJ8I//BDqn/yxqUf8HMv7dwTyx8I/hFjGP+QBqn/yxrojjMEt7/cT9VrHpH7Z3hr4U/B/43az4C8HaG19PpLBJL7Up5DGkrIHKxoGy2zIGWOCyn5SOvzvPqlzFeXF0pMsk+7cwU4yc1x/x3/4Ks/Fb9obxLceNPHPwC+GdvrF0gWfUtJtNXgeTAABZf7RKMQABkqTgY6cV5xB+2N46iJ87wN4ZmG7O2SK8HfplbkHH41nLGYZvRv7j1KEnTjZo9+8L/DnxD4nv0t7DSbu+nf7kNtETjtz2r2D4X/se/EnUvF9s97JBotvDKTK91IvmAAc4QNn1HT9K+bfAH/BWP4r/DaJI/Dv7PfwvJQg+ZcWersxPuRqQzXYwf8ABdH9oOC6N4P2a/g68jHJaTSdZY5+v9qZqoYrBL4m/uCpiMRLSKP1K0XwF8H9N0y2sIfCGg3VxHbRpPM+mws8rhQGc5Xkk5P413Ph7wJ4XugFs/AejqfQ6XFz17Fa/JrS/wDg4d/a10b/AJB37PvwXj9/+Ea1I+vrqPua1I/+DlH9t2L/AFfwX+Dy+w8O6mP/AHI10LMMDzXbf3HnPD1WfrXdfCbw9eJsufDGnxZ7pYxr/JRV3TvhJolqqm10WAYzytsoB6+3Nfkgn/BzL+3Qn3fg18Hvx8Pap/8ALKlf/g5o/brc5Pwc+Dw+nh7VP/llVrMcvXf7ifq9e5+vtt4KWzYAaNGV74i6/pWlZac8DlobMjPYIRX43H/g5l/bsP8AzSD4Qj6aBqn/AMsqav8Awcwftzo25fg58H8/9i/qn/yyq1mmAjtf7hfVq3Y/O6iiivlj0wooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//9k=",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD6111juA3H/Oa4fxTOohcE/wAJ6j/Zro7LxVpvj23XUPDMchDXVxAbVxmWOSGeSF1IGc4ZDgjggg96muPgP4r16NvN1OytSQN6vukZcjgHbgZ9sn3xkZ9R1EYpO54Xrlrb3MzBh1djwPenafBb2q7UQDI/u/Suo+NHwctfhppU2rah4+t2uLe3lunszaENLCnl+Y0YVnZypkjyoG751yMMpPgFj8ddK8XeCZ/Enhe3ud6+dCLW5jVJo5kLIVKBj8yuOnoDWkaisNps9kjvVGFD8A+hq5b38QxiT9DXyjpfhz4i6xKry6Fqs8c8mTcS2sz7vmwQDtOQc4J6jHFdzoP7Ifx+8X28t3oPw11ONoNuYb5UtzIGyQwMjAHgcgEkZGQKpVE9BNJH0NaXyZwZM/UGtG0vI9g+fHPoa+YJ/wBnD9pTw08v/Ft9fg8sZJtbZzvHHIKf54rnL6bx34fvv7K1y/1e0ueM21zcTJIfYKxBPpXRSacjKpax9i/EDxFC/hKPThKrFIudytnB4HP14r5O+J1zHPr29ER9sxUhl4JJ4HNegeNPFF1YaHZ6JPcM5sbCBNxwxLAAMSTyec9ea8X8V6ws1yY2bOcDoPSv2FJ4fLoR/unw1OEpYqUvM2vjr4G0+4+HPh3xdo7xSvJYot4qTIHRsLjcp+bnJ5x2FeW+Eru60fWUlglZHikLKQx4I+le1WNtb3ugm0I3CSFQ2G/KvIvEWjS6B4gmsZNqtGxHU+p9RXhU6qqza8z3qcnGFj9Fv2Rf2h/DXjzwdb+HfE2rW9pq9htgVbm5VftKj+JQx5PTjOfavTrf49/BozG3/wCFhacjKcZkcqpx6MQAR7g/zr85vh1Bp/iDVrPw5qmtJYW2oyfZZ7xk3CBXbaXwOuM5/Cv0e0T/AIJOXV7o9td2PxtshaywK8M/9jvLvQjKkfvUHTH5187meHw+DqJzdk/67HVS5pqyPn3wx8O/iD8O9HnsfAvxU1rSLiT7LK1w17akfabu4Pmy8xuGy0iuFJGMkADJrA/aR+Jf7Qmj+Ep7+T4qz6fNoskwhuLG5hC3hUy7fNQwtG2RbynCbOoXkkZ617fwzHc3V5a23hlIk11I7iaHZeO0SWaTBzt2EKJQOeQCOpJBHmv7TlrpXhz4Uaxa+NXiW1sdMjgkLaHNg3DCEwuJA2Axmkcb+zbs9SK+EW57StsTWXxE1Hxlo2j/APCzI9O1vVNNt4Wklv8ATxIguBEyOwVsjH7yQAZIAbA4AruPh14//svU0s9H0LTrZJyVZbK28nk4JJx16D69a+QfCfxVtmjElx4mmJaNTn7TJycH/arqtL+OFvo13Ff2viK4MkThlAuW/qSDXoQ9lyEONRPY/QS0XSXKgeWsjY3MY+Qfr7etZ+p/tAfDrwcx0saj5t+ZQgQSAEkHDMSx4wNx564wMk18val+3VpEmhpHpupFb50IKuc/Mf739PauZ8GfGjwxp1vJf6j4mhnvpmzczO+Hk+p/p2rahCnOW5E+dR0R9Ra38Zbu/d5h4mZImbbENOhWUqMfdLhHy30wen48v48+J/h99DW98a6BDrtrvSNhqmmJ5q8nGMopU++M4A9q8kj/AGh9GEDLBvZACXWPcRjHJ44P061g+Kfjd4X8XQweH7XVooppbhcWruVZj2+U9D6cd69jC0aE60Yxet1+Z5laVSVNu2hz3xS8RQrfXCW0IRAAI4l4CgORgccV5msdz4g1+LTrPDSzOqoG6Z6c9K3fiXrEj65dRbz1HAzgc59ayvAl1pthrCa1qlwsUcasRI/8LDofav0DH4mFLDe9okrHk4ai5zukdJp/wz+KN3MItT1gWsazxtE9pdqmzayZUfKWZW2sAfdCybRIkln9sH4T+J/AfjVPGeo6EljpvijdfaUtvIJI0R9svlAqAF2LMi4IBODgYFLe/Gn4b6fIj6r47gTy2zzOxK9P7vPp0r7Q+Inwmm/bA/4J8HXIdJtotX0uxj1bw7LYZZJIls4GUqrZI325UYJ4bnpxXyOHxSo1XJu99z06lOcUtD4E8P6nGsEayc5yM8/3qg+Kf7Wv7SOk65D4esf24viroFg1oUs9ItPEWom2BjXOBtulVVztA4wOwqn4YlaS3i8wDv8A+hVmfHZYYvCIuo/C1lfyvG8YlubhIWjBAyFZ8DJGeMjOMDJIFdnEFL2uA9otXF/8OaZXP/beR7NH6EjW7rWtCt49MvdXkFzLcQ3a22nJCvlS3ixxlTPGPkKO2SDkYOCdpI+Q/wDgo14x1fXfDWn+DRqus20moX6zzLPLGGlszuuIw3ktgnzJV4HHynk9/o7wh4mW98K2+oho0eKxXdbXmtvulkFtNIMJ8ygebLGRgcFM8Cvkv9sbVNJ1z4w/8I/paWjQ6RGscL2lr5aBZcShACSTtDDJz1Jx0r80SPYp35jxTwt8Lk1Das+q6k/yLwLmQdj6NXXWXwQ0znzLzUcY/wCf2b/4qtjwxpz2pR4kBOwcDA7GuxsL22C7bmEL6E8+ntXo0qUeTUmrVknocFH8A/CsrZkv9W3E/wDQXuR/7UrZs/2dfDt7Ekc+pahMgUBY7nVbiQAY4GGciu4s7exmO9QvBH8FaluI4QNoA44wK6qdKMdjnlWmeaRfskfD+LCjSLc5bgtuJz9T/KvQf2cv2cfhhpHjW81Z7LT1nsNPeWGSNVDxS7lUNnj+FmHPr7V5z8cP2sPCXw71C88J6dbz3eqW0YK+S48veVJUFuRjlSfrXiP7Kvx88Z+AfjDb3mr6tNPYa0xg1RZpi27c4Klck4IY5+gI4zVfXoYOopR1aOmjgquMj7zt+J9d+NvhlYT6tNcpeSEHGCB05xXz/wDGHw34U1LxobW58u/gt40VXZztGQCw4OPb86+qfHviHw3pPha/1We+h/daZJKGBG4kKSMZ75xj3r43vX8Z6hM1w3hWZmfq730XJ9/mrXGZ/XzCnyvTqUstpYOWn6Gv4V8JfCyzmUT+ErBx5i8/ZlfueuetftJ+w9qaaj+zfolgZoXso9Ms4bKCGEIsdqLG2VUODyMg88cYHbJ/D+1s/iDDcCSDwo5H91NQj9Pav2U/4J36jdn9mHwz9tR4pTo9iJIy+SrCAqy578pj8K5qFeU42OfFxVtD8+PBHh3wh8Tp5vG3gKI2GiXNxJ9gsCzsYUEhUKC5ZjjaRyTXq3hJtB+FXhu/8T3fwz0bxU9naktp3iLS0uLZ/Q7SDkjk5r5X+H/7QXh/4A/Fb/hVWs6Vfxw20gt5jMoAV5NsmSijjG4jI+vevo7xV8b/AAloHhyS5TUbQwzRFLmMzAtg8YI7HBP5V3YzP60qCoaW6nXhsqpxl7Tr8ja+GHjaS8E2r+HQfMSGSSBrG34VAUcqXbIxiHAAwRuB5Ga+JvjtrnxJ0n4t6jF4H8Jxa5ZSNHNFfRXpYZZEbacDAIJIIBIBBAJxmvq/4T/8E/fiF4QtIYtW+N+q3MEA2x2v2WLCgqQcM+4nh2H412OkfsneFNIZba30t5thGXl3AnnOSSea+bVGc0hQqwpTvufCWjePP2lgB5Pwps0AUY8yZznj1LKBWyPHX7VVyNkHwv0VSO7XB/pNX3rB8A/D9omINFyypwiwfewOmRya42/+Fvxeu76a20b4UvDFG58uSVlTevrnPJ56e1aqjVirKb+8meKoraC+7/gnx3d/FX4+eD7cf8J/oGk2c1wGNpHbwzgEL1J3S+pHT0Nc7rX7QfxRe3mt5NWWBZlIDW0kuUB4+Xc5A/Kvrf4i/sofFr4o6ONF1f4UfMjZiu/tESyRHORtJfpnqPavGfGf/BLf9pm0thdaF4fgvA55SS9jV059FJzWsFOOhVKvQm9VY+ZpbuBml1C7jaeaQYaWb5mPHck89Ky7rUrpLhLuzKwtE26Noxgg8c17J4m/YL/ad8NPGNX+Ft6A4zmN0baPU4bjofyrAvv2V/jLYsYZvhtqO7uVUEfnuqJ0pyPRp4ijHqc1qXxx+K3iTT49E1fxdPLbDCyIcZdRjrxz0z9a/Rfwv8CfC7+ENL1AeEIrnzrKF/NK5JLIGOenrXwn4L/Za+MOueNNM8OWvga9inu72ONPNhbaMtjJYZAHXqe1fqFYfA74yRWcFgfHOhWyQxJGv7qbGFAA4B9O/tWmEoODbZ5uaYhT5VB9/wBDiNH/AGf/AA3eptt9Cs7KUdGCfMOvqD/k19DfsrappvwQ8NappHjTxA0kF1cQnTADlYkRWygBxt+8Dx71wMHwI+LBVYZfiRofzZxLBDNnj/eT+prwP9oT9pPwR8A9au/Cd18W59f16zlMU+naBpu+OOQdY5J5SiKQcqwBJUgg8ivTjBKJ4qhVnLQ+Ov23rO3b9pPxHZ2FnBavY6o3723iCMxKqwyQOQM4/AV5drviXxHrN1M+o6vM3mH5kWUhevp/jWl4u8U69418SXvibWZnlvb+4aWeQjOWP+QKueCvhp4m8XXoTTNJluCxG7CMAvB6mvNnT9pUPrKc1RoRUuiP25ttGn8gGRdgPTGD2+tUI9HlmmKxKGPHYf41/LvRXJ9d/u/j/wAA8Z0X3P6ndO8OtFIryxqTjoUHp9a0RYkrgW69fav5UaKtY9L7P4/8Ah4Zv7X4H9WDWLRpuFsp/KsbXdTv7KCQ2+hTzEA7ViByxz24r+WiirWZRX2Px/4BDwl/tfgf0rax41+M81ybXT/hbeSRA/LIcBGP4A4NU2tP2gvECtGvw1tYUYYf7TcIcg+ny+1fza0VX9px/k/H/gD+qf3vwP6S9E+D/wAczqKaomm6LZyo7bD52WXjr9weuK7PRPhj8Xp5gNT8TwhT94GVj3HfPpX8wNFNZqltD8f+AL6o/wCb8D+qKw+D/ixxsl1lXO4FmMrYODnr1z6HHBr4W+Kn/BF/45Xni3Ub/wAJfFPQJ7K5u5J421Oe4WbLyM7bsI+Tlic55JNfiNRVvN4tWdP8f+AaU6FSn8MvwP2m8Nf8EVvilBq8b+Ivi54fEAI3i0s5pW+8OgfYOme/X869u+HX/BMOPwNZray/EiWSP+MQWYiL8Hjln6HBr+euilHNaUHdUvx/4BcoV5qzn+AUUUV4xsFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/9k=",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [33,53,64,74] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [35,39,71,62] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPpb9n//AIJZ/Hr9pD4V6J8XPA3xA8B2lhrqXLW1nrOtXEFzEsFxLA5dBbsuC0RIKM3DLnByB3Q/4IX/ALWj2/2qD4h/DuWMDJaHU9RYY9Rix5454zx+FfT/APwTJfT5P2G/h9BqPxI1jSoY9Q1GW4tILyMQyxjUbpWT97Gu1TuyRHJu4YjBJFfT9xrOUmuPCXg27vDYt5sMlstvFBN8pIQgtt55GASeOSuDXu0suw86MZO92kczrSUmj8upP+CIf7UkMM0s3xO+HSGFGZo5NQ1JScdQM2AGfqRVaP8A4Ir/ALS9y0aWPxY+GVw7QJNIkWu3v7pW6bibMDsehPSv1C0PWLrVLeLVda8GxeGTHtit0l1BraO5Ycspkjdjtz/Dnnv7MnvfDPiDUm0a1sPOgMsn2y/0lZj5YUD5D9nfzVb5mALZVsDLZODp/ZuG7P7wVWTPzCH/AARR/ajE00EvxE+H6NC7KQNQ1Fy23GSoSxJYZOOBn2qnc/8ABHD9oy0tlvJvif4C8t8CMrNqxZyegCjT92SMkZHOPXAr9NbXWIU8RQ2/g/xJ4XUKC1zdamkj3ChpBsVInnUrkNt2swKcEr1WtT4oaLcS23l3vhG4ulSeL+0IV0LzS53YUpDdR+VMAdu5hKMLlgcgCn/ZuFvs/vF7adtD8xLT/giX+1HqFsZ9O+JPw9mfosH9oakkjN82Bh7FcZ2nBJA6cjIqs/8AwRX/AGtIPM+3eKPA9t5dwIv3+r3QzkkK/wDx68KSpxnB9q/Unw1Br/hy2g+yafoWn3oTzLe0NhJbwGJY8LGwilmhQ5KnAkbHUDGK6h/Gup2Nva2TWyRAusTPbvHHFHcl/LMTvKqqjKSF2Z3n/aJAMvLsMnon941VlbU/AT4/fBHxZ+zl8W9W+DPji/0661TR/s/2mfSZ3kt3E1vHOhRnRGPySrnKjnPUcnjq+hv+CrNxqF3+3x48uNUgaOdhpW9GYk/8gqzwTlV5IwSNoAJ44xXzzXh1YqFWUV0bOhO6CiiisxhRRRQB+zf/AASdXSLP9gLwNqWqeK10qNItXac3Nk0odf7Uu1DxkqQMEhTwRk45JwPobU/CNvqGktAuvaYLPVGV7a4aGwlErE8ACaNOoU54JGSByAa+Wv8AgmL4I+HVp+wz8PfGeveE9Me8vYdVR7l7OR3uNmq3oXzfLXDBQuAXJ2hcjAzX1Daxaf478MPp9jd6P9mkVrOezu1d9jop+Xy2jCscMPlKjcCMEgivp8O7UIW7L8jmlq2Sa5pesWkcOkxaT4XuYC3l4iss+ZgpzkXGFI6hSGBI5UkAGG3Gn+Hr1YtCsLyyDuYriRPCVxcgMQSAHESkqB/ECF9hurLvPglqsR2abYW8YjtmEkVrFcblkO753RCUfORk8ABQBwOMbxld+BPCXhXTrTxRp99ewI3mW1vYTamzyFWXbu8uba2TgMpbBUvuIRXrdavcz2V2dHB4h8G655mk2ms6dcarYxSC904+Hrz7TKuzP+qhIbnacssbZBIGKsJ4m1S0utO0E6HBbTgedIsenXojGUJZSJoQMZzgs6dVGM/e8qsv2s/h/oOg6zq+uafqnga3sy93fXdkIUlvnC4QmNJmYKemH27iwA+YgHC1n9qX4D/GZTewfGPQfAiJ4eSwS1uPiDd3MeoTLIHN7NFNFDGHZfkaNFETKR8iEh2JRmvstijUpv7SR7h4rjtdIu7Q+JLvwbplzqFwINLutQFu91O5PmPFGnlqS4jVyqhpMAAkEKay7XxNMPGeoaFrPxH062E4jjs7i4gjVJHOWXzIw3mDaA2xjsXhgSSVNcj8N/ip8O9b1qyttP8AjN4TisbYoi2cGqafMfJCqscURESHa3TKMeuwYYHHTfErwH4H8ZaPcaL4njsdctwHlt49e1aa2K5JblJInGAC3IJGE4Axmi3I7MakpK8T8iv+CrPkj9vnx6tvdidFOlqJgzNvI0u0BOWAPUfT04xXzzXtf/BRPRZvDn7YvjDRJtBsdL+zDTkSw0y++0wQJ/Z1sUVZMDd8uCeBgkjAxXilfL4iyxE7d3+Z1x1igooorEoKKKKAP2S/4JV340z/AIJ5+D9UvNZjWCL+044FOjSXKwzNql395YwJJGbK42twMjgjI9L8R6b8T/7ctPGPhvxZpt9eWuWubu0ihLT2uQZIY1aTKKSBnerFSpzzg1+EVFerSzP2UFHkvZW3/wCAYyo83U/c6H9qfX9G1qWLW/gn4s0q8lSONNU0zTEaL5jkBy0CbgGznaZCCeOODx3jLxLq/izxRH40Hxc8T2SJbyi58KanM8UV8MYLG2gljB4x1DYG47SSa/GKitlm8Yu6p/j/AMAyeGlJWcvw/wCCfqvpWr/GHwb4tutf+B2keGdatElWKfSRbWE1vHBuZ/s8gj8qUHdzkl2OeWJGR9F+CfG3wo8b6ALj4sfs42Gg6j5Ja6022sxdWrncDuZooGxnBYK42qeA7E5P4O0U55ypK3s7ej/4BMMI4O/NfyZ+7vxF+Gv7OMMNpqPiT7H4bjuHEaQT6XaRhAAAhDSQgtjI4GQCSOwrP8JfBzw9YC70n4Y+MfDmsWd+7Pc6Pb2dvFDu+YCSRY4iSxIblioLFsdMV+GVFR/a8krcv4/8A0+rRvc9v/4KPW/ia0/bR8a2vjH7J/aUctityLEARDFhbbQMH+7jPfOc4ORXiFFFeTUn7So593c6IrlikFFFFQMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD//2Q==",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAor6d/Zq/4JO/tJftS/CjTvjJ4C8T+D7HSNUExtE1jULpZ2EVxLbvlILaXGHibv0IPrjqNa/4Ij/tW6Bpa6vqHjTwaYmbaFt49ZlfOSOVTTSQOOpwO5rojhcRJJqL1J5oo+OqK+yl/4IgftRNHHIfir8NV837inVdRz+P+g4H41f0//gg7+1rqNs13F8UfhmqBsBjq+okH8VsCKPqmJ/lYc0e58TUV9pSf8EKP2uondpPiH8Nlt4wS902u3gRfbBs9+T/u1Zh/4IKfth3UEd/ZfEX4Z3FnKpK3tvr95JH/AOO2ZJ544Bo+qYlfZYc0T4kor7Suv+CE37YltqH9nx+L/As5GN8sF7qLInPc/YefwzWZ4h/4Im/tgeG4/OudX8JTqJCrfZbm/cgYzux9jBx9BkdSAOaaweJf2WHPHufIFFfV+o/8Efv2h9GtI7rWvin8ObHzUV4o73Wb2EupxyC9mAcZ5wcivn746/BrxJ+z78VdV+EXi/VdLvtR0jyPtF1o1001tJ5sEc67HZVLYWRQeBggjtmoqYetSjzTjZApxk7JnI0UUViUFFFFAH7Af8E1ta8Zt/wTn8D6b4C+H9jf39tNqLxXU3iC9sFdv7VvDiY20JDAAgAM2MfTFe4fCn9sj4h6rrjeD/GGieCYzBdNaR2mjeKTPO7KCSxZwjFRhstsJOOAR81fOv8AwTQ8bLof7Dfg3w4l3PZXGppqUFrdxTRoZJDqV3iNdyPuk5JC4JxyK9IX4JfGHUZ4rTV/G/jzUNKVA17b3msRW0YYKMuGjSKUnjlXBQkk4Pb6zDRg8NHm7L8jhqSmqnuntniz4neJtM8TQx2vhS1ubG9Vjbqvi8z3EhUAkx2xjXcRkZIc4HNQ33iCy1T+z7qL4N6rrEbM4FxqQW2e1bB3PsnbI6Y3KwLZ445rxTU/hBpMUcd5b6JqF9dvNDcf2TrOoSZiZTgvFKImjHuCzZxgKueZ/CP2CeZ/Dg+Ll9oWsX8huFtntVaCPb9wbmtokmwBj5+cZG49K2VOPLp+pLqS5rM991/WtDsvDbX19olhZW8FsT9q1AtiGFuWYyMp4G0Zw2PlHJxkeW+P9I+HU15a69rl1rNxalY3fU7K4kXTxuwYjvWRVznBIV8jH8OcnW0S28d3FlNZ3njO2uNW02Pz7aXzVtZLpSOXeKRZFUHH3hhT24rL0rVtee+kvY5dFu3i3JcxytFdNEwIO1UhnSKLof8Alnk9T3zEVylybaGeIPFngPxbo1vrHhq28QXy6iyRanMI7GSIzxjkwGbV71khcISV3SlRyo4+Wjpmmf2zOfC/hD4Q6R/Z5jD3MV7FboLe4K58xBNasGOcbcFkDKepLAX/ABf8R/EPhPWDJqfgO91pnidrWw8MfZGvEmUb2CQrOWJAwzEIcDBJqHxOPiVDa2vjSw+HviVrjRpZikUurW8NyGMf7ttsIaG4jJO394+4ZYhDgA6cyWhDi9zavPEmveF/sek3nwpS7nbddBZNVRHEhXgiFrErIwIwuAv0Odtfkj/wVK1uTxH+3b451qXR2sGuF0tmtHTBTGl2gycKvXG7OBnOe9fqR4V+LF5451IeD/Gtz4o8M39unm2M2pWQNtPJtOdlxZyRFlU7v9b5Y6f7tfln/wAFQrJNO/bo8cWSeI5dXCf2ZjUZrrzmm/4llofv5OQOgGSAABk4ry81i44dJrr+jNsPLmk9TwKiiivAOoKKKKAP1y/4JlfFG+8K/sRfDzw7b+AXKTpqpXVCoZLhzql3jIVixwPlwUGduNwFfSunfFHW9Zlh8E+BNR00SW5WO4tL/TXskRdu7KeUoDdl+8qj0zivBv8AglX4E+IV5+wH4G8R+E9aaO3kfVBNaXOkQT20hGqXQ+bFxG5Py9WxjPHGDX07a6//AGT9pk8Z3Wm6dFIFWKK4ljijaTgAKzMM5wcLuf6jivqKHL9Xh6L8jld+ZleXRL3xIy6b4isPDmoxEfvrO1jSWSEgdQ/zL6cMueep4qpBo3w2WxaHUBeeFwkbn7Tf3cVsAd2DtbzNvXuQuQfwrP1T4zah4N8QRxSaTfG0QFpbGDQjKqKwbDqLcMJRkD5Q2Rnk54qJvjda393JJH4SsI4J3IeeLSL62aUDu7PHsJw33HznkYrVKoK8Wzag8C+MrWaTX9Bsxq9vHAFjnm8SXk6TR5+8sawNCWO3+FWHbPPPAamf2iYfFV/pfge8n1HU7q1S4t7HVNH0x7XTIjJhHYvZRsz5jdFWQsMZYg7RXoOm+MvhNdTQWEGoweHb/VCFtBDMfMuSM7x5MTod35YPY0/Svhb4I8C6/wCIvHPhvxfqUeueIZYG1K+1K5ZZLnyIhHEjF4FAjVc7V5UNJIww8sjNF2lZjsm9Gef+MU+JvjLxZP41+MOv6x4u8X3lqLfXNS0670+C/uk/d7t0aoAgPkQA4lziCMZ+QGtfXPih8G/h0i2fjDwnqeh/bLvIkFs+x+il3cBUPToGf1612mj6Z8RbWZopvGtnqEd1CVk0y6WIeW+clixZvM44+8oGfu1mx/BayufEP/CW3Ph/wkGhPltcDSYfPcbcHMqgeWeSMAYx680QVOOlrLyHN1JdfvMS48D/AA08U3KGzu9b1DTtVRUCvbC5tFUgkM6zr8q49M49ATz+Qf8AwVS8N6J4Q/bz8d+G/DtrFDZWo0tYY4YRGozpVoThRwMkk/jX7Q79eMK2lv8AY4JYHUoNF11JZZF9MTx7lHAwqk56Zr8Zv+Cs8axf8FBPiAo0+e1JbS2aG5Chwx0qzJJ2kgkkk575zXDmcm6CXn+jKpRSlc+c6KKK8M3CiiigD9Kv2EP25v2HPhL+xd4W+FHxe8fLaeJLJr46pZNY6mcB7+5ljG+3tJEYNG8fAc/ewcEEV69ov/BWH9hvRtNt7fQ/2h9YsbS2hWC18Py+Ebh7e0QHjy2W1BwB0B+mO9fjvRXfDMa8IKKS0/ruZ+yje5+zOt/8FV/+CfV9OjS/HgXUKxhZETw3rcDSr3yqw+UWPOcpjn8Kr6D/AMFLv+CXvh9ZJNC+NWq6YZQ0phsvDepBFkOQfkFuIyxzkEpge1fjdRT/ALTxHZfj/mHson7JX/8AwWP/AOCfel6tZy2/jDxRqcogZGvR4ckeKLI6tHKEBJ65VD1qz4e/4LD/ALDWseGrmy1f4z3WkyTLthgu/CWoTAJnoyQx+WDj+EcepPf8ZKKHmVdrZfj/AJh7Ndz9r5f+Cq3/AATEOjPaQ/HK4tX4JbS/CWqQyPjOAhFsDHyeobPHWmy/8FX/APgnXPYpoR/ag1j7O1qsctxJomtNJgbuN5ti7tznLE9epr8UqKX9o1+y/r5j5In7O2P/AAUw/wCCbXhnTF07Q/2q7y+ga4aa4j13wrreozucY2pcXMDNEv8AsqNo5wBk5/Mb/goD8W/h98dP2ufFvxT+FepteaBqhsBYXLWjwF/KsLeF/kkAZcPG45AzjOOa8borKvi6lePLJIcYKOwUUUVylBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//2Q==",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [50,55,70,67] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [42,43,63,57] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiivV/2DtA8O+K/24/gz4W8X6DZarpOpfFfw7a6ppmpWqT215byanbpJDLG4KyRuhZWVgQwJBBBoA8oor+su3/YK/4JvLpzJB+wF8FhdmymVJp/hlo7xrck/upCn2UExrzuj3AvkYeOq+pfsTf8E4PBeiS+JvG37CvwHWwhiWFpYPg1pYP2mWYRQHAhckF5Ik8sDc7Hhl3AAA/k8or+t+f9h7/gmHYSaXBefsEfAcSarqh06xA+FmjMLi6USb4lxb/eXypC2fu+W2SMGte+/wCCd3/BOaxi8yb/AIJ1fAtieyfDHQz+ggzQOzP5CaK/rZvf+Cf3/BPFgRH/AME9vgcgXnB+FWkAt/5LmvyI/wCDoX4Dfs9/BKf4I/8AChv2ePA/gEamPEv9qDwZ4ZtNO+3eV/ZXl+d9njTzNnmSbd2dvmPjG45BH5O0UUUAFFFFABRRRQAV3f7LeoeLtJ/aa+HWq/D+Ay69beO9Il0SJXjUvdrexGEAygxjMgXl/lHfjNcJXo/7Hc0Fv+1z8LLi5Rmjj+I+htIqKWYqL+EkALyTjsOaAP2E8Qftf/8ABQD4UeHPDHiLx78NL3TNYi1ER+J9c1Hxpb3NprFs05me1j0+AyxWpMQKCdE3IFHzAMUfMvP2vfjP4w1MaTYfEq3sfDsvi6516XTNZuJL6V3OpG7tYImkhD2iRxbISIZQhUYEY3SNJ9C2eueEr2fYIXjZgfLS8jlhZj6KJFBb8B3HrTNauPB+pwS6WIrNrlYx5sTMC6DH8Snlcjpnrz6VUWlurktN7M8duvjl8bvFen6FpOgftAXVt/wjeoy31hdaXcNLdLJM85nZ5JVkaUyJcMpZ9zLtUoyEuWztZ/ac+Pfh7xxJ46139qXVIddh1Jrq8jfXCqtaJGyQ2y2kyfY4AYjE0hW3VZZF8xlJ2FPRtJ8G+Ej4WXS2soJUW9dw4Qep65574qZvB/ghNcvJ59MgxLHHtBjUAbcVTnFvVC5Zdz5w8Sf8FGP22fjB4q0HRrDxmttrI1S6s47zw74j0iG4vbO6SGJbRVUhY2BSSQSnOHkjYAGFWHy7/wAFkviJ+1j8QLD4aSftVLcT3Vs+sf2PqT31i8c6umnGVFjsR5aFWAbdklkljU/6vc36i30nh6W8gCaexjYKFCw5Lj6A8Yz+Q4zX50f8F7zpDS/Cp9Jt4kDDXDJ5SYBb/iX+3P8Anp0GenQu+lmfnfRRRQAUUUUAFFFFABVrRNYvPD2tWev6ctu1xY3UdxAt3aR3ERdGDLvilVo5FyBlHVlYZBBBIqrRQB7jL/wUc/a9nXUUuPiBoso1cSjVRL4B0RvtoknkuJPNzZ/vN00ssrbs5eR2PLElPEv/AAUZ/a98aX1xqfjL4h6Rq9zd6nDqV1car4F0W4ea8igFvFcM0lmS0qQgRK5+YJ8oOOK8PooA9usf+Ci37Xel6TLoOl/EXSrWymuLW4mtLbwPo0cby2whFs5VbQAtELe3EZ6oIItuNi40NP8A+CoP7cWkPYy6R8Zre0bS7I2emtaeENJiNpbFoGMMe21GyMta2xKDCk28Rx8i48BooA9on/4KC/tXXFvp1pJ480gRaPHHHo0aeB9HVdORHgkRbcC0HkBXtrZgI9uGt4iOY1xyfxi/aZ+N3x90Lwz4X+LHjUanp3g2wex8L2UemW1tFpts2wGGNYI0AT92mFOQuOMZOeDooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/9k=",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoor9bv+CCP/BND9hf9sv9kjxD8UP2n/gYvijWtP8AiVe6XBef8JPqdiy2aadYSxxBbS5jTiWeRtxRmIYrn7u0A/JGiv6WNP8A+CBf/BH9tLeO9/ZJVrwgiO4X4g6+IlPybSY/t249HyN4zuXptO6eX/ggR/wR2M2Yv2S4hGIIwUPxA8QM3mYO9s/2gPlJ6LjK9CzdaAP5oKK/pck/4IG/8Ee0jLj9kVSAM5Xx54g4/wDKhVLwh/wQn/4I3+PPDlt4s8Jfsn295p16C1ldj4ha+iTLuK71LagMoSpww4IwQcEEg0m9j+bCiv3t/aP/AOCO/wDwTO0X9ib4x/GvwJ+xRf8AhTWvCHgjxFdaBd6x4/1CaQ3Npp0s8F5HFHqk6PHvClVlAJKEPGBwfwSoBpoKKKKBBRRRQAUUUUAFfp//AMEVP2lP2vfgv+yp4k0P4EfB3Qdf8Pt49ury81DUppDOlybGxWSNYopQ7gRxxkBUYlnIGeg/MCv1S/4IfwvffsheJtNmus20vxCu1mtmUFWBsLDJIY4PYUAfRPhD/grD+1vr9sxu/CHw38xW+RIxdxlgcYO2W4BAAzknnjheaPE/7c37W66teePtCsLK51u70oWVnHoctobWzRJC+BFdzDJc7cuXcg542hVrtrL4IfDFVE1t4P0uF2yC8ekxI2CpUjjsQSPcE1kp8NdCbxQPDl7eXEukx6Y0UGnzTObeJSzZVYi21QdzdAB8x9TVqUUtiOWV9zJj/as+NGuadc+GkE3giyub69l1pPDFtp4j1JpYkjRozJJLIgbY5kYlJMyKysGHy8XrP7XX7Vfwf8K+GvB3wU8Rz2ml2Oh+XqdpbRWNwx1BWd5JFa5jbbHJ5keNuACsh2ZyD0up/sifs/6hpMLah8N9FuH+2KZHn05HYoAeCWGcc9K1fDv7Hn7L8dtLPL8DvB7tgFWm0C3O3GeRlDihuL2Q7Tvqzxr9tL9tr4+fFD4R/FC2+B2h+N9P8Kax4b1SPxJDqmjxzwR6e2lRQmPpMtt8y3zO8bITvQknGY/x5r91vjZoum/C79ib4w+Fvh5NBoOm33w/15rrS9K/0eC5Y6bMpJjTCsSigdOQoB6CvwpqCgooooAKKKKACiiigAr3n9l3/goh8bf2Svh/efDf4ceHfDV5YXusSalLJrFtdNKszxRREBoLiIbdsK4BB5JOemPBqKAPsz/h+V+1wIhCngT4eKM5YjRr07/Y5vDmoLb/AILd/tbWt0buHwb4C3EnCnSr0gLnO0f6ZwBXx1RQB9m/8Pyv2s/JEB+Hvw7I3budJv8Ar/4G4ph/4LjftbhQkXgb4fxgH+DSb7p6c3lfGtFAH1T8QP8Agr7+098SPAuv/DzXfCvguKw8R6NdaZfm10u6WRYriJonZC1ywDhXJBIIBAyD0r5WoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/9k=",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [35,45,71,55] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [45,46,83,56] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDmdO8M297fJYfZQA+f3kkecYBP9K0/Evgl10JLS8fdblgqrCuCODivVNN0PT41BuLGBjk87Aaux6BZ3LbBZwbRyFZOB+lfmrnOU07n2+IniZYpyc3dnzSvw4utIUyTW8kifeY44AHXjvXPaj4Ija7f+yNJYsxypAAOe/X8a+vNe+FWtN4ffVxp9usJiYNkHI478V4l48tPH2m2V3deB/Csd7JCUCbE6HcobP4E16mFq1NrnqYfMamCpKU5N27Pr0uePWfw4127vZUvLRoEBJVmdeTnp1o1mJ/DiqrROiSd3Qnnp2rpF1j49XEzRa/4BjtrYk75ymCnPUV0nxB0y31LSHiW3j3JEzZdewBrvj7VvVnLjs2q5rX55K1jyyPxFLbqJxfuijoFzgfhWeZrnxDeS3ksskyKxVSM8YPpWZdi6jlktmmOA54DHHWvUPgB4Z/tjTLqeLT45sNhsoCc55NdkoJLmRw1r2aex7J/wTH0lNB+Ll/Zxz7xLZq7Nj+62RX6L+IL949JeSCYrIsakFeOwr8//wDgn14H8T+FP2hpV8QlFjvNPYQQLNuxg9Tjgfn2r9E/GPhB28NQX1lkyy253RqeDjIz+lcdXXc8PEQ5G5I/K79svRLrxF8V9fm8h5biW+lLbT1Jdm/ka8UtdB1ZNMlZIJgwY4QNweB1r2b9snxJ8TPC/wAe9b0vwtoMMqC5LStKDnJAx0H1ridCvdfeEjxJNBBdPL89rCxwvA4AIHetoq0Gd+HfN+B7l+wh5elebFI2zzbdxGH7neM/rmvoHxf4vPhW6hS9t2Mc0e5JAhI4ODyOOtfM/wAK9N8caEDc6ZYqJZELIs5ICrnrwDz0P417xaeNvEev+EbPw94u0uweOC3Ado1LPnA9QO4J/GvncwpXq877H0uE5vZcqZn6T8E28TXscT+KrW2kkbaEdCcADOcit+8+Eel+FtS/sC81lb144vvRoNhAIGc54PtU9j4V1G3vbbUriWSKdYl82Dfj5tuM+n/6q1rwNJcfbr0kybdhYn/D6V4VepKTtFXPrcFg6FTCRnUjqtDX0r/hFY9MOn69MrqqFVO4cqeveuRjv/Ckup3FrLYWtsI3xChuxlx2PP51Fqmt6XLC0b3Z2GNg5CMDjH0rlLJNMfVBczTEqHJBZyTgDjjr6UqMKifM0xYiWFjH2bSsuh0PivwHpOvsLv7AyqndVJGPXNfMviqzZNTvFk3KVB3Ky4I4r6tg1BfENqmjw20i7kA3hivmDHrx9a8A/aV8BT/DnxXKVmMtvfK2yULn5gDkeo4r18oxVV4h06j0e3yPIzLD0Y4f2lKNrdj5X8Z2gbUbra5P7wdB9K9f/Y/8EQ+KdbTSpr94WMQcAR5OMdcZ6V5jr+k3EupzrJByXzjeP8a9V/ZTnOnfEvT088xZg8psPjIIwRX1FaU6eElKn8SPAw7h9Zi5K6PtL9nv4T+D/AHjVNTt5Vn1CcBftDkKzgEZwMnp1r6Rt74CxSIBeCed3ua+c/Afh+O3+IulXEGtu6wuWdSG5zgAc+pFe8xzyLCAD+leLldRujK7u7mXE1GNKtHkWh8hftI6X4BsPjtqmseIRGXll3orSAc5Ib+QqPQ/Af7NHi7UfMsprRLmJQIWdiDnOR1x616d8Tvg/p3izx1fa3cpFJLK/wA0bkHaNxwevGf6Vwl18C9Ps5Ee2lSJkO9THOBz+deRj6ld6Qlbc+x4fWEjgI/u0danw08KW1mhswvlYAXacj881z3iD4a+K45fO8P3CxxlnK7hjK/w/pUkmkeIbCzSCTxBiFDhQCGOfw5rOF98VdS1M6Z4fU3McYCxmSM8jpnj6d68eFOs3zSbfmfQSqYRQ0ik/U67Vv7buLqS9s9TKMT+7MuX2j0weK5vX9W1LTLeS7vr6WTYx3+WxAJ56DoK4nVPilpLEx2022YgbQrAt17CsXVvGI12M6NcXUgaRsKkoAJbngep68fWvZp4b2bvNHxdbF16sWqbZ1Vv4o0fUNIkvY7vIMTFUPU8HipvBel+CdeM2q67f3cMkePKS3fHPTnnpXmvhvw14wm1ebQtKgmtoZSA1zcRFUx0+8RjPNex+GvDWi+GtPAilje4KASPvH3u5FbVamGhTsTh4Yqo9V951ngrxT8P7DVbaLxBqaQ20ShRK44BAxz+FcT+13qPgnxjZeR4Omjn8qXdJM0Y+Xjlc9eRXOeN9Mmk1xruKKRlcH5lTIznPWue13Q9a1S1+z2lr8g+YllOc0YaFKNZVFv/AJlVqmJdKVOW3+R4D8QdPj0nXJIWij3SbdpRenyik8FXkuia9a62sjqIPmPlNhuR2rp/iz8PfEEzNcRxrmGMvKCD8oCgnPpxXjlpa+L/ABpLJb+HNX8pLZidykYIzgCvsaFNYmi4p2ufMyq1KU07XZ+nvwkRNSXQ9fTWI2M8kEmGZi7KWB2k4/rXvVskioJ5LQmLs5AxX5FeAJviv8P7m31Sx+LN/YT2sisEjuZXSRVIPzKG2tnkEEHIHPFfcn7IH7TN78adOuPCHinWYZ9T0yMF5IU2eapOQxQ8jggfhXkzyyeXKUoSujrzOtHMXFxXTUd+054Q8UXvxFafQNRKQPCHKwysoBbkggdx3rI0nwlqlrcpdalrF5J5b7jFPcMwZfcE9KuftHeO/E3hDxwllot8yxPbK23HGcdf1qtc/Fq50rRVvL+xa6uGyWhj6hcdPbv1r5yterJWPqMsUsPg0nujN8Ta/c6vKtl4U1zSohETlUQGc+u4Y6Z7/SpdG1e6sLaNLrxIftKk75EkZcH0GOn0rkb/AONHhqKSWLS/Aa2ksykG4JBZgeoyOTz/ACri577UtVuJryLTZBG0rNG4jbnJNdNLBv2dmgrY6PPq/wAD6S1H9lzzRD/Y2gqf3n7wnrj6sa6aP9nO3ntoo7rRYSUAIPlAENjGcjn1ru9CvPj01zG4+HNo8WTkTasPQ+nFdrpMvjpo0+3+E9Lt5fL/AHgk1AsA3GRxXiTeJlL+I/vZ6OHq4OEbqkr/ACPBp/2cYrO1kksbIo4QlcynqBx1auV1f4Z+J9Hd3k0qR40Ay6kE8+wOe9fR+rXPxGNzBEfhzaXCOcPPZ3v+pGRkkHr6/hXjH7cv7Tujfsk/B6f4ha3pv2jUbw+RoundTcTAqCOP7uSfwrXD0a9eqqa95s1xOLoQouctEjzjXPDt9GEgudNkDH5gCD0q3YfB7x3qJ2aZ4SuXUsFYg8An1JPFfC/iX9qn/goT8VNal8UeHJDoNvKzMtpJL1yc7lWQnC88Y4r3v4Hf8FEPjd8Rtb0v4Q/F6wl0jVdYnENjqGnFljlkYhVjYqQV3MdoJ6k4r6aWS4/Dw5mtP8j4+eY08TO0Y21/M9p8dfsueNLrwNq93faH5TjTZmZBKjN8qHA4bPOB+dfmN4d8cX/hBHhnEodhiWNYzlXHXOB61+p3xO/ZP+PPxd+EPiXwtfaxcRfbdFmVVmvTKzMUJQFCeQSB17GvzJ8R/DrxF8A/FVr4P+K/h17a7mDsqXFuApVWK8dscduK9TIcTDnlTnLXojmxmCqRq86XupGbcfF7xHqttJdwaRdxoqFWGxj0Ge49697/AOCXnxagtP2lLa28X6hJptpqdnJapLLExEkxVvLQgDjLbeTx715Rd6rqcNtJDpmiWxtWjPnStkOpxzjHHTFeuf8ABPLwbd+PP2hrK90vyWOho97cRTR7gxXaFH1+cHPtXo5q19TkGBpweKimro/TrV/hr4A1+RJ9e8PWt/IibVmmUtkeo571ympfAf4X6srWtt4WgheSMosyu+UPPP3qr6vdfF3RbE3194wtIlIyqSRKufYE9cV55aftT/C+0vorS4+KitvcEzLdOUQZ7nPGMV+a08LjZJyjJtL8D7Wri8DSag4pX0OR8afsF+KU8Ri/svFk0ttvIKKgACnmui0P9lK7tLMafca+8EcShY90ed/GCfXsPzr6e8Mato/jDQ7XWdEvYrqyuIQ9vcRnckqjjcPr1qn8QNAvP7HFxYRKSmSSgwR0rOWOr0ly8zv6jWEw9V35V9x53+3F+3j4G/Yv+Cs/xCvNIl1PWLm4NtoOmrNtEk+zducAFii8Z2jkkLxmvyX8ef8ABVr/AIKR/FbU21ZfiVqulWBcvBY+H9FFrCmScfMI/MYgEj5m+ozX1J/wX407VW8efCrR50I06SK9kEQ4V5g8eTkdSF2/TI9a8k8IeL/D2h+GoNMvbGDegUYDei4/Cvr+GMrwCwEa9aKlOW9+nl+vzPmc4q46vjp0aEnCCtZ936/5EP7Lf/BcP9rH4YeLdE8N/tDaqviHwy1ysWoXup6fi7hiYgGQSAqW2k5OcjANemf8FwPida+O/HXwZ8QeG9suj3+jXeoWl00TKXR2j5znG3A6/rXzH+0N4q0XxV4Fuo/sduWS0mCMkK5BKHHIGRXt/j34BeO/iH/wTy+A/wC0FEj6taeGNI1Cy1W0cOzxW8t3M6Tls9FXYmOwHtXpYvBYDC4yjiKVottprp0szjoPGV8DWwtaXO1169GefwfGvwXY2cNv/b8Mzxxqjx29uzlSBg9G6e9c5q/xIsfGWpaRa6Fpsn22x1e3vIZDGSUKSKwPHYEVe0a78P6dYrrfg7w3pckswCSrcRdFIz16k5A5NXPh9qei+HNYF3FpEbFsKHK5Iz25r26qdWlJPZpnPyRXK29T9gNP/a5+GU9raNe/akla1jaaV9oQsUBJBPYnp+Ffn7/wW8+K/gb4rXng288HaPPJd6XDepc6g64DqzRlY8dwCCQehHSuy/Za8JeFfiFol5448XeIn0q0sLoW8CQQqzSuVyRjjjnrXE/tmaHocOsJBZWZ1DRLm08udwn71CGyGQ5ODtxnnFe9lXAuWYXhd5y3J1lbR7JXt28/xPwfNPGjM8X4tQ4SjGnDDfC2788p2bSTbtrpZJHw9o3x88QeDYp9CsZrdBdqyyKYgQNw29Scg8etfdX/AARr+PXwu+Hlp4qPj+XyNY1hofLvF7xxlyEIJ/2ya+G/iF8GNHXxfnQYp1gAXf5rbiG3HPI7YxX1B+w38BL7WfEAtNMZRJImIpJZNqZC9yeO1PL8lwPEVeOCxF3F6uzs10v+J9dxtxbmHBPDtbNsI4qpTtZS2k2/h+flroe8ftF/FfVfj18VLqw8aasIPDGmXs0Gg2kc6wrNB8o8yUfeLMVBBJ6YA6Vna5B4Qj0ieI6bpYt5EKyKYU2tnqD+Fcl8d9I1b4fa9BYeJLGe3nmDsjvHxKgIwR245zivDfFPxQ1HVbyDw3Y6wyzyTqoaXgAk46DrXz/E3DNHI80nhMI7wildvc+x8NeN/wDXbhHD5rjaKjVqrW17X20ufVv7Cvx0k+DX7Tlr8GbfUHbwj4rtylpZLM0kVleAMU8sliE3EBSOcjbjnmv0O+02l3tS2u45SB/yycN/KvyS+DXgXVbb44eArkXoutX0/wAWWUsUFuSA5EmWB9thY89xX6zN4f8AC2jTtdWtrb2zBiJJlfYHPqTn5vqfX3r8k4jg4YlSXVI/VcLTjToq97u/6HxL/wAFpvhJ4p+Jfg3wZ8QtNsof7M8L3dxHqV9cMMWjXIjEWM/32jxx/dFfnvpnwb8V6xqN/Jd/E0QQQW/nxsl4Tvyu4LyeOAa/R79uT9r/AOBHi79nLxp8KL7XodQvNU0wW1qNNYtF5nmoVZmYdAQD07V+Vun+NDaltC1ifTlZCZBJdBsjHG0YYcc/pX33DuFxMcCoVFZ3/RHzuYV8PHE3T0I7T4eeONXceGknluTqLrAInc5Yv8oAJPBOetfuB8P/ANn7Qvhr+xHb/s2a5C9raxeBRpmpqh/1dy0OZmAH/TZmOP1r8cP2Vf2gE+E3xatfitc6RZX13oUMk+k21yjG2a62nyzIFYMQCB0Za+nv2vP2m/En7WkXhvWfAmus1vb+DLdfEGmaOkkcH9p+dM84WN3c7AGjC5JPDEk8Y7MwyzEYjEU3e0YnFQx+Ew6qtK8pf8A+MdC13UNPJj0y9cR7MLljgjscVpR/E6HSnX+1pzGSQwdGIwPWrOuaYuhATT2PkTyN+8Drg88n9a8P8feI7248Vrb2cUUgdlU4Uk5Jx619DhKPtXyLXZHgYjHKjacttz9Tv2ZLoR/BzSNStySt9CbkYOPmLN8x9Tt4z6VpfFLw9a+LfDc9jK5WdmLQAdWY9ea8Q8IfFnUPhX+zRoGpQXMIuo9GxHZz5Pz5IAwCD1561zfw4+P/AMRfEniaG41LUlkgkcsQytiMnnA+bj0r9khm+WYHL4ZfVitYq69f+GP4CwPh9xfxXxtjuMsHVUFRq89NyT96UZbWXS3lqXrP4WQ+K9ZVCpWHaPOeMYyM85Hc4719MfAr4JeJ9Qit/CXwv0X7bcxrwBII2Y8vknB6A9faotK/Zu+Lem3CX2j/AA8vZB9nVrj92UVMswyQRx06mvcvgZ8dvGX7NPgl9K1D4O3Vx511K13exkspkQsCCR/dUY/A1jlWGwnDtKVbC2nUk769P+BsdXHHFmfeItelgc2jLDYanrLkXxzjot1fu7X6HyN+2/4i8WNc6TYeKL24luNFS4tmjluGYqQ67lyfQ5r4rvvF0dt8T7JpJCZ1uY2jjdyQ2GJ6j6GvtP8A4KVePrX4heLH8X2WgSaa08kr39pOMNHMRGWz7Gvzb1bxUL34mvc2hEYW9C7j1B/ya+K4vw08Tmc69tZxTP6J8BcW8LwRSw0ZNqnVnFN76SVtPS3qfqJ/wTd8WeHPEn7VMOteLINPt86bIbEXrBgtx+6C+UWBPmbd2MYOC3Pav0Qnlh1h/wCyL+WERciNZ7YODjplScelfjH+zx4f1zWrzTtVOoPBJEwaCWNyrls8ZIr9RW8Q+OfAn7NPg/xM+qPJcsgS7nnQPuVtpG4kZ46A/XOa/lvj/OsBkubYPC12k60nFa9Umf2RlkHVwUKrestPnZs/KaPQZPFcxtjKFWcneSSOR83QfSvI/jB8CfFL6872MrOhkOzygc7efav1Ib/ghN+1J4c8MWXifwf8RPDuqXl1bxyT6NfW0tpLallBI3tvBIyQenQ15D+0X+wb+1D+zv4fXxR8UPBVj9h+0iAahpepLOqsVZgH+VSi4Q+uDgd6/dVXoXTp6o/J4V41IOx8N+E/hn4xOlX2tWfhq7ksbNo/t15Fbu8UG47V3sAQuSe9dl8OfFmq+BJZTY3ciM/QRH8+TyK+4/gx+1t8QvBfwW1L4FfAf9gbRfFeiapYJZ+KPK0z7a16wj2IbmSNWJfO9lLn5SSR0zXwF4w1i/8ADfxCv9J8QeEJNFkhvH36XIX3Wq5JWIh1BJAwMnr1q6kvax0OSVTlqO5U+NHxGvrqSS7OjTPLgv5mOpPfrVT4a/sveIdR0LSfjT8RrB7PTtX1Bk0pJwyCUW7xmV1IxuHzbRyclSOMZravfiX8OLpdmpW0DnGGjltwwX25Fe4/tNftCeDfi1+y98ONH8FG20keE9EksV0u04jMrzNK9xjgB2J54ye5rqwMJ+0912d0eRnDhPBTcnZWaevdHiXxX8a/btYt9LtriT7PAvlwRrjYAqgf0/OtH4R6tepr9rFDNiESRvOmwfMpZVIHvlhTv+Cfnwn074+ftP6Z4N8eXcl3YMJ554pI96kLFIQuCcAZA/Ov1A+H/wDwTn/Z8+IGixX2keBbbTJYAAwsYFSQjjG5hjPIB6dRXp4urQo41fWJXla93q/xPlMKlSyJYPKopU1101fW9upb8CeObzWfG+pfFPWPiRPqv/CRfEa3htrFgVXTdKh1H7eYME8lkkhQk5OEOG+Zt3U6F4uV76HV9Z8SQQ+Go9E1VZNJjJZnurq41HyWVycn93Om3kZIHoDXo3g79kH4LHw/BZ3d7exT/afNinSQ+YGIVGJOctwoAB6Yq34v/Yk+FmneH/D9lpmo61cWtz4gtlKRqrOTbLmEdOE3HDDo2B6V1PO8HTgvePhMRwzncm3OmpK/Y/JT/go94hvPF/x98c3GkTySWR8SXkcMcX3fLSUopBHPO3r6Yr4D1OO7svG11NIhj2X27DDnoK/Qv9qXS7Lw3+0D438JR2h8vTPFd9ZBZsbiIpSvzDHXrn3zXjv/AAUM/Yqf9mP4heGPEcUbXWgeMvDlpqOmXzMDi5aBZJ4CAAPlZjgnHBHHGa24wzDCZfisHTqztLEJqC/wpO33O5PhBUxdehmGHjGyo1E3b+82n+R79/wTN8Jp8Xo7cwRsDa3McbyFeQpzlsdODxX6h/Gbwcg/Zxm8NaVAs02j2cTRswxvEQx0HryTxX5a/wDBHj4wad8Ov2gbXwhqtvmx8QadLY28an5RdnbMj7cEZxGyf8C69j+uMt55lpJY30G+OaPZNFIcqR3BBGCK/wA4PpIYjHYHjzCVpfw6SUo+t9fwP7OynFzr5VhnGNuR3fnt+h//2Q==",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwB13plzBGYbTDOh2gv904+lY+oW3iyGVnRkVD9zCtg8dua+qrn4b/CiL5G1eMuXC4W3yM5xwd3NXbn9kXT/ABTHb3dt4jtLS3J3KHgyQPpuFfmMMfKOvKfdT4axPM1c+OX+FmveI9Pkjvo7j97ISGVD3HuDxWXH+ynfW8bS3NreyqMZZUyE+uF4/wDrV9zXX7O+leHZodLj1yK6YxqVeKDgkkjH3uvH61meIvhZ4ktNat9Kt9ICxMWEw3f6zGMdu3P511wzn2aXPHQ6afDOJUU7n5+eNPh7oVratp8tu9vPE+4KoCu2AR0I5FcS0VzYp5CwPtjOAXQ561+hfxW/Zd8GXuitqXiHQ9tzDL5kgjODsAOefxFfF/xF8K6Xa+MdX03RZjHaQuHgVhuIUsBjOf1r0sLmccSk4LRs83M8ulgKd5PVnDoYjCZ5iocAnYx4OPauZ8Z669tfxJBDbqDDkgA+p966690LbK0P2rqOuz/69cF4zsfP1UJ5uPLTbnb15NexH30fFY92mvQW7v5dRRHwhUZwY+hqtpWqzWGpmVVTKZxvB9frVzR9H8rRof8ASM5z/B/9eq7aDm5d/tXVjxs9/rWsHdnj83Mdtp3xVnvNPj0i4itlLcFwCAMHPdq9r/Z2s/AZ1ddZ1nVytymGjjBBVsYIGcetfNlh4Wu3CXHmfus/f2+/pn1rvvBer32kzxTW0pCqyqU9TnrXnYuPut+ZthMdDC1uaa02Pqfx6/hjxJDDbwXIjRQ28xyrnnHsfSsvw94b8GafqK3mqobpYxlIp5FK598AV5JD421aTOGIx/tVdHjDVpTgyEY/2q8erTumevT4hqwqJxdoH6EePf2bNL8S6la6pY2dxarblWWOIfOrDoB2wPrWyuhfF9VW1WDzLVVC+fMcNtAxyB+Veztc28TF5MZzydtVbzV7bc6G3iK4/wBYUG7/ABr4OGLg3Y/oSMZzeiPKLXwR4ruZUuL7ySVccqW6Dn0rW8UWQ062S6urqJVXPGTk9Pau6i1XSguxpk5PTbVHxBoug+ILE291BAxUHYGiB6/h7UqlaLi2aqlPZqx4h4xm8N61dLfeJBK6DCpNCuVzjgflmvmP9pb4IeHfENze+KPB+nzi5hfcjzLgNlgCeM9ia+4/HHhKHQvDkVx4S0zT2njuFLxS2yFGXa2eCMdcV4D8Y/ilpkWg6lpN94IgtNRlAVrmCBVjU7huxtGACMj8a9PJcZCjXi5bNng8QYaTwl1qfCV9od1DHNDJImUVg3J6/lXDfEC1uLfTtot2kyM5QdK9U8U+HdUudYu30fdNE7Eja+OT14rDPw38a6tILaHRJJRjkMRtz+PFfewzDCwXxH5TmGExM5q0Oh59aadf3WjWwjs3G0tncPpVmXwXr7R208VoX3SKQq5yAQfavfvDP7MPjw6PH/xTdxL/ALmHx+Vej+BP2UfF13p4Op+HpoMAFJJQqn2Aya45ZthIfaPLp8M5zXdoUm7HgmgfDFp9KgvtRRY5Cp3o2cjkgdvpVqXwodKfy7aRNg+YjJ6/l7V71r37OvjLSGmaHTJJ1iAxulU5zj39/wBK4/UPh/rwv1tZPDpLnC48sEdfWuZ5jhajtzGNbhnNqSvKB5hcSCzIEgzu6bais5RcuVQEYGea9Qt/htFdyyQ6lo6RvEQADCD1/wD1VZg+DdtCxYWMYyMfKi/0qJYmna61RhDIsfKXK42Z+hMXi/xDcBZbm82rIAdrRIME9ulV/FGtWOiaDeeLPFuptZ6daKDfXxwoiGB68Zxiuri+FHhacJqZFxHNJiRikg4J5PBB9a+B/wDguh8QfEemWHhH9nTwT4mm04a+zXeoyI5DyxKduCR/D+FfHZLlbzXMI4e9rn9JZhmuEwOEnVWnL5CftCf8FmPgH8KfGtx4V8CeFr7xFHb4P2+K/VU3ZIK47jgHP+17Vt/s4f8ABY79mn45+M7XwT4rlm8L3twQEDTgxyE5ztZyc44/76FfCWjfsbeE302CfVdXuLiSZA8zwzKA2eudyk54rlfib+zt4K8I2E134OtZY5Yv4zMN3tggA+vSv1GpwjkqwXsIxfNtzf19x8THifHTqqctF2ufu8LGy8RaXHe6DfCazuBuiuUfcsiex6enSub8Q/CTwbq0Zs9Z0SJ3bgSSs2G5z0zg18a/8Ej/ANvrTtN/Ze17wp8f/HAx8Orry7QzKTI9pKC0caHOWfIOTyMDpWf8V/8Agsv8Y7jxqI/gb+z7ZajpUEe+K/vp3aSUE4BCK6jn0r4DFcMY/BYh06Oq3TufVUc8y3GUFKql80faGifszfDDRkklsvANr58ykNOVdgc+xJH6VDq/7Nmi3wENnpFtBFj5kSDGT65HNfMXwD/4LKfEzxB4lTSP2iP2dJNKsbiRIYNW0ViRAWIXzJkd2wi5ySD0Br7w0LxDoXi3RLfxH4V1WO8s7mNXjlQ+ozg+9eZj8DmWCSdRtfMuhWy3FfDTi7eRxnhj4XjTNNWFbbym/iAXFax8LwFlE9k7mNNgO5sce2cV1yW0Qzlj+dNexizkSHk1485Tt8TPSp4qNOT5Ipeiscbf+GtOa1eKTSVIIGdyn1Fc5cfDHw9NOUtfDSAyfx4Y4Y9+TXqTadb53tlvY9KBa2yKQsC+xx0pwlK/xMp4jDzVpQTPGr79mfQ9Un+0HT0jb+I7mGf1rFsf2Qri1kZk1NASuORn+de+eXt+7mnvEB0JrrhjZRjy87OaVPBOXN7GN/8ACjYcYi2+nFfkt/wXV1rH7bHgO32+V/ZngR7jzt2d/m3TpjHbG3PfOe1frTFPbEqTcxkN0G71r86/+C5Pwh0m1+IPg34zXOm/bFl00aRfNEMrHGJmlXcTjHLH8K+n4T/cZuqktLLT70fMZvH2mFdO2jevofEun/HXSbHTPsM9pPd3IzhYumzHXOD78Vzfi/4t6FrNmlrFbSx53ZaXj06cc10a3nwr8Eaoup6v4OvJxPaYiOmxNIqklgN2SADnr7VxWs6ZpXiLUNzQ4/54x7Rk568flX67KdLn0eh8pWpRp02ktUYvwq1SXTNTvJrIbbe9m+aDPv1z/wDWr6C8OeI9ItdLtbYER7IgNmc4rwPStPMV/wDZbdVQ5KjHGDn2rdvNH+JcEB/sSVWcECEoxZiCQDgEY6Zrnm435lscUVOTsz1zWPGumW1xIURJWVMhHPDnHQ8dK+sP+CMv7Q2teLfFXiT4I6/M8sNrZNqFlG0/EZ8yOPCrjgfN69vevz4v/ht8R7PRjfajq1x5ssbHyGTDE4PHtn619O/8ETNN8VaF+1zLb3kSxtP4fui4mclmAUEeuRkZ+orw8+p0cRls5WvKP5H0OS3pYnlTtc/WdbYqfvfpSqu05zV1YMdQtRpZtPKIkZQzNhQe59K/FqlGpdKKPtfap6sqSbgSQuRRHHJIu4LXzp+2Z+2/qfwo8Tn4GfA7T9L1jxTBClxq17fKZLTT1baQh2HczlWUgYwCw54xXzbrHj79ufxlO2p6j+1He6aXTdBBplrHGkB5IAUocgHuTXt4bhzGYhL7N1cyeMpqN1qfo/5cifw1NZ2bXUhUvtwOuK/OHwh/wUe/ao/Zt8Uabp3xwu9P8f8Ahy5nFtdNDB5GoIvd94AX8a/SPwB4u8L/ABE8J6d448I38dzp2rWa3NjOpB8yM9+M8g8EdjWlfh6tg/eqa+fcyljYvRbnMeHrfVNV0iy1xrUiG6tY50HmDADKGHGfevPf24vgb/wvf9mXxH4e+xiS+tLOW6geRgu1kjJDb2IUYwB1rxjUv+ChPxJhuPCHwl+G/gexkv8AVdSs9Et5nuRIwaSRII5CnXqQxHsa+dv+Cl/7eXxnj+KXiX4K6V4guNH03QNWuNIlFpN5bajglTIydTE3UHoykHoRX1uFyarhMbz2dr/qfO4zNIRox9rb9T5P8FeP/h6mm39n8T7bUo541VbSCzn+T5VUE/LkZJDcn2rib7xRaaz4rNz4au7iwt4ZE+xLIdz4LrvyQMfdFMvtIs4ybrWLm6tRMA242rEMuMbgfw/Sup8G/D74UT2y6gfFV3JKMcyW5jA/xr7uFGEmkfOYjEupNtLRnbftK+D/AIM6TrEnj74CfFKDVdLlsoGm0220u6jktLjau8kyRr8ud2T0yRzWV4T8eT6nZPDINmAuxx/DjHSvdP2KPgv4Y8TeEPip4q8S6NFHoNt4Fv8AS7C4uU8sTajLbvLGY5G4ZgYs7Rzwa+S9J8QT+GLCHdhVECBw45YhQCR+PNb1MN7KHLJNX7nBHG0/aWjJOz116npGu+L9evLeaJ9akeCMBCrMOCw4HrX1B/wRH8P6l4u/ab1nxdavI9ponhWZ5ZWOAzyMUVOeeSD0/GvjBf2rtV0bwZfeC9Os9KmtriKQNJIhMuWB6EDAPPHNfo//AMETr34N+CvgVqeual4zjg1zWLqRp4JtqSKqMNiBSckd/fNePjMHOrg5whFtyVrJHq4PNsuwddTxdaNNd3ovvvY/QCO6SX7j5/Csbx/rM+geA9d8QWqM8lhpN1MiL1Z/JdUH/fTLSaT478Na6P8AiS6paPjvHcK2c/Q1duLWTV7C70ow+Z9rtZECbc7soccfXFflc8uxGHxUVXTX4P8AE+5w+NweYYV1sNNSjbdNP8j8Zv2cvizLDaXWveJr1prvUnea7upyXklLOWAY8njgfhXr6/GvT7zT5r1b+IrAmCWbBX0wCMmvlfVvCniz4feOde8FaXo8tzc6fql3FJZ3LGDyVErhOSOeNv48V638K/h94duvhrqEnxD1SC11Ke38yN5bgRmHg4wCRu2kZr6qTnKkorRK2qFgaUcRTbe60KHxU8ZjxQWKzBiQRHx1Bxn6V97/APBE34hXfiX9lPUPDWp3rt/wjniu8soEfJ2ruzx6D9K/PO+8D2vhp21C81s31k/MTAbQwH90/wAX4V9z/wDBGPQPEXhj4T+LtT1W2khtdU8Rb7WSSEqk/lqVLRkjDDnBI79ayzGUllfvfZWnnqTPDL6zZHg3/BMbSz+0V+334Ks47ln07RNZj1gSYBL/AGbM65zxglB+dTf8Flv2XpfBH7XFt48ubbGjfEixbVrC6CjalxGqLLbD/aAAk/3XFeR/sffG34mfspeD/E3xD+B1kl14p1PT7azsZbqMSJZxeaHnKKe77Uz/ALp9ax/iX/wV7/4KNeNbi4+HvxQ8UaLJo03y6hpc3huFi2QCMsw/ukV+lwp+znc/LcbiPa4mFS3WxiS/C6x8Zvb2DW4SG2gC70AycEnv9a9E8Ffs/wDhi9tre1s7PcG++So49P615/4A+Kl4zNquozoklzKS0aKFUZA+6BwB7CvtT9jzRvgxafD0eOvGokurgXTGCxQfJP8A3t304x9TXfw/gYZjnUYS2v8AfofLeKnFP+qnAuLzCnNRqRUVG6vq7ankvxN0ub4dfA/U/Dfha/ktLaf5poo8AGQxum/6hWYfjXxF8TfC+oQyAWcI8sKAme4wBmvtn9svx7N4j+KQ0rStNg0+wFok62luuFKtkD8QB1968F1rwVb3hmng0t9rtlTntmvR46xUKWfxpRhZUopb76f13PkPBTLcRV4EWNxNV1q1ec53atrzaLd9j5z8KfB/WdV1MSTqRbJIHkYdduct+ma+1f2dbO10nwYiWCvE8EmxZI5CpI2jrivO/BvwL1bxXq0ECy3MVi86LNEOUKFgGH4jNfcmhfsmxa/4JttS+D+t2moT2tqov9DhP+lggfeRM/PxjjivqOBMHGWI+t4uPLDoz898eeJKEKP9i4ad61rtHj2s/E/xz4NvIbzwx4iubVZGbdEspKnGMdfqa9R+F3/BR3xt4ZS20rxhfRT29uiAzvnepXb3HXgGvnj4lagn9uyWjIRJbuY5gT918Dcv4HI/CvFPij4yutMZrWG8Dn7USEHG0fNxXwXiC8Dm2eSnTiuXulY/cfCDJ8dwzwHhKVWq5VJx5m30v03f3n0R+1wvw98d6xqX7SnwyvoUtTeKms2gGD50hUfjywNeTav488PXMccs/hNLucWwEdyyZCHnAznsefxry7wX8cfEfhLxK9xZ2cFxHNZyQTW90NyPuU4JHtnP1FULzxOpU3ElqdwUs4VsDOScD0FfGVMFGnSVnofsOCx9WnT5Y7vW56Tqvju/1mwXTprSNIkGECk/L/nFfrb+yDL4es/2ZPA8WgWaxeb4dgmnCjG6Rhl3PuTya/E3w14hj1m5a2S2aPpyWz6192f8E3td+Jem/EDSvhvZancPo125W5hmO4Kowc/pj8a+W4txFHAZLKtVdowTbfzPpMqlLF1Lzex8n/C74gDwuqRi7nXdH91WO08d+ao/E+10zx5d3GsGK2idlB86NAJJCFA+YgZPTHWuL8VainhFpbLUbhGe3lMR8qQMGIO3IZcgjjqDg1T0nxSNUi83T7ogjOUIJx+Yr9LnGSk3c/OeWMoLQfpuvXsGoroKwx71YBHPpnA5+tfoZ8GYBpHw00e0gURH7IruIRtBYjluO59a/Oyzsri48d6JBaRbpb69ETqCP3gBBx7da/SDwzbR6T4Y060ULEEtFQqz9COo5r9U8O6NNSlVnb+kfxv9LLOJUsjw+Wwlbnm3JeSWnyueYfHXw/cSeIRrtzBHNvAiDkbnxgkDkdBg/nXN6D4YudUuYLSSHZE/JyMAAAn+lew+KdN07XLcmUt5obKMsbNzz2AxWFpGl3lrbOl7bsCjARyPHtGM/QDp616+Z8FUs1zT65U95aXafRHw3h3481OGvD55R7PmrX92VtrfcbPgLw5aFI9F0GxWS4BA2Rw/OxJ6cDvXVXcPir4V+KmhhuLvSdUttrLPZytDIu4ZyGUg9K9s/Yn8Ufs0+CbCXVvH+q2iasJlMaTMf3YDZznp781X/b+m+FmvXTfFr4b+JbXUWayaOSC2l3AyBfk5HA5Pf8a9GGNoYWqsDTpPlS3srHwmZZHmGYwjn+Krp1XPmtzSvZ9NV+B+cHj/AMQtea/qlzHcz+Zd3LSo7Md2WOSSc9SeSa8M+L169kr3M8rl84LqeSeec13fjDxPcLqUsy342oPnYoOP0ry7SZNQ+Nfx38MfCL7TiDxD4og00TBAMB3IZumeEDN+Ffg2YOOGrVa09oq/yP8ASLIE6mT4WC6xRw+k+Ibq5Ebpf3G8s3zGQ54J759K9S8BrZ+JrDyvJ3lWKyNIgJIwM49etUP2uf2V/Ff7Ff7S/iH4I+MlmNnp8vn6JqMqgJfWkgBSRCPvcvgr94Y5Aqn8OvFI8Mk3ZuQkSt5gXZndjHsfSuXnpZrlUMRhWnCWt01072PpqcHQxUac5fPoezeAPhLaLfpcLYgLJyuIhX6J/wDBMzwO9n4xbU9V0u2do7FjHI8YZlO5eQSOOK+bf2bPCEHxK8O6bqWmo0z3MphMsUTHypBj5SAPfr0r9Df2ffhpZ/C3R1U2ojvwhV595OQe2MkfpX8veN/EUKeQ4rK4z96UbadNnqfqOGw3sMulUTXvqyt9x//Z",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [58,49,76,67] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [36,53,60,77] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD0fxV8UfCOhRyS6z4mggTIyXB45A7Cudi+Kng7xBI66H4mgnPGCqED8yK+TPjBrWraqza5qUrgyPlgXyuAQo+UcdAO1cDafEy/8K3ZlstXeMKwDRrHwc8envX6t/xGSvSzD2McOpQ5kr63tdeepwT8CYLL3VqYhqpy3tpa9tL6aH31ba7b3DqFvkbOemKt22otHdxSxzj5ZVIIGe4r5n+FvxN1PWdNSRpm2YOyU9uTnj65r134d+LWvI/IvdRLhD8g8roc57Cv2zAZlRzbCQqRfKprrpa5+DY3KquV4+VCWrg9+mh9g6F4yn1PSLdxqW9miAyYgM449B6VW8UX8t5pN5ayzbvMgKlQBzkeorzLwx4rvR4cNlcX5EoH7hRGOm7J5A9M9a6vwXqT6xBJp97N5rdApGPfqK/mLijCVcj4jlUqL3eZSTez16d9j+q+GMdh+IeFVNP3uVxkl0drba20tueQ6glxaSyW0o2ujYC8HA7fpioITcTOsScsxwBxzXafFjwM2kXkms2UflwNtLJvzngL3JPWsn4aeHm8QeMbC1eHdEtwGn+bHyr8x756DtX9J5VnmFx+RLHQkmox96z0TS28j+Xc1yTFZbnbwFVNSctPNN6NeX6pnpvwV8Gaf4P8LTeM/EOn7rmdGaMSMT5ZyUHAOO1eJfG/WfEnxC8WyaTDDIT5qgOpA2gAH27V7x8XPiKmj6dLplpbJEu0L5S4PGRj+leM+EPEMV/8QbW21IqGmdmaIx54CknkD0HrX4Jjp4vi/ieOFg3y31fS19Ef0ZkcKXAvCk8xnZztpf06bMveEdIHhLw6mjFNkpGbjPJY5yOefbpVlhF5plA+Y96t6xJJPfzzXGMmQ4wMcduntiqeVByelf0Ngsvw2VYVYagrKKXzdldn80ZnmmKzzHSxeJd5Tf3K70Hb2YbVqKa3nbJVOc+orT0/Rbe6RLhtUVNwJ2kdK63wnonwtOnTR+Lr24SdTmKaMsQ3sAvTPvTq1pU1e1/Qwjhqbe5+Rvj74x6jLZy2GoXUTHftiQNHkgOOePbmvN7/AMc3eqan9iiCr5kifOzKAAME8njtX6XeLf8AgmF+zL4rhkk1uz1h2bGRZzrGRjHQ7hjpz+NZ/h//AIJSfsiabdwudA19/L3c3GqlieD1AbH61/N0OAa8ccqnN7nMn5208tz+rK/ijKthJRcI87jbZ2va3fY+Yvhf8QvC3hvRI4tQ1+zVgn+padckkn0+ua9X+Gvxg8CSyLnxVZxPM2Uj8zPTOefoDX0BpX/BP39mHSVjli8FXNysYOA8i+Y2cjqWxxn8hW/pv7Gn7PcASOz8BtbgZ2tJsZl6+hI//XX69l1aphMNGlFaLufhmZYeni8VOs3rLV22OD0r9oL4d2kkEL+KLJ0DKrSeb2JwePbNe+aO2k6TNb6jouoRy291CskVzG+5ZAUz79DkfhXH2/7J3wVsZg0Pg/eFBxIVTnI9M+9dNr+gQ6V4eg0/TLcpbWcRVR8qlBnjhcDv2/GvjPEPDrMMCqjjdrt0PuPDnFPLcVUoqXuzto+/ltqZ3xm8W6bb+HZJbu6WQpHudMEcBgc8Dt1/Cuc/Y68a+GviPc+IfEemakkyaHCqs0asQsrllAJxycZ49q5vV5rTVL/7Pr0ryRBwrKHC8Htk4H515H8cP+Clfgr9ifVIvhv4J+EOk6no2uKb+6utL1hI76QxYidPK8vbuDE4DN8wywzg4+f4ZzueDyDEYKWie3npY9niHJqOK4koYp2skm2+lm2j2n4zeN30u6u/EHiS8JjEgSJinBbAAGFH0rznwR8WdDs/F8HinWtURIY0lClozhSUKjoPWvdfA2jfD741+CNF8bS+HJLiDVrKO+igv3eJ08xAcOqlgGA46dR2rft/gn8OrZFjh8DWabejRTuWH4/L/MV9nwhgZZXQji6iXtJ6+i6efQ+Z4/zZ55iFgqLtRppL3erW/dPc+ftV/aW0N7yTZfSOu7ho7CRlPHYhMGq4/aQ0Mr808/8A4LZv/jdfRyfA/wCHEz75fB0JJ6kzP/8AFn+dTD4FfC/bg+DYP+/0n/xVfdPOcRJ3svx/zPzqnklD+9/XyPmd/wBo7RISZkW5lP8Ad+xTD/2QUz/hqnT7A+eun3K44B+xzN+m019Op8CPhaw2/wDCGQ/9/wCT/wCKqWL4B/DT71t4Msw/rNNKV/RqiWaVpdF/XzOhZPh9rtPza/yNn/hG7Z/l+xZz/wBND/jTR4MgST7UBx/zx3H6df1qc6wIzk3GCP8AY/8ArU5NZaQgC5yD/sf/AFq+e9oz3lBD4PCcBgE6tz/zwyfX1/Wnjw4U5Sz57fvP/r1EPEd3HN9lSPCjpNx9en6U869eAbjd8f8AXMf4Ue1aE6d2SDQZtuDa/wDj/wD9eqeteFjfadNavBsDJ97f0xz61bj8QSsADd8/9c//AK1V9X8QXkGnzTW8Ul06p8tvDsV5D/dBbABPqeK8/M4QxmElTntZ7HfltV4HFxrJbNfgz59+JGl2vgs32ram0UdpbRmV7idxs2KuWJyeO/8ASvzHs/A8vx6/bB8JzyWlpqOneKvE7/2RZFpUAsY7oIY2ZSrDeHR8AgghN3SvW/25f+ChPx9k8W+If2b/ABB8LNA0tJFa11K/e7bzLe2mAZWJZzGW2OoJXgHJ4rx/4HePfEt/8XPB+t+DrC7nm8HeJ5msry0tQ7G3nktyW2xLt2gwKQcdD7mvy6nQcMT7JJ2vY+9x2Op4qKqLT3f8z9vfDPw/03wbpgsNJtDaQlBmzOTt9ME5IHfAPSrxtreM5dMY9zXL6b8TNUv7SOaS2lfzAShkjIYr/DnIz0x15q0PEWoXo3qzJu/gMY4/HFfq9Cu1h4RdtFY/OqlHnqyb7m+jWStj/GkkaHJ2H6da55tQ1kNv87j12rTRrOqB8Nc8f7i/4VtHEPyJVJRWhvvcrGMo+D9KYNVniOfPwP8AdH+FYEusXvObjv8A3B/hUU2r3flf8fHOf7g/wq/rFuqJlh1Le5uiLRZDllzn3apobXSMjy4/py1ZFml+zKHHHOelatna3BCkp69xXmLEzv0Ox0EiR9LtpCXggznodx/xqzaeDJtRiUwz4Z84iGCeP/1ZpjC8gj3KpwPQA1mX8uvmd5bNpl6bSnykcVTxEnvYqNFI6CH4WayxDIsvt8gqST4Xa9DG04gdzGN4DlVHHOSSQOMZ/CuXju/HaKGiub7HYhia8r/a7+IHx68NfC27tPAias9xer5U09tD5jwxOVQsFIOepPAzXPXrtUpPyN4UISmk9j8t/wDgql418J+M/wBsXX9W8JahHL9ngtFuibRgs00aBXBWRQCAVQdNp29wTnvv+CL17AvxrvfC0OkJPLrVlOinZkhkUzYUfw8K54xgcegry34hfsp/GfxPeX3iKP4U+Kb7UZW2rcNYvtlAcZPI9Mn68e1e9f8ABLv9mj4/fDX4u2/j3Vfh1q1hDavNv8+IIVD28kfc553frXwmG9tPMFNx+0v0PaqezdBxT2Vj9HobHxL4fthBDp52xdIpWUtyfVjnvSy+KNZjt/KvdJAUfeAK56+1TRXHia7K+fY3Sqw+ZXhJx+JGf1p8CeXdf6Vayhh94tC2On0xX28as1ozx3STK9trEt2qq+n+Wrfxlun4VbtbaK6kChQSc9WxUjxacWMskLe+EapYbOwnABiOw+7A/wCNaKt3JdFMik0Ukk+SmP8ArsP8adH4SiuAGkvlQN/BuBxVhND0qUhRAx/7av8A41L/AMI5ZhMxWre375v8av20V1QvZGqmnaUiBo4MY6fM1WbU6ZbBXa23lc/IWIz+tMgtZZIQQvB96RoHSTay9Pet/qtOPc5/rE2WRq9lDL5kWjKMdP3hP8zSv4kU5C6SmPrVb7M8gwqdfekbT5wMiMf99Uvq8GP6xM0LX4kCwC2TWaKqZ+XYD156496q698VIWspoIrSIuwUYaAHuPUelZt7o8zq8ywDfjOd1Zg0+1vYd/k7mY9ckdD/APWpfVodSlippdCnNrcd5MfLAiDf8s1XAFdJ4N1260hYri0CtnduVo1O7qO4rLtvCscm10sRuOcHzP8A69bmj6C8EccZtgMZ/j+vvVLCUOkR/XKtuhr3XxA1i5hNq0EUanHzCCPjv6VkajrV3dKweVTuIziFR/Srs+jkRkiAf99VTfSZd5zCMf71OWEg9dSfrU79DIvdQuAjRwuNwI/5Zj/Cse8fW3dpYm5J44Wuon0Jixf7MOe+/wD+vUR0mBV2vbjd3+b/AOvWTwcPMr6zNdjkZtQ8SW6kpcYI9k/wqvJ4n8WxfKNQIwf+eaf4V0uoaPGxYJbj73Hzf/XrPm8OliWNoDz/AH//AK9Zywcb9RrFVHrodTBfnyh5chx24pr3TvKSZDz7VmW9xKIwBIcc1Ks7Fs7zXot3ONXRqQ3QRQWc8d8U8X8WfmkOPpWWLhz8u41FNcyxsf3hwPahIZsveWzKV39RjoaoLDY2025Y9sQPTnv/APXqrHczSEYkPPtSzm4khZFbkjj602lcm19za09rWQI0HQ5x1960IiUAKnGK5jwlNqNtAbfVZSZcny8YPGSe3tW4txL5eQ5qlo9B2si9JOfLw7Z/CoTIhbJ6VRmursOcynb+FCXRKjc5z9Kbk72Jsy8zwkfMOKpXoiAZ415zSrMz8BjzTJopmz6H3pWuytbFCQCSQp3zTGjUHawp9zDMjM0fDZ9ahSRjJskJ3d6Ggi9B2o6FqlvI5t9OmCDBXbGehx/jVSOz1UyCIWNxu/64n/CvpXSfiTrkmmQzLHYv8mGjls1JLDg5OPXJqb/hYviAv5i6PpOfX7IK8b63i1tBff8A8A7JUoXPmyPQfEkhEqWM209P3Z/wqdPDGvyoN+mzEn1jP+FfSCfEzxQyiH7Hpka/3lswSP0qSP4j+JFIBnscf9eC/wCFH1zGfyL/AMC/4ARo031Pnew8H607Ip0mXJz/AAH3rRTwD4iZA6+HLll/vLAxB/IV7z/ws/xLE24T2hUdo7JQfzxUsPxW8SMw8uUq3Yqqr/IVLxuO6U4/+BP/ACKWHpW1bPAx8NfEgH22HRr4P2j+ySY9P7tamnfC7xvqFqiL4bvhvz84tn7E+or3E/FDxdLb+WNTmTP8Qfkc1Qb4jeM21Dy5NauDF3bzfb06daUcdmL+xFfN/wCQvY0e55DL8H/H8amNfCN9Lj+LyTk1Xm+DPxDjQ3Y8M6gv/TIwHjt25r2+Lx34pWQSw65OD2PH+FJP438YzMW/t+4BPdXx/Kp+u5i38Mfvf+QOjRtueI2/wr+IQwT4Uvf/AAHYfzFWE+FfxAf5f+ERvCf+uVevy+N/FipsfxDdHnkNKSP1qEePfE6tga7Pn8P8K1WMzD+WP4/5AqNFrVs8im+FHjfJEnhC9znn/RnP8hVG5+E/jZHZ08I3oOev2Z/8K9t/4T3xcRx4jvAPRZiBUU/jnxWV58R3uc/892p/Xcwvqo/e/wDIFQorqz//2Q==",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3Xwov2lGu84wCm3r6c/pW/ZjyJhL146VV8MWcljpyafKwLKoJOPQYrQuLGeaLZCu5j0Ar+p+FMv8A7JyCjhZdrv5n4LxlnSzniOviEtL237aF+z8S6nYsv2SfywmdvAOM/UYrN8ca/p+o6Dqd54veado9NlOm+VKItlwEYox2r8w3Y+XjPrVb7NLbTbZ1wy9VNc98VUz4QvJRjC2kpx9FNfRU8NRlVTWj7rf7z5j2+lrDPgLrFzqXwutNQufmaXUdRwM9AL6cYr1jwl4pu7BZzart37d3zdcZ/wAa8R/ZTgN58ErGRWxjVNTGD/1/T16JHIRnA/WuXM8DSx9KdGfU9TKcyq5Xi414dOh6Rqfiyy1Gxa0gG52HzfN09+led+IbLMc5Ev3ZCfu+5rP8QeIp9FtEurVTlpAh57YJ/pUHhvXNQ8UeekrhUVG4PfFfzfRqy4e4upyrRvHmSvt1+Z/VmYUY8TcKyqYeXxQbXXXsYVxrEwLGBNjg4Dbs4p1h4q1bTt721wySSqVkkQ4JXpx6VXvtPeCWQlwcN/Ws3WL2HS7I3VycIQdzZ+6O5Nf1bFUatL2l/dav8tz+QqkalOr7Jr3k7W8zR1DXbu9lEl5JLMwTAaWXcQOeOlUvt/8A0y/8eryvxx+0P4A8K3BS8upGdQNvlLkdTzWZoX7S3gzxRdfZReMSuMFhtxn69eleDLi7hmlX+rvELmTta3/BPoqfB3E1TDfWFh3ytXvf/gHuviXwvdajZWf2WXcZY/NI2/dHTHXmpPDvhZ9OtJI5LzLBC7Dy8YPHHWuqS5tL7TNNvLG5WWJrLAdenWmXsLJYTzbuBCTiv554nnTxHEXPB3Tqfqf01wnRqUeEXGas1Tf5G1pWs+H4Lsi70cy4jwQFC85HORWnL4r0cQ7LDw1FE4xtkJBOPyryqHx9oq3jt/wkUWOQPm9/pV1fid4btVEsmuRSYGCpz/hX9Hyy1Oz3+bsfx/V9v7SUuV2bbOs1S7S8upLtoFUtjhVHoBXKfExVu/COoW8QAYWMxy3T7hqC9+MHhgW7st5D25APr9Kwrnx9D46ubzwx4ZQXlwdPYywxdVQhhk57V00aXsZLm0t5mcadaavysvfshBI/gdaRyKCRquonOP713Kw/RhXdXCkY2ceuK5L4CaNf+DPh+NB1uza0mTULmRIW5wjyFgcjI5zmupkvIOMyfoayaftpNdTpVNwWrLOu6TDqPhs3a28JAbjegyDg89KxfAsaabK8UqAl1Jyg7VvzTMnhWS1kkG8HdtBB4wa4+z1B7abek5UgYyBX89eIWHcM6dToz+qPDHFRqZFDsr/ii143W3tpJHjgVRKAUCqBjGM/yNeJfGvxvcWfh+aKJnWGWN48k4IJUgnrW38Yf2i/B/hzxBN4Sv8AxVbR31pGjTwyEhlVgrDtjkMPzrw740/F7wf4m8JX8GmeKLQz/YpjDEsozv2HBGe+cV+x4DERqcDRjGV5+yivP4UfhuNwsqPHTc4+6qkvT4meVfEOe4SB3F8XDybgVkJx7Vydx4mu9HZZYGYswPzE8jHp+dclrvxSuLJzp9xqySqBuYNIvB9PfpXM6z8WxP5flSjjOdx2+nqK/kyrg8dTxrjNPmT/AFP7Jw2YZTPK4yjKLTjsfsH8CtRTVvgr4Yv03kyaLbs7SfeZipJJ9SfWrPxF8Qf2P4fLiWdTJMIsxHHUN15HHFUv2LtFufE/7IPgTWrybZdnShHdmNg65VmUDcpKnG1hwe1c3+1F4w0LwbJp+h6j4hgtXkaSRopJAGcKxUOR19a/Q8gwVWtnlCnPfSWvkfmme46GC4XxNWnK7tJJLu9iEfsW/CXzWd7u6YsTnfLIcn8WqWL9i/4VBx5Fxcs3ZS0hH5FsV9i3n7MvxC02MXGo+C7pULbQVts8/wDAWY9j2rmtZ+HF3YvJZS6TPbyo5UmWEryDg9RX7Phc8hXuqVa/oz8JngXB2cUfMv8Awxb8MZF8uXzSD1/dn/Gt7wN+z74K+Fkk954TvrqzupomWSaGM5ZSOnOa9pfwfDaqRePKpX7zAgD+VZ2t6Do8CROt82ZJAhBkXoT9K1q4ypOScpN/Mx+rRStyo4iz0a48siTxVfMc8F7VD/MVdPhyI9fEt3/4CJ/hXRp4a0hR8t3J/wB/F/wok0ixXG2dz/wIf4U1j6i+2zFZfT6wRztpoH2RnZNUubkSIVaOWIKMZBzkD2rltWX7Dfy24GwiRtqn0BNekw2MYchCx4r5p8fftg/s+6P491vwz428cWmhXugarLb3cV/fxKbhEPmLJHkj5WA29+SR1r8048pe2jCuu+/XU/UeAcasC5UptqKWy2+43PEH7MHwu+IviOTxn4o8OtPf6hEollEJO9ECqOh7ALVO4/YR+CF7ucaCYtwxs8nDfgSePrWh/wAE9vG+ofGb4O6v8R7jUUubS+8a6o2nkAhorZpFeJACSR8pP/fJr3WXREZ/uy4Pt/8AWr6rJqnJllOMdLRin6pI+OzWMqmYVaktXzPXrufKus/8Euv2WtbuDe6xoOrecUxm3vFxjk9j15NYc/8AwSy/ZM0xdx0rXQGViTNeBsBRkn5iccZr7FXw5Cw6T/h/+quW+Nlha+D/AIS+IvF2pzG1tdN0maWa5uGCmPI2DGcDHzYOSOdvrXNj8sy1QniZQTl6I2w2YY+mowjVkl6s/ObSf+CoPx8/ZX8ReJNC+Fnw30rWvhPoGuXGlaHbaiSFtHy0ka+dDIS5+Zz8xJIPXjFew/sKfFGz/wCCg1x4r8Y/HPQ4ptcsJLX7HFp0aLDbWziQtEN4y3zYbd1IYV+dPxj8Q/EbxT8OdY17XH0WLTL3xduddO0+KOb7aqENGjtH5ywBc/uvMKBsHbkZr6O/4Ih/tD23gT47ax8KNY1aKOx8XKqWMcjhQLuPAXknvlgB3zXxWVYunSzpVZN7pLufSZlKpUyr2afS7P3Pm/bb8aahCsNp4vSQjDeZBbKu4eozng5rj/FPxc8YeM7p5r+/RkkcuxEYy5JzkkVxum/B/R9OVYoJVEaRhEQJ90DGB19q0YfDP2QiKO5G1BtUbOw49a+7wuDwOEtKlTjF+SR8tW55yZZea/vBunvSVbqm2szWdPF1fWtoZSoJaTdj+7zj8a2bTS2WNV84d/4ahm0lrjUWjE4Hlxb87evXj9K7ZVl1ZgqXdGatmIuN+c+1I8A4+b9K0mtDFx5me/Sqky+Vjvmkqilsx+y8iK2TypCwOcoR+YxX4n/8FWPgjrXgb9pS98Z6j450u9t/Ft7fLbafZSlp7IQXToVmB+6xUxOB6SV+1MmrrANxgJ5x96vzS/4LA6P4E0Cx0y/0zwjYnxRrnjnV5rvWbdSkyWcdnpmIn671L3IA6YZWPO7A+V4ncKuAs9bO57+S89GrNrTQ9z/4IpXN1b/svX9nLOZIo9fMkSEY2fu9hH44J/GvsOTWREcyRAKBljnoK/OX/ghf4qtrDXfHnw0nuBbvJDBcRWbckzRuVlGfYH9a/RGfRxdqyySja67WGO1dPD+MjLLlzS10/I4cbRcqkpW3bEu/HOjaajXN7N5dsqEtP/dP0/Kvz+/bM/4KEr+0PpV/8Evgz4f8RanFbrNJqUdnp7SMzQyDZLKq52wKybsk4bPOMDP3B4t+DnhXxfpN5omtxF7a7thE6KcEcnJz9DXhFz/wSx/ZeF7JdnTtV/e4wv8AaknGPx960zaWKxFP2dCVk99v1DDQo0pRlON7H5YweDPir+1L4t8Nfs6/DnRI5riz1O/e0tFGEtTczCaQFgOdoGSxyWP93pX1Z+zR/wAEc/it4B+LEGveLvHel6ZHoGpQ3lle28hLXbK4YKoyMHAIYdj619m+Cv2EfgP8NnWT4eaA+kMn8UNw8jH2LSEsR+NereGvhyNMdXsdQubiQQbWWVsjHHP6V5OBySnScalR3knc78RjPbJpaK2x1cfjHT5DtSOc4HXA/wAaF8YuJMLZRlexZBkj3ptr4D0XT0Upr8kpCBcMjfn09qkuPD2iww+Y+pEY7hG/wr6NYiVPSUG/kec40r7kcni28eULFbRLvYKvygYJwP5msXSPGmqNDJcyKrEyuMnrtBxj6cGptc1fwro9lcR3OqGMQRlvPWByynG4HgE9cVW8O6VoF3osYg1Zi+3590Tgl2+buO+4H8amWLi3/Dl+IclN9TQi8WxzqXuoGBBwPLA6fnU2q+IYdOaJYrNWMsQk+dAcA9Ko/wDCMWiHDamw/A1tXngq3mZBNeFiIVKZzwh6f1r4bjfMK2DwEK9C8JKVteqZ7/D+Go18ROEldW/HoZafE/wos0cM2g2UfmSBPMKhgCe5z0HvX5Sf8FRtQ8Q/E74p3HjvSoduhx31zbaf5LZQssgEmAmVUnyos5wT5a/3Rj9PdY+DPhPUYzHd65dBfM3Ygypzz39K8J8a/wDBMT4J+KtbuLtPGviaO3up3mktYbpfLRmYnAVwV4zjpmvVzCVfH4OKp05NddH2OPCzpUqsuZpHw/8A8EiPHlr4G/a7trrV2nM2tLc27ebgpzbSOzPk9S8aHPOcmv1rvviDaRvJDELVyoIzGowT7V85/Cz/AIJj/s5fCP4gad4x02TX5bxJZQt5PdR7FYwuPuoB/CccDrX0BpXwl8B6fGrQ6jfSusm8PLISCc559RWuT4avh8NySi16ozxE6Mr2a37ip4jk1VfN2tGfugLwP5+9NfTNSuf9XdgbeuZG/wAK14/C+h26/urvGDnAQ8n8qs2q2Me7zEUZxj5a9pRnbY5G4W3Mu30HVFcmS6QjH99v8K0NOXVNEl+1RToSU2Y3H6+ntV2aa1IHlEZzzhaBremooin8NTy7eC4uEAY+uM8Ucs10JvDuSTX8CID546+lQXF9ZzReW84PqKE0uW4+SWCUYGeF/wDrVHPoXlqWEc3XuP8A61d7bZzO1znvFGnWt0krJBvE5Ea8n5uBkflmtXT00+C1UkKrhRnGeoAA/QCoNStlF5aWHzf61pWH8QwuPy5H5ipRaDeI1DEE1NtRp2JpJfOy0TZwO1dekLT2Vpc7MsbVFdvcdv1rlrXTNqlQknJ9P/rV2UMTQWyWoB2pnaT15r818Tf+RTTX95H1vCS58XL5fqcRfmWPOePnx/OqDfbAxaMHk9cCrniCS6ivmt4YC0Wch9pPPpnpVZJ7sgAQdv7pr77LX/wm0fNXPmcUuWbXmVtVj1RtO+0QITLC/mIQBx2Y/wDfOasWdzdyRwvG+VdQc4HOaetzPKy2U8YVZWEbnBBAY4J/I1B4XmM2lRC6wksLtGY+hG1iBkHnNdlrnNfQ1Y4p3jJKE1G6SDopq5byjyiCR1qCUkYwKdrCTZFKt0QPKU578CpYYJ3AEsZ6frUiEA8mprWVGlKO6gAdc0uW7Kua8RKtkelR3cpWInA60k/3fxqpLY5zJ5vU5xtrucbGK1dzGvIxP4syTjy7LcPfe2D+Xlj86tR24SZTu/iH86r6bot4mtatfhCYpZYo9+OmI0OfzGKurpuyRT52cEH7v/16z5Rt6l23/rXSM26ub0608q/W/wDMztXbsx/Wupjj2Z5zmvyrxQnbD4b/ABf5H2/BSviqnmrfecHqshZSpHST/GqiSlDkAdK0fEttjXGbf/Ae3uKzn0m3uGK3J3qTnbivvcqd8vof4T5jMVbHyRUnuWa/5UcMp/LBqlaXbQ6jexKgOy5jfn/poeR+Fa39j6dbtmC32uOjZ6VgX1pqEPxGtUWzLRXukSRwTbsZkSQOUx/ugnNehtqch0EWoOq4EY61I147fwCqMkdzZgxXUGxiMgZ7VDBJ14qhPU1/tT/3RUS3jrKx2DvVSK53E/J29anI89Aucd6Bcp//2Q==",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [44,33,61,63] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [55,40,69,74] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigD1b4eeFJ7r4exapFoyXM2o2t1ZW4RAAu2USbyc5Z9qzjHoiDvVi78H+IdGmtnmsZZpSyyJ5bAiUDPRgSCPlIzyOK+jP2QPCEI/Zo8M6qyJjUXumkDxs2dl7cIGOVxtHQgEjkZ6gV3Xh/Q/hgl1PLrNhFcBiC9xHB5apKpZtxU8AA4IPGMt06V9jSyyM8JTm3a6T/BeZ4ssxarSgleza/H0PjbRdC1PVYY4hpE7zXEOxB5RO8puyOnrn9SM13Pw7/Z4v7i4S71S8WyjnvPs9us9sI97zLLEoyeNoLxtnjhTyMg19cyeAvAL28Ws+FdHsrc21qQz20QRJVwSxOAFHyoTj0DZzniTw14WOpML2Pwmk0wsXeO6ls8sGDKwYE9gvp2PWlPLqdNpyf8AX3jjjnO9l/X3HzB8HvghY3euG88aaLqFv5U6fZZZtOd7JiMs29wPlwAMH5jkgbTzin8TvCXiFfH93JDaStcvMXuBJAVPm5O4P1LEgBs9PnwK+tND0jWjBF4P0zRo7uDXr6G1NoZwsbhWkJADHazKInIU5yqOcEA11Pw28G3njrx2lnP4U8+5lvTDE7HYyMYzOF5XDEl2bkjg8dK454SjOpGnfTTU6IYmpGLna9kfIPhXwp411p49C/sF7y0iv8usbMyhyEw44B4DEZ9uldzoH7OHjmPXbG/i0+6a3/tFvIGm3m1wjupG7BDL9xjxkHHBOSR9hX/w5i0q5kjbShDBBqD6dLFgBRcbYywBHyscYJGMDHGeRXeeHvhX4rKvqVp4FtpI4It5QBmkl6zoVAABZUJ3YzlQRgAcZYnA0qD5U7/16lUMZOrq1b+vQ+OPEXwB8Va74wnewh8qzs5vLufOuVYs5UnCtkh8YC5GV+Q4Y4Arf+GX7Bvxx8ZeJLzUdS8P2Wn+YjNDLLeArMvyplssSucs3PJOccdPsD/hDo/DsV1dap8Ln8mKfIWFQsSxOYTv2dX2q4GeQcZBPBHSt8TLfTNETXNL0bTV06a28vzo3SXiJXOSBz1J4OMZyMd+T2NGdOyWpvKvVjPfQ+dfBP7MfiL4Sapp/iC6uwWaRt96g3JEQCCO2X3BQV6ruPOQcfRPgS0n8OW9jp+ku6wvMZUgRd25QzfLjnjrwAO571yPxG8ft4ouZtI0vQmhEkszhEfeIzJu2sAg54iCdP4c8V7R8OH8ReIJFD6Iltb6Lpgb7a8KF1BLKuWYr5QypAZjg5PXGDzwwynLWP4msq0o073P5jaKKK4yz9GP2HpJG/ZH8HsoEhhlvP3bIzfINQuGbGBwTkdcDIHpW9D8ONTvPEN0unXcM8N0jySQuwPlv12soyQvLA/L3UZzX1L/AMEYv2G9H+On/BN34d+PNR+Kuiab9oOr/wChnYlxEU1i9j/es3VSFDeoDLX1no//AASd8BG+ttV1D4gW9zKsi7bnTzG3mRZBwrNH9futwTxyMj9ApYzBPLqUJS1UY9H2R8rKhiYYupNLRt/mfn1qHgv/AIRfw5baZpkWmyxwtIgLNiWWMo/z7cEjAPfPUV0/w7+EPiyCS51XV/GS6ettFItpfSyeas8TSOwVQcFiAqH06D0Fffeuf8E0PBv2QaQsl5aW5JHn3txbqsqju29xtGccnP4V5j4q/ZK8OeG9du/D8fxO8IC4htreLTbH+3YMXl1czJb2tv5hLbSZHQO+CqBwTxVKeXVIvmm7ehnOWJpvZHxj8OodK8H/ABA13XbLVr+/vorqbR7VdKspZBvG58PCoaJW89lXzCAEUH5wCK+sfAniLwZ4K+FOp6zHqVnHqOhaKGe3gdxNLK8O9POVwElw+RhlBHGMYLj034b/APBPXWfDvwr8K/FzRviRdaZY6rpcVwdV1nUS95Il6/nxp5caLtdUlClQSDt7c1Fff8E/LkatrV/4e8Y28Ny6xtNd3FrmS5Yw/wAf7zehAJ5C5O7P186WHyypp7TX0OiGIxUXrHT8z51P7T8nifVtS1LxVcXVmdRNnPFp+k+HcuxS3EcpQgKwXemPKCjDFdoJwV8u8Eftzaz8Rvj/AOJ/AD2urwpYQv5OmRTWfnC5jnIkTcjjAKho1fcwUja7DcHXV/bm+Cmk/DzWfDfwwtPjbPb+Lr7VCJfDHhXVrOG4FoZ4pWedoQZoYng+0bQdod4o2bcIwB8qat+x/o/iWHxHrHwT1rVLi/8ACOsW32bw7bQ3GpPFayxoAYrq0gIkuI5zLmNgi5ebZ0OfLxEfYytDWx6uHfto3eh97eI/CnjPWfCZ8LX9o9ps01ZLiz1TWIA7uFG9W3SEO+IgQB3AAHAzN4q+A/izTfCU91r11a2Wn2UjxK1tdqyykxZIUrlSARtJUnPQCvX/AIefss+Ivir8HPAGnxeLJtUtbCK1v9M13TLg2tzcxPGDCTI5lXckblQzFyCW5ya6746/Cbw54T0eTT9e8QzXGrbd89r9okuSoZGId5Su1W3EPg4LFcYGRXpP2Tpq9l6HFzzVSx8g+DfBmp6ndxajbzMIGvZI21T52ZV/fMNrdCSHPTPKnJHIr1n4VaT4112K20mKK7TTb+2tNPt1jXyvOuUaR0JUIQ7kyyDYGy57Aiu+8Kfs+eGYdCOq+JvEVjFpt1A901vbt5yQQERODIsQ3LL8zMARk5G4rk492/Z6074N/DNdI1ubxPd/a7ZhbLZapo9xbIYDZgEiWRJFw0/yMUUSGMnBwcHzZuEZXSud0ak3Hc/kQooorwj0D9xP+CMP7Jf7Wfxa/wCCffgfxT8LrM/2Pd/2q1nNJ4ghtUZV1W7jZfnkBUeYsnUDueRzX0R8Q/2d/wBp74Uaj9g1nS/EGp3VpAkks2kSS3UEXG7CTRsyvt4zt4BJHUV4N/wRk+PuufDr/gnX8PtG8M+MLbRp4rfVxLcXr3dxv3azesUSFAYk4IOWBzgnqa+s9A/a+8XNYRx6zN4a1LyJWJ1fUpxvkA+YsLf5GHoMY7DFff5fiMfHDU+WMZRUVo9Hsup8jjMNhpV53bTbfXzPANY1TxXc3clxraXjzn55WuUJbpnJJHpg/Ss/Udd1TSYJZ3cWjJExe4YKjKuMnLkDC98E47171q3j34d/EXWr3x3c614fs72a4L3M2oJK0hPTcIyXBBxxjkDGMdK5b9o27+BEH7J3xH+Knjb4yeF9VfSvA+qtY6FIktu19P8AZpFit/LkhXPmSMiDIwdx6ng+1UzCjSotzhb5XPKhg6kqq5ZHjfwc+Ltzrnw1N18Hvi7PqGlKfsUuoeHtZaSNnjRQybonO1sAHGc4IPIIJ7z9n/8AaE8H/CzUNU160+FWpazrNvfeWt9ceJpIlCmCEgNEkRJPJ5ZiTkHjv+Zf7BX/AAUN8P8A7I00OgeL/gxHrngd9VnM+nxXheSyaVIxJcRx5jLy/uoNqtKkbhZFYORG0P6AfsjftefsWftBa3q19pvw38SRLOf7Ru7C90xtPjEZCRrtnSV1DFFQohIDDdtzhsePhs3wWYUuWUOV7Nd/+HPXxOW4nASc4yco73Pof4xftaeDPj54V1Twx46+Euj6ZZ69p7WmoTxabFJcTRMFQ5m2AsCsajqGHlrgjaMfHPgb9mD4bfDnSPGsfhvxveaSdc1q9udIj07zVeO1AYQwsUGxEO6QNGBtKuUIK9fdfGc3gXw3pqXHiXwH40sNNuJvMspdJ0ufUY5FGfuokJ3OFySS4AHU8jPqHw4/Zk+D3xO+Fd54l8L+DfiDqGrlE/s6w1KM6Ul8HQNuQ/ZbhkXBwMgHP8JFTicHl9OHNr8tQw+JxV7I4r9jHx2f2avhXpPgay8W+LNQliiWW8hnvlayjlXAYwROpZAT97BVWOH2KxYH6Si/aL8aeKvE2nq3h3STNbhZobqbSo2liiLrmUZ2nOFI3ZAJ4zXxZ/wXJvbT9hb4O+ELH4J6xfaF4h8Z3l1aGzvlMl1awQ7JJLmG4+VZB80URHlLt84nLHGz8qtU+NPxg8Ya4Nc8Y/FXxNq2oAr/AKdqWu3E83y42/O7luO3PFeJicbg6MeWjFt+Z7mDyvEYp89Sdl5H9I954g+Et7pd3L8XtV0qGbU4C2pyy6VcSS3e351+dI1xGjrgEY4Xlim5G7Zf23/2KfhlrV9FqUOqai91AsP2y4ghgCRKGXyo/OlWSMA+Ydi7QFUccZP81Ev7Rnx5utMg0TUvjB4jvbSAlre2vtcuJ448jBwkjlV4HYZqS7+LXjzxJbtZeIfEktxG0aoEZEACqSQBgDHOScckk5zmvJqYuEt016M9enlDWjlofF1FFFcJgfsD/wAEwdJ1PUP2CvAA0q2UyM2qLlsKHzql33Y4J6DCj1r3TXtE1jw5FAfEFk8DTKGhWSFgHH95W27SM5Gc9QeODXlv/BI6/wBHX/gn74LluL2y0iewTU5E1WO5gW6Zv7XuiuF85ZTjPVUkIC/dI5HsuofG/wAavaSW9x4jvrwSxgeZ5s0Zj68qY5V46HBX6+lfpuVqp9UpcsdOWP5I+KzB01Xnd63f5nIeJNU8WaTFBc6T4UtLmOVZkaSa/ZJI5VhkkTaiowkVvLwwJQgZIPSvMv20bzR/EP7JXjSz1nUYNDmGnA7dTfYY545kcWzHjDs6eUMfxnHqK6v4ufEz7Bplt4ivtLn1E2ty7zWdnCBLIjQSxlxukUHbvUkZ3HsDzjw79pz9pLwV8ZPAl54W8W/CHxHbajzJpmp3Flie0udpIddk2HD9HWQMHDE8MEderHVJU8NU01a27mGEpxnXpu+iau/mfnNLf69pkjXElvNChfHzBfXIByCD06HNfWf7AX/BQz4xeBvizo/wmOl+DxpXiXV0t3mHh6308PcvF5VurC1jSFd0ohRpXhchQCc7efDdX8C674gaTw9qmiYMbAK4mQHcP4Qc5yMnrxwa6v4Sfsda/wCKvFOj6CLC/Mep3qwXk02myvb6fGX2tNM4iKMqqS/yMSApB6gH83pSzDDtypQlF+Sv+h95KOCnaNSSa89D9nb/AMd/E7wlD4bvNT8fSQalqU1/Z3lpZ2RsI5Gh2yl0KktJtRo1ZA5MPmAZJLGtbR/2hvi54O1p/iDo+pWto6RGKfUG02F1c7cFnMqtmTbj5yd3HXrXxvN8etBtr2PwL4z+NeppdaNqkUWnajqttHf64HGl2cKXDW5iIuIj/wATGIZUl2mjYy/u1eT32w+E2tfFvVoPFPwT+AQuNMuNOW50XVfit4kgWKKOPbDn7Gj3BWZs+a4aOLLyg/KrA17OUY2rQwCpYmLlK7bbVt3fzPGzDCUJ1+ajJJaaLX9T4z/4LYftQeMv2hfjL4MsPEXxAttfj8O6DO1vc2txHNHFLPOPMUMpYcrBDkbiOBwK8Etfgx4nn+J2keEtQtF0mDWYoLxbq+BWO1tZRvEkmfmUBQQAeWIGASRX6A/EP9gzxb+07+2J4e13xd4i8J+I9AstOhTxXrNtoM9haWLIJnFjAY5pByUCLKcbt7MQAmah8TeBdR/Z/wD+CkmiaNqNvfHw/wCJvBJ/sO9e0lvLa2ukfYzzSRxvNMJGt2HmSeY2+5GW2qdvm4uFOtiW1ptpbyR7ODxDw1FQ33Piv4kfs5eKPAd1Jdz2l5/Y/nlLDV5tKuY47tc8ModAckYOMD8uayvD/gy6urWbVNH8Naje29lIi3d9LARFA7q7RqxHyhmEchCtywjYgHBx/Q7+wt8Kv+EnhbxLrOg+G7qFnaC4hvmMTDK/e2gKy8Ec7c8896o/tyf8E6fhx+3V+1t8Mvgpp3m6B4X8JWmoa58QLbSZ/wDRLyZooV0+NAT87hlcOSobyp5QjKckeRiZUaVdwi9Ed1HHucffX4/8A/kkooopnCfrD/wTKmMn7FXg2D7Nu2/2jj5M5zqV1X0bZaPaQ2L6tr7rb24H7uIr88p9AvUjrkjpXiP/AAS98d+F/Dn7A3gmw03wlHJrTDU/O1W4bcI/+JpdldiYxkDbyfTpXqt9qF7qkzXN7cPK7Enc5yeTn+tfsOUpzy2j09yP5I/Nsx5YY2o9/el+ZjjUbiz1nVFsLmWHT7i7Y2ELyfMlvklEdhgOwUgFsAEjIC5wKmo+G9P1eNIb6xjmRDlVkiDAevBBqbUbOGLVjHK2VkQF0wecZwc9v/re9dZpXh2S4hsxG0X+lQ74wZR8iBiuWJPy/dJ55xz3r0P3cY+9+JyfvW1Y4nSPhPpN1fLbaT4dt/Mmf7lvaqCxJ9lr1TVfht4Q8AeBJ7PS1u7a/nmEbfvImjugAwJwqZCjI+YNgHCgMy+ZXs3wh+AvhdtOgme7ukkdQJmmg2S3DHIIXoYoxkY/jbgkr8yt5l8fbRIPinceFhq3+jWs8drFJMAqxEkbs9OAW5PtXkSxFDF1nCmtI6u1v0PSjTq0aV5vfTU4LWP2dPBnh7w1pnxO+0ad/bGtTuZ7BtLSOdYlAEc5l6yKwGBwAABgnt6VoPhbSfiVfeGvhX8KrpftV/axxXkutxWkAjusEvtlVAwiBBO52y2cemeQ+LHimK58ap4fh1aK7ttMtI7O2eC4EqKqk5VWUYIDM1dF8N/i14A+HXgDX7ebw2lx4nvx9m07UHnlUw20kTpJtCABSDtJO7L5C427slWjH2XNG1+mi/EulWmp8p9JeN/2cPhV4Cs9L+B3gPWbPxT4wa2eT7LpRgWJo+B9qvLmRCEiTO7BkAIwMBPmb0z4F/8ABPDw5pd22szal/wkesuxivNX0rxYkRhkBG5o4oVO2MfdXLHgZI5CD50/Zm+GieO7XSvE9r4q1n+19Zk33sVvaJNNPDI/ySIqyGVouMNIyoobjd0NdnrP7M+uaZBq3g34a+JEn8R2FusZsJ0vbN1eRAVuop1RopFYMAC3lZ2k+Wor47HUnTk6Sq+rsrv/AIB9FQqSlHmcD2b9pD9mzxv+z5oMvxj8I/FPxHo9jplnvvT9skuhLM77EDZkAAZ3jXBHf3xXLfs5/s/fHn4sfDKb9oLVPGeqW97r9zPLaCG2u5JJY48pkrDPEMFlYKDu6jHHFfNXxB0bxd/b+gfAqx0++065nubdZINU8c2+oWrySuERhIiJHAncbiTg7i2MY+zfh78L/wBrj4AfDu613xr441TQNF8PaYBbWd14miuY0t4kbCRxxkouB3+83A7Cuevg1h8NGLmpSb02vb/hy6OIc6jsmkvzP46aKKK+ePaP1S/4JsMB+xp4N3dCdQH/AJUbmvqbwd4K0650yXxH4s1+DTrC2KERSEme7LDISNByQcYLdBkZ4yR87/8ABM7WPCOi/sIeCpw7HUyup+YGhyAf7Tu9oGeDxtNfQHgzw1rXxF1WC51C+dLQyqmR1256KOmBmv1jL69sspdEoR/JH5/jKKeNqdfef5mrdaPo/j/W7a98A/C2GwNpEYZ7pbud1mDH5WkM0jIrZ4G3aMdsgmu0/Zp0ew8CftEX/wAK/G2l6ddSCaa0srqWyaZY5Ucsrwg7XywUgHAYKxyF5A2Jfhj8Q/BPwl8Ra5Yrpx03T9OLwXsMxVhJ58axschTuIfHIwSRXLS+JdT+IOh6T8TF0mzk1SxtXg8Taq1kJpZ5VlZhezK3ys5R0G7gu0ZLAkknnqYiWIpyhCWm1/P1NadGFKSlJan1zrfhnTdZu7Pxd8LfGVjpUVofKurI2iXNtMu1mbeku5mG3tkfdDAgrmviz9roaH4k+MniW18MMn2a5nLB45CyrI6guActnDZ7n+p7/wCMv7Rfi+60qxfU9RdtYm0/987wLDJEHBBLRpLIEc/NjlThh8ig8+BaJch5pYTz5ZAy3XkZz/n0oyjL61GcqlR7q1hZji6U0oQ6ak2n+D9WTw6dRurUSRIy21xeouB5zIWCHuMgEgexruvh54L8K6L8Odb+JniK/he5sEFp4c0tlZmn1BlBWZhkfu4gQ57k4HesSXxRqt/4fh8LRXsiaXDcGf7IrfI9wRgykf3tuF+g9zmtEZd625kJjySEJ4yfb8B+VevVw7qUuW9v8jzI1+Wd9z1vRv26vjH4S+Flz8PfB9loukR/ZZIpr600tTczxEs3lM8hbKEliwAG/e+8tuIOLY/8FF/2rtND6bqHxc1OfSbK9SS00ayt4IYZGWMtHAqRhFEIkGCg+UDAC8ADzq6sTNps8Cn948TBdvUnBrkvDl9YatJc3d/EEa33SSKp/dxsJplBH/fBx7YrzqmW4GCsoL7r/mepQxuJlq2et/B74yaTpfxO074xfEyLUbow6iLudtKEdrcS3LjEW0oUC4kdOmCFAVRgKK9x8KfEH45/tTeJj4O1v4l+JB4SjuFuNdiu9Unu4beHcfvLJITKfmO1WPoe1fJGkjV/FfibQ/hz4V0wzXd94rsrVlWIlQvmMQeAdoykZz9eOlffJ8OfDP8AZ88AWvgLxX8WfJM86HUrfSosNPM6b98hUM4jCkqOB+pz5OYPC0nyqK57WWi0132O7De2nd3929z+Taiiivz8+tCiiigAooooAKKKKACiiigAooooAKKKKAP/2Q==",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD8OxpEslraxy2RaVoz5EhDdcKDj1BAP6etS33w+1I6+0l3dRQwMqyNM8u793t5YBQSfbtnqR1r26D4beHbrwxbSanFLAbJZo1twBuYPGgPzYOOpxz1z6VvWPgvSfFfiqCx1O0tBZJpog8lUyqxuZNgYtnbsxweq4GORmvp45ZKSSZwPFQWx55ovwnPgnxB4c8U22pv5M1xY3dza38DRTCIXUYZiMFAA4AKlsjOCAcgeeeJPDNzp/gdbm+RofJ1NzOG/jLExqE49YpOenynnIxX3f4E/Z+8A+JvBLeFUSOCys7144RAiLLaYcMiq2OCFk3c5wSx7Liz4r/Y58LeMfFyWWv3ks+j3lvf3cUVpYxoPOiCqgdR8jMVZ3L4DNsznNdssqlGCSOT+0Kbm7nwjocF1J4Sm8QWl44nnuJhMzEECGKCMlOhI+8O4xtra8D61440vwtPqfhG+1W2njEcUk1hG5WVUDlHJ5XzIyIsMACpRTn1+6vD/wDwTk8OW3xR8MeGJ7BG8Mx6XqFxeyJCnzTMsKRxEdyeThwRtRwO1dF4r/4JkeD7v4iaNF4H02a3sDdvea26SlSIFjlLYDLjc0jxrw+4jkIduauGS4lK62Mp5thuaz3Pyz1+HxBqeoS+INUknuXvLuR7m6lYu7zt87lz1DMSW565JFej/CuwudH8AeINNa2kkc6zZbWVCRhI7ndg/Ug/ga/RzU/+CZ/w906dbHS/DKtaXQ8y8WJ8if7oHLfxDOeoPy9xxU+pf8E8PBGn6bpUmlaBFp0E2rs2oqiGMzRrbzgY+QsSXkGcleASD8oB1XD1WnLmclczlnlGpHlsfnrB9rN3YwwaeWiSxG8OiKVZUmkY72xtwr5xkA/JnPFdNqfhCXQvFdlD4ksPtDy2sZSHTbJZo8ypviI2vGo5KrwTg7uu3a36C+Bv+CfHgW2vtU1nTUgle5REs7S8hG2HESRuS7AltwUZ6DkjHNb+mfss23w51WXxH4V8CadHffZZEjmgaN4mIUy7T8250d3cseOEIbg/Nf8AY03e7E85prZHwHb/AA28Xy6DDrKaBIJ5LiYbfODxiBYoJY4lAVVUApcEAcHPHeuU1rwPruj6e9sbSV5VjR4FjXfuJDL1XIdcKRkH2r9NPE/wvstB8yC2ghitbl4ZQJpGZVQ7ioLOBmPauM98MSd3NYWm/Dn4XeIdVR9ZjtZpJIt1tMkeV3hmfgMc8Fzg5xhu+Kzq5W4xV2aUs0Unex+fo0rUNWvbbTrCMz3DtOBHGC24hlKrgc5JQcd8GrPgf4G6prOvLpkOlKYFtt1zcNDJIECBCXYRqWKjILFQcAknAr75uv2Zfhb4d1C08S+G/B0NtLap5mSBKFJd9sybyxXgcnAwW61nn4b+Bbl10cWAh+0yyRvHpziIZx833cHJ2qCOnGMYriqZdK6cmdlPMYS0SPBPF3wC0rT4mstXmW0muHVoLaG2YKVUEsGkfaNwA34XOVz6HB4f+AfheS1trzTNRnnu5Tbx3FvF853BlPVc7SN7Dvl1OOAcfceqfDDR9diaHUNPjuFd1Z1lCkbl+6RnoR61nah+zzaaq7S2lhK5UKMRy4b2II6f/Wr7bEZfTesZI+Po5lOPuyTPmKO2s9A0C/0nT7Vxd2939pngDlX2mJGaMhl3j+E/MDwc88V02teDdNuZdJ1aHx/aGO202RNPCjzI5ppYXyGKlSMAOVO1ucDPp67e/sja3cTyzXehTWguo3Wb+85KBM59cKOfYV5XZacY7yfwH8LbKy1pvCmpXGmanPq0cju15AFMkX7uRcqglCE8EkkHnmvHx+IoZZQ9pVlp/Wx6eDpVcwqONJanr/hDRLrxRYrd6PPDGLe2g8wLKEkAIYOSN20k4XB5PXrmu28NbfFWoNokmsC2WynhZjAy+XIsm5TGOCNy4U57A5PbPytovxm/aLstPlew+FXh5ZY4xJJbyxXD20ZRumDNvBClsEscbuOgx9kf8EvPjt+yD8ePHOofs6ftPeD7XS/HKStqWlXen36LFMNm5YlJJdSURmjWQZfym2szHFctPivLFFKF/uNKnDuOcnJ2+8uXnwjsb3WLIz+KobWFo0OoRJeLIMrtLlQD3VBtB/iZvWr5+HcPir4Z29l4P11Ultr9hJBNbhpZlG4HDN0wSeSTkY/iwR9P+MfhN8EtN0wzeB47sxx7i91eJvSGPdjzJHGCFHOcDnpXivxK8S6H4PsLnwn4Kki1GI2TTROhRoXuGOQGfaSgyO2dp/vV7NOp9bSlBM8dx9g3GRxGi/BjxZokbR33iqxkVTlBFbGNtrHIDDk5A29+3U0zxT4bk/saXULt7OV4kJt5UwSp2kHAOSBjg+or1v4MfB34hfEjwzceM5/DXiEw3EuyzjsdKlaNYldl6yQJuY4GWVQQc8Nxn0Xw3+yDe+KL+HQ5bSCK+OnPNJaeILuYzMokMQJCMuMkfkRUzzDCUf4jtYccNVnsfDfiBrTVtMjW5W3uZX8vCABWQKjhVGcKFBY/KOOTgV5ZpXw48Q3OrnSRFOqyOIA9uxwSZCBlsYAAwcnjJ+mf0w8Q/wDBMX4hXym6tD4fQKpjjtQ7Rrsw2MHJJbkAFsnjnNcb/wAOsvjBoGpyajYz6fAkqF5pxcsEjO7O0j5V/wCB4J4HzV5+Jx2AxCXJVX5HoYanXotvkf3HyBrOgWPhvQILK9GoRNPaPbMHjx5jhAoVTjjLOrA+w7kZZ4D0OX7Qba3+Hb3wFwwupoId8kUm9uQGByScYGQT7nFfU3xH/Yj+NWlx7jY3D24CSyzJcebCsYbJPysVAwij6Y9q5MeHdc0l30/SLcRzOpkuJ7WNlZipVC24nGfmxxjgml9UjXhpNP5mrxfsnrFo+jvhD+2b+yf8QvBmo6t49+D2haFrFk7uba10y2L3YLuAUcrGu75OQSCd3fknqPAX7V/7NGv6vb6H4W1TT9IN1JEs0N9o5ZrdnRSMnEkWCSRncOhPpVxf+CfXwJ03w1D4Zm8LajZtbXSH+3JtRVxeBS2R5STYjDqRkgryOAM4rndQ+GH7NXh74lab8MPhxY6Y8sUct5bm0EOrTtMFAWOaP7NMRHv+b5nGNrEFcEHw/aZfVUlSc+r3Vv1Z3WxEZLn5b/qeweJNV8B6Yba00Hx7fy3b3Hlx2cFvE0WcFmKIiCM/KCcAkAAn1r4O8Afsnfs7fBP4waLrVt8QLzxnYeIvH3iLxRrB1KCC23z6k0/2dvMUqxGbeBdpKxkiMsN0ojH2Z4w+GOp2l2kWk/CKYWt1IYLifSZ7YFIShieWWGVG3ZUsRFEgBVgCS1Yzfs9XOlabqeiaeT4k0bzLS7t9Mu3ubO6R4JQ5gaNsOsUjvK+EGfMcMFJ4PDOnhqkEqjv62OqnVqUanNHc+QvjL8PPgt9gm0T4WfB+4bVNZ1hfN1aO5mYaZYknzmZPmjZAxTDEJgkKOSBX5V+Df2+PCfhL9unVfjxq3hPwhPpt14ms7PTbLS9Pktv7M0uwv7IQXaMFd7hmt0lMh5YvNK7DZsQ/pL/wVe1TxP8As++Bdbv/AIc+FdLtNXRJZbG11iZrgyWLyL5jKsco3tGVRN+flWcNIvyqT+G37JuoXnhHU73xHptvqFnrFjfAQXdtq09rNbKmxtpMLoHBJBZWDA7BxgnPNmOHwzt7KyvbbTb5Ho5fUrpOU9fW5/Thoi/sx+OPHGkad4j+KuifabiKKS4t9F8R6RewypJtAy1vcCSJAT/rDHt75wDXxp/wUp/bv/ZW/wCCd3xe0f4R+OfDvirxVqmo6WNXkfwfqNt5IsJDLFbv5twm0M0sThgu8qImyo3Jn5//AGCf2z/2p/iv+0j4W+Hp+IGrzRajcXKvHZpHbmSU2s7RgyxRqwUuqjbu2sMqQQSp+Lf+CvuufE/x7/wUW+I4+JC3D6vb38FsbZogojiis4du1UwoygDnaPmZmY5ZiT6yzKvh8G6lGp2VvM86GWUa2MUK0OjfkfoX+x1/wVx+Af7TXjy58Gax4m0r4WyTyM2lnxd4pMlvLGqfdluRaRKsmcKq7Cp4AbOBXR/tUf8ABQf4E/snaXfTP8WPCera8+m38WjjwrqNvrlxFeK0CRO8EUuEj/eyThpjEJI4xsLb1J/Cu0s7iO4WC2jZmJACqMkk1YXw5qcSKbqDY86ExozLu4OMMM5U+xxXJTzzGxoyptrXrbX7zsnkmF9opQuvR6fqftx8Lf8Ag53+GsVzaaXcX/i3RIYZ0EMl3pkdxDGAR98pIW2DjjaeM8Z4r7S/Zd/4LCeLvj54Em+J/hbUbHXdHkvri1svtNmsG9oyFL7VVXCE8gMAxUgnGRj+ZP4e/DDx34qs9S8V+F/Dz31n4ftRearKI1dbeDeiF3Q53IDIgYkFQGy2BX65f8G3s/wh8dfDD4ofAT4j3LWPirT5oNa8JeczxieORTDOpKqcKsgty24chwQQFYjbC5lQq14xxNGLUtLqKTOXH5VOlhZVKE2nHW17o/SyT/goT8UppHe58C+E5dwIIfTZDn6/vOa5Dxr+2lfXUV1qPjj4feGBpckEpvLXR7OeGdjtjwrFnZGhZoow8fIdDKpH7zcsc37P1ujOl94y0nTWJO1ZrqWTP08uJxj/AIF2/GvN/F3wd1+61K50PTxBqsYO0m1id0lHU4BXOMeor7CnluTVNIJL5tHx6x2Pozu3f5Gb+018SP2gP2p/hAdGtfGWtaP4GkuXtEuLZ4Lq9gUNu8iS7eES4bKjd8ofbjqKxP2efDPi79m/WLD4kj42DxNdJqAl0nw/Npi4sraHy1XzLqN98xkxJxncpUncd4C+s6F8KNK8R/AHQL/4f/DHWtA8XNcNFrGj634cls7i6UtJ+8HmRj5R5UZBZjvEmQQeDynif9nb4t+GfL1LxRdaTpUjxiRlvNetoJoxnHMbOGJwAflB4PHPFZ4SGX4vD2Vku2zfTXvc6cRiMTRmua7XfsfUGif8FDfh7/wjT6hHFcaJq9/iW/SHTjeRiTHJUtPGcAduuc8isvwnc/Fv9onSdasPgn+0XI1jcSvLe6ZceHo4pUuJRyY/PuJGRRnJ8tsdwpbr8u6No1heX81xq/xGhuJI22TXF1HI4kUjjy2bDPtXAyVUDGMk1reDfiJdfAvxgniH4V+IzfEowf8AtCzaOM5H3SNx3jkHnaTgjApSyOhyN4dWlvqrr8dRRzGomvaP3fncv/tVf8Eo/jD480G/h+N2paLrWipA/wBs1a68SvblIdzE7HfY4OCDtAHzNgA9/hmx/wCCM3jLStet/E/gi9mh8KXMN21pqeuajFaB7mBXIi8yVW80yjKqQpO7luAWP3tqX7SPxK+KXiiSbxf4f03xDe32IdHsTaNHHp8hbO6BI3Vdx4BLqxwOTya5L45+Gvj1A/8AZ3xdhu/K2pdR2jahEIFBGBg7vLDAevIx6VzV8nnjaCo4zkv3Ss16HVhM1eBqueFlJLzbaPFf2N/2Q/2kfBHilpfhN4C8IKdGuHGp6608l9f3RaO4TahZ+VVZGI+z26ZMURkB27q+U/8AgoJ4N+LHiL9ub43eKY7+VvEXgbwHpV1r3iLUdHKahrUlxY2Vs9vGlqHhWIwT/ZyGIaVI3LdZFj/STSvh34M8MeHrK68V61eWUd2m63mTxPZ3MJwASAkO18gHorZyByOtdP4Z/Z103XdJ1G+8B/DbxBqum3ixNca6mhxw2106gZDi/dWYLuIykjkj06D5+tlVHBR9lT+Home7SzatiZe1qO8j8zP2lf8AgjF4j8KfDxviX8DP2p/CV94f0zwuNV8R2F+G0+e1WO386VkNvEUkyFLIjFCAyxguwYn5Z/Zw/wCCZX7V37Tnhm1+I/w/8E2ll4bvFdrPXNc1SK2jlZCylRGSZhkrhW2bW55wAT+0H7ZX7Fvir42fBw/AG4ufDvh2HWdVt0WfTvEsLahNZxyK8kcFvJIzxM5RQcOeHPByNvr+hWf7PHws0TQ/h34eu7HStJ0zSYLCw06fRJgbeOKNY1jUyeYzbdu0ksckHDEc1588HG6fTyO6GZyjDWx+ZX/BJv4NWXwy8MeMLnxRZxReKdJ8Q33h28gFyziCBo7SScNEWMZEjpFu3Ic+QvzEAAfSPwa/Z5+DfwL+KT/Gr4ReELfRvEbW7wfa7GeZYRGzxuyrAH8lATEn3EXjIGAxB9m/Zo/Yx+Cfw5+LHxf+M7fGCG60r4m6vb6la6HDbC0udDvIY38+RGE7CfzTKpHyJjy1XDbdx0/HPwk+HcOmfbdC8Zale3ZnZneSzWNjGR8o2B3LHOSW3Z6cHrX0+TSw/wBXjRnT26uJ83mtWrVrurCe/S+ho237Xd5azwjxB8GfD2oRRkCc+dcQvKB1IZZPlJ69COelen+D/wBu74S2/h6Wx8N/BVtJ1l+LNb7XPNtY3OQW8xlyB7FefbrXy9qHhe7gspbvTrn7THBL++jKMJUHPzFcfd4xu6Z4rJWW7aT93iMg8YBDV77yrBYhJ2f3tL7tjxljK9B6WOxv/wBrL4patOskfjVbFI12w29jFFCkShiwVQOQAST17+5rzf4n/ErUNZkbULvxPcvqE0wkMwUz3FywwxX5shg23DEkAZHzLXORXNuZTvf6cit2zhikhKxyIjEgZzjPPFepKhQpRfKkjijWrVHeTuc98NP2sPgtqHxIHwe8RRT6hrvmQwwRwXXkq7sm5nkWNHKqp+Rvu7W4yOtey6h8QL210t/Dun+FNI0392Y5nhs1e49CDM+W69xjpXzT4K/Yy1a98Zan8SPhh4d8Jatquq6kzy/bNOYrbRqVQlP3+Hc+TkqoiBaVnLfNivsP4e/so6nFpgf4meKbe2eABgukWzeXNHknZH5jMVwu1QTkdDjnFeHhsxlGc44tppP3bfqelicBzRi6HbW55la6vqum3S6npt9Lb3CnKzwuVfP1606/tfG3je5k1e7TUdTuGXbJcSCSZiAMgFjk8enavonQ/CfwM8A30mq6fZWt1aMm1P8AhII45cPgZA3YUjvyO/JryL4l/tH/AAqs/EWt/D34UX8AS9gij1L7BZxhWZZJAfKLgEZHG4rxlgM4IPZLNFOX7qlr3ZjDBOEbTn9xwmjeHvGOo3cM3hjSLy72Sss7afZGZ49qljnCnaQFJ7dPTNe329lD4P8AAGn+IvidoU19qRvVDN4k15r61eCQAfLGoUK+QxIJOBx2NeY+Gfi9a+CbZLiy0uWW+S3lt7WVH8pYw8aqzsVPGQJBgDo5GTuNGr3XxL+LMUcNiX8kD7lxKzIgVgQu/aAMlT2B5IzXLVpVMRO04pI6adWGHj7jbPT/ABJ+0J4Zm8Mz6D4C+G+k6NDqEKpqT2FuLfzyrEg4jKtwSQMnkE54OD5zDrd9fyk2l+yIWyICQY156BTkAVNZ+DdVupo7GwspLmdAN8NshbrjJIx05zzXfeCf2W/GuswC9W0is8gFjc3aKcHvtz/IV106OX4KPRepwVK2OxE7xuzgZLXUp2MkN0kR6lYhwR6Y7VVf+17S6XTtajhcXSFrUSTbGZM7cgng4wevGetfQnhn9mGLw/HJrWvataXL2ymTyYpzjCjJByMDp16Vyv7QXwz0u48L+FvHA06WLWrFr2GLRo3kBu7XzQSQq/eKOHBOQdsg/ugDOOMwftlGmk7mnsMS4OVRnF2Pwy+Imo2UT3dpeJpcq+ct3LBJcogP8W6LOFAOM4rSsvgtp09k0Gl+KdMv7gfPLa+dFay8noHuFBA9wPzp3w68Ia1qGn2vjzwPrt7p0Fzlb2DTZH3W5BOVZsPgsQXUkAbT1yDXtPhW107XLS1m8a6T/bca/JKty0DTRKOjjMaMxPfl/oK5sXiqlJ3jL7kdWHoRmrSPk+L9n/wd4b1DyPiX8QLGxc4LRWVwty4XjkCNiOhz1rif2rfif+zF8A/A1lq+mfE29vJ7y5khaOOxEj71iaRU8tQjAsFbB+7xklepyJJr28OVOSfpXCt4e/Zz+K/xi8P/AAk+PN0Utbu+juFi+y5uGeLZIywpKu2UeTvZ2AZEVWMg2hsb5lUnQoSl7TXXp5MwwVONWrGPJpp19Duf2M/+Cpnin44+JV/4Zpj0bSbnwxpVnpevaT4gjS2lvtIaa4MNzB8zF7mB5HLLgIy3cI2h1kdvs+0/a8+Hfjfw2PD/AIzuo01KG6MMur6Jcrb3dvJk7mkCfu5CCfmR1zzwVODXl+v/APBE/wDY1+GXh+y+NHguPVdRh8R6khuobya0lFwgErJLFIlnCsQAXmMwjmThuDXe+E/2EPh9fRWdp8PdC1HSLODAWa7vY3jdCGUKqrGpGTg9hweOc18hglhpp1Jy69mfRYp1XaKXQ8l+L+m3+n+JpLS68ZzaxaOS9pf7ztniJzuCE/Jz/D2NchY+FvCDTiX+ymebdlXjULg9u2T1P519g3X7FfhXwT4cm8SeKUju7OygaWZ5ZZW+VFBYAKR27Z7nFeHaV4U+FHjdNWh8NHWDf293Etpp4ijbcrtICynenyjaBhuTu+uPsMNmOFnS0baWl7HzdXCV41Neovgv9nPxBrCre2+n6WoaON7eSbUBNHJvUNgmFmKkKwJB5HcCu28G6l8Z9I+zeE49G0aztWtZLizQGHDRr8zYYsfmywypIb5hxzXTfBv4Aa54diu1tdLukttQRRPNc26RTqyBtvlMFcpje24biGOw5+QA9Np3hM6fo+peDPCHj26kj0KVJrjS9UuXklG8AFoi4w6L8u5QdqlgepArzMRmMpTkpNOK8v66nbRwyVNNaM5q2sr7Wx/Z91YXtuqffHmlV5yR047frXeaf4TaLSDb+ZLIYUYqgn2Z68ZGap2XhGI+Fbm507x0IdXRl2QXFuZFKfNuOM8EDBA796d4v8eaXFo+h2+im7dI5WTWbeXyNzREpghmhPQbuByfUcVwVa7rTSgb0oKmryN/SPD4/sKO7sLe4hins5GuZ3uDMFk+YKgQoN4baMnPB3DacDPh/wC1brWq6d4m8D3mm3M2nS2vho3MKW5kj8qU3U6mRdxyC21Xz9PSvaPD/i3+3NLGneEdQ1TTV0+RTbSR2yynZgqp2gbCORlWB57HgiD4n6F4O8deLvAXir4mfCo3nktNpmqarZq3lLagJhJYUww+Z5PlHypuOCR0xoYiVDFxlJXSv+R01KaqUuVPU474BfDvw3q3w6PjTSfDtjaQaiZILyGO5uBsnjyfNUGQgE71YD7g/eLtAKBekPgrWtBtTrWh3lrJFbYdiHDEDP8AdZSG79e1cZ8GfFvgv4cfHDxn8D4dDuIdGk1q8stLe0d5pIHhmKRFg7hWB2lQoAJMgGTgCuy8ZWR+E2gWnjbxF4uWHSb6SLFwbeT5DISNrRkbsrhiRjovGcijEV7Yh66PVejCnBcmh/GfRRRXxJ9UFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf//Z",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [35,47,69,63] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [35,38,54,52] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK/UH/g291fS9Ig+M82q+GzqUZk8Nfu1cMVydTQYi3AyZLhc4IUElsDJr8vq/UP8A4NsZ9QNx8Z9Nto7LybmHw+J5bm5kV0O7UQuxUVs5LYLFTtO31583N3bLpv0/NHThE3iI/P8AI/S7VdcvjFc6d4606+vILzU9Nm07Q/tVvjTbgukyGSSLEabDCJtrSFf9bHhwUWs3x94l1u9WMeJNes9JgSHzri506VyI4tykpbpKnlsH2cviNgQX5+4PRLLUNROmtBoN5amOa9aK3uVstzRygMGCZYh3zvyAxJbOTjIXlYfh/YeKc6P4xt7S5t4LkzQot7cLdSM5fc8zB9yoXGNsezaYXO49R8PH2bk3Pbse3eSSUbJnmngz4c+GdI8Q2ksPiC11awtVD2kt3dT2zTzpvQeYA0izYYR/IcsWkRivIU+u6T4Z0WPw9B4efQ20/T9IVra00uIBYIldmghJDEBtyFkVSoRTIV528QaLfakmoyeBvDem2MFhp80S3qWNw1w9vKwWQAxKSygp5bAkcgP90EkdNJYR2UkU9o32qVBcSXEd27Ik0pKkOxKsdoHmAsCcbgArfdVVqqqvUKcXFaGbc+H7LVri51fUo7m9gkgjMcOnTvvCHzG3clGYkg8KTnYp6lc1dT8deEvBPh6/vb2dboWVkTbLFFM8rSuq+XHu2EtcPuwsALOTIpCjcM2Lp/DP2231qG38q6SyzENRtRDdRK7blLowDoGVQrAhM7EQ8jaPKPE3xMmhku/C1qk5nbU9Qe/ngVT5+JzKkUY+Yk4njOCCGBKk43FZpUea6LlVZ67pPj7w7carJY6ZdW85hZYJ54VzAsrEEJvQN90Dp2JHUnI1Z7jyYv7T1tYdPt3Yx20KgL5YBIG8tjB7cYxznrivF/Avw/tNK17/AIWh4gmC2tjv/szSILc3E5kDAJI7ZYYPzttQY3bSXUhkM/iH4g/EfxDc2l7aaAt7p1hev5mktKPPmh8t0VstkKqBt7KA0hYoMJtKma0I35YO/wDX5mlJNWlI7LxJc6xYSi18MalHdXkimS0fY5OMsVxtkG5cYODgZBY9eOl8M6V4kHh2ztr6B7m6LF50ZsGOOR9zO+7C7tuXIAHsvAB4jQ5rUI+v6n4O+zBy08lxawxmbYis/meWq+bKcqAFj3sxk2heTXTWz2eh6cLu41G51GSeR5wmoRspCMGl2gEblIVQu3jkjJAyqtVHCmiZxUps1LTS7WS7jiTV4ljuVIBkiOIxu/i2FsYY9s9BjORmtLZ3o8zzbiQh4lVoiMLjnLK2FYHnOT6DpjBt6R4imvxBcmB44Z7xwllEGlaNEwqKdqZB6HdwETOSGAw+xsXe3hsHu18iGMI4hDRqUJOOSedoAB6n5cHk8w4U6j21BTqQ0vofyoV+pP8AwbS6EviG6+M9iJpAyx+Hn8qO7MfnKDqQaMjoQcgHowHAIBavy2r9Ov8Ag3Fg8SXA+Msej6xJp9qR4eF3dpfQQ4dv7TSJP3jZJLMcYVgSu07dymvvs5/5FtT5fmj5/BtrExt/Wh+pXi7xDq/howeE7LXLe2u7S0cQ2mm6a0ioskhWOPyo2IL7zH3ViEk24Dkmr8PNZ1TxBc3MPinVXhFz+60mGSMRzNJI0m4oWVgcIwYbfndxztVAX6OT4f6JFpVml7bm9aC1VEtb5jJEH3mbcUboS4ckqBwASo25Gf8AETQdbsr2z1bQbKSC7tIdkRuHNu0YkEYkCLuEZACYIcPkheY9pJ+BVaNnGKPedPVOTK3i+bQPDgudHFibQzykttiCPODIJBI2FwjEgg7QrFiW4bBOX4b8KeMvFniQ65rmvar9ljeOa30dpTDL5bgRl5VBVW+ZXPluCBsB2nKiptN8IeItFmj8S+MNWSW9a3C2tpFGs0Qnlfyg7l9pdQW+7tVQFJ+YkAa154WZdNbRtCmW1tIraOI2NhPKgZlWNURGTYfLSOLaUx8wc9CStT7VQd2yuTnVkY3jSHT9V8QMNGa1CzXEccioVMrwxquA6kFwUcybJCQqFydjFgW8Z/bI1Txr8OfFum+JtA8J3d7Je3MNrbTQwB3vJ5i6Jaxhcu77bcLgLj5hj5iQPcvB2iWq6fHeadPcwQaf5a3CmJ12GMIygKpOWI25TBHzkEEkrWf430m113VtIu9R05zb6ZO1xp9zZzohFx9otXV90/7rc+ZkZFLTNE7rEu+RQeijVSrxdrpdyGkqbVzhv2c/FPiPWvhpZ33jVDb3F7fzSNb3sD74EiZovJfDApIsqSZQqSpzkAEmu01P4f3HjHR1kj8RX1vaRSRm6uLK8MdxPCgPmIJOWAK5BbcpGSQwIyLuk6DZ+G9Pi02xhs9HtY7u6ktbW1XyleWRppmVA5+VSTIdq5wM7cLtA2N3iO60vTrTStPt2BmjnvJheloDC7g7g/zMzbGZ1GNhbjdj5qiviYqq3FatlUqUpRV3sbi6bot1aT3LabMYYlJjuDbsC2NxKqmWaPoAOpBHSnW9tY6hfPdQ6YlwUmdybuclyrbmJXG5mAZtoGQByBwBmx9ivZtKNqZBHbLjyQyNKZDj58nOeTggc5ycDjnJ1a71TT9GbV7O1aKZImaF5Jo2VJQxRF2o27GQCRxwcZHOMHUc9ilBQeuhY/txPECt/Y0Y024s7yGCZ5ImCeWFckoNv91+gCr12nnNVdQ8YTeH7r+z73wu93HHG0zpHjy4yMED53VW5GAMk+uKXS2uFtGAdVkfO6MP8vXaMYHP3QcAnj1HNXZhLc2L3/2aW6k8ssWd0BAG3AGSOSSfkYk4LYAA4VGbu4iqKL1P5VK/VP8A4NntWbR7T42XL+YYvtHhcOIpmX739rJkhQSwAdm6EKQGxlQy/lZX6kf8G0ltPcan8YhFqU0YdfD8X2ZHVFnZhqeMt9/IAOFU8hmJBKrj9Az3/kVVPl/6UjwMF/vUf66H6sWn9vxaO8CSzxx2dzJay3F5czXFxKisyRMHYl2Lp85BbgMyg5ovt0aSXrx2d3ct5hAI3M64j6/IApLRld24kKMjOdyVbm4NjrI8yWd7m4ImitkDHy5AoGVADBQo5O1sbsYOWJa5e/bE1a3TT4DJcTRESoWKoEIVQ5YpuyBuwgYBuCdu1cfnabTvc9+TW1h2labZ2k9vp0P2XT7U3DiSWOIunmu+4oGJJJJk3EgNn5ieSSLF7rTP4rbw5pXh8xQwxIlxczQjD7tzEEqSNxJxtDHIAOByadpjS6LbiPX42S8uZyUjFzLKyrkNtJ7sc4JPDAgDIWk8R3Wo2YU6DeWtnez3TXFwsDJIs8nliMbgrEn5QhJBB+Uewom043aJg2p2TH3CW8uu3Eo0kWarOUMUQ8ksoQJu4HB529OfL9MZZNpUFlbSaGbiN90i7C4U/NncHfoG2lQSRj5h1GOMW28N3d+t5dXviC93zR7LOK2j2pA+yQMUYljJu+Q4kWQZXIHPy2VtbR7H7DYs9oIJY0g8kFdyA4G1TkKFXIx69FwNlPVxst9B3SnqQLFei8uHlkEgAZUhcMEESnGWGSDyCSc5yCSTxWjO8tiIrqWT7UrxgxwpuO1GUkMGIABLOCOcDD/xbawdZl8VaxZWv/CLeMk0uYXKvdmbTneS5TaVNuwOGjJJXdJjPBO3kGrc1nfTadd6FoNylilyW2/ZN4KByWkddjKVbLOQQeWBYlSTWVSTVRdDeCTpvYu6J4la/wDF95pQLq8UMM0tztVoGZmAx8p+8qiPI4zuUg8Bqn1F7Ys9hbRBJp5IWbzxkn5c7ugAyCB26k5qfwX4GXQY5ojczXV48wEtxdzb2KhOGJ5ZVAAUZ6kt34q1q1lpk+pPbaXqe51eMzTyR5UkBCQp+Y5HIJ2nGeGOcVf/AC8vFmTklDlZS0jTXlu1ZoCsEsfzwCMbs9DjHB69uTjHHWrT21rosht73TWE8mclj8pZvuuzN8oIGPqAPYCaC3m0vUI7+ay84pDthh8wqxYHgkdG43HPHWn3NtdXly1zrF3G0HlnBjyd/XO5FyNmCOx6AdKXNrqhdLpn8oNfqf8A8Gy8Oozap8Yk06zSUs3hxZCxwUX/AImZOCCGycYAHGSCSAK/LCvTv2cf2yP2kv2SH1iT9nr4kt4dbXvs/wDaxXSrS58/yPN8r/j4ik27fOk+7jO7nOBj9PzHD1MXg50oNXdt9t0z5yhONOqpS2P6ZSl29w0bukcjj5yzgybOMBSDnGMA8nIwM96qxTI+qk2DCe9WNoDAuVaBix+Y5IBwoB6Ak96/n3s/+Czv/BSuwuWvLX9pMrKyMjSN4Q0diQSCRzZn0H5D0FXbP/gt9/wVCsABaftO7MHIx4L0Q4/Oy/zx6V8k+GMd0lH73/8AInpLMaPVP+vmfvmxi0++hvvEN9i9aImSGBZAoJKjBCgtnPClyd2WI4BIn1jVtG06LzddiBgjRYgJI8u7ONofauQWJwduDjnoM1/PvL/wWa/4KUT3r6hP+0kXlc5LN4Q0cjPsPsmB+A6804f8Fof+Clgn+0D9pL5v+xO0bHQjp9jx0JofDGP6Tj97/wAgWY0b3af9fM/oOg1eG3snlu0lu5zEyWkSsN0jFVO4HIOAGPzAjGOCMgilbWjMk2p285la6mlZFuETAPPAwCMkDJwFGd3TpX8/1r/wWf8A+CltnI0tv+0s4d4Vhdz4S0diyKCACTac9T+dXYv+C4H/AAVFgQRxftQuoHTHg7ReOn/Tn/sj9fU01w1mSVueP3v/AORD6/h735X+H+Z/QJb6dcyG3N42LqRizNJAWKjgnJJPHOcEc7vTJqKVmtIm0uHTo2kadwJyu9wwB+bgZyD2XrnHoa/n6uf+C2P/AAU5vAq3P7TJcK4YZ8G6L1ByCf8AQ+cHGM9MDGMCrNj/AMFx/wDgqRpsvnWf7T+x95cMfBOiEhj1IzZcUpcM5i7e9D73/wDIhHH4dXun+H+Z/QfNp8tj50N3qZtYWmH2dI4C5wXyQ20cAhQByD8xz1xXO6xo9/qXjPR9X0m1F1p9nJMbmea7aFrSYphBFGI2E2dzhtzqAJCQHOK/Ai7/AOC1/wDwU2v4Zre+/aWEyTyF5Vl8F6K24kbT1s+MjqBwadB/wWz/AOCnVupWL9pjAJ5B8GaKc/nZ06fDWYwd+aH3v/5EJY/DvZP7l/mf0Matdq8/nCwlB891i8uMfvMybSVIGNufQf3u+RWZqEM2rSm1WCLzYGCsyQBWh3LtaRSU3DK5OCTlTkYyK/n+tv8Agt9/wVDs0aK0/agaJHbc0cfg3RVUnJOcCzxySSfXPNOi/wCC4f8AwVFgmW4g/adCOvQr4J0Qenb7Fz0qHwvmDv70fvf/AMiOOY0VbR/18z5Pooor7w8YKKKKACiiigAooooAKKKKACiiigAooooA/9k=",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigD98dS/4Iof8E1re4klP7OlottcnbG1t441d2t0kMm2RVe/UHY3lx53yKxyfYp4n/4Ig/8ABOHwrqcl5d/s6NNAF8waavi/VkaCLADPJI17lwpP3UC8jlju2r9ga5baTZwxG68QMsktpumtGgRFRnwDEI1QnJwAMOxIGQVyC3I2uu6N4f1+xn8S/F02ptYnhQXkUMYaN0cs7blxkuJHYIUG9kyAp+b85hmGOnb94/vZ9JLD4eLfuq3ofJsv/BG3/gnNPqDyWH7OrRQTf6LA194t1dIFuC1u29ZDdjO2Pz8Bj85YAA4Jjp2H/BFf/gnDq+v2+mwfDPUVg+xiYXSeJ7+P7Wp8sLIYZZgYQ0jhAvmMzCRCMZ3D7hXR7220+Oyg1m5vbW4dZrXUtRkOYpFdg0UMBjGwBl3bmMhJb72FQHmrvw9qem6zqMWo+JovN1Ozi8/UheLJdzokhV7RQroYkAKkOA/Jb7rJHnVY7HQ19pK3+JkKjhp6cqv6Hzpo/wDwQ+/4JjSQ2lg3wU+3ztcMltJD4x1VHuV2Fh5wN1gN1O2MKwCjKj5qXx3/AMEXf+CZPhcaZFZ/slXk19qolkj06HxdrMoigRlAkeUXwCk7gM4YHICgsQT9KjxPpOha3JrOjabDb2Omq0l7NaaQJblysJJdfK5lcqVUKQpyz/fyprRu7zSPHs1toljZGxu723X7dHrVpHNdKkgO3dCm8qAuCzFwFDKpOVdUyjjcbKf8aS/7ef8AmaOjRUfgX3I+MNZ/4Iv/ALBen3dzqkv7OlgIvJeKx0jT/F2sXUsk+9go/d6gzuVDRo2370mG2xrlG3Z/+CIP/BPyfX5dFuP2Ym0+zlMv2DUIvE+tzsWyhhWQm9CorEspLIAdu0PuIavrm9e216a70nQ3uYFtmljW7vZi8c7F0TCRxSZYkr5QLeW4w20MpcPf1aPUHnsILqeOSCwt43sbZ5QZInDbDGJEDoqCMp8wBJ+cKRls1LG426/ey/8AAmQqVDl+Bfcj5Lh/4Id/8E2tE0dRqn7Mv2zUJlHD+L9ZiWM8/diF+Dn5TwXJBYdecJoX/BE7/gmPdanJp0v7LN1OIrNfPl/4SnXFRJCqniX7aqOwJAIXcFJOQQyEfVusaTLqS3sMStFbSu4uhCWDHLIyy+coG4RooUEZVRxu+UCqfiXxf4T065s9K0bV7ae7eKOO3uIZkaYqNxKlHbaV2gAupJAU524BMPH42T0qy1/vP/MtUaCWsF9x8xan/wAESf8Agl0ls1tafs3TPfRRNGy2nijXZIzKGVSSBeP08xSTuCqVbP3SKwNQ/wCCKf8AwTutfEqXx/Zo8y2hspPJ0qHxvq0ENxckHC3M8t0zRqmxyGTbuHID4Kj7Cl0q41O8W1uNP8u3tVElqlg6s0hYAZfG3a24NgLnIBfJywXfeHU73yLrUQiRwxukweLc4T5Nu1dwJAVeeVzleRlsT9ezBP8AiS/8Cf8AmP2OG5fhX3HyNo3/AAQu/wCCYttYyvefs+jUpVdmO/xlrEGNvDoFW9baF2sSCzPjOemDd0r/AIIYf8Et5NNU3X7NST3HlB1jt/GeueYwOcbl+28H1IGAQSQB8tfUukwm/h/tKbw/OssqL9qkMhkRUET7XXdtAJBjwwGTxnBDYoatrTaPDFpXhfxJHA8ahNSigtizyKkYyZDuG0lSucY3L19KUswxqv8AvZf+BP8AzCGHoyduRL5I4DVNZ1DSmOt+MWtbeCQxRyR6bcPOzTvkFIfMxnJG1SVHKgkDJFc74a8S6Jr/AImn0bw9baheT3ixLaRapbgwRS28vyKqwnLSL5krnqrGAHJCbT3eueD7/wAc2S3FxLplvqNjbiSe1u4oXi3SF9kUmEdscHay4+43Qqcy+FNJ8LfD7xQNCh0/y7q5txNA1peTGKe9UuJX8tmJCRqyMoG1Bl/lUor1nCFOFKUrahOrKU0uYy31r40aj4h2y6ApsrS8VT5k4e8ud6lUMcSoqRKrb3Z2Z8GB1K7WEg6fTdNTWPDcQgsbG61B2ltri5uAHcLscbYZPvodzY3DG4qDwMYq6Hq+neB/C0WieOrvRbu5kvLiG302wsppoLjz55d0u5ww2eXIju20ov70HdkNXBfEv4teLNNtJtC0vwnJHJdMqXOp28oWzsndXAjUOR5pYqxCbGwGDPjcFOLpe1qRivzNY1XGMnY7LxD4b0DRdVt49T+Nn2I3uoJaDSbMJDLIc+a0QBk+dljRmwAzDyyx3DdUw1fxNoekeItO+GnhGJDLCPtviW5vESOIkTEgxKzNI8aeV9zljMuWGC1eMfBrwbqWp+ONP8Ty6taapqltAz2+p68s80mlyuMhFggWK3jJAzuba5UhWkb5ceyaV4GtdMu9P1qbTba41a2KzQm41CQ29mxSRGYMwY5dQVBfpI2eTnHTiIQg0nqY0ZyetyD4N+HbH4e31kZby+v7i6sCb++u1Es08CyliUZmLBFabbjBZiIwNiqVbQ0r4oDxVqQtdL0n7NYQW4u01aY7jFsJJAjjz5mThGKk9GUbT81eXfFDWPD2k+MLC0060h024hkzfqgS3FwzRI4d0bO1VMUQVc/LtjUH5QK6b4D67qHjHS9U1+W8jMUurMiNcMhKlIYUBQEY+ZBG30J/EUJNOu3utvmEpRv7O2zudC1zq/imNtEm06ewgsJ4RLPcsPs9wiA7jHGHYhG+RsEkfdP3twTY0Xw1o+jxnUrW3uvtFy8Qne1LM0hQA/xEiNF3fw8kSchiMl1xLFZadayrIiw37ZgEsR8yIDIJZAMg5zkAnoDyRVmLSpHgnfU4IJrdpi3kjGMEuMEAlmGOSWxnjvxWCjHm5rlurLl5RNC1OynkZoIbf7GW8wLFNIXYpjjoeM7AG5yTzggE29f8WaL4a8MG98U65ZxHLOHlG/ciumZDEFLSbScfKfvY4yyhZRGbiGXR1uSy7jHcRxSHarLwGZQ208AjnJwzdQ3OLqN9Lo8y2LRXE+3cZ5XKZcMQApbaPnLkBckd+cjnNzvLlGo3jfsS6lpPjqC0M+gm9huLu5JnmvwphtojPGDsjhZfMXy0kf5m4LJ8smNpanhuyKySw/ZmW2jaMTWcwigDM5lLlArFmbcxwWztcE/MS1Z2pfETwteaKvg/U9UaJTOkl09retHGhMu5l3x7GjQlW3AgKwZgc5auh8yBbZLHTZiEhffF543BwctvYDHBw3TsDx2GzjUVPzM+eCqHKazqGlfEGyvvDlvrtxZRwXQkgvdK1RrZom88SSqgC4ClMAuxwVbaoGCaw9P+H3iK/g1Cf4eatexX76KluRqEv2y4jvhC2ZF+1NIfOMYhUxmWNQQWbIkOdK58H2Gg6/fP4V8fX9mum2SJqOhaKIvIUbXZXcAbI5FTDDOGK4PKDA2PD2nQyfbb7w1aXyXkNjt+2m5EiSxhpNgV1AEh427UJ4HIBkOU/chyJX/r9RJvm59jE8YwWPgrUrPwx4h1Q3GsFHaa8iV7u+uHj82RC8ccWFUhz8iDAdsKvIFee6f468baJqFt8PfBOkJFFZQtZyW6xStDF8oV5GcDK7hkF2fLM5wct83rcfh+/h0eSPUtbu7B9VskjN1pWp3D3FxKy+Y8W8hZYQAGxjY4CgBQcA3kgjsLL7JBqvlW0TGa9miYRq7hSoGId29UIjxx3wu4ghtadeNOPuxuRKLqfFI5PT/AjeGNbOp31n4fFrcTSXkr3VqZ8B4ZJPIljEQYsjqCBvy2xMBS5UbHhOFfD2li2tbaVra3t5UC2sL2tu902F81gxZo1LqXLHdhQSfl+aTP8IaXqOt6gniHVPEd/daTqTJHYR6jM1pKrb3Z0MM0URHyjAKktsU7QQGzv6pqEt4kdzfS29kzR+bLJPMP9FRECsqsQGMfG7kq2WXkquysqlW8rOz+RUItav8AM+fP2g/iPJ4V+Mek+Cr7wtBquna9o6vJa2MIeaC4jMrRySRkDLESW7MpwQHBP3MtufB3TtR8CfBi18DeJfDtlLrV8s0+smMh0aWZl3RMoJjcLEEh+U4Ij7rxXaasfCGr+M7L4i35l1q+trWeKwtLJ1hhuLaSeFpY5GijbawaOIRszNl5WG0syBef0jSZ/Avh20j8NW0mo3en3Vvp9jbE71t3JSNDK8aABE4Z5Ng4BOBXWpxhRSS16/j/AJk3c526f8Ma2uf2/oV7Y+JNe8UAQWOVl0i1s1ke8kkXy4oN4BMQ3PuGwfMUHO0Nl/w2+Kmo694jk0G3sZn1Ce4C3d0bKR44IwYhIFaSbHk7VKbfK2szhtxJ5qQaL4k8W3p1/wAO6lDdgzedNPLOVhwVKu8D428EsI9wbhS2QJBjf8IfCnwj8Erb/hLPDWg6jqHiCCwMErPdkNiRkaURJLKI1UuI8EHIwMnjI5ZV6Lg+Za9DojQlzbnoOuah4Y8G+GZdQjvoreWO2HnllER+TOCxKhkzz1O0E9+DXK6t4t8S6xbXcN54HuFcXKQxsL6PdMxyxY5ZCV+6BgkkuwwPmrktV8C+KfFWtpP4s8RNHD9sjvLO2FxtjFzC0M8bSpw8qxyEYVj5RZOOYznp9EtfGkt0Z9Z1a3RbO6Im2BZH5+4CAmAwQqegOS3QAM3G4tTUlq/6+86Fyqm02J4Y8MeH9P1W38U+Kmjtri25itZIVJLt9wF9xBHB5A6kABj17iG70l4Lj7NaSvqFzCYbSWM+VklUBwQwdWKsMMORgkYOKwNLuzrFyDc2sN4lvmaK7t+PLZHBGVfDK6vsHRuQFIAxUWq+Ibi61CQ6QJ0ns2xbxRquIXc5Em6T/W8MSVBC4O0k5IGs5zur6HMoxastSCLRrW71a98LWk93era6gLvUVjmjCpI0Yk8tnCqzo4Zd/G4l1DEIxqlcW2qeHNLn0dLZfDttJuS30ua2hs45ZZCXWRp0cMy72wy79xLybgd6KF8Y/EO503VrXTvhtoNjLLFbyXc9u80ilLdXaFn2xkswDoB8qswDABcpzmweAH+Iy2PjzxfKmoSy2TKbOZrgLbxO20LHlQY2IABPyN8zK3KkU+eElzydiHGony7mJ4t+IOpGaXTNL1k3vnyyL5/2ZxFG+xAI5JQGChpASXUDaJVOCc57yfw/fTRwLeeKYdTSBhtvp1WCWaLyygiijhIY4XIDeYSFOXDlAait9B02G0i0XT4jqzRyR21zciaBVtEcyDzXAKhU3BsrGoKmQhVxurldM8Uan4Kn1HQ9EKyf2pMJbPbpc0BEYjyiCNmkeQhUkdmJVgGwUUAKXKqpRSjpb8fMI025Prc3PFfiq3axktbvU1gjmhkfaZ0f7OjD940m/KHkklTlRtAOcstcV4a+HHi7xvra/ER7ifT9IhfGj2F7YKbhguW84xsvmcqSACCzBFLfMSBv6HoGq6lLP4r8VaREkVtbm4sIr9HZRJuAE7RxqxLAkMq4zu2k8shG5pl34ytbCW/tXitDHbBreKWBplgQKWAlLmCRiWZss2xjuCtGMMwlT9lqv6/4JfLzLlsWtW8LQjb4dsLjUrgw6dN9rFpdyJHGW4V1AYoJmXjKq0m0DlRgPkaHo9zrPhl9Ja2MayXiCYIxeB497fKFJ5DkgsGypLP2NNt/CF3rOoSa/rcser3cty07T3MOyKTMOxQEBJVMZUBiTgAFixGOq0l5PDVilxdkYt8yK8FsE87giNdhY56gZySSvGAaKtROFoipxcJe8Pg8Ow6bZpaWtrBIgVSLfyuGIxt45ALOMbucFu4qSSx02616XTEEbpExa9VYPuSOvGWD/wB4BTkE/OB0wV3tO0a3t5Zbe4tgtuoRNxJZlbGAduR0HQZyNrcnJFQ6p/YekTbNK06Aw28QZry4lJVxnCjAIJYgEgt8u44Bri1cjpU1FGJr/wAP9IltZ4f7TaVxZqDIkuyXbuLDDbi3Jycc5yABgYFDwJ4f8N6L4btPCmg6lf3ckWPtH2+S5y7PI8jyyu4JLMwkYLz1QgAOm6XV/E1npvh2/wDE5mtWQyyTRTNGghhUDc+8bRgoU24YkjZycji14K1myhsY9W03bJb3yCeF0dV3eb8+5jgDrtPDHO88jnO1GrJdf8jKqrxtYvao+gW8MkThtgNuXijglcl2k2xkKgOBn5ixPAB3ABCaSF3sLaLW49JnhnEySKXmR5FbdjdndgEfxdwM454ps6ajdagpEXlyyIqwl1wAq5JKkEnvnBPfjqCczUtZ/smWPyEln88+QHjZiASpKsy5wMbT69OhJqpSk27ERirJMs2kt1rsV3cWMsWmPa3D2MEkdmly0K4dAZHmRWClljcbVLN5kY5Vd5taHcLZeHoBapMisskdwdRgRX5Up5myJigViC6424G3IyTX5bXX/Bzb4NudNSwf9j7VSYkCRyDxvEhOBgM2yzGW7nG0HpjHFZq/8HJvgy7vZr7W/wBknWp/PCGW2t/HwiiLKBzxalucHJJJO45Jwu31pZHmr09lp6r/ADOSOMwy15tfmfqjY6hYRL9i0yximtlt90+oiUgytlHb5V3MN+T064LZC7c5o07Vra3+3XHh/SI9Yltw0FqZiEglaMsIzJtyQrEIcDPAO0DFfmZZ/wDBzL4TsLpJLb9kTU1hiV0jgHjVBtUkYKsLXKsAMZGMZ4AwMRj/AIOWfAzagmoTfsear8m/MSeOwA5YqSWLWxLHIJycn5jRHJM2S/hfjH/MTxeGvfm/M/Ui4ae+8SfadTvktws63KIJsxxceXhmCJuyrc9TyMHODWlBpnlTLLqmrSubm1iID5BIDPkKD052tg/MCxyOhP5YWH/Bzv4e08JLH+yNqLTgjc//AAmaKuMjPyi1+Y8fKWJAwNwcDBr6l/wcy+GtU1uPVbn9lDWdkcgdYR42iUEhSp+7ZjAPBPrtHTkmZ5Bmk18H4r/MKePowe/5n6qf8IzDomtnxNNei7ed9i2jOQoRtu3aFPVSGwf4RI5IySRYEs1zBYW+pxQOhkMgc224LgkhVIG0NnBHJKnIyQBX5WT/APBzl4Plniki/Y61GJIoTEsaeNIwNvbgWmOBwPTP0w5f+DnPwUljLaL+xvqWZOjDxvH8o/8AAT/OaIZFmyWtP8V/mEsZh29H+Z+puqa/ezSW9ydjwiJtsMspIYhcANtPrkn7+QTjlRnBbWJ/FMhmjvpGZo8LJcxncgzweuMKd3yEd2455/Mm5/4Oa/Cc0M8Mf7IOooJodgB8ZxMFOBk82meSBnmqY/4OUvBagxr+x7qAjwBsPjVDn5s8/wCi80lkebONnS/Ff5jWLw0Wnzfgfpz4pstKuorYQXcvnWnleeRBEEIJEaqd6t8hLklVwRkAHpuk8Hy+INHsL3UvHt3pnmjVdQk+y6OzLZ2Gmi5mNqV3rveQW32fzWLHEnmFDjFfmY3/AAc0eEYrQ21h+xzeRs8RV3k8ZJJklSG4NtjBJ5HXHGeTWdrv/Byb4e1XTzaWn7K2q20rFd06+MYWwA27hTZ7fYDGBgdRkEpZHmyp8jpaesf8zSpjsM58yn+DP1p+06WNOcXFoLi4tlXyIpYwfLOUVGC5wTu2AMQQMEYNYviK2u7nUbO/tzZxhlMqWvl/MW+UndglWZT0445GCMk/mKf+Dm7wg/lvJ+x3qRcRFJnHjdAZAQB/z6cdOnIPHpVSf/g5a8H3Uxkm/Y/1BRt2jyvGcasqhsjDfZODyeaUMizdb0/xj/mKeNwzekvzPycooor9KPnwooooAKKKKACiiigAooooAKKKKACiiigD/9k=",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [56,38,66,63] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [50,35,59,65] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD5GW1hPWP9TSxwnzQqRnGeMCpo03nGcVNbR4lUbv4vSvmLs+jSa3Ft7bOd8Te3Bq2bcCEYjPQetSxRbs/N+lWDDiIHd2Hak2rA0rFFEmQYSNsf7tS7Jn4eNsf7tWEj4696lZdozms+blISMq5hk3sPKbGPT2qjd2ZYAeQx59DXR/YGuFLK/LcBcVWn0i7gAa5QoD0OKrn03Fe7scff6czeYDavyD2Nct4v026tIrTVLeCQfZbxJCiqckg8H1wPyr0y60vKu3n9v7v/ANesDxTovn6W/wDpOMD+5/8AXpxbkimmtzU+MfxLTVvAek3Vpdp9su9PKyOCpJIiywx0B4PasL9iPwPf6xfy6zaWkvkwys13MI2KpwPmY9FH6Vy/h/QtTn1ZbbWJDPaH5bVSuPJ4PPU5yOMcda+tPhv4qPhPwHB4VstFsltZbcLdGCERvMPduaJy92x1Upe8R6xdFrZR5w/1g9PQ1zmom2e/W7lkXzIVIRi2MAjmtHVLv/R1/d/xjv7GuYu777XqtxaeVt8uMHduzn5Qa52pN3O+m7o5K2QBjlR09KuQRJhT5Yzn0qvEu0nFXIAAitXSeQ5tk8KYzlRVybTbxLL7U0OIyoIbcOhxjvWe9y8XRQc06LULuZxA8p2H+HPFDimrjWpKjxxjbIcHPpWPd+MNPtohJb3IlYtgqVPA9eRVvXb2TT7T7VEgYjjDVwkTm5bYwxgZ4rlqzcbHdhsJCre7OnPxcSxU2/8AZ6EKM+bs5HfP4VGvxat9TOz7SZdnOHzx+dcteadFL5gMjcrjj6Vx93LNbXz2sErKFHUHk1Cm2e3LA0Pq1rdEexReM7a8VYDBGPM43BRmmanLb3OnyQxhWY/dBWvKX1rUNCWzv4ZjKdwYpITjr7V6pHbK8EUpY5kiVyPQkV1UpOx4OLw8KU0kzPWWz0rwek+obY5RrSRhymW2bPu5HbPavofSNF0/XvAdrqemzhNqBGaNdpyAD7etfO/iWxju9COnu7BUvluAw6luFx9Oa9r+FfjO+PgJdJ+yRbEnOG5z9xPeplsc9DWdinrEjRYtZHIkDZK57VzOpyiO/kZGKuwAJHBPFbur3T3U/wBtdQGPGB0rm9VkJ1Fzj0/kKz5mnY9SklymKisxwtTpuChSefrVSK5cE7cVKs8hAPH5V0rU8e6JmZk+8TTTcKvJY8UxpnfripHtUNv5vOSAapr3bGkGrow/iFerJ4ba2hlbzC+R24+tM8I+D9btNM8+7t0YE7Rhwxz/AJFW9Z0i21JPs9xv24/hOK6jwxqlvpjtbXigxbOAeu7I/wDr1w1qctD6fJY87nby/U5e48N3885j+y8NhTUVx8LY0jaeS24UZY4r1bT77wtcwJdSQneTng+ho1/xB4ftdOdooBlhg5rGMXex9LOk3QsfLnxe0ma0vbCK1G2NZlwM44z6V6tBDLHaW+/vbJ39q5n4neGz4gu4dXYbYBIHUJxwDXTaXcte6dDJIRlYwo2+gFdtGLUT5PN6UoVo37fqMaJmY7hkZ6Gux+H+p21jo0kNxPtJuWIGe21a5aSJVUsCajy4+7Iw9gat05NHzkXyyuzptf8AEGlaZp5vL/Uo4Y1blnfHY8VyFp8R/CWv3D3Wma3HJGp5JbH3eD/KsPxp4c1Hxlob6TA+4hvMIb0AI/rXgGp+A9d8F69cWVrfzRorAsgfjBGTj860hSlynTTrRsfYXxk+B/xX+CWsS6P4o0uCIwZ8y6iuVaJseh4P6VzWi6ml5ZQ3HmiQuPvpyDz2rE17wDJ8U9dTT/Ev7QGvfa52/wCPm9YBE9cgjbz7iuotPgBr2iaV5Pgv4yWN1FZxn91qdiI0QDnmRV5HvzWCconu08jp13aCaJ4J054NTx6nqEpFrI6+T0AzzgdP6UuhfDz4j3ULDUdOsxtxsubbVovLn65Kh1BGPx61qXXhVdEtRcapcxpIgUOrTD73AOCODz3HFbRblY8/E4BYWs4NbFYeKvCvhfS2ufEdlfOPMJEltbb1AwOCc9etZ/jDRfiBLt1XwX4bF67OEZZGGAuCSfzA/Osz4zGeP4X6iLWaZFjTzI/KlYDd68HnoK4P4V/GT4q23hldK1e3ZpA+4TM5XPbGRj1/SrlRUuh6OSVHGs49Ha56LZab8WF0zzdV8KSQTKrF44iCoHPT8KztPvfFN3eNa6t4avoEUfJPLGuwn6hj/Ko4vjr8RbSH+y59CkkByGIyxIb07nrVDXP2mZND0yXT9VYWuxeI7pERh/30M1yxov2trOx9hOdJXV1b1Oe/aH8fX3hbw9LokTzCWeBo7eS3AO1iODyRXS/s5eANeX4XWWp6prcZnuyzNFduwdPwAPXP6V5dpUmuftF+NFkhs55tMssMJY4MxyODnAdRyfbNe86Yl/BpkECafPEY08syeUQr4444xx7etdsaUYo+FzXESq4je9hLmxkgmktmkRijlSyng4PakjhZFwSOtWJ42SAzSKQeMlvWqVzcyROF8wLlc84qWmjwmIBs5NcF8UfBkes339oqUDuy7dxPUAAdvau5K3ajMsbgepTFVL2wg1GZYrqAuAw2jJHP4U1NpWFFO+hU8QQNqkxudIsfIkP8Svu2/oK5G/tvH1jqH2iHXbkrG4M8QyFmA7deB+ddta3sUbExzFcjnGRUdxOkrsWfdn170n7x9DRzvEwZ2vgH4m6eNKtdO1mcRybcYL/d9e1c38YfFBImNlqm8eYPLQDqN49/SsGexSaRZYLZCy/xBQCKxdd8L6hqccoW9uTIzfKCWwvOcAnjFVCNmicRmSrwk5LVo534y/Gq4s/AVzolzFtaeLaHM3QeuMc188aP8UvHllAtr/bztsfdu24z7da9M/aK8H6to3hg3t9A8kIUAzOwbByeOuf/ANdeJW7qjksccV6uGpOdz56rjKtG3Jpc9Tsv2oPHFnp4sJLeKYBSC8jcsD+FYd98QvD3i2/ibxX4ejhjMoEktvdFS2TjnINcY0yEna3WoZxC6bbhQy56MMjNbyw8rbiWbV5/u5bH3n8BdH8IeCfDWn2vhnH2GZ1mFzn+Hvx3rtD4i0KXRrUW+oq+JZs4HTke9fNv7KPxX0648ET+EdQ1RpriBvLhjm3MY19FyMDr0FdRr2u3/gzUftN5FLHZLIA/B2qW6fKPXB7VxV6TjJalqsp62PXrTxnNpN/9tsLOJ2QsEMw3KQQRkj6H86fpNx4bvo5bvWrlIZnnJ2bcjGB09BnNebaP8QbO9vYY5LiNYn5yG7YyOOtdre6r8PGETajGXkMI+aJcDGT7da5ZK0T2cvwscRXUZbWL9ukGrl4bi4FusaGQOV3ZI4x29f0rDW+jbX4tOgO5XuEQTA+pAziotTudNs7cSWevmVmbayrKTxg//WrM0q5jTxDaXHmYjW7jJIHYMM1zSZ14/Bxwa5o7CwTtk/KKVp23HgdazdM1W1WRtzt09KttIsn79PunkGtlHU+bjN33J1vpIfuopz61rv4l1C80tdNlWMRmNRwvOBgj+VYKyxv0PT2q9E6GJVA52jtRtIblUasch+0Da22ofC6+t7iAHyR5it3JPGP0r45a4YDO0V9r/FDT59Y8AapptmitKYAQGOBjnvXxI/T8a9HCSlqcGLurEq3DYztFEkzSAAgDFQhSeQKVQV5avSTbWp5rlJSujT8J+LNU8Iamt/pd00JEgZmHtX1Ho3xU03xj8KR4q8ZTLJ5kJjcBeExwGHvXyQkS3U6232kQ+Y4XzW6Jk9a7r4t/D3TPhZPY6P4e8cf2pb3loJpVinJWNsKSCAcdz+Vc9WCk9jqo1anK7s9t+GWjeEPGvh3+39EuZg8Fy0QnV+SFONx7ZI6/Wum1Pw/q08sf2O8lZEiC5J75NeG/sp+Pk8PeJ5vCF1MVg1TIiz0DKC/4fdr6An1W3Sd4VlbMbbWwOM9f615dSErbHt4XG1aU1KM7MpaXo1nplwZ7YNuKFTuYnjIP9K17BiLiF/SQH9aqW13biQk56elWLRjeXJFopZkwcYrjmknqdNXG4jEaTldGHpl1K7tnGMdhWvBfT+UsXy4xjpXLfD7XLTVNDS5t45ApHAcDP8zXQJOjEYB6111I8iueTRnzSsX45WGcYrThIECPnnaP5VgSyquMg1JC4G1+2Kx3Z1XsjU1CJLy3ltJT8k8YR9p5xk18L6vAlnqJtISSgXPPWvttJ0x0PWvkL4z6Rp2gfEPU7DTEKxCYHBHfBrvw0uS5wYv3rHMGRlOBSGVz1xTAQRmmSOOODXpJ+6meXLSQ4v8APhkVhnkMODXSx6d4ej8LzXl/NcNekL9lzL8vfIIx9K5lZFC5waVHD5wDxSbuVGpymh4Y1mXR9Zs9TeTa0UgYleOen9a+pPCviR/EOjx6mMbnwH46nAr5JezlmdVVl5lXGT/tCvqjwNC9p4Ws4pCCTCD8v0rz6ytC52UJ3nY6eC6k39unpXrX7JnwnvPil8TbO0cE2qMJbgLwSqEEj8hXjkDi4uI0jBzvHB79v61+h/7Afwp1DwV4WXX7+3X7RqgDgx5OF3EDOQO2PWvKrP3rnq0Y8yP/2Q==",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD4N+Iv/BKH9mXwlqUVnpXijx5KjJmRpdYsmweMAH7Gvb2rm5f+CaP7NtvPHb3HjzxdG8pxGr6hajcfb/Rq+wvjh9ssNbs72xs4JnSFnEFwDslIIGGA5NeP/GnxF8XPHum2zeF/hd4S0u4tWcxtboRJkjqGJOPSvm/rmJcrXZ9O8vw0tbJHlaf8Etv2dzw3jTxlkdcahaf/ACLSSf8ABLv9nSBlDeK/Gsm88bdTtFA+v+imvUfh54y+NU5i0/x38MbS3C8NfWupqwI90616E6xyhH445xitfrGJt8RlVwFCntZnzcP+CXX7OxP/ACMvjLH/AGG7X/5Bq1/w6v8A2bGOE8U+ND/3G7X/AOQK+jYo45EAVBn6VLHGyt0o+tYj+ZmX1Wja9j5s/wCHV37OOMnxN42I/wBjW7Qn9bIfzqGb/glt+zkgIXxJ45U4O0tq1kQPri1r6jtIFc/PgDPpTLlYMsnlqcZA+Wh4nEfzMj6vR/lPlX/h2F+z1G+x/EfjZwDyy6pZgH87Wsb4l/8ABNn4Q6P4buL3wBd+LZr6MqY0v9ctXRh/Fwtmh/XtX1x5cSsc26HjuoqtOY3zG8aqCOeOo9KHiMQvtM0hh8P1ieTfDP8A4I4fsveLdO06fxD4s8fwz3WmQ3E622u2OxZGTLAE2JOAcgcH618s/tB/sl/DP4VfGXxH8PfDWt65NY6TqbW9rJe3ULysgRGG5lhQE/MeQo+lfrl4H0e30i206UyBS+lxAx7MBCE4HH+ea/NX9r65+1ftL+NZmGGOvygpnphEH8wfyrpy6tWq1JKbvp+py5xSpYfDp01Z3MX9lT9gz4Q/HC08QXfi/WvE8S6VErWx0zULaIFiMnf5kDkj6AV7Bb/8ElP2Y5be7kbxZ44328aMoGu2mDlQef8AQPetn/gnx5cPgfxfcGNfmuIE345+6cj+VfRsUSx6bqd80YVSkKx8cMPLXJ/MVnia9eMnyyKy6hSq4RTmrsp/HOXF7YTOduYWHJ964aC8hC4aBWOepIrs/j3Pa2un2+panKqRQE7pG4Crznp715B4c8c6V4kv5bbR7wzLAxWVwo27sZx69xXHCnJ0+Y9eq1z2Z1pkDAsjBR6A1cjiAgV0vN5KAlQenHTrWbGyvGAoPIGc1f01FKuAOgGf1ptSSsY8rtoWrd28sDcVP1qzHKyptKEnP3jVYRnGUwKnjmQphgc5qVLUTWyJIrtzGQAQc9d1U5LqYzNncAGPO4881dtrR7qdYLOIsWzhAeTxmotU0+WyBMwAPzcZ5BFOVWKaQclmZ95dyq25GbqOje1U7m4uJGwgcn2JNSTSbzimhgp3IMGm2xpJHvXw61ibW7e0a72Zgt0XjowA2/0Jr8y/2jbg33x68YXTS+Zv1+4/elt2efWv0A8B/EfQvDEHm61fmFEgKsSg5POPzJAHvX57fGQi8+JniTUIWBV9fuiCepwV5rry66qSl3Vjzc9TWGj6n0L+wFClr8JvE15LAH3axFwy4yAg4zXv+pzmDRp7UrgLqECHnGRnGMemK8L/AGFLSX/hR+qTBlxNrY3+4CgV9C6H4O1zxdoeq3UcMYi0y5S41G9uJRHFFFGw3OT6ZwOBnJ6VjiZNTfzOjLFy4SMTyf8Ab08Fa74y8B6dp/hzVXtLhdSctIGAyPKHy/qD+FeMfA74ca78Nb65uNUu7eY3Q2kQ5wqgZB575r6Y/aSH/FNafIR1vB/6C/8AhXlWlKt4N20feI4HtVU8RP6v7Ppe5tiMPGVfm8jYtLoMihupA6CtjS7Zpbc3YB2A9c+nWsy0g2RgkcgDFa9jMTAYXAUFQOK53oi0klYfLd7ECxgHnuK7j4O+CP8AhLdYE+pRlYIX5cDK8c81w4togv3mr0b4PeNdIs7R45rnhpyI0jUgsSB7VyYiXu6HrZVho4ir7yuk0el6/of2Kyez0qOONGVTlhxnd6D2ArzS6ub/AMP67LMsoBkmkV1xlXGecj057+tega541tLe3MVyMZRSH2kgDPfvXH6o+l6s73ME5Y5ZjhSOTz3FedG7kfXTwOGjTSUEcB47hslmSW3gRZJjukZYwvqMcADHSueaxHlBWzuzyMip/jfeyabcW3kno4HOfQntUVrOJLKKYHO9AScdzXpUpOEbs+Tx+GjTqNxKt1YwuBC7NtYqCQeetfFfxFmFx8QtbvG/5aajL0HfzGz/ADr7Xnlh8wBX4A3dO45/pXxF4xkM/ibUbggZkv5mx25cmvZwa90+Szr+HC/c+vf2DbKNvgXM7swE3iADIP8Auivqr9nfxboOi63P4U8YWkU+k+IVm069hkUkSxOrKVPbPHGR97aRyBXwh+yf+0XpfgPw9pHw4udEMjT68HnnMhwFkPXAHbHTNfXXx88W+LvAXw80f4zfBvwzot1ax6rC+uWF5bB3a2kYKzoZDlHSQFgVxjeDzg1z4iMue7OzL2qlNKOuxzn7SEaSeEbWYyhRDchj6E7X49uteV6XYS2cYbcxDEsp24yMYr0bxfrWg/Ge0bwvoGo3UUMV9Gz332QGJ8AhkBJB5BP5V1ug/sa+JNX037ba+LJpLaGLJU2sQlx6Bd3P/wCuuWEmz161Nt3PI7F5H+VlPHGTW5biLyUVY1ztGSBXUXfwUsPDd+LHUNQ1WR23fLLbRwk4z0+9n65rY0z4Y+CE0b+3dRs/FLW6RlpGt9QtYgu0ZcHdbPj+nvRNy6IxjS7nFW2nm6IjjfLHoirk1L+zo1i3iW8GsNE/2Zx5YuSDnHXG7pXc6VpnwMkjjutHtPGJuVJJf/hLtOcY5/gGmkjtyWP68clB4Ugsvtes3krWjb2Z9mOIx3I/OuRxqTvzKx9Fk8aVKV79j1fWfEPgyVCJ2gPyjholPesC98b+AtGt53ht4XZkYkErgEA9BjjrXhGv/EbRTqD6bZ62Z5AMfuj1PXvjtXH+MfiVB4adZrpZpAzZwcnrj0P51rToxsfRzxC2PQfjfr9p4the50eyC7GXYIjuJwOeg4qppOqR/wBiW6u6hggDAycisHw74pg1rQ31i4tgLdUJLJnJ59DXqnwr8AeAvG3hmz121tLe7huYC6hdYMEikNg5Vlb39PxqlTn0R83mKhKWr7HCTpJyy3RJCHjNfF3igOmr3T8tunkYe4LEg/jX6N6t4K+FjG5tTpd9ZzwKMM995kec8HOFP4Y/wr5g1L4DeC/iL8WdU+HvgDQppNWWdEjN/qBhttgYebKGUFsAEYBHevQwtR01qfIZll9XFckKWrPHv2fLHWNe+MegaHpljc3c0+pRmK2hQuzkHGAvfrX6a6n+zb8YfEHwn/s37TFYxz2m1kvL4qAvPykLkZ9vavCPgP8AsvfAHwboseu6XqV9e+MG1KaTRtetbtkhtbZdiujqHIzkPhgpPQ7gei+Pviz4/wDA9zc6RL46ub6CPIybktuXr1ODnnFc9at7app0PouG8gr4ealiXbVNHr3wtb4ZpZWVtq9rP50yj7Q4eME+nGABxivSdI8S+EfEyTTeG11q2vYoyLa4vdW/d7sdMM5J4J9ua8UNlrbWLaUL5rcYKsMggc84x71e0jTNe0SX+2pbW/uLi3Dky3E4midipG85UMvXsQeB9KxVRRWxvXwFWL0u/kdHrni7WdE1RrLxkLW5kDErOypLx/vZ9cYqrqHxC1nxNpT6Nb6RdrbJHsmaRkTC4wDjOTwD61yMGmaX4k1bOr61cXN5cPultYYvJSJ8EjazNkfmemKsQeH7Dw5qcum3euGa6vejtN85Azj5h/vdetHtFJ6HLUp8q1Re8E/DuO41k6b4Z0/UGub9WjmuTHmC3BGC2/HXHH4mu2+JHh/wj8LrC1t9Ql8154yJ5JG3NL2JOexqHwk/iDwj4Oub/wAK6qBezqUtt04L/e5O5jjqvc18cftXWP7Q/hCNvi8niTW3WKco0j6mbiMZ5AZQzDBz3Fd9KjGpTae5y0cU8PXT6X7nqnxLt/gPY+JxqmiaRD9qG152TAUk5BxzwcVg+Lvih8M7i6hXR9AjjEQIlMzqd7cZPHbg9fWvG/hf8U9c8W6Qb/x3o8KqxZWa3g8oHgfw5yeT1q/rd34FsrVP7KtpTcSHCecoVUPrnPbPfFR9UmpafkfSRzPDSpqTa+9Hca78YdIXSmsLfTbeG3ORuRQARySAfrTf2fvFl5daa+n6Pe4gjlZICOwZi2M+lfP3xfj+36fJ5vjC3tCFGyNTvwO/3c85r2D9nP4heEPBvw3tXNlLOViYT3MMqsW+brtHIz15FdkcNyQ2/A+czLMIYiouTS3mfUfhrxNpOu3EOm674WkuZUjP2q/R42UqQfvK3Oc9CM849K2NH+AHwx+Iuq3EGkRx2d7GpktbmaIiQEZ2ndxyOOnB/KvB4f2jvAPiHVIbT+1hFA3yhb3TztV+fmypLDPA9P1r0Xwl+0DoPhW6SLTrq2klWMKpQkrheMjB49s1zTpyS2McLWvUV2en+PPD0PwE+B48DaVqL3ws7Iol7LAqOEI+5x1H4818e3FhpWpeIrqTXghjclxuOBuOMfoTXqfxu+Oeo/ENE0+C7j8soyylVJ6j0zmvNdX8FapbXKafdwN58jfKqsADx79Pxrza0Z003E+vpY1QjFt7W6nuvjyfWIpJF04xW9xbrukTc3zjjPO0DqR3NYfgv9obxhpuqrpviC7e6trg/vInjJTGOpzkZ4/QV6HDd+P9RkvrTXNQgu9Of97BDJOXbcMAjaDx1boK4jUfhrDb6TNNcaJYNLdQf8Si90ySaQsScZHzbTjk4KnPr0xr7JWszloZm/hqXf3Hs/gjwD8D/iNaJcslxptzdRb5byxuwWB9QHBUenTHNdDd+BPhh8JbeXUPD6S6tcyQpun1BUd8KDnBXAU88k8DjgV4J4e8BfG/wpp6an4fsbu4jWPIiEYR2H+43PvXPeOPjZ8S9MtRFqNhNDIiSKy3cJUqwABGMdc9qujRpqWxjjalCVJ8i1/4J6/4i+K3wx8Y27acNNl0jVkk2AXIVAW5wx6ZGMY9eDXjP7Uni7wl4E+D+owX8Ol3r3aFY1XfuP8AIV5tqPjfxZ441trOa3zPcYLmL5TtAAz9OnSvJP2rPEfjTwpp9t4C8Q6klyJx9oOcb1GcY+ny16tCMbnymJbjd+p4/f8AxS8bx/u7bXJ44AOIlPHX16j8DWVe+PvGuoqUuPEdyUIIZDK3IPUdap3B81TuOB71SlkEbFQ4HJr0lCDV7HkVMVVTsmOvL2a5J+1zNJxg+Y+ePTmt74bfFbVvh/qm6KZ2tLnEc8CHHy+57dOvauYkljYnPPvmoDtDdMii0ZaMwVepe9z6g+GHhfwz8T/GFp593KLLUrdzaPbsFaKRQSFI5HPp3r0m1+A2q6NcPcWOvR+TGeMqEYoOwAPPHYV85fsheP5tF+LelaBqWorBZXF8mJpGAELv8m7n6AYr9E9Z8NfDjTbItBeXr3UcRNkgjaT7TKBkq+xSEXOMbtucnmvMxLlGWmx7eDlzLmPNPBHw40m102K/1LV7KLzrjy5bq+uREIm6rwVbd9MryMZq14lhk1/xPDFoUgvSg8t7oZGSABuXIyRx1r0bQvhvqHxS8Ppo/iyygsrCOUP5EcoDj/ayOc11OqfC/wAIeCPC+nWs2nmS7tUJ861lKPMONpOc/oO9efNKSaPYjilZIo/C+38UeGdbispvs15b3sheW8vYDH5cecEjc46nB+le76v8P/Aw0yTULk21l54DnIIxlgN3+ye3FeHWOqnw7qY06OUW0Buyk7KxZkhVQFOSTyT2OfoBW/oi/ELU1udVgsrq5sQ+bG/ljwzpxz2469h3qFFRNZxjudN8SPFnhFPBp8PeG9dVbi2AVHjlG9iCAcMx5/E14T4htL6fTLl9W1yWSF8/aWa2BDMc4BcKQMnPPSrXjTR/EN1rN1LaXlyY5ZMzyEhgjZ5GAM03wvZWbpeltRuWu7a7jitSSVeVegOxTlwDn+EfTmjpqVTdBbXMPWPCngqRbPX/AAb4Wt5nhtjH5V1DuEkm7JcupDYGCMdORxxx8d/t4SXj/EPT57uYPI+lA7gAP+WrZ7fSvvQ+LbyWCbU/EHwz8RKRIkMFlJBEI440DAGPLhiD1xjPPtz8r/8ABQXR9Z8LaFoup694dEbamrJALiIgog5IbnrzXVg6nLUt3aOXMqcJ4dyjuv6Z8cXE8oQ4b9KqypI4LMw9atStum24AGO1MkQKC31Ne8mfGVF77KDqyjORTN7etTTyFyRxioKLIg6bwh4o07RbO4hTw39rvZWBtbjzWVoCpDBhg8kYPWv0C/YP/aN8PfEj4OP4e8e+HbhdX0TFrcapvLNKSuI5JOoA+XJPHU9a/N3TtSuNMulvrN9siZ2tjpkY/rX0t/wTS+POjeCPjhdeGvHGiRajp3ia2SGSB32A3CSbomyTjILN+ZrkxUIum2elgKlnyv8ArQ++NK1HwVpltNH4n1S2EoyYbiwtHuFIxkb3iDKMe+Md65PxD4gutkv2LVp5rZLkKhKldpKkgHONgIyecCvT766+Duu2r6Lrvg2XS9x2xIhEnmNnG0FPufXnrXD61okng9rm78EeGI/smMvaTXXz3hGMKGJOPxHavI5UnqfQOEVBNH//2Q==",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [40,44,65,65] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [44,56,70,77] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD7V/4I9/8ABOT4If8ABQG68cW/xu1nxzplt4fv9EsrHU/Bctqfs0l+L/5p4Z4HMwLWqKoWSL5m25ZpEFfo9e/8Gq37AvhvXYvBPiP42fGO58R20VnfapoWj6rpMk66dJ5Uc0/z2KrGY5JGkKgysyQSxxrM6gn53/4NetN03xB4W/aQ8MeIYcaZqGkeHEmuTlhDOr6m0RCb0VpCQwTJB37QGXdz+oWh6t8TfBvhY/Am88T3zNYvJJoHi0hTPew4y1lOmdgurW2/fRMhlla2hgYK7ebs9TB/VcJOnPGfBUTUXZP3k2+XRp3lFNxv1ur/AAo8bMY4uvCawsmpwavZv4Wt+2j0flZ92fLHi3/g09/4J+eHY1uLf41/G2dbFbm71WG3v9Jnkmtodq+VFtsRslcyK6E7yVRl8vd08w+Pv/BvJ/wTH+A37PVv+0fr/wAaPi82i2Utv/wl6xeKtJuW0VJjsHzW+lOk/kzMkUhQ44kkGAhWv0M8F+PWm8bwaBqGpaR/a3hbSbVLTQ7CKWafUUlheFtP3RSxLCsdzZ6iPLlUxxMI3EarAS3z/wD8Flvij4cl/Zd8LfD7wRaWlzY6nrM99Dp13byx3FsLOH7K7DzXkeI5zFv4Em+V1EoYuOjO44TC5ZUrwiotRbWiu9Uk1e60b2a1v5HmZRUx2LzOjhKlVu71tfazb6b9j4Esf+CM37DHjzwVN4x+FnxT+KzwWOkm4upvEMdtZrNcSQPJawxo1iHAmZrbY+GR45hKG2HIwPhB/wAEcf2XvFqSaL498ffEm11v7LDHbWmlPpnly3km9AubhY8J5kUuMZLDaB0Yj0fwf8T/AIuftGaZe+IfBOjx+F/CmgR6NbeKtajuhBLcLptrZ2EUFqkbsyCKBfNllwm6WORARIgC+3fsr6PDL4Y+IGoaVqlhd29tNpi63o3ijTIZLK5N2yKLRpJ4/L3rLfJh0k3722YcfNF+N1czzOnh6041mlFrWSvyq/vOSVraXejulZ2vo/0vNcLh6ODh7OOvddfRta+trN7Hz3P/AMEVv2FNJv8ATdX1rxz8UhouoSQTi3h8R6cdQW2mMZWMINNMck6K7GXynkjQooDMJUYelfBv/gg3/wAEpPHnjm+8E+K/jB8aYCBfto13oviGxuf7RFqhlcxxnQxuUxhtpDbmKcpH5kYb6L8Y+GvGPxqsbGTUv7L0S4tdC3alLbXls+nMT9mWW4LafaPMJ3VkjWKRfNzhGLExCWH9j3XfD/wL+J2l+P8AUfC8mpW9nq8tvc3l/Pb2NjDp84ubYzQz3LeY2SjPIvyqrPgBNw3fQ4DNMXRz7D0qkoyoVIqbvFuXLZ30i3bVrllypStrsz83x88bUwrq0arUk9k1b017W7317M8N/wCCgH/Btj+xJ+yV+wd8Q/2pfC3xG+Ly+IPDfhdNU0LStf1rTZrUyGSBWjufJ06M5Bm27Q6MSjEZAr8SK/qy/wCC2/xO0Dx//wAEbfi34n0zS9SWC68KQtFa3DmF4He4hUCbaWVhtcSqDuVwUIOWjJ/lNr7rMoUIyhKiklJX089jo4cxGLxGFm8RJuSl17WQUUUV5h9CFFFFAH6mf8G1jfEGSD4wad4HuNCtkutZ8Ifa7zW9djsVQwtq10sal/viRLeVHAyQjMSpAOP0r+M/j0abZxa94r+Kel6isV/d2NpZrcKbpNUtzAVmcLtZXVncEFZHRWd4gwlVq/Hf/ghx8SfjJ8LfGnjbxH8G/E7Wd0W0pb20mu4o7WVAL10nuBMrKIopEVmcLvVWYBkDsa/UiS5Glaf4n+JXxZ8JpeeKr7TrO10jxjDNBDF4elt4oI5XZZZDuC3F9KlxBiWUSxFm3g74Pls+zuhjqVXJaD5ayi/el8N9JQUP5qmrcU1urqWitlCU8HiliHtpZLd9HdvS3fXboe9fA/xT4lXwvZeNPCuu3HjvxPe2Dx6jp2kxzyzyoRbx3K3k28yRz2+ozzrEikLFbNJCoIX91+eniu4l/a9/a3/4Rnxn4wj0vTLy9W1lv9R1A2okgt4yqQwm4LGJpBCdqtnDyqCH+YHudF1R9K8ESeF9X+HU+pTr4zv/AAzr+lSapb219qWr2+qy28Ys4Yrd28hJoofOWPiVNRKLsQSM/wA/698F/iF4U+GFl+0/dnXNe8B63qc9vr+o6d4Nlu49Bc39zDFcwXUCuLhDFbyM5YKYneANuWeM0Zhj8dm+Bw+HhC7pRTnGLfL01V0t+az6KSdtlKUZG8LhswxM5z5ZS9yMraq6fnb7P5J76fQ2j+APh/4J+F/xLtYdA0aXw9491XxDcaTb6BqRt4UWbVbhY9sGdqwxJEmwQyvGA2XOeD0f7Fmran4l+GnjDwP8O9Mt5lle7GrC3vLu0NjdyWETRu8scElsGc2+C10URPLLEhd4rzvw18RfDfxJXW/HeleKXlgl+I2oXVlo4kuLWWx0m7nhvWRzIAIHnhUF4yssnlpIflXazfSX/BMTwh8MfiD4U8QeD/tK65rOp+M7ie/8HSXggaezvbXT7e5kmeQo2GitpRsV2B+YrGTIu75vFYWpfHqdRpc8pOS3lZuTVnZe8vdtf3r2v1Pp8ZU58vwigru0E0/kn323v0O4/ZB17SR4G0nwP4401op9QtmvRZR6dbzXN5C7xyR2ksLoz3JljWQZCyu5uHkZBIkTn6ruPgX8EvgZo+vXd54c006Auim6jj1a3hnhs5VIFzMcxqyCQi1dz5h3eSMCPyxu+dvCfwI0nwX8SbD483Gm674R0nw9ZwyaV4c1TRMm5drWZosG4MSRxxRK7mMsrps2iUmQxDO1L9t/46/F2DxB4q0vUZtC0vwzpdpc6PPbeGZ44dR8ySDz7mWWWUupj3tF9kWNnPlOzCZJjDD+lZJUWR5ZGlXpuSTlGm0t6aSeib5km76d9klyo/IMRTlmOZz5J2ja8k3s+ytpfpdd35lr/gt/4D+FHw4/4JZ/G2+07wVo2lS6j4MeCC8htYLcqTfWTRwhRjJZghCqMAoCB0z/ACrV/TJ/wUy+Ifhv4if8Eq/2gtI+za1eavZeA9N1e58ST6KtnBMJpRGkcKxQ+SkJj8uRVaRncXcpB3RMR/M3Xq5jiaOL5KlK9rdd73d19/a6e6bTue3ww74Obe/N+i/CwUUUV5p9KFFFFAH6d/8ABtv8PPC3xH8QfFrwb40ubaLTPFUOi+GLp7q2Eyp9pi1S7jYx9Zf32nxL5YGDvyzIFLj708IeF/EXhvX7P4EeN/Bmlaobe+snsNQ8Gam0RuYIrhlM2+2hnco4eK5MET28Eb2oZUP2l4R/Pt4B+NXxk+FNhf6V8Lvi14m8NWuqzQS6pbaBr1xZx3kkIlELyrC6iRoxNMELZKiV8Y3HOvYftV/tQ6VbJZaX+0j49toY5I5I4rfxheoqvH5exgBLgFfKiwe3lpj7ox4scsqf2s8TNQcW9bxTlblgkk2mvdlGUl25n11M8RB1qXLGTTsurte7u9O6aT9D+gz9j/8AZjstQ+INhYeLfFuu6zrEOuzTakmm3rDU4JLs3GoPcX87sJmuSR5Uccu+NY45CX3tGq+/fs/fBr4b33xd1T4Ranqt1caX498NS/EGzuNG1eNGu71VXS9RWc2spbyWhn02SPlxLLNeOZZSBt/mO0z9vD9uLRNTbWtG/bL+K1peNKZWu7X4ianHKXKMhYss4OdjMuc5wxHQmo9E/bl/bY8M65beJ/Df7YXxT0/U7LSzplnqNj8QdSingsi4kNqkizhlhLgN5YIXcM4zXt5VSwWV0YqEPfTd5fzXa1fd26vaytbU8fG5XiMZUquU1af4P/K9vlfufsN+0H4Jfw58QPGPw81Xw4mn6foWpXcDS6dcTIs11mR7rYmUNxGhKGMg8MZgxxmNvYv+CP8A5fiKVrDwT4012yu4tcsbvSdPewgubeS02q7rMqmXy47hLSGOWZA3lyR2cwcBFjb8BdV/ax/an13WLnxDrf7S3xAvNQvZ2nvL668ZX0k08rMrM7u0pZmJRCSSSSinsKtfD79s79sL4S3ct/8ACv8Aav8AiV4ZnmgEM03h/wAdahZPJH8vyMYZlJX5E4PHyj0FeZhMDPD4yVaTTvJu3a/69V0uexmSqYzL44em7NW1ezt+jWh/R38fvjD4/wBQ+Jeh+KZPAemGaTX47fVtCi0Wd7OykvHkuvs0hTbJdw3ZmmkW6aCMyPbvsVmSWJ666Brvg3+0tf8ABnwy1K9fxppV/FZeD77S1tbWF47mwsrWWx8sSC5kVGlYOf8AVxzKFWJnlMn862p/t0/tt61rUviTWP2xfipd6jPNDLNf3PxC1KSeSSHd5Ts7Tliybm2knK7jjGa0fDv/AAUZ/wCChPhDSLfQPCf7d3xl0uwtIlitbLTvihq0EMKKqoqoiXAVVCqqgAYAUDoBXVktKrl0ZQry54qTcNNYpW5U+/KrxSd0lZXdlbycfldTEVPaUJKDklzabuzva3d2bejbu9Ln9I3/AAVQ+Htr8Hv+CI/xo8OeINNsINab4cWVnfXdjaMomNsbW3SMyNh5ghUhZGC5DD5RkZ/lUr17x7/wUF/b2+KnhG++H/xQ/bd+L3iTQdUg8jUtE174lapeWd3FkHZLDLOySLkA4YEZA9K8hr08XXp15JwjayNMoy6pl1GUJyTcnfQKKKK5D1gooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/9k=",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiij60AFFf0k/Bz9i39ibWPhV4c8caj+x58IdbvLXxHZ28l5YfD3R0069uNSiNswvo2jllMlhlpHsoZIIw/lFi026I8d/wTd/Y9/ZU+Kd1q3gj4m/s8/AZ9D8K+I38TeMPEF54G8PC4hNu8ZTSVluvOlj0qVkXzJljkHlhgr5vQ1r51PMY1cTCgovmne3nZr8LO/wAmtWjSML0alVvSFr/P8L30tvquh/PPRX9J3/BQD9nL/gmR+yf46s4viJ+zB8HvDemy+FrGyutE0b4e6Euq3sUraxIstjbXFvKzzMmmxKbt2Rw0oDFdzLF8C/ED4afsU6R8L/Dl54d8A+AUMPhNhr2tT+GbNbkMsaxrOYhHMqMZTHGrvuaSTcSEUSSmsXmEMLW9m4tu9unl/wAH7mbYLC1MZR9otNL/AJ6fLT70flXRX9JX/BOv9gr9hTU/2UNJX4z/ALEnhe98RKdQvtZ8bTfD/SL7TdNghluspLcXFmXaFl0ydTIkU2yRmRZoDKqplW3/AATb/Ya+N/wz8FeDfhB+yx4MT+1La3u/F3iDTvB2nCPT9TREkv7aJ5UfUJTHHcoDHGZbeIhG8pjFcFda+IqUqcJQg5OSukvWKS+d7t7JJ3eh5zxFOPPzaKL5fz/yP5yqK/ZH/gsN+wl+yT8Iv2O/F3j34VeE/Anh+fRYln8H6bpWiLaajPanxZPZGU3AtmkuQsEgjMVzNHOjJIr7xbRh/wAbqqhXVfmVrOLs9U+iaendNNXs7PVJ6FUantYc1rBRRRXQahRRRQAUUUDrzQB/UN4h/aV8ReGNM8Q/s0/CHxynj7WtfkP/AAhHiDQb2ykhudMutGQs97C0ZMl01sEaAOJlkW6hEUbGKSOvB/8Agl/Jqth/wUFg+EsGj6tYt418N6x4cfU9UtnknhiMN1qgupgrEx3fmwOsv2kKA7bjAJZ3Lelfsgt4T8cfA0eKPil4Fs9c1O88eyyalOfCYvZpNBt4tLspLeSJJY33wvqccMElpCGiuIJnSPM7geO/t4+PvDNn+15pvj/4V+LNJ0PxH4M1vRdLt5dEvJrnStMt9r21zBewRzR3QgawjjimgjjuCYjebXRdrt8NPFxw1fDV/aXqQWkVe3Lq3tfVO+l2/e22OxU51q9aglaEk7vvLRX/AFWy003O6/4OJfjH4K8IftgfC9IdJtDqfhPR7XVpdcFjEXjmkuZDbRmURK5WPy2ZSXKL9rbaqFpS/wCfPwwt9NuvDT6hYa9qUHh7R4v+JaljfzWUUyQZGoNcONrTLOyyq3AWRZ5DI4Yho/TPjvrXxG/4KCePPi98ZfiJ47tLy10zRH1PWmuxHY/bokgW0s7a3jijkjN2EK/umABigunDttHmc9J4LvPAF/r1npmu+HPE39lww6bNo+naW1rDbXVrJOPIxIJAssdt5jqVkKPJJGoCL5jt0YrGwxmNc77u9n00Wr7O2n/Dno4HD/VcFGkt4JJv73b06n62/sK6Z4Z+Gv8AwSM0bxL8P/D8kfi2bwlq99JeJaTQeX5dzq8sUs08VtLFbyRRGZVeUDYUjTcvmIT9G2Hw7+Ivws/Zc8F+F/BMVzBf6f4U0208Zv4X0y3uL3ViNNFufszuVi3787ZXnjWHy0J3J8jfm/8As8ftZ/CPwF+xBonw48a+LLqLxPf6TrOn23iy41/UIbK3S6mk+xGCxt7p1VpbqeCedHgjVUkUOshjZx9VfG39tr9irRfCFxo+knS9VjsYbeKznTUdX1i1uZ4Q1hcmBZPISe3gQoyXG/yr0RyIh3xlk68JxFlvtqvNWUfZxjF6tPmu20ls3or2v0W+h8lmWGvB07Ntzk/y/wA9PmfB3/BxX4i1T4wfsj67488RfDe90S9077HIJtOmDWskbalaRILiFBELY4ZoY2kWSV/sRTdIsYkH4L1+4P8AwWL/AGmfh746/wCCdnxH0v4efBhdFk8X6vo97rGo3d3LGXk/tKO4Pl28yu000bkW8l2JmO2ONB5UbJAPw+rsyV06lOtWhV9pzzu3a1vcgrLvZJXfe5eBhGFFqK0uFFFFe0doUUUUAFA60UUAf0rfsteHta8V+IfEfwQ8O6Bd+KPCnhnWLu88mLxHFZx2aJfW8jRNbSeYC0kmmtI8cyqwie0fdELyRm8L/aY1Ow0zw7rMR8Halpuk+I59Q1+3sXv4ZFtraa1i/syZVgdvLUoJHZnWIyC8C7ZAI2j/AAdor4WHBdSniFVjinve3Lpd2v8Aa3dvy7Hp08whCfM6d9Et9dPl+h+mKeKvH37Mf9o6P8TPB17FZ+IILq2vdDWNoTqatBNbbzLbu3mRxuwbcpMbNCrk4jVh6N8VvBuo/DS+mWPSb7TP7dNjNbjVJRLGbd0S2KjdIplnjihbeG3LHbQxgLEzbK/IiivSo8OSpy5nVu3e/u2vtb7T2t5/gbPNYtO1O17de3yP1xg1CDxl8D9Fl8E6pc2F1NbRjW7s6lbR209tbxyzSQO0sSEzEBJkjh3hjCcLGxWNtTxdoHiJfFN/cfDLQINK8NxMba9stNa5uLe2c3UjgRNK7G7t5BZq7FYngfYjskXlQxx/j1RXmVuCVVUkq9uZyb9xX953evN209Ejya8oV3eS+5n6if8ABRPx18aPGf7CV5onxQ8balc23h7QdCstO0zUIJd0cUd6DE25lVIB5M0SLEihZYreByz+ShP5d0UV9FkWVVMnwboTq+0bk3e1t0lbd9jOKUYpLoFFFFeyMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/9k=",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [56,37,70,72] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [46,44,60,72] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+ivomL/AIJl/HuXb/xVPhFdwJGdSuM9SOQLfI6ZrUs/+CUX7QV7E0qePfAybRnbJql2CevH/Hr7fqKfKxXR8xUV9L6T/wAEsfj5rVzPaWPjzwR5kCglX1O7UuCOMA2ufbnHINWLr/gk3+0Za6Veas3jPwU6WMTvcJHqV2zAKu4j/j1xnHvU3RSTlKy3PmCivc9L/wCCf3xk1Z5UtvE3hhTFIUYPe3AyfbEBob/gn/8AGRHaN/EvhkMpwym8uMj/AMgVi8TQjvI7Fl2Okrqmzwyivdx/wT1+NDHA8TeGOmT/AKbc8f8AkvVG6/YY+KVqQp8Y+FHJ4Cx6hOSTjOP9R1qoVqVSLlF3RM8Di4SSlBps8Wor2eL9hj4szfd8R+HB9byf/wCMU+7/AGE/i5ZoHk8R+GyCAflvLj/4xRGtSlKyeo3l+MSu4Ox4rRXq+k/sf/EnWIJbiDX9CRYpvKPmT3BJbnoFhPoaqePv2VPiL8O/CI8bavqmlT2JlEebV7jcCW28iSFcc1vyyOd0qi3R5nRV9PDt67iNZosnp8x/wq/a/D3WrtN8d1agf7Tt/wDE1LdjM+/vDn7R3h+5uI4dVsGtGKktK8ysg46ZwOfqK6bxL8YdOg0R7jQNTLQyLtJVlbBOQxA3DkdQSR+XFeMR/AzxTPEsksyLk/3gDjHuwFNHwe1y3mZbXVbi3jP31hXALccEFsE4x29KU5aaMS5fsnqXw6+PEya7HaCcxJJhRibjjou75mwB656DmvdG1211DwhOlnOWS+s5BdK6AMSUIJz1PP0r4y0vSPGej6mptNFkYq3yllAzgjJB/TPvXpvhP9oHVNHdvD/iiyjgZWMaQi4aZ9rAAA45z8xOeelYRly76mlFWqoveGn+x6hfKXBY3BI9+WrR8QorxpqMY+dEO9R1cdcD8c/XNY2iQXVzrt28ULSReft3KeFODwfTknrW/LaxwMH1t2S1HXyJkZz6ADnH4jtXBiMJWrVFyLc+2wuLpxpe8zAvb+61PQdRfToZnktrHzolhiDmZjMkflj0J359+AMk8ea+F9PvfEfinS5IrS5hsEuo5ry+NsWSKIMPn44PIwORyeteq+MdJ13wFq08Pg/xTJo19bYVmtdQImTK/Mob7PmNsNg7WB4K55NcFL8S/jU1ivhLUvipqM2loSx0uW4laDp94x7lB4J65Az9K+hwuXVcPhXCXU8LF4/BYrFRlF3aNu7DLuubV1K55/yRVaXXHuYjay2ZRk4EhbhsdxxVzwpZ2/jSaSw03VEQw2rT3u1CRCijk8nnngD1I+tVNZ0jT9PsGng1a6uZI2JBkshGAvHB2yN05OSK5MPgK0W5Nbepri8yoaR59Wcr8L750vrx0hjfZebQ8mdqgnk8EY6Dk5+lcb+0rqtpqHw8vbgWypO11CZ2AKgksDlQWbjPY/nXU+EvCfi2bT72/tvDN3NaS3QKypAWRiS4BzjA6EfhXCfHOGafwhcaRdErM9zGpVhgqVbP9MfjXRdpnBOUJU9GeD2mGlEhk6HpXR6Lf28a7fMHbqRxxWTBoVzHcNF5LEjoAM9vY1f0nTAsjRXEZDZ4DAisWrnmn6V2fwVK3EgvvE1y9rglfLgJdWyMDO5uMegA+lUdU+D9rNLNaveyGRAFIulKMoYEheME55OK6JfHVjBLKmoRxX9wsf8Ao876HZIrsFJES7UyEJJ+Y9CM7TwayNX8e+LZ7RU1CLT9Ot7eZRBEluFjnUsAI/MjBMvAxgttXqQo6dDoUL/Ev6+Z56w1ZSvzHOt8LHgjkv7WbUJEjiP7y5gAI4ySAVG3ken51i6n4QsJRHnTpd8hbddiH5mKJvJDDgYUHPAHbmus1X4j3i6pHqp0e/iNyAZlXT0ltgRIflt90sj7gGHOFdQMZYAO2ZqerSa/DFDe6hPcW91fQxrbXsUCCKVZkKGZz80Kk7QC2zJ5LlhkT9UoSe/9feb06dWM1JvY8p8Va7rdp4ulsbDV7u2tzEHZLW6aLexeQFjtIJ+6tepfAbwB4m8V3994zS3n1PS/BVjHqOom/wBcto0W4muFggkke9ljRY1ZwR84AdVx97FYHiTS/DcF1cJZWUEKXOyS4a7tCvlyDljmVi6xj0IUk5PRRv8Avj/git+y54Z+Ifh3xp8Z7P4MRX3hxrnTbHwro+vaXAp1dBcWb3mpxtMUWZSDdfucLGhs7Td5s8ZMO9KlGFTe52YjGVPYyjB2dj4muPDNx4k1G41C78R+Fo2nd5nlu/iPoYUktyMi6I6k/gK85+Ongy20Lw4vinSPEGiX0kTlnGieI7S+CAAZDm2dgh6EZOTg4HBx+93xI/4J1fCTxz471TxvPD8RdLfU40T+zvC/9lWVvbIsMce2NS7ru/dBvMHzhmbbtBK1wH/BXj9ke3/ak+AUuteFf2cNan8Z6XdRf2fJYW9nJfXtsTiW0QLKRzhWy2AoV8MNxDevJqUbHx9Gpm0KvNKSaT7br79D8cP2fbW1svgxd+J9V8Q6Baz61dFGXWdajtZZIkxtWJSCZSCzZHX16rmeR/D2qTGx0/xboE7tkNBFNdTMR34htXz79q/YX/gmj+yvqf7LX7K0PhK/+BMlvr2vxtcaq15NbW+o2IdAqWz5ikAMPJA+ddxZud2B1/wt/ZA/4Vj8SNL+KHh3wHq017pFxPPaw6p4usFhZ5bZ7ZvMEGjwPLiN8AF8ZRCQdgpU9IajrVcxq1ub2iSvtZaL/hj8V7aXxB4Tt28CabpsN23kRalE+ktLc28tqwYF1bYpdVZ+u3hgc4IIHinxe8H6h4i0a6Fll7q61OOSLcDFEkZWQtkEE7g3lhSDwu7g54/Rf/guX8EtWsvGH/CceHtGa0vdIlW5vdl+kMMFvenzGbD7dwS6eSJduHZrstggcfnvoPxt1aGM6RqgmKwsfOjZw3zZ7tjcRg9N2PavLxPLCd2j6PBVb0lGTu/zPNdP+CPjElJLqwjYE/LLaksT9SQM/nXQWfwMnhg+03mkssxA2m4IUN6nIPv716hpf7SXh2xZ1f4TabNk/NMF8sydefniJ/U/liu98H/HL4X6tbySz+ELrS4sg7ntY3Qkj+HaAT25xz7VyKUDutGx1Wj+G/Cl5dAPaSy2SsxkWC6+ZmxgAswYdwemeKW68B6Qs/nWejlVkIVnngiaR+ME8RgduByOBnNepSWvhm5bzLnTc4fKou0gN6kADn3GO1VNT8Nyy3CMPFVvhiVTdbzHAY/cA80eg5Of1xXJKFToyVHuec3ema74bEYsLTbI26JIhNIilSc8LDtK54yAxHbkVBcaB4g8VX4TWfC9hMksi+fEtukMeDjcFQuXjzg9CD7r29AsdL1/RZ5XuboSwBSqi3YxOV6nHucf3uvcVUh8UW91JNY6N9qczFhL5UrSPhc5JOcEjB/i/kcUlUXUV7HnnjL4HaXe6Jf2EuiRacmoMn2lYr3e8kW4b2Y4wflB6FSM8A19eWXxT+N/7B37CngXW/gH8RR8OfEfiLXhfa7dNpq6zDJ9shuZ3t/9Is7lFbCQHCxjaICFdgGZ/mfx7pt63hq5tobu2W81CB4NPF/dwo+ZfkwWZjsBJAOTxwfQ19meG/j7+yZqnwkt/gd8Qfh3pPizwn4ekt7dU11309La4s42tkkjlKo4GCygqwR1c43cV14b4tWKhOlSxcatWN4rddzxBf8Agrd/wUs1Es037ctvAcY3L4CtIvyEekVqfDX/AIKWftL634tms/2hv+CgHjSDQv7Ol8tvBPheOO7a5LRhF8yTTAqR7DISwywYJgda7QeNf+CLRuxeax8MfhmbjzMslx+0LfRcg8AL9uHHGMAfQVvaf4v/AOCKOrXkEOl+CfhTFIGz5UXxwuXzyO76hk/gO/0r0VOZ9RVzzhOpRcfqrXpCCf3njnxA/a3/AGgPE/jL7P8ADD/gpb8R9J0Pywi3PibxlrQuJHBYmR106w+UY2/KoJJXd3wOV8UfFv8Aaz1C0eaz/wCCymtNIrYEJ+I3j+FmORkjOmgAfQ9sV9XWni3/AIIqiZIJvBHwdk3fKySfHAKXODkHN0RnGT8xzW5pFl/wSH1y1d/hr+zr8J9RnhmA8vT/ABuNaYswxzDHJISduecepzVRWm4qXE3D1CiowwrbS6xp/m0z5RtdP8dfHL9kXxWfih8aZ/iXqH/CTHSh4i1rVtV1Bd81is9nG9zfrDNIkU9s02xQApJyRu5/PfTNLbxJfnVtNlikeS0dLyWNWZQylQABkY6t19K/UX9rj9rX4Q6Z4fX4AfDTwtaeHrWDU/7Rk8P+H/Bd5YQNOFMYlcvCsZcqzDcxyQeSMV+feneAbXwT8VfEctpqcEsGt3cl3bWUYAeASSF9hA9N2BjsO1cOOm40W1rY+Rq1KWIxkqtOPKnsv6scFf8AhK/uIFje5KPASd0i4VhnPAxxwPU1UMutaHG1tBfMgfBPky5B+uOhr1jxB4TMUovLvSboB4f3cjRuisCMg8jkc9uufpXLXmiws7RMyiPcQxU5Kn0xXgQxMpysdCPtzUvBGmahd5ttR8qXB+aCcK2Aee/uPzrN1bwtqNomy6leZNuR+9we/uff1r1i4tdPvw8ElnFKZQCyTxK8fBz9wjbxzjjjNczr/h3ddEWtpBGu5QYrbYmDjrsyT06npXstFaWPOYNVttIlkgsmmtt64eR5uo+ox6+1Zk+jWU85v4r2CUO+ZEfdhuf9k546/wCPSuy8Q+BbS4hLy54zkxouTx3ORXGatodxpiSrpzsyrnhmxj9az1voLl7E9r4a/tKOdbJbe5lEZ+z2STZJOCOA6r7H+L3bnA53WY/iF8Q9ItZPG3wzfXm0khJ7Sw0mK4uo1jQkSt5cZufKTgly3lIflyMVwfxs03WNS02O60+4dLq0JbzEmKOqng4bt3rxZvjX8XPDt01k3jTUW2sQE1JvtAGD/dmDDjHHHHatqST8iZaR2PqnTfj7eazBp9poXjPX9PGlxxxWpt76eJljQKFQ7HQEdDyM+/NbfiH4y/FDxN4qHjXWvinrV5cKiLFHLq12Y02g4+QzbW5JOCDnj0FfJMX7Q/xdefe3jEyfu8SCPTYVG3PJO2MY+vFXT+0H8TrmAW8/jBzGuf3ZjyvPtj+VdySezOGWnTQ+ltR8aXOq3Nxqet3ury3N5B5F1cw6lOoaLYIyip5mwAp8p+U+owea4fXZPhH4b1i38Q6f4K+yX0DDyb2W389lIcMGHnBwGyBkqBwSMYJB8dk+NHjeaFjJrKsuAMmM1ga38YvEsimE68UyckLbqe/upocXbclN30O51Xxlp2nWb2XgzS7x48fIBuCsOnJ7jAH5CsT4Vy6rP8SLK78S37eZeXyLMSVJVC2BxyOAR2x7V5pqfjHX9RkYT6xcEMcgCVgAPoK3fhPqF3pviGHW1dma3kDjBycg9axcKclY3i5J6n07feCvCWl77nTLewjuJrmYo0l5b27ORhifneNVYksd7DYpJLAin+F/AH/CaT+XoNo1xq8mVFkqLOsKsHzIDHJlx8jAOhKlgACxIVuI03X/APhKyxSNNM1BAkkc66d+8GFDOVbypirYVhtaMKwOH+XOPb/DHjfxlqdpYyi3jvrywFwlu19bTQh0O7ASV5Czr0+fJDD0GAOVYBNbjqVVDVHr0GqXELubaP7pKokrhcnPYjPbpjrXU+Gykqy3t7r32aCMMMG1ll82QYwqlVMeT0O5hgA592XPhK0itn1HStSazaOJR5wmzsJMud/9zIAAJwPlyD8rZx47u48N3RS3ttkhtxHI0BwJPm4DEEMwyzckMAQAODipU77HQtS9q2hRa5bNFo+nMrqCS2wKMY6k9D9Ovpk8Hkrn4c6rqStLYWTTCMr5oeREHzfKqgbtzMzlQqgbjnp1x1Vh8QrOzmSPUNJvkikmwRG6yFSzZyxY5KjJ4GTggZJGSzxF4lsNYsbe2k8P3E8cjiVY548hWB3AAMcAFtrcgEFRzwcynJPU6VyKOp4X8V/hpqUxjSew8guhPlM2GHzA8jn6fUH0r5t8e/ADxTHLJfW+muT5nDB8jlj/ALNfbmpaA7wIkEDQRhceU7hueOQATt7fl7VlXnh21ukaKSxLlvmCsNwPPoCfyqHe9zVcjVj83/FPwy8YwXRje3nQhQfkYjsfQfpWYPAHi5bc/urgDuRvz374r9Atf+EOlT3bJfaREjbRkGPnp7cVgX3wX8OwWrmHS9xAJA8sHt/u1SmzKpR6o+GovAvixx5RW6APGS7f4cVa0r4PeIJtSRgrMzZxI8pwDgnGSK+x7f4T6ApCjTFjkcnaXRQpP48j8av6X8J/DfnbLuwCzxPuikhcYUjvxkZOKp1LbnM1bc+Tbb4J+Kdfu47i2s7m7uXX5ra2gZmVV6ngHPr2wPrxrTeAJPDmpW8Gm3Pmvb2kHm+bEyMsxjUyghlHRy4HsB9a+stR+Cnh2NS2l2lxjhkhgkAJcHIY/d6Y68kdhyazpfAOkaVaXSaX4VmvtSmgWa8uGieQtAiKzBki+VAuCck4ywDYAqoTtqieWLOB+FvjPwzZz2kXiq3n+0SAReT5TXBLEj5lZ3G3g4xngZH3TivZfD3hf+1XludNeWbTjLCrTWGlF7uGIux2rPGmYsNJ92RmQBicdSeT0rQ/A097bf2foDO7E7be1to2luFyQY41guJDuAySq/KuTk54rX0S18LW2qp4WsNI8SeGJL64K6UbmVbJJpFIJ3C6idJC/AVUeJpSMYfaAndRr30ZzSw122j6ka0c3yRRapPcR3G6aOY3u55YQQQ5UlmjbjJwQyhguRhTS2mjaXaWrXtvd3MhjQf6DC3nCRlG5yRKdoQbTwQQRzk5NRXES3DTHTLm5kt4zgQQmKWN0KnYN/3QSQTuCspUEKBgEw6hdTTy27yWswt7eQLt+0RyRsAFOAyxg8D+HLAZ6c4rx+azOmCuVJfD08F5PNbS3MC3hHnrcQ+WpOQT8oVQBnJ2gYAxgcCmtY3FlLHtj3BD/rUHQeorc8u0hlna+j+WSDNuloI3QSkgkMwIK4B+6cOoIyBkAte30y9tF2C9t1iiBuHjkimLNvORGpdCcpzhmG09SelaKd2bxTscjq1xo7XMkMj5mPzEFTnqefboaYdDto5VltNOIdlwrCIkt34z1GOa2Lme0hmE9ksbiIlTIEAJI4+bBOT1zzwcitG/1u4nRtQtdMi85vmJdPLU5PJwq4AyeMYHTp0FJGyV2jj7vwrJdxF9Qth54fDqAcgAY6ZyKzz4KtNnmQrGV/iVmOSPTGTXcvBcwRtfSwC4nnJLovygE87RnPesXWNE1+xtft8Nmlq4c+ZbytuwMZBHXPfg1Zvc8/1TR20ue4SCwXypchwUBGM++cc9656902S1uTcwQnaRzGpxnk16hcraX1u8EtsvnSYJDKDg5zwcYrm9W0F1kLTQhMEhQoHr7VLimROCkrnHza5c7xHOpUg/K3X8MYrPuNXn0+7224UuxUlPIALEYIy2M4Bx364PUV097pMW3zLOIn92fN4zkdfw6VjXen2t1Ju+zkHPyyAjI/SpS5HdHM6WugptfD2r2X9sapYxWl+syC2v5GikWN8HDvmQyqAVHyxxtkA54waltIfiB4m8SIPEviSHUrOxWVbacanutiCrBR5LxKVQKzfeaZm2IdoJqmNMlsJTKfMeNhjYWzkHtgdfpV6Gaztla0n0K2Z0fDCVdxXHBAD5Uf8AfPbjFUq9nsZckoo//9k=",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP2X8RfDj9kX4m2PhuLwv+zN8KbR7jXIojHoXhCyVTAI5VKl/J3SsW2bizHBVcDks3E/EH4Rfs8T6NBez/s1+BbC5mucT21p4VsUngbhQJoooswZbOFYIDg4FY/w0vrez1zRlTx8sy2Nyq6fYNLDhAzHCAcMMZwFAyAcfX1X48fs86h8LPhj8PfHVvoWivBrWl20t1qOnm6tpJJJoVkZTFNJcBlwGOVKEEkAKME5TqqjUjTlvLb7v+AJSvd9jyzSvgZ+yzcaktzN8L/CnyQurwJ4Qt9k2Ebc2JIhsIB4/wCuYPOc12UnwC/ZT1vwzc2fhr4ReCBJ5Mc2bjwLp0chK/MU8woSgwMZzlj144OXpfwV8ba3431C8042ctkLmfypN5aW6iLlSQyoTnb8w3lVxxkbhn1bwV+y54eudDPh7X7e6v5hcw3KC8vh5bzIhYH5R0+Z1MbKwILBs8Y6HODdrCTbV9i78KP2BP2aNEuJvtHw8+H2qWjXr3MbP8ONPu5otyglN00TptRtwClSu0jIJGa4/wDa1/Zx/Yp/Z88IL4ntfgB4X1rXbzVCumaZ/wAI1psEaLsMkrssEChoo0XBGxsFlBwSWH0RYadJ4A8MomiaPazrCjONNu9YntomdVJAUKrYyeCdoxknBrwXxZ+zj8Rv2hNZ8RePbj4iaBPYeJLy10+Gw03xAv2eKxhdpPsqf6GzZDBBK8bxyBnYYAlKrvhMtWJvNbLfU8/EZvhcNiI0Jy96Wy6ux4F4j8U/sueGvDMV/wCHv2S/Ar6nqmvSJqmha/4Ls92mJBDEuY3Vd+yVpSQMRqGicbDs3yfXfw+/Yj/ZB+Lng3R9b0H9nD4aWsmu21vcaXDdaLp1qBDMgdWlnktRGhG7DBnAGB82Bmvmz4jfsjT+EfC1z8O7H4saS9j4P1i41K4tNOkSdpJLhY43CgRQhvOFvAqM5VgqRjcFr6C/ZI8G3Hh74AWdvYyzQwG+uZtPt7czMbZXkLGPLDIJZnY/Mdu/adrBo06a2DVCOqNaGeYLNnahNS5VZ+Vv6+Yvir/glv8As+fDfxvaXn/CE/DG8kgnSdrBdA0y/sXjJ+40lv5iE+x545GOt27/AGAf2TtcXUI0+B3hG0a/ZvMfQ/A2lSfZYmjWFkiMsMgT5cOH2iRWIZWVtxf0GG98QSXUY/tGeJVx5g2jnn1IP5j1qzDp2teIZ7yPRru0uI7O3Z5473Uo4SCoLBVD4DEheAMsfQ9K5FSjN6HXz8u5j/Bj9gz9h7Q9GJ+LXwW8A3zG7dkRvhho0cqQBVCIGZlLsMElyo3biTjkLhftOfs1/wDBOHQvh5dR/Dv9nr4cJqTM0SzHwjokYjycszNFK7DAK4wAfmOGG0iut07wv4zv7aTUtI0145BiSSP7SoUdjksRx7Ade1YHie9vJIza3qCTZ8rxvCkjj16D24GOa1b5I6xJl+9b94/E79sfw54b8LfF5dK8KaZp1rZjTI2VdMtkijcmSX5tqcZwAPXgA9K8or64/wCCzllNY/tQ6FHNYi3LeA7VlQLgEfbr4A/pXyPXG9y4rlVj9edG/YX8S2fiHTtfHiIxQWV5DPueQ5B2l9oDoCvzKilgMDdxu28/RHiy58T/ABF+GGg/CX4j2lqtn4XjK2Go2Me93ccLyJgjoFO3mIEgdRmqt18QApMKabCtwMq00z7mxjGM4yMcgc4HYDGap3njuGWNUtG/0lFKxqqNgnJOScnHp+A4rOeHp1Jc01dmKqVLWgaej+DPCthFE1vocNtDGV8tIowgyOf94/NkjezckHsDW1Nf3WlwM1vczRRsdsX2O3TzenO5yHx7EAe+a47WPFFnYNE1tdXM8xILqi7QB1xhlwOvYnHvnNWNE1mfUlFxPCyxqSTsfGM+nYcnpx+FaqCS0Rn7OrKXvyPOP2wfjHH8LvhvPdQaNdxzXrhbe7tY/tclvLkvHM26QZCsi8Z25IyCPlPE/s9/8FiPiJ8JLy01bxt4r8P+PrmzgWK0vPF+jardtEysGDiJb6GIHA2EBNu1iMV734y0Xwv45s00PXNFinjVNx+0oHDc9TkHPH8hXnx/Yv8AgDqNyst78NNDiZ+sptVUMfQAA/jito4ipShyxX42M62X0q7u5NNdrHF/tKf8Fr/jH+0P4atvhVFp3hjwz4Ynu4Zb7w58MvDNzpsVy8MpmiaRZb10yJRHIQijJhXkZYn0z9lDxZ4ouPAUCv4WfStNMa/Y7NrsSOoVGZpZGKjfIxyOgAVY1Cjbkr4d/ZQ+Cfha4+2aX4Q060kjUNbzJZJ8pB5GRyuAGOcAcdeePSrLTYNAgEdsBLDHExbeWAVQN3AUHqExjk7gF+8RXPKrWkuXRL1uzpo4WjQWjcn3Zpf21czn9xApd9rK4RMrkn5skgDp6fnnFNl1W8iKkXskSphQY/vMQcEk7T3Hb1zk9qcUq6kI7mW3SyUNhYpJ8lvnwDkHByeQBz82DzkVEmoRzxrL9vMYODD+5zuQ5yR8vOBjgnj8eDmSe5vY6G18WOXWeR1jZlKsySS42k8jBJxjr3/HjHGa3ezWWqGSS2WRxt/dq2cqRlSMqCe2c89SOlWL6/tIbX7XPKqgxg7p5QV3EEjPttUnPABwOvByL6e0ic6deQqpljy6iIoqKqkPkbSFYccgc9854zqYlL3TSnTb1PzI/wCCy5c/tPaCZJWc/wDCA2nzOwJP+mXvXHGfy+gr5Jr6v/4LDXLXf7TOiSvDsI8D26kZXORfXoOdvAOc8DpXyhVxfNG5ElyysfudZmS2WRY7aVCAfMkjOc8H0PH50llpGo61mZ7WOBCwZ5XkYuw4JHORz9O55HbNsJ7YTCOfUGnkbOISh/d5xxn8+DntW5beINNhRLWwuZbiRCBKsDgBX2rkHknO7PbgAHvitSErFq28P6fCYpox8rg7XaM7UKkjBA5ycZHOMYyQc417c6dcXMNndXpgtyy/6QWLogJxubbkgDrgKxweMmsaeZxCxdZDIx2bmmZegwVxn8Pujp1q9A+nvbWlvd3Fs5y7zKqIpT5QD8z43DaGwpwSwIABOStUOxoW8cVxcmzNvcwM43EtGzbV2gjGODwM9cEHNTQr9tuF0+1MzEcCKMt5gBLdewxg+3BHWsuwkn1ILFDc+ZuwoNwHOOc7lUFQSMAkEgEE8npUlrql1BrFpewajbxPb3H2l5o5RK5YEA7mSRWjlBjUtkggLkgfLUTm4oaibFtEI3XbcQxGKZWXzNyupIJBCj5yPlPPbI9dxrSW+kW14lxdwGYiALE62/zrIv3mVV+XhicK7MpHUgnArzatJd3v2nxBKjxlyJkRdsmAxCAcEKQgOS27Ppkg1Bc3L6fppETTSNKjsRHGqfKGAGPmYKzHABOASp+gwnJSdmXG6eg6K/0qC5UWmitcvHne17KJY45DvYLGCwVOmCDnG3AOBhWTR3KQpqE8qlS+BJEApwMdlAXH0zjAHHFULlbJ5N0mmzCXkCXYFG/CkN0zIAME8gZfPy4Jq7PJa2+nFtN1Oa8wF+2PKkcbs7qGkWMBi0oJU4J4Q8nDN8qilBXH70hZAFKRzo0Mkql4UKBuenOO5GcbsY6jPFZd9YrYSHU7WWeOVofsyzJckblILIjjPy8BsKMcBsdOFm1aEz/aoBHHbiGNfNnlZnE24KVUhcYLBcdzkEZGaotLZNds93bSIg3kyb1YsQMAYB552kHODtPUnIzVpJtDtJaH5u/8Fg5J5f2kvD7XMSrJ/wAIDaBto6kXl6M/57Y69a+Ua+sP+CxZmP7Tui+fE6OPA1qGSRssD9svc5P1yeeea+T66oaRRnJ3lc/b+0sNJmXzIYHiYguxmuVJYewC9scjOTuX61dtY4Ir4CxjlfcPLG9VyCRgjHPTtnnp07YkEsyBrm/uUXYwYIEAxnAzgf54rY06S71WzkeJhtjhI8pY+GBI7DGckcE5Py89BWyWolEnvNQuN4CGOVDNiNRIMZDgYwQQDyPfkUadZSSFk1QwruTdEqy7xgHkYIOOARwc/XjM+nXF9aOdV/tHyPs8gEckBXIJ+VmAyCRhWG4dNoB6imXRu7W5jaTWHa6mZZZoCVkAkDMY8qUfcGJwQw5OAR0ImTUVcpK5Yewmj1Oyu7nVJhYTqj2+UiQvGWOW2tJyNu44JGcYyCRmxpg1a+Ez2tx9nt7ZB55diyPuZMKfvEljuxzjIGWHBGRrDajqqS2M969tBcwC5WC0ieFnVsSb1zhVOWBVSBnAAJ4q7HBYWWg27pezzXEjSSiWa3IWMfNhBu4Yjaq9x1DD5d1c85N6msKZs6neWFvpzy2dzHK8c7REuk0ipH5j4ky0ajDbiDnOOeCME5OpXEG6RbKYBmlVyRuHysOerHcQM8DPJIB2sDVK01ia4uJGWHZDHKVL287ZVNzEjLEruJJUhflwcAZXcbt7ba1CGFi0jSi7aOKe3iYi7XAyqCTbknccA85BztPFTFX1NHTRWjk8oCKCeSS5kmTpcqIyGXccsDwAcA8beuSODUl9q1jBcNpt5BtZVYxuxIywADFDyuFyuVIzgnp82GySXkUUlnqN1GIxmSUASF5J8MQVUtuyzqMZPJIP96oPElqtjrs1jdapDPO8wZDK7BZHblmDOAOu3GRyGBHfDalJlRpxja5a1nW4tZ0uyOVlv4UeMC2sUjRoFclX3qdzsZGdQroCqxoAxBCJivdWkIhuYtlw0hKz2i3JLRjg5+7t53gqNwwUIYYKs0Nxf+VeCz1E/Z/MVgzwuzYjwBhBgAH8ecgcc1V0qKSwmf8AtKaRXL7hA8xjcLmMEdSCCSoBI5HAHHI4pKwNWlc/Pr/gr5Obj9pbRX+zvEB4IttiOQcD7benjAAxzj8K+Va+pP8AgrfbSWv7Sejwyklv+EJtWJOc83V2e/146cY4ByK+W61j8Jxz+Jn/2Q==",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [35,27,94,79] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [36,51,59,72] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPsm4/4Ibftl2pK3GteDUKqCytf3wI/8lPTmrif8EHP2z77QtY1jw54l8EaxNo3h691aTSdLu9SkvLv7NbvN9lt4jYgzXEmzy40XhpGVSwzmv1l0L9vW01LwjceHdT8BaTf6patJa25GtG3ge9SGYPIYZEA2ef5KEK4BUy7W3KiNnSftep8TPD//AAgfhP4gWfwk+I+m6a134i8QaX4ettWXS7VR8sccJuYWjlkmltoY7ueOaEM+XjCsCudXi3gL6pKqqjjZN/adv+3bXvfRJbuyV7o5KWGzd1Fdpq/a39ev5H5Tfsmf8EO/2kP2zfhJqHxZ+EPxy+F0P9k3ENvqPh3XL3WbXUYp5AG2Kv8AZjRTAKdxlileIgEK7HivQ/Gn/Bs3+3T4C+AXjz9ojXvjH8HxpPw+8Kaj4g1bTU8Q6p9uu7WytZbqZbdG00I0myJgod0UsQNw5I+p/wDgkn8O/wBm/wDZn+M3ibxr4m/aw1yyg0fWrezXwRoGqiTT/ENs1pqCPeXcRFw++OVBIqx3E8cLiaPzGINfWv7cf/BSn9g/WP2B/jX4K8JfHppdQ1z4XeKNB0q3Xw7dxpdX8ml3ESwCQx7AS7Bcswzz1HNb4TGZNXwicqi55K695aro0uz/AKZ04mFeliLQXu/j/X9WP5kKKKKgoKKKKACiiigAooooAKKKKAP0n+OX7bv7JHjL4W3nhLwL+0FYXOo3EJUT+JfCuquNzBgzK0dsPKYFy6ttbDbuBuDL4b8DP2pPh94A03U/B3h34o6L4Fl1G0tNN17x1p2jaldahqlrbXL3DCNDGw23M9tpkjhvJEaWUQRNz3Bk+SqK8WlkOBpYZ0FdxbT1tummnt0a63R3PH1HJPlX4/5n6JfC/wDbL/Zu8LeJbzxN8RP2uIfF0k8UEcH9s/Dm8LwLDHOsWxvKbmPzY0jJ4hgiaCMIkjAZX7V/7ZP7GHxc+EWt2Xh+TRbvXW0yaDSltvC09rcCRoDDGFmFtHhFZ2fa8uMLghshB8BUVnT4ewVOpGUXJW2S5UvuUUdEs5xMqXs3GNvn+rCiiivePJCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/2Q==",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAor9JvDn/BFz4Jav4asNauPFXjfzLuximZYtRtAAzoGIANp05qzYf8EWvgDHJv1bxL49eMA7kh1eyjbPblrNhX0X+q2auN0o/+BI8l51gU7Nv7j80KK/VHwj/wQ2/Za8Y67a6TbeOviJaCXiQzatYyZJYABStjwcHPIPQ9K+mvC/8AwbX/APBG22+Jdj8Hfil+2n8Q9G8T6zpEFzomhT+PtAtry9dxIGaOCXTjJJHvikUFVxmJxuODjzsVleLwbSq2XzO7DYqli1enqfgpRX7469/wa/8A/BMLw1omv6feftE/GK58Q2b7NItbbW9L8qR8gESbdMYDAyeHGa5Dw3/wbL/sU6pdw22p/Fn4qwpLKqtONZ04LGCcbmxpzHA6nAJ9AaKeV4uqrpBUxVKm7M/D2iv6SfD3/BnH/wAE0PGmh2t34T/ab+Mkt6LaP7bBLrmleW0vG8o40rKqOcAqTxzjPH4m/wDBYP8AYq8Af8E7v+Ci/wARP2Ovhf4g1jVNC8H/ANkfYb/X7qKa7l+16RZXz+Y8MMKHEly4GI1woUHJBY8dSjKkve37dTWM1LY+aKKKKyLCiiigAooooA/o88Uftcfs6eCP2W9K8S+JPjT4Z8UDRtIsWbw54e8R2N3q7ovkwzPFbCYSTCFZDJJtBKohLYyM7v7Jfxn/AGcP2oraPW/hfBFfu8EizaNr8TWUgA3I5jdyIbgIeDJBJKisy/MGK18NR2vw58UeCvDFvLaX2oz6db2F1qOifa5FjgeBTcKsyqxje3McvnMk2yM+c7Oo3eYee1vx18Mfg7rVqtnYXGkaOYldrrw+8lrLaojwln8y0cbF8yCE5ZPuxJjKr8vzsPE6slGlSoyv1SW+21pJp+f4HPPKqLlGpOWvVW9La/o195+qcvwK0zStWbxPoaW+krHcR+TbteCYBGz8ysuQyDjOSW+YY3DOPzA/4Ku6V8CNP/bi0X42fBX4m2XxI1DXNCkvPGWtfBTx7HDeQ/YbWK1glttUzNDFK0T20bWqwmSNYIpjETcIXu+DP+CoOrx3Evhrwz8TtVt7HQNPWe126TcXIaOJCY7N5gryC5lijfaW+82SJcnA6b9oCf4M+KfDfiy4+Jt8bjW9GsbLUPF994W0q5s73XtQknWOfTdXtS8zTXOnJqGoW8j7oTFHYt5cUar9mledcfJ+xo18NUvNrVrWK0952bdk3FO+tpXtZM9LLMs9lVcqWn5P5Wt+W259u/8ABPT9uH4P/t7/AA2nk+EPhC80LW/DK26eMPCss1/dy6RNLJcRQCS5uY1EpkFpMQeXG0h8HGfqnQPCF1ot8kur6DM4KgqLlGjXnIDZyMgHuDjI5yMivzX0n/gpT8T/AA18OvhdoHhfxToRMHws0+ayj1bwddWtxPaxO8AeLydQkS9ihxHbmZTvBhaNxuhcnttL/wCC6fxQ8F3lp4buvhsuoNCgGoX01zcWtleL9l5KSNHcJHGZiSWZ8x7Nh3sylvoVxhgcMvY1Z+8t9Ja+aaTTXoc2Jyyam58rir9VbbydmfqH4A1TV/DSsulxpEz5BdPm29RwenT07Gv5cv8Ag5Jna5/4LTfGadjy3/CObvmzz/wjmmZ5r72+L3/Byv468V+JU8H/AAcurTw/pyzzLe6npts2pyjbDDJbyRMyonyy+dvQoVkVRGdoO5/yb/4KWftJ+L/2vP21PGH7Q/jzToLXVvENvpP2yO2t2iRjBpVpbLIEZmK71hV8ZIy3BxinPN6GOqOlCLTWt2mk+nXXqYww9Sk7vY8JooopGoUUUUAFFFFAH66+CfAOjTeHbPU71fsk8+iQQo2naVBb9UjViDGF2blViSdxLc5DO7nhvjp8DvHviLwraeFPBNlBe6P/AGQtnMxAe9s5/nbzIVuJo4imRChbcrdwuRk/MVp/wVh/aGsdIg0eDwL4H2W8CRLI2mXZcqqgDObrHb0pY/8AgrP+0lE2+Pwp4MU5HI026HTH/TzwOO1fC08hzKjW9pGMb37n0Cx+B5bNfgej/slaZ8ZP2b/GUPiTwx8GfEMniyHULj+ztSuNALWdtcm2kS1mlM0JjmiE824gkxobWOVlYqqjpvhn8Af2xPANjeanpHxCbT9duLxdUvZ7dz/akN9NOJWmhuJPKK3ERcyrItxgSxfK5IOPD7r/AIKxftH3SyRv4T8GKsseyRV0265XI45ueOnUYOMjOCQYLv8A4Kq/tJ3t5LdSaF4TVZIVRYI9NuFSNgMGQEXG7cRtBBJX5AQoYsW6sRlWPr1pVvY0+aaSk3q5JXtF3+yrvTzZdDHZfR+1Ly6fkfdHwz+H2qaz4m0j4jftCXdxfRvdeIr2z0a8Mzi2u7/VZroyyvLcmPz5IGBKwod2IzLK0kMSRej+LfDPwYjtIdfHgXw+bsP5Fvdz6DG86q+wyGNgu9QD8+750IXqBkj81L//AIKrftA6mYDf+B/BkotxHsRrK+2M6x7C7J9r2MW5JBBXLcBQABAn/BUr9oQXYup/Cfg24HkyRsl3plzMSHJL4d7gyJubaxCMozFHx8igefPh7M5z5koryTSS66feelHPcvjDl1+7yS/Q9F/a68O+EYvF15PPoF/PLGZHms7aeO1QsbiNcxBVIYn5MgM3JOQqowX5X+PWmaZpHxX1Sy0bUxeWpW2lguFnlkVle3jfCtKquyjdgFlBwBkDpXp/iX/goz8Z/GGkpoXiTwV4PvbRboXJgutNuJAZfMEhcb7gmNiVUb49rBVABArw3xFr974n1eXWtQjhSWVUUpbwiNFCIEUBR04UfXqea+nyrC4vDJKsrWVt79uh87mNfDV581L8rFKiiivZPMCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//Z",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [54,55,70,69] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [47,51,69,70] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD8AYRmZBxyw+8ePxr9APhg/iDVvAmm6hLrdwlz/wAI4jWzXDlY40RIOGxnIMYfjGMADHNfn8nLge9frb8LvBPg2X4NfD/TbOzvotc1Dw9AtvqaWyyCSVbeLIZdu0RqpUdCwJBOdxNduDXvSOilGTg2iPxH4/1mNNK1K3OmP5E0b2t5qCbIoTJE0RYMxVVyu0fN32967X4W/FCx0v4VSWGkW0ltDDcbNS08SLJHLcGErMQQWcsWZjtZtq7jhVIGOC+LXhZtI+AUmp+LLE/bPMjjmgWZHU7JyfvISDmMg5H90c8nOf8AAvxR4L/4QXXdN0fxHcWlnbXcZjurwEoS8bsECI7kbmRlIG7jk5+5XXzNS0Ju09TRh8W3N58ZLvVrvXLlS91di2tWYySXEbmYblfPB2ud2cdM5JOF88+Mclto+m3VhoM8kttfWSQ3iSFwkBWeKQMMMA53RKPnUgbzgbgjjXh1mzn+KmzTdWsbuKJJmgmKSQZ3FlyzbAVxuyFBAJGM885nxi0rWH8Sf2Ff6c1ivyi+gkjCEIXD85zz0O4cccZHVSkF0zq/2VdRsr34can8L/iL4Bl1Pw1fW1zqU8lrYA3ZMaqY/KkLjaqyIsp3bVCrLyd5Bu+BPhFZ6/4WnFp4gt9N8Pp4gayguUvkVoGlMThZJETyt4AILhcNlsE/KW5fw1qllazx+H9X1vXbK1s7B7TT4ElDQyQyAF9oYLtR8s3od+T3qx4n0fwxpnhK5XwVqdq9tqcwhisp9Skia2l88RqZFUlCuw7ixYKoxk8U1oLRGR+0p4N1D4XfEOz0DULy9Wz06Vykmow+Wrsp/g8vkk7cBgeSoOcV7f8AtK2/hDw58K9E1DW9OfxNbw63bXHlSzNLHespeRg+QrNEdrxvnLZb16fO3xw03xNoV5pdl8QtQXUbm1tEN95Vz5jRu00+FdwCrttQtuBf5XUE8YHqf7Sep+IbV/CulXWp2SzX7SieKe4CiEwxAy+YY/mCNHMQWH3wcDBQ5pOzY+ax3vhDxJoFl8IdOvFS/uLvXtLu5ItPkuFlkkcTSwmaZhsKW5dOGPLlGRTuy6+DaVe6nf8AgO4sP7VaKa10bWzcwSKziPyIzEsSsSSFCSptB6MuRzivcv2dPANvefCn+0xoL3VleJO13mCQTRTJIQrArywIjAxxgJggZrx34h+HfDvhP4i/FjS7+8YW2jadHdaRZCdowLi/W33ZwBnbuUlTwSgGCMmhp8txPc86+E1trV3r/hyfw5pkVxLNdzxypJbmVYlICGVhn5dobcGyNpUHIr1P4nxOthLdatapDDFMyXzw2ghgJWWEkIVGCzDzNoJPBBHUkw/Bbw4bb4V+EtX1q4tILPUZ9UghMsqRySSLJGBEmQS4JO45wFCMRk8Dofil4P8AFGt6FbeG9N8MW6TzSWfladNqcXmyzBlVbfbI3V1V+EGC+c4NY6J3aKT0PyljwJFJ/vCv2j/Z68Q6Ho/wR+GNxc6M5u7zw7DFp95PMuQ32FDN5ZC5GDGpPTBC56c/i4nLge9fqr8G9Y1C3+Dfw78UXT386jRYktjFnZbF7dVZh2B5GQPXmsMFLlciqMrU5I7zx19s1r4JfEbwONCeQmRmsUe22NDhwUaMnB2YUYJ6j8jwP7Kvwk1y40HUJPKgZ11W0uVggkSVfKENwjuxU4BUyIMdTu46Gu18RwePvFZ8TiPSmnbUtDtURjJtZds8ZLDoxYhMELkjeM4DEi7+zxrug/CqS9g0PWfs1prxt2Rp4ztlXD+W251G37wyD3x6iul25yGjmNd+HFh8P9Ts/HNroE8DWniJVm1C8u0eOSSJ4HZY4wv7tiqOVz6NkkhTUPxK1WTVfi/qPi7xlqcIGo2QeB106OVLlBGI4w6FdqswUFgoIBzye/X+J/HNnrmt37xra3EMWoywPMsEW2SVXVm2thvmBwc9RkjjJFeXeKPH9r4h1Z/Bk+lO+o6XaQm1aKLKM5bZ8x3g/JkMQAep4yCKmUopXC3Q6jQ/CEK+Fn8M2cFvJfvpzB2NqIzF5y7hhU4LYJyB2JwO1cf8TntfCXgjVrnUtKtLC1It4be3iKPNPN5gKlSjlMbBI5Zfl5xwX59E8G/BrxrqPhOLw5458M2+kNcXyW8OqXm5EaGaUAHltnOeN4534JXbV34+/s86f8VEs/A2neK5bjV7S++03r6Xpd1fXd3JPHK4AtVjQxpiHz/NJwUvIwqsY5MWnzK6QmrHilj4Em+N3wG17XvBd6RdaPcWVxeJqJYyOFS7DwIIwR/y0aVQcDCydCQD7NqXgDw9rH7Xvw3udM1jT3tdU8E3GrXGpapctFbtMI7lREM5Ij2/Zz0UsHbuy1h/AH4c6z8LfAN7pniPxNPptxrFxby21mGmtwpdco7G4hWIkFPvK27spw2a9Q8e+F1m/aO8M2utTWd9Bp3g06JMba+XJRWkDbgAAj7DIh5P3ShLc1EPafaQJx2Z3nwP8LeI/EngnSRY3ttLHaRzkeXZBX+eVmOFDeVGpZi21FHLnd8xNeHftR/DzwtovxY8XeBtTv71tT8UaNpeqRC3s0dAkErQiMktnAlRGZdrfLjHPT6b+E23wloC2vwy0V4rfU9WdVlmdwlrFsCuIuC8pbegAXKZV8spFed/tG+GvDHjY3Pje10W+tddT/iX/wBp21x+5iheaNpiVbO/GAApGBuJ5rfeNhu0jxzRvhp4/wDGnj34cfEXRNL02XRdEu7uW7txdLFFtdmQeQJz+9ysUZIxn51O3sMH45Xc8/i74YW3hDUL7TfEsN7Bb6rfXqRFJbnzLZVmVz8sih95O8cZHA5r1X4RfBnW7bw/o15rPixLq8trmS3hvRciKeR0lm2eZuYFAysUXr9wfLwMdH+0R8BPGH7Q/h7TfiTc+D/Est14buIEuNRsYkFrYs7I8yXRO0eZnZ9xgEGdww6Gokm4glofhVbqHnRSwGXAye3Nf0F/sL/sleP/AA9+xp4Wvb3S2uYdZ8Lx3cMs+lmWOCGWBTEwfaRGyqxYHqNwJxiv59LYlbmNh1DjH51/bd+wh8PvBOr/ALB3wk8Paz4VsL6xuPhXoIntb+zSaOQfYIGwyOCpGe2O1ceFcIxk35fqdOGjD2EpPe5+cOo/ADxNZzefBq6S+bZAs8mnAQwSM6kEgMN25goPILBPQV8Sftu/CfQvgF4dsfhn4b8f6hqDX999ouLtZU2okOQyMn3vNWVmXJO0FGGMrmv6SNR+BHwbvtCTw1J8NNGSwigEMFrbWCRJDGF2BUCAbAF4G3GB0xX4Y/8AByj4S8PfDH9tLwl4V8KeFNO0rTZPhfZG0Sy4351DUQ8kgwPn3ZGecqF56gXKaknYzaifE3w5+MOs+AtE1Lw3o+lW2sW7xgG81i3Ja3BkZwUCsMMXdievU/Wua8UeJovD/jmPXtC8Y3ZSCSGaHUba3MJ89Qr5VG3H5Gyoz1256HmlpVnPFNcAiOSOSEyZT2IIx78kVx3i+PUdW1x47aFlhVh8+0kDPJ6ccZP5VhFtu0iJW6Hrv7LtlL+0P8Zbjwh49+LGsaHYpYyXY1CBfPlmdHRUUBmAQkuW3HONuMEtkevQeI/Dfw71XVvBXjnxzpmqXGl+JltbO61ufUy15bW8EsasyWfIERJjBZ8nd8q7Cc/L/wAIrfxD4A8dweMLGdXgWCWC4jLMGdHQgjGMEZ2n8O1d74e8cahHC1vreli/eOYvBNdZlZMjnBbp36etd0a1OlSva7MnzXPV5/i/pum+HJbzTvFEeqC3s9Llt9F0zxLqG+eSGQONiPCVV1CsOCFVWbYc4I+kPgtrnwk1vw3YeIvir4bvp9d1zR1ljsbiFkMNvI000kYlwXBKSR7kyqMEIzkbW+Jbn4y6vb2wE2jRQyW0ZitGMPzImDwu7OB9Mda+8v2C/wBo/wD4Jc33wH0k/te/FjVLf4hR3Uwv01DStSnQwC4kEUSy28LxlDEYjhiMFSOmayhXqVp2tYuML7nR/CqCy0Ix+GG11E8M2FlK2jzpAVnjhEwUQv5jdSGxkBQdxIyMGtDzfCDyagdI8Ktb6LrVmlibGaFkVbmFWMnJyWZlkUt93YV2dQQPqv8AZz/Zm/Ya/bFh1vX/ANn3432mujTJYZJf7EQI2mrNI7RpLDLHwGWOVQCo4UnjgDc8Uf8ABH5daiaDQPiCNKNvqf2qylku7i6WQSO5nWVHwRkFAuxwFxkg9Du5JaN6lRhZnwh4/wBC8Hz+Dp9aW0NyZJIxFHeSL53loyKdqkkD5Wcf7vHqKfD49tPD3hTSrmfR7nWZ9YmnbSLWXXTbpLIssltG0xePEYLwqp2ney88KiF/t6f/AIJG+Lb7w/qXg/VvHdj9k8lxZX9rG0k9wZI2371cARBH8vZgvlVbOGO6uO8R/wDBI740QeEP+ELs/GulXMN3IP8AiY3GnyGSzzw3CsTtCl1BQqx81j0ULRzaaNGnKnsfyd2YJu4gBk+YuAPrX9wv/BPy4+1fsSfCGfaRn4X6AQD2/wCJdBxX8PdjIsN7DMwJCSqSB7Gv7gP+Cd+H/YZ+EEqjAPww0Dg/9g+CvPor3Jv0/UvDv/ZJrzX6nswbJ6V8z/G/9i74TfFb9uDTvjZ8Z/gPpPjrRNT+HQ0BrvxDHb3Fr4fltrqe4BEE4IP2kXW0svzKbdcYDua+mQAOlZ2veE9A8TWr2Wt2AnikQq6NIwBGCMcH3NaU5QUve2JVup+BfhX9iPR/Evwr/aei03wx4UszBNoXjfwLqOksLn7B4dn1DxJElrDKSzorLp0YEfVgIi+47NvtPgr/AIJufDH4bf8ABOrwb8PfiP4O8Ca14m+OHxk8PWWm+M7KHGo6ZoEhhvrl4p5Yy6zfZbS7BSI7GWVMb3JD/pRYf8E5P2UtI8W6z4x0PwRd2M+v6ZFp2qWdrq84tJbWPzNkQgLFFX97JwABl2OOTXF/GP8A4JffDPxV4e0TS/hvq2oaZL4Zuorrw6l5qMkkGnyQgCJYUUr5KgKB8nOAMcjNbxWHc9GO0D8ZPi1/wT00fw9+zd8b/j18NrqeSH4Y/tFa74Nsra5vN3m6NZwwNE7KE5mWSUxvLv2M2wIp3bj9DeC/+DfHw143m8Cf2L+121pF428NXOtWcs/hBJZJLdFs2jaOFbwMxkS7WTb1jRcvtJKj7L0D/gkP8Ovg9+zXqvwM0p/EF/o+o+NdK1fV7Qaz5z6isV/ps9wzq6Pvaf7IVlHUqqbVb7ps+OP7d/ZW8S/DTXPBvwy8V3kPh7w/c6TaQ6db3V1ZWFrMtqJYDI9nGkZjexiijDyrK0auTC28OmnsYTvqQ4RbPiXwv/wbl6/478WaZ4Z1P9pi3hu73SL28uhF4VMi2c1tcQwy2pIugHdGmQMwIG44UOoL0W//AAbczXdj4u1XRf2qobiHwzLd20cD+DpUluLuFQ0cDgXLeUZQykEeYVWSNipLha+uPDf7bHjHwt8cLrx/L8OdattBZNUXT7CTTZA1vdXxsJZSzAfOhmspZMEEg3JAICgV6z8Af2rtCl+I/ja21bQtUgtvFPjWz1DTLy5hURxRR6Jpts2dpzn7TZy53Af6zIyK1WF7L8RJx7HGf8Emv+CauvfsL+H9V8ZfB39p7Q/Fvhr4iR6be3AvvAkyStBAsxj8mZNQAQkXD5LRvyFIAwQfuU9CCK8N/Yk8X+G/D3wQ0X4P217ceV4Ojn8P6S91CVkubLTp5LCKcgDjettv44w4xxivb1laYkqCAD1PeuKvCcJ2exVnYcrjHC59MUBvUY+tIgIJBGMUOVPBHSseoH8DVjGs19DE3RpVBx7mv7g/+CeqKn7DXweAH3fhfoIH0/s+Cv4gdD1GDR9as9WutIttQitbqOaSwvGlWG5VWDGJzE6SBWA2ko6tgnDKcEfePgH/AIObf+CyHwv8L6N4F8CftI6Rp+heH7CCx0rR0+H2jPFDawoqRw7ntTIVCKFyX3Y6tnmopzUYSi+tiKVWMKMovq0f140gWQH5yPwr+VRP+DvL/gsUoAbxR8O3wBkt4GT5vriSrGn/APB35/wV/sr2G6n1D4Z3UcUqu9tP4IISYAglGKTqwU9DtYHB4IPNNSj3EqsbH9UZDZyMe1MJcnBx1r+ZJf8Ag9P/AOCpSjA+AnwA/wDCW1v/AOXFJ/xGm/8ABUrOf+FCfAH/AMJbW/8A5cUlUQKqj+nHB2YxzSKjDBIXIB5r+Y8/8Hpv/BUonP8AwoT4A/8AhLa3/wDLij/iNM/4Kk/9EE+AP/hLa3/8uKPaIPaqx/TSdI0ySQzS6fCWLbjmMHn1+vv1pDoukNJ5n9lWpJ6nyFyf0r+ZY/8AB6X/AMFSSMH4CfAH/wAJbW//AJcUo/4PS/8AgqSOB8BPgD/4S2t//Liq9s+4e1if02LpllGA8VlCpHQrGB/SplT5Tj05r+Y0/wDB6b/wVKP/ADQT4A/+Etrf/wAuKUf8Hp//AAVKAx/woT4A/wDhLa3/APLipdW+4vao/psaCcqyRSZLEcseg4zjH4/jSQQrHCsKT+aEGwuz7iSODk+uetfzKf8AEaf/AMFS/wDognwA/wDCW1v/AOXFRw/8Hon/AAVCt9/kfs/fs/Jvcu+zwprY3MepP/E45NP2ug/bI/IiiiisDnCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/9k=",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDKl8X6Ro2tRWsN80NwMSQzRNgg5xwwPX6c16f4L/ag8R6Rci0+I7jxHpJDfu7mFDNExH3lYrlh2Kk4x0xXyj5dmmkWd+NQXcIFxuOO2ehHtUzeJtRXbm9ifJx0H9K+oVdS3NU7I+oPHH7R3w3HiDTfEeiW+o2Yt9RtmWxe3QQlN2JAoUnB2nAPHU1wfws+Pnhdfjl4i8bakoaG1luls3niYySIGgt49nBCOy2m/no08xxk5Pl+mLrHjtV0WGIO0JVtyHZ0YdDnrxn8DWB4TgWHxpq/h/W9Ss7Y6fciOHfcsrzbneYFuquR5n3uD90ZIAxk2nIfMfX3gb9pnw/b3Euqa+mnxvPdKyMkfzW8W0YA6ZwdxJPOWPbgeq+E/wBqL4a3l9s1LxLboNpxOYSoPHTgfrXwyutaTp5aKfX7CNFPLvPx6dq1fCmsaJeeKtP0zWvEUMFjc3aR3M8ciZiRjjzBuIGBnPJAOMZHWtFy2HdH2v8ACDx94fj1zxdbW3xEsLnzvEnn2tzNMu6SFrK1AOC3zYKsmf8AYr0WHXre6t/tFtfwMuSNxlAz+Zr4tvfh1oniPS/7T8KeILZLe6VprC7j1exlN8RFOwSMSTojEfZWDKGDgui7WZ41fyGLxv4l0DXp/Dd14nKXNvj7REtxkRk4OD2z7/rRCpGL0HeyP0Q8UfFDw7oltILvWrPesZIjE43E4JA618W/G34n+IvEuv3Ulrq0ws5JSWhdyQQQP8P1Ncrp9zLd6e923iSaSUAkM15npnFcv4g8Sy3EUYlvomlV8sF29Mf/AKqzlONxN6EmlXEl7c/YlcJJZyqLaRVyz/K/BycZwOvTjoc1LrtxptpbD+3deeJ78BNMLMT5zkgFlAHCjkkHaeMAZxXGaasms+PRa3mppapPIkokbnYERl3YUZI2npzyeh6VU+JerJpni7VPhNrAhtdSmeHVPCr7lmRbhI1XAl3bQskaSjB+Xe4JxgYhyjcXMUvjo7QfBrx/D9qacp8P9bRnyQGBsZ8HnnqucV+UFfrv+0voTz/s++OdSuLuwW+g+H+pm9a3lkEcgNjPtULKFdXxzt29D164/IivNx3xoiWp+yuh6Br/AIn8P2Ny0UQhis0YedcJFlFGONxG446AcmrWmx2Vpfsr+Wg43kEBu3J9vrXvtn8AP2LY/Dy6LZf8FSPB1xbLbbFaTwRqKfJ2Hyq2e3Oea07DxR+yv8PPDNj4cs/jd4E1q10mPfcXltFqdtPLEozI/lJAxzgs4VyMnA3KCTXox97RgnoeQfFiS6/Zx8Dp4xvfFnhvTNVm8t5PD19cW0+p3lu37rNvEYLoRT4kYxySxqU2iWNsqpqhpPgqy+N3gfRvjd4Au72exNklhqCa/rsUtxYXMLOBbDd5ZOV+dUSMDBZgMEkfPH7THxF/Zo+MHxH1v4t+HviH4pt/Exmc6XoSfDu1Gm3T5fy1kujrG9AB5ab1tvmUAmMEYb6V/wCCdf7LXxQ0DwfpXx6+Nfg7wro3g7xn50Ok+MNUuZXa0lkjdVSO0nvrWC4V5vJUeTFdyeb5cfy72Cwm+ayBO5oeAfh14W8KvN4l8UeM7CK42OIbe5gJGGICtjG7AIcMMbguGAbGK1r/AMc+PvD+kWXg7wt+y/c+N/F+vxXl5BpmitPNBpcYeKJfs8qBVmiZ5MLHgr5mUBYFEY/aV+C+ieLLfR7j9nf456J8WNSBhlXwp4R0W8i8QaeTv3NFbOssMyQI8hYiUEM/dBx4J8X/ANuNfhj4rg+Hvw61jVPE2iaXqEV5d2vjgpcrcyrbwpHblVSMrHCyyONu0NLsbkRx1baW43oeP+Pf2hZofjHb6/outa/4LhtNWDal4Ts0kX7CFCqZkZZU3TyLuLAxwqpOB8pwPqHQr/4SfE3wXDr3wm0TUNP0yyu5M3mvWkcF7qLOVzK6ozjqCQquQobnOQa8W+L37Vnwk134j6F8b9Y/Z78HeOtQt9cuNRm07xVFd7IS08U8MEr2klu19EoXyytwzxuIsG3SNjG3d/Az9pnxD+0t47fVLnw0tvdw6DLDf29vdgC7dDIRcZddsZWN1VssdwQbVXpWa3EnpY17+d9HmEMdvFcxTEn94m7knkj3zmsW+0SBoTO6RxxgHl1GfzPPY89val1jWrzTdYkt4Zwwt5DBJH94KwPO0jg9O2RzVTUdX1C7dWvbiWRSDvjzuOOMjnpkVXQZm6Xqtx4Z1LUNd0q80EC30y5QRaq0LLNJwyLtkU7j8rYxzll5HBHlN9feKPilqcvxk8TeIdMt7fw9b3H2C5kna3kfZJ5gWP5T5nkvcIcEg7SFGQpC938WbXxJ8Rvh9b+EdC08x2emagy/YbFRPe3Ek8jbWS3MoaVsjkRqSActgc14Lf8Aga58H6vcDUNct7HVNJk8/wDsnUrV0lLIvmBHRx8r5AHlt1JxUSFdXPbLjxJc+Pv2TfiY/iXTNOsNd0rwNqK3F/dqIri6tzp1w6qI2wxdyQd4GSCcnHNfl1X2zqPjXxHe+B/GereL4Pth1LwRq0NtFJMpKZtJcSBV+4FODgjPHYHNfE1cGLd5IUj9bdd8Z/BLRNYn8Jva6nqNu1xDbnUtEiUW90IvLAlhE4WUqSpbDxq3z42g9fTPjh8LNS+Cd/4mu/hxDrC6jLpp2XE3hy6t3jkchjCI7u3iZiQDuwrxurEB5Bur40+J/h7xF8KfGGofDPxXPPp2t6HqM1hrOnSyB3tLqNyk0TlSV3I6lTg9Vr6O/ZY/4LYft0fsufCO5+CXhX4gR6roYCDSJvEL3FzPo6pEIlhtW80COFVVcRbdqlflABIrr9uuZofLbQ8f+Cvx5h/Zl1S78a+A/hBpQ8eac8I0vW/Fej/2tLpU6opldILiT7Krl9rK0ttLJGMbHQkuev8AFP7TFr+0N8Rv+El8e2ms6p4hPiKyn8G6jd6k1xaeHbVZLdX09NN8r7KkBCbgkcJVXWFVUopV+4sv+CyH7WV54pOq+I/GX9oWF/ffafE2m/u4BrLGNYm8yWKNXz5KJGGYuwVFGSAFr9d/+CR3gX/gnH+0r+zzN8cP2ev2VtJ0BtQlk0bxr4f1C1guBHdKivJA7CNEuoGSYEEoqlXK7EIKA9pFO44Qcup+eHxq/wCCavx7+K/xQ0P4sfsv/EHVG0oaMnk+KLXwN4g2z6ilxcicp/ZemTLE6HALOIwcgJnacfEn7UH7K3xm/Zq+Ja/D34t+BtSsNavIkngS8s5Y3uRJhtyq4DZJdcggNluRX9YsXh3w5otisFvYJZWVunywRXBigjUDAGwEKAABgYwMCv5g/wDgpl8ePgv8T/25PHfxZ/Z703SrHwVL4lB0O10iMQ22o+SscU16BGcYupY5Z9yhSyzAsA5Y0KaqDnS5Vc8S8FeA9Z8c2z+Ffskdnd2LzSyT3z7Gkyo2xbSBk5UgdcBsngE17n/wTx8A+C/F+v8AmzaDo+jLpFrd3fiL4keKLS9u7LQ4WheOELDFLHEZW3s6M25laLd8qBiOa+KnjjwpoHiK68QfDPWDavfXbXF1oMsjfZo8kSRpC3DiNWwVR2bbtQ5O3Ffrd8BPH3/Buj8TvF3hvwH4F+CHhKbxB4g1G00/S7W+8IahKZLu4lSKNGmniwSZGUFmPHViBmnJRh1Jpx5mfJvxg+Geo/HXSofEvwUvviJ8Xtas9W/sG58X2XgcJp11HbwIokhFqHjEcbnyvNDsJNu8Dadxj+An7CX7Q/jfxpLH47/Za+Iei+HxavLazr4KvyHJkLLGHMPPykjcB/CO5GP3f8N/D7wR4Q0600fw74ZtLW2sY1jsoETIgRcBQgbO0DAxj0rWNjZMmw2cWPQRioeIitka+zP5w/8AgoZ+xl8Yfhbpdl4s8J/s7+M7PQLW5vLzUL6TwXq8MljBHHH+/nuZAU8tSGkyBHs7jGK+FNYsvH+o3sP9tNfXEtxgWr3QZnkU5xtLcsMA4x6e1f2EeNPhD8MfiNpdxofj7wNpusWF5bvb3lhqNsJYLiJhtZJI2+V1I4IIOR1rlvE/7Ff7HfjUwP40/ZR+G+tvaRiO2fWfBFhdtEo6BWmiYgfQ0nXi0S6XY/k51cWvg/4R+LtD8SeAZ7bUp/C+pCPVntpDIh+yTIY2jfgKTwWGCpBJ6YHxNX9l/wDwUw/ZW/Zg8B/8Eyf2jdb8Ffs2+AtGvLX4E+L5rW60vwhZW8kMo0W8IdGjiBVgeQRyK/jQrjryUmrETi46H9Av/BTz/gnx+0J+2Z/wV+0j9nHS9T0Ox13VvAEGojXb/VGuLS30yGa8WMv5FhA0QUKkCRus8gIj33Um/KfJv7CH/BL/APaM/wCChur6/pH7Plx4d+z+G1tn1TUdc1CS1i8u48zyWjHlM7bghbBQcflX9JPxL/Zh0r4s6hD4h8QeLtSsdZtPDup6Jp2vaOyQ3tlZ6h5P2tYZSreW7/Z4SJFAdDHlGXc27k9J/wCCdvwi8NfF/R/jT4L8V+IfD+qaJ4eGgWVt4eNlZWa6Ui7bezNvHa7PJtxv8lBjyvNk2EBiD1S9m3e5u0r3P51/2rf+Can7Rn7Hvx/uv2cPiVp1hqGux+Bn8V2s/hq5kuYbjTkZ1kkT90JCUaOVWUoCPLZhlcMftn/giX8BP+Ch/wAE/wBq3x7+yToPxPPwpvNJ0nTtZ8c6XrXh211uGVvLLWmwB1/1iXI3eXMvyggndGMfqH4j/wCCYH7Nfjv402v7QPxMOv8AifxXp19p11pWr67qomlsmsixhjhIQGKAs7s9up8mVmLOjNgjttD/AGSfBPhz9ojXP2oNM8X+J/8AhKfEWiW+kao0+smW0azgYvDFHbuCkIV2kf8Adhdzyys2WkYmFyJ3uEUlK5xHiv4Vftm+Lb3RPAfxP/aR+Gl/o08hutYtLb4KXaRanHA0WbOZpdckGH3lxsVSfJOQUDIfx0+Jv/Bux8Xb2f4gax8HfjXoN/4d8C3mpxWMGqLcre3X2SSfNsBHE6mVYo4izsyqWmUDNfvV4v8AhavjKCzh1bxJc7tO1GG+sLhYU823mjJG5WxxvRnib1SRxxnNZul/A2z0G+8RanpPibUWfxLqMN9qlvcSRmOSVEijZUwn7lJEhUOqcFmd8b3dm2jOmlZv8Bzip9T8W/Gn/BsZ8crbxVofgvw5+1l4V1DVtT0O+vbg6jpV1b29tJaS2cDQLIhleTL3iAExpwpOMkLUnh//AINqf2m/DXg3wn8RdN/am0TTvFd1qMEl7ZW1jdxxaF+7llSdbxW3tIskUScRJhnyG+Ubv2nn8G/ELUPFdp4rg8VaDALTT7i1tI/+Efmd0SZ4nY7vtQHPkxjG3txjJqt/wq7x9eaVLoGtePNGntZNWh1DFv4cljffHdJc7GLXbB1YptPAO1jUv2f2n+ZKppH5f/C7/gk9/wAFd/Gmr6zoeuf8FaPGWj3mha0NNv5bbxx4gmzA9vb3KzQF5I95Mdwh2HaAykE+n6/v97p+VcanhPx7pviO88R2eqaXd+bp1vBa2MsEkCxyRNOxYuGk4cSopwowIh97gDrENw37yWFFbHRTnH48VFVRdrMtRJaKrD+0VlY+ZGVJ+VSvSmWd3fSFvtdqIznCjdnNZ+zdrodjw3/gq8cf8Etv2k/+yBeMf/TJd1/EjX9tH/BWOVj/AMEuP2koxFnPwE8XnOf+oNd1/EvWNRWsYVt0f32s4zgGoZtRs7dxHNeRqxYAKzgHJ6Vj6h4XuL25VV1FoYkv2ulMbfMpxwBnIPzZOCMexrjviRZeM7/wlq1o+hXFpHcJ/o82moX1B3DopJaJWVdwySy4Kr0wQQOuFGEmveNkek/2ha+U05uBsQkM2eM/1qVmbHrXmPw7g8Z+IJb7TviboE5tJ5oHsLW4g/duCmZTIFBA+YfdfGcng13+r3t5aJFEkiIrqyPPyxjbb8pCBfn5916d+lKdFKSUXcLIvPIscZklOAoyT6Cs3W9VAsYZNO0+O+a4lCRRvLsU9TncQfT0/wAa5n4jX2t6/p8mkeGy00Uv+j3b2r7mTk5yRwh7HocH6Vh6lL8QbG002Wx0We5jguIjOjTQoZIkhmJcBFx80hhGzGcbsgZJrelhVZSb1A9C0DQY9GkvL5WuBNqNwtxdRS3sk0aOIkjxGHJEa4jB2oFUsWbGWJN8iVFPfA7Vy+o6zcWKEx6k8iMGuHleMZUqVwuBzx/uj+dc1b/Gf7Tpkst5qT2FtDI8cl7dKgZWH+9lSOc5z2p/VKs/euiup6MdZsRIVdwvzKqbsZcnsBnJ/KrCyI8jIrglfvKDyK8x0XxlJ45uNMtDrTQGzzcKbaSHz5toXLtGyEqvz4JGB17EV6ANTiR1uLK3a7MpxKbd1OwDjJ5/lUVcM6dktxdC0wgmkYYO5T81RSrJcyhUQqiEYYN19ah/tmwhv9st5HGZR8sUjgPuA+YYz2yv50yXUybxmlkVoExjYMlSSME+1RGE77FxdjxH/gq2Ej/4Ja/tJLgf8kD8YY4/6gt3X8S1f2r/APBWy8nP/BLz9ombT7NZUPwM8XJM7PjYp0W7GR61/FRXNXi42ZzV90f32HJGPTpSRpI6hpVUH0Vs/wBK/nGb/g9s/a5YY/4Ys+HH/g4v/wD4qmn/AIPav2vONv7F/wANxzznV78/+zVKmrD9pE/o6kMSuqSOoYn5QT1qOe2cxyzWyoJyh8suTjIHy5r+cO+/4PW/2stRj8q6/Yr+GzAMCp/tfUMjBB67/anR/wDB7D+1yoXzv2MvhzIyyFlY6vfjGc8cN0AOP/r1SqRSvcXtVY/ox1Gyur/TyLaeNbqMfIzA7d3fI9OtUL4eIxpdvpunWCQT+Wu+4OXjjYD5hg8kHsa/niP/AAe1/tc4IH7Fvw4Ge41i/wD/AIqmn/g9p/a83ZH7GPw4HH/QWv8A/wCKq44hR6Fe1ifv14s+H2v6jo13Dc+L7uAurytewiON4iF4C5hdSNwJ5Vjzx2rjdN+Fvh7UbS/8ON4qGo3t6fNu7R79WkiifK4CMAVBVBhSAAD9a/DSb/g9h/a5nQxt+xl8Odp6j+17/wD+Kqpdf8Hov7UlzeR35/Yk+GyzRfcddXvwR19G9zXVHMNLSYOrE/ffTfCeoaJBZaHp1o01vaukAukYFFXHPHUkYGTn1x6V6Loek2FhDvtbXyi6AOo4H4Cv5yNO/wCD0/8Aam0eD7Lo/wCxD8M7WIuXMUGqXyrknJOA3c1af/g9p/a8Y5X9jH4cLx0/te//APiqyrYz2seVaIPaxP6IL+6tWu3097BWG85dlzgdSc9qqpYq2seXY2MP2eeJUun8zDnaPl78gAn3r+eC4/4PVv2t7jcW/Y1+HQLHLEavf/8AxVPt/wDg9d/a5tk2J+xp8OcYGP8Aib3/AP8AFU1iqcY6b/P7yfa9T9sv+CrUMVp/wS1/aQsuAifAbxdtXP8A1B7vH61/FHX66/tOf8HeH7T37T37O3jz9nXxH+yR4B02x8e+CtV8N3upWeq3zTWsN9aS2zyxhm2llEpYAggkCvyKrkrVFUsyKk1O2gUUUViZhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//Z",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [46,32,86,63] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [36,39,71,59] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACirWiaFrfiXU49F8OaNd6heTBvJtLK3aWV9qlmwigk4UEnA4AJ7V3vg39jn9rr4i+KJ/BHw+/ZX+I+u61bW4nudI0bwPf3V1FEWRRI0UcLOqlpIxuIxl1H8QoA84or3tP8AglT/AMFQpCRH/wAE3fj2xU4IX4Pa2cH/AMBar6l/wTB/4KWaPbfbNX/4J4/HO1h81Y/NufhLrKLvZ1RVy1sBksyqB1JYDqRTsxXR4ZRXr+o/8E+P299IZF1b9iD4v2pllWKIXHw11VN7lzGEG6AZYuCoHXcMda42X4A/HeBHkm+Cni1FjnaF2bw3dALIoyyH93wwHJHUUnpuM5Kiuj1D4P8Axb0id7XVfhb4jtZYziSO40S4RlPzDkFBj7jf98n0NaOv/s3/ALRHhXTRrXij4CeNNNszfy2Iu7/wtdwxfaolR5INzxgeYiyIzJncodSQARRuriuji6KvyeFfFEK75fDd+oyRlrNxyOvbtkfnSHwx4lClz4evgoGSfsj4x+XuPzouguijRRRQMKKKKAPRP2UZr+D496HJpmnw3U/l3gS3uLUzI+bOYH5RznGSG/hOG7V+xX/BOnxtp3wr/a5+HnxI8S/GDRvC/h+S9s4Nel03U5bfzfNtoZhBcQyl9kayiFZ5ZPKiJAKnMJ2/mj/wRo8Y2Hw//wCCkHw+8Y6mP3Fjba67t5AlCZ0O/UMULLvAJBKhgxAIXkgV/QJD+1L8NvDI0/S/EmpWMeoXqxyQwpaXqmaDbMHmKm2HkjzIHCqxYkL8pbcpbixGJpYesnJrpv6/qexl+R4zM6LqUYOVm1pq9Em9N9E77H0j4D/bZtfiN8cNc+GlhfSaz4Qm8T6bbaF4y8DTPLBFdZtpltp7yLdbNHMN4ZRKHAhnQq3nRLXp/wC09Zr4r+F48NtdXF5G3izSbe8j+yglUbVrBmXnGVEZOXU7lGSDvWvmH4Nf8FIfgJ8M7C38VazP4lms9W0d99vpPhu9eBJMxOkkkjRhNiYlQvywDH5cZrrPFn/BUD4Ka18OhrOmaba6tqMwluLXQ5PEdhZNYzIN9q1zJdyp8plRHLxrIVDKAj4OdaeaYG9p1Enr1ROL4azzDtqOFqySttTk9/RMTW7B9a+Jts+uQRXNnBaa9dWMlzHlrVov7YbEQESGI71J3s8gdZWAIVlUfCf7fv7EGneBfDPhD4nfsn3kKXF1qtpDfeFZPJkga4ndY1ntnnXdCRNEWcyyMioylSsUEcQ3/Cvxq8Z/H99U1zxDrEvg7+xNJuNS06LxrqdjHc/a54rsCVoVt49kTSXT5d8BDMgRW+Tbo6l4r/Z98V/BjxT4PsviZZ+JPEMWnaRGIF8X25kvzcWXm3bW9vbBZZYYoS6OTs8lo4Q4kO806mKw9V8vMvvX+ZyV8uzCjRTeHqvRtWpzd7dvd1/Lbufnr+3x46vPCPj3QND8I6RpWiXfh6wh0m8t9HlaaNLxGuBNICJDuSQzFDvQEACMqNuyue+IX7Qfin9pv4VWvhjxHqviaN7LV9HgkE17dahp960Nvq0fmztKzIk5VYba2VNrCG3dCJmTefs/4q/sbfC34ifErQvh/wCGfDemz2s/iDStBguPEMr3epfaV2JdX7wwzxyoiyBSCyKlwWkG+PDR15z4B/Yq+FOpfBSL4paH8U9D07SdX8O2fi2Ww+y3ETaiXuzYw2CKLlpS/wA7ndtKKzEtsCknKFRUoOMqkbeqPEqSx7VSVPBVpcunwbu19LNu3RPq9EfAWp/A3x34Y8QWXiGW8iewszJqthqNjq0Tv5MVxNbxyZWXIxPC6BwSTjKsytG5y9G+DXjHxpcamvhqCfVxGqBray3OwQ7wuCBuIzHtwq8/L8wzX6IeBv2e/hzpt5pfhuTxtp0MEWiW91HpV9pOnTR2KySpNOj3cp3wwSSSS7cbMeciuQilh6x8L/2Jvh9q/h/4j2nxR1TTfC9r8M9Pmub230+9iiS3v8XAhSQspQCRreWAEEbmkG0NwK0pKVVXhJP0aa/AqNSvRV8XRlS7RknGTsrtWaVmuu6R/PrRRRXQdwUUUUAfRf8AwSX8IP48/wCChPw58LLOI1uLrUGlctj93Hpt1I46HqqEc8c88V+zfxk+EGo+K/Enjnx/calqVhBpmju9h5cjQi5nS0JbauCXUxskWQcEQqmMKVr8Sf8AgnDYaHqf7Zvg6y8RyWa2TDUjM2oOFhGNNuiNxbj7wGPfFfUvjrX9E1j4la5Z2XiVdAtrSVYLSz0i9eNQiDeBLHbhiZGZy3B5G3IUrXnYrJ6eaV7ylJNJbXtu9T7Dh3i/G8MUP3ME05N6ta/BdbX+yj9KrP8AZQ+Pfwe+FHiD476zrWk2/wAOB4cltEuLvXI2t9kshgiVJJEBGJ3ACjaCZCOnNcJ+2Rr1t4E8P/2v8A/B3hPTr7w/d21t4nlvdb+1XE4EUrKbWNl2p/rl3THH7wBVVGUM+L8Tf2/PiX+0t+xX8Hf2VPiB4k+zavYWc95r/wBj8OJZRvDDd3FrpsUkKFFTZaopIQBWYg7eFc+P+O73xDp/ibS/h38HPiLD4g8f3+t2IOlz6W89tZQb8yXN+rLPG9qvyLLHIjBll+ZWHDenlfC06M4V4QUoxl9qzbfZX19Ldjl4g8Uq2YUamCxE5Rm4pXhKUYxXu6ySVnotXdXv8n7T8Hfgz8Ul1XTfFvi/T7vxXdfEnww95a2NzrFubWKaW9hnRnn2q1r+7w8knmQxZuVTIKkN6h+3F8D/AIb6P8GJPH3gKw1HQIrzXhb3Gk6hr0Ekd88VsnzxrJcSzFBJDeMpIjEgeIqGGw1wHw28Py6DrGjfC34uX6aNrVzbFvDms+D72YWOqWsdvHFKsiTEyW138vmyKGeGQXRVPKEISX0jUfhA+j2AubLXtT8QRqpFzoWsax5lpexE/MrDA2v0KtztYA1147w/zDNoValoqWqS2a00S1ttsHD/AI45BwvjcBalU5aTi21O8ZrmvKTTjvprqrWs328T/Z2+KniPwV8VNJ8R3sNtrtssTzPb6za/aZHdIi/DCeBt+6UlWeQhSFIBKgV6f8AvAfwp8Q/AdvhjFYa1YeK/Cvw8sdFNpPqE7x3d1FqLGW8SC2eRJo1UuDEVUKUBUMXVl4y8+EEXhDxNpXijwmk9x4eumuooJrtVWWzn8uMG1uF/hlTYx9GUBlyK7j9jW1urX9pTV/7NntYLWLTNQWa3mjZkKC8UBY8HEZ3MhzhlwrDGW3D8uwWXYvDYn6liE9+Vp7q9lpf10/U/qHijMuGM7yGpxBlfLfk9rGcbrmceeVpqL30tJSTfnHcZ8APhl8cJ/Gek2OmWsJmtGtLy4F9IttLbxKmq2sQmieZWjYQys0auEdfOTcrKU39r4a0v45X/AOyj4x1nwT4D8QaVf+N/GFhrkWtaZYX8At9PSS4nlcXMSKq7pGgA8vcCpcN0Ar23xR4Y8K+Koo016ytJmgcPbzLuWSB/70bgBkb3Ug0y1+J3xS+FmkWWheB9b03UdN06NYrXR9Ut2QRQKm1Yo5IcDA6/vFfJ6mvaqcM4nDRtQqNr8drdV5/8A/EqPiFh8xrc2JgoSbT68rtJS1aa3aV7q3mfyX0UUV9UfkoUUUUAd9+zBrtv4a+N+j63dabFeJBFef6PNfS2ysTZzKMyRI7LgkHAU5xg4BJH1DoPxA+HHji18Qabr3hRbAPfW76dbeHtJjWJLmVgJZbi4kRrmQqAhDMZcBXCxhnDL8V6JreqeHNTj1jRrrybmIMI5QgbAZSp4YEdCR+Ndd4K/aU+OPw5uEu/AvxCutKljDBJbOGJGAbO7nZnkHB9RweK6sLXjQneW3yf4PQxrU3UhZb/ANdj9Dv2bofGelfF698VaD4zuYpra/dtLuYb3zfsyRybreSOQxpll2kh1Vck9DtXH09+zh8E4PAF/cSfDbwLFY3WstHJqLabbyyTXkiIAZHZi7DJDOY1KxIXfy0jU7a/ITwh/wAFDf2uvAiOnhf4nWcHmOXdpfCWlTNk+8lqxA9hxXoOj/8ABbf/AIKeaBCtvo/7TIt40UKqJ4L0XAHpzZV9Lhc+y/DRilCTceunXfqfF5hw9nWNnNqpBKTWl5dNr+6fuN8Pv2fvjb4lXRPEkXg8SXOg6nZappp1NfLWG6gYSRuFkZdwyMMvKujOjhldlPq9t+zn8VvGwn8QeL9Q021vZ5Dm3QhVjK8BVWNSiIoGwKuAqqAAABX8/wDY/wDBwD/wVz02Bbay/a3ZERQFX/hBdBOAPrY1Yi/4OFv+CwMIIj/a7GG6g+APD5z+dhXdLizBOfOqbva17K//AKUeM+Cs8dP2bqw5b3teVr/+An7/AFp+yEr2d4+p67Ar38ATUNOjt8pMyZ8qQSZBSRSSQ205HykH5SvlPwI/Za+I/wAK/wBoPWJ77Q9QubG+0i6eDU1sGeEs9xbsFLqu0MdrfLwcA44AZvxXH/Bwp/wV9DF1/a2QFvvY+Hvh4Z/8p9B/4OFv+CwJO7/hrzB9vAPh8f8AthXzWaVcnzbGQxVWMlOPVKKulrZ6/wDBPv8AhjMON+FsnxGVUKlOdCsmnGbm1FtWco2Ss7O3Z9U7K39E6+B9WX9w9rtZegIAzVa/+HWqXJ2GWGI/7/P6Cv53bj/g4M/4K83WPP8A2uN2DkH/AIQHQMg+oP2Diopf+C//APwVwm/1n7Wmf+5D0Ef+2NXHE5VF7Tf3f5nl1cPxTUVlKlH05v1TPjiiiivEPqAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/9k=",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAorX8M/D/x541z/wAIb4J1fVtrFW/szTZbjBAyR8inkAg/Q16n4U/4Jsf8FFvHmgWfivwP+wL8atZ0vUY/M0/UtK+Fer3FvdJz80ckduVccHkE9DRuF0eK0V73J/wSp/4KhQqWm/4Ju/HtADyW+D2tjtn/AJ9fQE/hXK67+w/+2n4Xkmh8Tfsg/FHTnt4p5Lhb7wBqMJiSBQ0zMHhG0RqQXJ4UEE4oswujy6iurh+BPxwuInnt/g34rkjjjR5HTw7ckKrY2sSE4ByMHvkVoeDP2Wv2nPiPqA0j4efs5+PNeu2kVFtdG8IXt1IWJwF2xRMck8AetJNPYV0cJRWpceBvGtpEJ7rwfqkSMu4PJp8igjOM5K9M8VC3hfxMhYP4dvhsOHzaP8p9DxxTC6KNFS31hfaZdPY6lZS288ZHmQzxlHXIzyDyODUVAwooooAKKKKAP0g/4I5fsJfFD9pv9nrXPH3hzxNZ22gp4xvNKv7R71o5/OSyspkkVPKdZFDSRHblCSn3gQpH7a/s46Z8ePhB+zX8KP2dPhetpZ634O8S3kh1bUJdllcpPPeLbRSxwJukR1vEEwCBlKkpufa4/I7/AIIc/Gjwt8OP2IPE1pp8VsfGVr8RdSm0Vrm6+zI0E9lo8csLTrFK6I6wvkBPm2ABlba6fZfw5/a08ffDHxfPI+t6p4i8OwPDdxwtbWy3MdxcXC7LlXgtrZQTdNuYbQS0oJO4s1eHiM5w2ExMqbevy/zvc/Qco8P8yznLljIcqja+rld9NlF9X1a/M/VXx7d3nwu+BWs+MF8LWGl6jpXgRDJbWN3LLbwS2lndP9njh4AjjZsKykM4ODjYtfEPjDXPhlqvxG+JeseKtYh1URapfx2mjX2ovqFtMrQww/LFPC0dmrLNco3kZjk8xhI0rOY08Y+MX7ZX7WGv/DXW9d8V/HyTQ/DXiGe7gksNSlh8+8uPMkDW6Ir3EtvFI7lFjWWJCh2jbF05r9nvxt8Zf2o/HcfgBdXfx3pn2SG2itNZgsrLUnjjaW6EkZu5raG9MjThvk8wJbpbIflUo3ovMpPCe3dKcVe2sX8jwY8K42GNnh41aMpKMpaVVZKL96/uvXR2Wjdrdij+2D8D/h18IvjaP2hfhNYan4Q0PxdpWoNo3hlbBilzqqSytIsCPI0MKR+bGTGNiRCGXyo3ChD8Pfs8j4yeFPj5P8P9R+Fb31nreq2ttr+g61pyWoNmJIpYZZbn7JNLYW5zC7yQruaNPkfmI1+gf7Qnx8+J3gHVfAPhnxvd+JYNPl8Ame90rUvO+22VzcS3SebGBPFbszRlAJoY4k8uTBj8zzg3l1t8Nk8VyaH4gs/CPhKTTL6/1yKPzPB8N4yot9pCRKHvZBMwDX0oiVpA3+tLllkaSLzKedZbKu1Gb5uqtb+tzvx3hlx1QwsMSqEI0ZqTjUcnKGney01UtW9ldXTufnv4k/Zt1E61p9v4m0+axnttNtRfrqdrJCLyZI97xqxbgfKiliVYb1O1EHy3R+xb8TNei1TxHf6Rb6S4h8xYNS1S3AnlAlHkqm4FXJTK7tq56lR0/RT4Oaf8ONB+MNz8OfiM3h65hj1bUbK0+0aJatZWjyIbE3KnzjHxIkcgEchAMSSLI3yNV3wjP8N/AXw8vPFmtxyWw1u9g0/7JpWkLdwwIU85x5bXMSiPCRg/LuU/KhIzjShm+WVZNe1s9rNPpv3PKfA3GuFpp1MLGo9LOE48rbvy6OUZa6Xte19Wkmfhx+0z4B1X4YfG3WfA+t3FtLd2a2pmeznMkeZLWGXCsSScB8c85HIB4HB19I/8FctRstS/4KDePJdOurWeCG30W2jntLJrdZRDo1jFvaNskSHZlzk5csQSCK+bq9iEoygnF3T2fc8N0q9F+zrR5Zx0kuzW63ez03fqFFFFUIKKKKAP04/4ItrqOm/steI/ENl4Q0PUQvju5Qzavpi3mzbZWTHCOxUYB+9t79emPqL9gf8A4KS6B8P/ANrLSbL4o/ArwrceEdb1eHSLySVJreawE0ywpcyJNug/dB5XaID5w3BBUE/Df7Cnxf0v4X/8E3fFWiax4Ivrp/EnxGvodJ1rTtaEL29zBZaXKYWjaJwFZWHz4kyNwCqQGa18Gr/RPGFre3Wg+F9f/tzTormaLUdOuHNrAksbl7i+meORpf30scQUKiEmJQYyW8yMqpLHVajmlpJxjZa6bvRt3vdbLa+zuenjs2xOFwVOlSrVHFRXMnJ8q12UdFZb9b/I+t/22/2kPH/x48A6p8UPH/wt0Sx8I6d4jOpRWWkon+iW88kVuqRIJcBxHtTKIm5nd2BLNnp/hb8OvE/iTxVf618KPE+n2194Z1trWXQPH3gjTpptOwJBGj2shuIyrx7WjkSSSIrko7Hdjzr4Q/AHX/itqegan430lPEFvo9oINO0eazdoWkDyk3EsC/u5pnVwDlNu1Ewi7cn7X+Ff7O3xR1zVdR8aW/gAf2jf6bBp817f308DRxxzm4QpAZEhd8vIu943YLKwUqSCP0DD8NZdOKjVi+RPa6Xq76W1t9z76fmU/EPPcv5nha6jUlGzlytq3SNne6s5LbquiZ5X4v+Cnj/AMV6NZeG/iDeeGYtStRbQaBfaD4et7RLwxnHkXMoQSvM4Jw7sfMYDJZyueY0bwnNZ6No+nvoSm8tvGjS/YriLyw2C7BSdhMY+RegPHODxj7Q/wCGVfF+u6I39pNp6iTdHPY3b7/MXOCG2hlPfua5T4mfsk/EeLTLPxDpl7Bqt7p8hdvLu3a4uECkKrbkzI6jo+cuD8+WG9vjOLuBsFTqfXMt10tKF7v1j3819x+3+Ev0gsyqU/7D4iqqzlenVaUEm/sTtZJPdT6PdparM0j9nPwL8R/COi/El7S/sPEd2E1eTVp3M7yXkmZTM28sCGldpdqlcs5JwWYVcvvgd8E4tS062+IPw1mhsoYDDdavos01xuKvaiKRoCWZQsMDxhFSX73ORgL6L8MvAPiu0+GXhyLVdCubSZdDs0ntruJ43hcQJuRg+CpByDkdRWhqfw21G725ECEjgyNn/GuFcL0sVh4c9K0rK7tbXrfp+p5GM8SKuX5rXlDFRlDnlZc97K7tytNuyW2rVujP5wP+C2OhfDrwz/wU3+JegfCfWZNQ8P2g0WOwu5jl3xoth5gPyIciTevKg8c5PJ+Vq+tv+C6ejyaB/wAFUfilpMrIWi/sTJTpzodg3oPWvkmrjQWFiqK+zp92h4lTFrMJvFJ39o+a+9+bX9QooopkBRRRQB3vhT9pn4zeCvg9dfAbw74isYvDF3rbau9pN4dsJ7iK9aOOJpYrqWBriDckMassciqwQZB5png39pX43+ANVttZ8KePJraa0ZmhD2kEsZz1DxyIySDrwwI5PHNcLRRS/cO9L3db6aavVvTqyZwhUi1JXT7n07of/BZL/gpF4bRY9C/aMFsqgBVj8H6PgAdAM2fFdJpH/BfD/grPoUZj0v8AayeMHru8EaE//oVia+PqK6VjMWtqkvvZxPKsrlvQh/4DH/I+0Lf/AIOFv+CwFqWa3/a5VS7ZYj4feHsk9M/8eFKf+Dhj/gsEc5/a7HJyf+Lf+H//AJAr4uop/Xcb/wA/Zf8AgT/zJ/sfKf8AoHh/4BH/ACPs9v8Ag4T/AOCv7DDftd5+vgHw/wD/ACBVdv8Agv8Af8Fb2zn9rIYP8I8BaBj8vsFfHFFL67jP+fkvvf8AmP8AsnKv+geH/gEf8jsfj78ffi1+1B8WtW+Ofxz8VjXPFOueR/amqCwt7XzvJgjt4v3VvHHGuIoo1+VRnbk5JJPHUUVzylKUm27tndCEKcFCCsloktkgooopFBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//2Q==",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [54,44,76,67] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [48,57,64,75] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDh11r4ieGfi1pu7whLqt3FoEgu7O4tHea4t/NwHYNyhDeX8wGOo716L4a+PGqweIbOCX4FRWrFlM0bAiWJWJXcVxkd/wAq8p+G/jDQ/EPxQh8Q/Evwjc/Z7PQZrKW0SUuzyCYESqS4O0nnBbI6V6hpnjz9n3TfEsN4fBGqJPNIqmeeRHGWO0Z+bpk9PxrxpWSuJJmx+3vZW+oaD4Hvf7OaaGDWbhgI1JwTFH1I6gYU4PpXzr+1Bq+rWPjHwzd6VqYt4J9DgZtuAkm2aXcNuMEZPHb0r6B/b3/tWHwT4SGgX5t5hqtx5EiuVC/6OoHT3K9ugP0Pz9+1Rr0thqvhG5sbWFzJogY/aY9xC/ap+BzjPPcGs4N8wNF6G41Dxlp9nd6rPb21s7smmpNkSXT42lI1QZdsZHHfjqRX74fsifDzwZ8P/wBmTwh4K+GnjCDX9EstOb7Fq1qUMc2+R5HA8v5Rtd2XHUbcHnNfz92V7f8AigRa/NpyONG2THfKY41+U4XccKgwpwuRnJwCc1/Ql+xF8H9D+Bf7Kvg34Z+HtdXU7Ow015I7xXDBzNK87DIJB2mQp1/hrtopuLSMqtL2kdWdodGujwvTt8ppk2kXmzr3/umukDKowAabcWzOvy4/E05QqJaHMsJHldmck2kzMpRk4PXg0waUR8siZHpzXRz2rL3HT1qpNbuSRkVhJzTszjnTqLQxTo1uCW8jGf8AaNMl0u2AwEHT+8a15LaRuARVaWylByWXr61UXLYxdKe7RkTaVbbceV0/2jVWa0iRtuzgdsmtuW1cjgj86qS6bJI5YlfzNNuTRDsj8F9CuNP1v4j6Dquv+JJPDss3hu4muDcxQyNDKk6ARYSFUJ+dTynQGvQNNtPhI2pQtqvxrM/zjK/2fCuV9MiHI79K8t8TeJ/CSfEzQJZbzTbOzns5rd31A3EUBkeWHaH+ff2P8QHrjivQdP8AhZoeoavBuv8Aw5AgYZe2vZG2kc5w0zDP4Vzzd0fRJu51n7ecPk/DDwrLpl0n7vXxHDK8SyKUMDnO1wQc47ivl39p2ZbG38HTahaG4MulykmKYQ/8tjk4CEd+gwK+lP2zp9Pb4K+GraxuYL+S08QxBoobwDIMEoLEpkqPu/nivnr9pRLabwl4PlezvXKx3ZaGwt2uCmRb/KSOR7E9cH0qaavIvQzba6n8ZJpukW1m8dtYyQ3EcUEYPllByTgZdm5JJ7gYwMCv38/4J8fCt/gn+xr4D8Gtq6XyppMl7FOi4wl3PJdhDz1UShSe5B4Ffz7x3d7aaJa2fhrTdT08QzRvdSlJVkuQoKhpWHG0KSAo+6P1/ev/AIJifDnWvhh+xD4I0TXr2K8lnsJ9QgmhnMzC2up3uo1YnneFlAZcfKwK5OAT6WFhfc5q9SUYNRPoOK98zp6Z5FJLqMrDkD8q+fPH/wDwVO/4J7/DHx1c/DXxt+0/odrqtlJ5d4sVvc3EED5IKvcQxNCpBBBBf5TwcGvafC/iLwx448P2ni3wZr9rqumX8Ilsr+wuVlhnjPRkZThh2yO4I6iu9KFraHl1KuIitLmlJfPvAx29Kct0TjcPrxUBguM8R/rTlVuFxz6UpUqT6HNGvX59blkTIcYzzSTuvl55zg1GbaUAEL196jkt5BklfrzWSowvY3lXqWd4kLzHv0pYz5gyKNg9TU1s6xcseO2ap0ox6HDTcpz1Z/Ol4s8EaJ4q+LegeHXsbu+tdRtrqf7JJcQ7pdgJ4bfsGGXcMk/d6c11kP7K+l6jdRppPgq6tQWAISa0U8HJOEKjpXE+KpNVg+OGladd6y3mR2khtruG2uR9mj+b5UTyxIAQCPlXncetdRq2v/ELSLm3vdJ+IGrzlLqAR2cSXqNcyGUARB2UAb/u4PXJFeLVjbZn1Podp+1t4b+EvhH4Q6RpVpp+ladrH9pW0ksWmRxre+UI5RuYKwIUsVGSQDzjO04+efjnqnh+y8IeH3t5ZtFfdK8l5PYyqbzJiBwU3byCwySQPnyCa+kP2n/BFr4S/ZjtdQ8VXY/te58QWj69q15G8rNKY5ARlFZhGGKhUUFV49zXz/8AtFeH7XxB8LvBcIvYpvsjzFLh3KiaNlhwdrgHblU4I6leAaKVrl2TVzl01e1sfBF1P4e155Jba9s1udWZZ1lgMglaNYwqkgsIpOexUAkEjP1vcftv/A/4Q/8ABLvX/g0dR1KX40XmmTT+HtXNnIxgtJClxuF0H+Qx2qyuFYcHCEdcfJHw/wDhF4X8UfGrUPh1438cQ6Ab34dy6joOorqCQQRagkiNEJWYgbfKSfjcMsVHpXN+DPhr8Rj8TntPC1pqni250+Z47iWytnubQAoUc7kZ/OjZGdD8u1lZhntXqU7JHPKzep6d4c8R6jpllHa2XiLUjazkvcahHfSP5u+NpAWXBVizbfmAPHU9a+w/+CLX7Snwz8BXPxe8A/tGfF3xdZ6PouqaZJ4cu7HVdUECSPbyfbYmGnkIHVlgA3DcQDjODXxB4m+CviDwfrU3h3wTqnjDwzpd7eKNN8PXMbssTN8vlxTTxhgpfdtLeoXJOCblp44g/Z+8JL8NNW8B6r4VntpZHS21nw1Z3l3cziVnEz3MkG6RWcnIyQQSM/MTR7RXB0IONz93PhR8Z/2T/i/4103wD8Lvj345vtU1W1nuLKNtb1cBki3b8m5+UHCvw3931Iz7Jo3wpl0y9M0PxO8Uy9QqXWoRyhfweM5/HNfkZ/wRs+L+seJf24PCHh7VNJtoFuJtWaEWhg/dj+zJ3YN5VtCSC6sRuyBkAcjNftEkLeduUnGewrWnLmvc5JYeHMnbqZbeEdWjjCw+PdU5X70sFsxH0/ciql5oHjOJBHY+NQ+AdzXOlROx/FWQD8j/AI9LIH24AJ4qMQO5BII9cimnqbToqWiRw8fhn4uRSzsPG2jXAeXfHFPosiiNdoGA0c4J5GeR/EfQV5F8C/jP+2b8YfHesWWrfArRfCeleHdRe0vo/Esl5DNqn+sCS2rhHUIQqMTtPD9Sa+mEtkBJKjn1FOJt4hjCDHGOBVOfcxjgYRVz+aa//tL4f/tBeF7GxtI/O0+3lWN724EgYPvKmR9xB56HPcCu98e/FL4lXUmkxXSWQtodYtriL7K0TsZ0fIB2ux7KRx/Cfc15Z4s8WaDovx08L6pr2li/j0WEHU4XjjjFyfOJ7DavycZ2/hzmuw8VftA/DjVrrQNQ8P8Aw4tbaJdbgkW5t7uOYTCPLFEKKBkjPBwcZPtXh8tonowi+h7v+18b/XP2Ube5NtmdtYtCyOwXuOctgD8a83+B3w70D9oT4g+HvgtrVjbT/YfDmq3t9b3+sSWdmxigikj82WDLEKULCNM7yu3KqWcemfti6skHw/l+EniPSraOe4VtSgRJN8ZjgltsgEE5/wCPgH8PrXz34o8LaprHg1PCfhvUk0yW28Pf2u135wBnWUxHy9uzI2oZV+8QN3AHZUpJS1CTsjlIvA/7M9z8dZbL4p/FXT5tH8P28Aa4kSaS0unOf9G2rF5iKpPQliR0zzXpF3+1l8Mfg9rI8MfBrxNpieEVbzYrrStOmkSOR8lots4Ri2RxnoD6GvlJdTu7bwT4z0GRY5Et9dtFWV4laViZZUGWIyAAo7/WqVtruqwfB3WtJjgt1EWt2brI6fMQ8U7HkjIx5Pbj5hmvssPlFKdFSvvZ+aPm62Yz53GP5I+gvih+2DP8eNf0zTPENw9hpFnanT21dSwEUJmlmM32dAVEm99uQw+VV5Bzn6R/b18L6L8VvhHJc67aqdW0q0D2Fwq5dJdo3KR1GTkHnt0r4D1HxTrHhbw5p3hPQ2S2s9W0qO41OWGJfNeQXU6N8xGc7FUDkYxxiv1u8Af8FavjBo+h6B4e1P4SeBLi5v8Awlcan/aMOiTQSnyEuvkKpOMMRZnLA8lgcLnC+TmmFhhOVrz/AAsehgMTPEJxfSx4P/wR4sZNJ/4KDfDvUtMFzJb3E2qxSStu2nbpV58uftdwDlsDHynI6npX7leINZtvCnhy88R3h3xWFo9xMM4JRFLMe/YGvym8Bf8ABUK5h+JOleJfjf8ABSz1/T9ZuJNV0ODw9p0lr/ZWoLKLLc0jTuHhaOEO4kDNukyrADB/Tb4h6bNc6JN4TtJbaC31fS7q3MBlwd3ksQFBHCBVIO3oDwPTkw9VSWh6NlE7OGeK4hS4hkDJIoZGB4IPINI0yrnJHHvXOfDTXZvEHwy8Na+dwN9oNpcMCoBG+FG5HbrW2GEgO8/nWjbUxuoloPe+QjAAz/vVRvbwu5VVx05BqSdY4xuXGSccGqjgNIc+lS0+p5uIr1GrJn8r3jrxd/wlWpXPiTxPPd3lxNEftk0shZ5emOS3GAMYFU/AvjnwvonhNPEdto1zp2mx3tmyJdl/30sU6yF4lckcRCRO2RIfQVJbeALrwN8T/Bei6n4mimfWLqKWaSe2WNrErMgJkEbEbQGGeh/I47T9vn4b39x4J0LWfDfjPw9qr2OrP9rstFEMbmF4XG7bAcSYcLww4Bz6YwtGc/I9/DTThyPc+uv2gvi38D/2o/DDfGH4L63BqmmR6Ve2bTLuV7aXybVngYHoyhUz9RgnJrA8IaLp134fsJJ7RHM/gOWKZnbBb5ZeMk8DaQOor5s/ZK+GnxF+Evwvv/GfjEyWuneM7a6i0zTGkUsv2W2klad1BJXerYCsAcIGxhhXrOhfFXS20ez8O3GnPLJL4I1JLxVdwFRH1CAEYZcg/Z+eSeuBzxz14+xg2ctSn71kdhpf7LXwFub577XvBAuBqWgvqV0Tqk4VrgPISxAlCADa2MfLzXI6R+zn8ENd0JDpfhPSroTeD9QurvbcO8clxB9t2ScEjg27KMd0OR1rS8J+ONLuLfQ/CmleB7cPf+CNXMMryTDyRHNqEalMyYwQGBBDZB96j8HePrTSV0aGP4b6Tp73fgHWLWQRGconlSaqzqFEqjDZZuR1lYg9McsMzxkWrTdjH6nRim1FX7nJaz8Mfhfq3i/R4dP8DWUNrffD/WLuC3ZSQk8A1b5ycnHzwRsMcfL7mvRLTxZoR8ReAvD1rYTC/vvh7NILl0XbGkq6sB3yTuDEjGAMY9KwfCXi9PF3jPwz4X0HwLZz6tf+FdRhjsLCwmeTykGoLsRfMc7TvfdknlzyBwOs0+30nStX0LXorbRDe2tlPYm3/sY+ZCX87YF87LRcz7SG784AzW9XFVq9P35X9SYRhBnefCP9qnw3+zz4V0qY+FJNWfxb4V1Hw0htZxB5LzXPEhYc4UsDgA7gSDX6YftL/Fmz+HD/AAr+IXizWYdK0uabUIr2VlJiXzNDvJVQ8Egb4l56j6Zr8kfgL4Ij/aO8W+D/AITah8RfBvgGR4JrmO/1fQIjbzTL5UptYypRY5mCzkSEjLKOuQtfo5+2NoFl8UvDfwS8JeOPEmow6B4wnUajNpbj7Tp7xeHNRk2gsG+SdnWN8qSR0I61vgeZHRK6Ssexfsc/tHN8Z/COg6dHpBtAPCdveiEurOq+Y0S8g4aMoI3U9cHnOa9tmt5WYuGFfmL8Cv2i3/Z+8TaZ4s8GeItMi8N2Pgm4061uNcs7mbbZw6vcKhZbf5xJ5VsJCoUnbuGASK+xv2Of2ttC/bG8N+JrnRvGNjfyaJcW8bzaL4d1DThAJYy6jdfANIx2n7qrjHPUGuqrKzt1OOqozqNM9uaN8ckU23uLJ74aabyEXLRu6QNIA7KpTcwXqQPMTJ6DePWuc1TRptG0681a41m7fybZmRrjUDGC/wDCGdcHGeK/MHxf/wAFJf2gm+J58QP4h0yzudCe/s7GFLW5uYhFNPHvQE3AaTmzTDAgH5jt5G1Kaj8RxwhGUz4Z/bw+AOmfAX9oTwDpFt4jOow6wZ3ubz7HHbxxBZbYsFAduijJJ44NZf7cWi+D/hH8PtH07wdqSTat4omuhp6WcRJht44CJZnZsBQDIi553GRQBwxHSf8ABQn4iav8c/FXgXW9f+Gx8LIlrqtrGIbxJ/PObPcSdvy4WTGO4Y1y37W+kaDrPw/8M+KNP1e0fU9EiutOismJzcW80yh8kA7Ar26NjBzn8TyUbyVz2IfxLG58O/i38L/iZ+z1onwl8E/Dq98O+JPDUWp6n4ghN0Z4NSiutHkgF+kjYZS00QRkICqcYJyCeo+GHhG88ReINOu7jw5dzWd14P1RILhLRypDXl/s5AwNwlJ59vfPBeFPgb4m+FX7Omm/tBnx1HrOpeIdO0azsLCwZjHZ6VdZdlKMoYuS2XJAGIwOcbq1P2f/ABVrWt/Ei70Dx4hsvC2maTPJp2oXLtEinzIlVUkyAAwkdu4Oz3rCu243Rs4c80e3+DvDWlaF4m8D65N4E1q9toLG9t7mO1tWVTa/ablmLFk6lJGIIOPauk+D3wt/Zy8X/Cy08QeOPig+heJtI0G6XTvDSWoea7SaCXaMM6uDmdhlQ3QHB7+CaJ4g8JwfE5LH/hM7V7Ox1WSHTmjnBxCcMWVgTjLErx1OT3ry/wCJU37Vd/quq2ngbwprVzZIB/Zb2mlGaMEKAArYIIU5XjHTHFclKnKXxETelj23w/4A+Nvh34reEvGHgnTX0+W1j1VWu47mOKXy2YFFIXLkEnpjsCffs/gx4d06Pw54QufHlvbwa2VWbV5nvogGdWTHAY8fe468V8o6/wCG/wBr+4u5RBDdafBDoVl9jt5prOLZdNbW5nG2aRSD5nmkqepyfevUvAfwe+IeoeGtDv8AxhN4hku5dDs31RdGvoPIS68iMTBXQhSxkVm3K3fvjNbyjO1rGEkm1zHSfHdZ/Avhb4feIfh9rmkxano3ic36s+pWskR+zCJ1WTexRvvtlDyRg4xnP098b/2XPjavj3wD/wAFANJ+Jem3HgTxJN4CfTNI+3TRXDLJZWSmOQOAqRSbWRjklkmwRndXxZ4/+FGr23wT0TWvFQt7PxBMbuDURcahFv2tLOImLltpZY2iJ5zg9R1r9B/2iP20NB+N/wCxF4Y1r4XaBo0eieE7fwrNqmk6Rfgix1KC+WGfS2MG/CrEsLphC6xyRsqfMAejDT9mxylFJWOf/Z3/AOEA+Nv7R15+x/418Fy2um6n/a0Gpf2VqatIwe6nu4hbXAUeUU+1yRbxjIGRgHJ/RGz8K/s2fsO6f4s+KbNdaLa+MNdgvdfmlmnuhJeiBIEEcShipKRZKouCQ7HjOPyGtv2jR+z9+2/d/GXw3odvNBomtXGqT2trdGPfaNbxHyEYqSUBUgA9d3I71+oPxq8UeGP2lvgB4ZtdV01bLTvHfkXFlqN1Mpm08faIdzoWHyt8wi64w7ZDDIru51NXMk41JXR0+r/tufs5+KtRb4d+GfHz6jqN3py3dv8A2ZpksiOpjSdU3soXzBG4do+W2pIMBgQPyZ+Kmk6bao2uajaaxGmn6xYkKWW3muEntbqQPgjhSrAqDzgrmvsf486n4D/Zc8feH9b8EaboWr66uhL4dMMlpDHYmOKXyjdyCPB87C28ZII+TfngCvkH9rW78D+AbnxFolp4svdftrDWtM+1XFtqKSzXQkS4jVklckKEJC4wQqlQOlZTk6mhm4yi7HyV/wAFBdQ1fSv2z/EOmtqN0bNNVuDpdkszJbWUcsNm48iPO2NTtAO3AbZntXE+OrGwjtLWW3aWWU6lAZHafduUuFKt6g7u/pXov/BUSyh0z9sG4vVjKLNHA7MScY+zW/r6NuH1BHavP/iPNY6d4Ps9UtocOdWs4nmD5BzOrbueMYU/kaVKzjYalK9xnwv8SadZfCvSfA2zKappenPerDd7DAYmSZJGUDsDsOccFeRgCsmCxmudRnSK3a4jhkIaVI8qVDfe4zgcA/lWd8EdN8N6hd2s0P2ddelsLm1kaSdVJijscAgE527kBA6Z6cnnnvFnwh8ajQbnXvE99omiaRaWDXttd6vqsXm3MW4qoihQyTlyV6BBjgsRxUypRmrI7qdb2Tuz3nwvpyXXgjSfDtho4j1NPEkmpfbxJEhurVooEFqwI3EI0cjLkgZmJX7xNfQvg74+/CTRNBtNL1L4W2n2+LdHM8up2kTu4cg/KzE5z/s5z61+b3gTxTpPhLUNM8U6V4faa906eO5j1KGOU+WylWDsnCkArnDA5wQe9exw/C3wL8RIdH/bA8deNtJtfBHiD4iXOnTeDri9mTWnit3hubvKiPbHGLebKyl8Hp97ArCWDnPTYPbp62PrvV/jr+zvBcD4j6x4E0q4t7KRdMudFuJ7SW38198yTEBDmTCSLuIzgFc/Lis9P+ChX7N9nAILT4T6WkY6RWskYQf98Rivzk0v9omO507UdL8NeANC8MWGp6r9vksPsKXAGxplgQvcl2YpHMy7jy3JOOg1vgZ8R9AX4veF7f4zyRv4KuNbhXxNNaaXD59tbqwcyRbIwXbKjKc5XcBgkEOWAaj8T0MeduTdj9AfGX7U/hDx54Ss/HNt8MNOi0L7a8El0BJKY9pbdIUVenCj6tjPFeb/AAd8Z/254Y+JGn6MJoYtRW61L7HbTMFgmiubR12rjkDaMHAIAr3T/gqT8aZPBHwf8M/Dv9l29tfEWpa7LdD4gnS4zL9kji+y/ZltXtxFhHYORMgZZVVyHZSCfiH4RfGv9ofwN8S7bXvEPwruNV0m4meDXbDVLJ/KuIJSu8SyXLlwoKoxKMCAnynJ5dKjGn1uOzm7WPriy8Q6FL8Sz48+KWgR3q6xps9xc206+WLtDG6LFnHyAvGQHAz8ytycV7P4p/aw8XftCS+FPhnrfgzTLTUPBun366DqloxhVbKO3E8gmUAlkiht5X+QEncTjgVxn7Suj618Q/2aPD3iP4RWngbTfG2lzJ/wkWqeELaP7Hd2MscgiDw3UDvashERyHZmJk5BwT82fs/ePP2ovDXi/wAXahD4FufFIn8E6npaaheounw2r39tcWD3cbSpG1wI4JJ2Aj3D5lJxhc78yiHsKlGV2jpPiJ+2jNoFz/YPw88Fx66IDb3sOr6reSoiGaMSvEka7XHUA7jnjoMAV4/49/bp+Ourxy6Tqvwx8ET207o8kOp2V1Nv2klRlrgEhScgEkA84zVaysdatPB0msaPo8Z1m6mkNzBqVwsKLFhfLZA5H3gScc4GMcV5f4g8PfFHXbzbCnh1ZkAPlyasPlXHoBnrinGCb3Jm+V7H/9k=",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDxz4zyL8SNK0PSrDXp7A6Q6swiBG9Qc8nvXoem/tNrpGg22iJ4ZW4S1tY4ROxIMoVQu4+5xn8a4yfwX4MjIDfFa05H/PV//iani8HfCnYpn+JsRfA3kOeT37V4Sb6gdHdftVNDt8vwcgznPzH/ABq74e/bDtJ9VstHu/B6oJbmOKSXcflDMBn8M1xt34C+E95t8r4mQjbnO5z/AIVky/CnSF1H7Zo3jiK4jWQNAgdv3mOg6dzxT6AfYPhHWLbXLIatZ4Eci4Azmvmz/go1DFe+K/BVncLuhkSUyrnH8TY5HSvcfgfY3Fp4OhtZkwVXrjg14p+31ouq6l4n8Mx21hJsCviZh8jcnoayg3cVkeefAu3ggmW1jXCCMkLn3FYv7Y2o3aeNbDRNLl8p5PD7Sh9oILBnx19K6L4W6HqOiFLu+hwhGwEHucf4Vzn7YUbN4n0TWAR5cenvEy/xbmLYPpj8a6FsXFKx5J8H/EWqz+Lpf+Eg1S6nhtwdkctw23O0jpnmvU9R8cahcRrZ6beBIdvzR7FOT9SM15NpMUkOoxyFd2CeF69CK9P+H/hGO5H9p6i6IA+FVic4x9K2uzGPNfUNGkSG+VpH2rK5Mx3YyT79ua/Rn/ghJ8Ptf8N/FXxv4g1DTbhLbUtFsjbyvAwVtsz9DjB+9Xwf4L1G4+JXxKt/gvpngaweS5nMKXUhI3ImTvJAPOFyeK/bj4D/ALX37I3ws/Z/8N6FJ8TtGhudL0tLTUIbNyx82MYI6DoSeuOtXG7RnVinI9suYVa5mATJMr8fiarz2rIoJhYc9wa+Xfil/wAFfvgPompvZ+E7S9vIxLtE6xxKJx/snzM8+uKm+CP/AAVP+DnxO8c23gfUtJ1TT7jUZUhsGmkjdXlZsYP7zIHuAarmR4FWhUTb5T8qPiXrHwr+HXg7RPE+teDGkfWIjsjQ48t92ADxXaeCPhH4D8b+HbfWbHw8iO9pHLKh/hYqCR+ZrzTUNW1DV3VdSCKsA2w/ODletWoPFXirTrdTYeItoiQCKJVzgDoK4Grn056mP2ffDEX3dAi59RXTeHfgv4LtobVH05kdGHCMAAc9uK+fNU8f+N77y/t/iNo9mdm5CM5xmoNO+JXjUalBpg14yxNOiFdpAYEjIz+NUo6AfauhWVvptkNMtUxGnIJ6/nXzJ/wUq1bU7KbwnDZ30kSgSY2Nj+I17J4b+MWkad4et57/AFq2hWC1CyGSUDkdh618w/t7/Hfw98Q73QofCWrJdNp28XZ2MoUk5GCwG7gjpmphT13A5/4A+Jb3VIbmfX9QlkSB9sSl+M+prN/aj8V6ZqOv6Rp1wSIzaSOdnByuSP51w/hHS/Gnje9Wx0gNAMbnkYgfLkDHJ96pfHX4fan4F8T2On3dwbhrvTRKsnuGbcPw4/OuiNPTcadijpvxG+H2k3sd/wCXqU7R5xE1tsViRjr+Nbg+Od/d6jDbQeHJEgMfy7OCRnvXnfhrw9Zw63DNbElxuwCCP4TXdaNZXJBt0h3SM2VjTlj+ArRwsNqx0uj/ABa1HQteXxFo2k3dreom1LmF8MvGCQcdSMj8a1/DPxcu1v3iiglsVnfdMN3+tbnJ578/rUemfD3xXcW1u6WIQSxrjMq7hkDjGcg89K/cj9h3/gn1+zZqP7K/hjxVrfgMT6hq/h60nuZg2S4Ksy9O+GOR1FXBWRlOHMz8Zb3XJtXEbGIOBgxlBh2/H1r7M/4JEfsQeJvin8UIfjJ8Vy9noOjD7Xp5LYeSVG4AJ/M+1foB4d/4Jn/sceGfETeNrT4SiS/NytyxeQDMikEcH3Ar2XQfCugeFtOTT/DdkLW2XhbUfwfjUuHU82vUXI1Y/Am5126Vh/xZOPp3uP8A69Zz+OJIZmjPwxs7cqxG9kc7Pqd2DWf8Q/iDrPhzwXpNnod3Z/2kEDancXEO/coPKrx1PrXkfxR/aJ1q6tZdI0O/mhlmBSFVkbg56HFcZ6p7HqnxC8PR+X/wkfh3T+c+T8rD0z/F9Kxr2+sdVMl3o1jDEkwPkCMH5TjAxz61wXwt8C3PjB7fV/iZ4numhXBhVbl8Ln72RnnotfQXhPxl+zT4DSLSdXa2kFvhYnuLRn3Hrz8v9RWtOMpu0VcTaW55VovhCW91Q3Hiq41C8gRd0dtHINobPU8dMVc8c+GvhtcWqzSeG0gbjMTZyMcZ59ev417Re/Hv9mtLSR9Ng0xHC8mCxMZx9TmvB/j/APFX4beOPsVt4W1WK3MZb7Q8MTK5543MB8368V3U8JU5tYP7mYuvSW8l95d8JXfhnT5xBaRKm1chwOTyOOlUPjJD4Y8WXVprOozOstnbtFGIyMENnOcisDwL4y8H6YyvrmqQrxgmSNm/oar/ABs8W+FfEGt6ZL4N1GJ7aOzkW7ECGNd/8OQQMn3rpjhJ2+B/czGWKpJ6TX3ozdO8DeHku0aaaZE5yyFcjg+1dV4XTwl4SmN1Zwie43ZS4uOWQegwAMV5f4f8VSafAf7Sv5ZJB92OVmbP860h4w067+eW5WIjgKFIz+QqIYepKVuV/cVLEwS+JHotj8RbCDxSuo6hbx3iLdmR7WdmEchyTg7CDjPoRX3t/wAEwv8Ago/+0Jp003watrO48QaBpFgs1rFDbFn0+BFKlAwIyp+XG7P3TX5hwa54f+0iS4m3ruywQEMfxxX1t/wS6/bX+CX7I2t+PfFXimC9e71jw6mn6XH5jlNzGQsxAyCR8uCemTirlhakX8D+5ijiabXxL7z9Xbf9r/8AaS1K2W8g/Zsupo5l3JLtcb1PQ43ccV1Hwi+Pfxn8b+MIdA8ZfA270i1lH/H0FY4P4k4r5t8C/wDBwH+zJZeDtNsfEehXz38VoiXLRq+CwGOPlr2n9kX/AIKtfA79sf4nn4R/DbT7q11F7Rp8z7gWRfvbTgYIHNc7pSW6OW0Zztvc/Cnxauoajpi7JI5ZXlEaRySbTz371F4Y/Zk8d/axq+seEJp45G822YKuHU8gg56YNa1n4I0/xBZLrmtajDaRxSBYJrqUIpPXILcGvQ7f4U+O9Q0e1vIfiLeNb/Zka2KXpKBNo27SDjGMYrzkrHqp3OM1L4Y+OdKsg39jzWaJnZGwB3/ke39a8S+NF7rGmzmzvJWDytsdQcFM8V9RWvw28eWiPGPHV7OsmNw+0lsYz/jXzX+1TpV1ovjYadfu7OsRLPJ/G2OD7npXo5Sr4tnJWlaTOG8EeF9S8T64mm297cFTgyneThc4zXZfEf4ez/DxdthK11EFXaWTYclQT3PcmqvwV8T6X4b1qHesLTXeISCw3DkH+lej/G3xR4f0qY6Vq/2UMYkMazuoLZQHgHr1r7CMW2fPV5KUDw7T9RvIpi08pkXb93pTzd3mpaotrBcGBfLB6bu5+lVtJuLNppBNcR48o7dzjrkVJ4K1m10jxT/aGsWy3EAGBHKMrXRCjJo4XuewWfwWu4Phc9/cvuvrnaYVMPKgOCec88ZryzVZW0q9eykj3Mhw3OMGvoMfFWOb4YW3jUQhobJTmIchgflx+tfOHiXxJa+KNcudft4lt1uZC32cceX7Y7Vy4am41rnZWd6Zbh1EfKxix0/irqPBfhPxTreqwXNtpzC1U/vWzkMD0/ka5VIY7q7022tUD+a0SyLHznOM5xXuvxS8f2PwZu7DwHpdikTyW8Mk1xEMZBAPJ/GtsT8aM6LtFlfxN8J9RsLVdV0uczmRd5thDt8v2zk5/KvqX/ggxc3lh/wUN0ewniMbvpF4siZ7bK+XfFv7TWk6dpZ07Ro4ZpVgKGa3cMWO3rxX0B/wQq8XSa5/wUU8N6m19snuLS4UxGQBiNnIx1ryMTh5KlKVz0sNWiq0dDwrXdLHjbwNa+E57l4LdH3zNGfmb6HtXq3hD44TeEfCel+DrbRxNbaXp0FnE8rAs6RRqgJPckKM1y2g6d8K49Iga7+I8NvMyZkiuYj8p9sdRVz+z/hXjdH8SbSU9kSNgW+hPFfJH0FkjodW/aZuLLy/s3huNd2d2CO2K+Xf2tvGJ8aeOYNZktPKeWEsyg8dP/rV7lrWl/C6XyvtPjNosbtuwBs9K8G/aisdEsLy0udFujMpIWG4Y4MiHrx09a9XJ1F4hnDmLdOkpQ3ZwPgm5CeMNMcp/wAvsa4z6sBXoX7XloX8aWZ3j5I0U/gij+leZeEZWXxdphLYUXiE59Qcj9a9N/a+llGraXdxn99LGrSEDrlR2r7JRS2Pm6rfKeYaNpr3ly6LKF2RFuR7j/GmSXAjkaPbnacZzT7C6ntZWe3faWQqeAeMioLoBZiehPJzXTS+E5JSaZ7hp0uf2XbpcfduVi/FXVs/pivDLBhMj3SjAkckD07V7f4SD3n7KGpT3ClmTUic4xgEgA8V4ppUUa2SqwwQTkE+5rjpWVQ66l3A6jw0PsWvaQG+bzZoiMds4Neg/tkyhvibb4X/AJhkX/oIrzPw9cXEniHTBO3EdzGIsjGBkAfXivQ/2wZJW+JsAYnI0yHt/sirrKLkiaS0PMYJBuXj+L+tfZ//AAQj1RNO/wCCkfgt3iLb47lBg9MxkV8VwMwdcn+Ifzr6J/4Js/FO7+CH7VmgfFi1uFjOkiR8SKu1wRjGWGKwxlOCwkmb4dy9ujr/AIg3fg34JfCnTviHrnhy21W0uZUhlWGMyTRu3Q4wBt/HPtXV+CdH+HPjPw7pfiVfD9nFbapD5kayDacYBPGOnPH9K8ui1bVdY0pNJvtQla0hcEWpIMbEdCQRya038Ram9pZ2CSLHFYlvIWJduNx5BxX55NXPrj2OD4V/DWYH7N4btJcfe2EcfnXz5+2f8JZb7UbGbwzohEVsmyOJOx6jGO2a35/F3iK1x9l1WWPd97Y5GaxNT8Va/fagjXmpSSeVKrKHbPINdOArxwtVykc1SlKcm0eFWvwj+JtrKl5H4RvBscNG/l8Eg5ro/jOvinxNDpuq6poN5bPbwrHM1zEFDbQFGME9h7V98/s7xWWs+FI5tT0y2nPl5/eRA88VxH/BQfQdEtfhVp15Z6TBDJJqYhZoowvy9fzr1oZ7WbsebLB1kuh8MaJ8NfGt6n2u10KZwRjaBzUHijwH4n0RoZ9X05rYTNsQS5B+p9ua9/8AhFJNY68bWKd2Q27cSHP8S1b/AGrNHsW8L6dI0fzGflu9af23iDF5XTqvmqbniPhbxvruj+A7zwDd3CfZ7zZvKE7flcOOvuorM8M/CX4g+OLm5TwL4cm1qWIGWeDTxueOMdXIOOKtjwNq+rLJZQnBMTuMf7Klv6V3n/BMn4tS/DP9rrR9N8WzyxaPr1vLp1zcRtgecc4U+2CK0oY+g6nU0nhKqiefal4Z8R6ZJa3FxYPby2OzekwIIZccfmKs+OfEniD4ga8de1ogSiBIgWPZRivsT9sn4Q+CFvvEOr+GNUh86zv2+VQNrFiS2B6Z6V8heH9B+IvjnVIdKg8GumJnRJ1GFmGR0+n9a7HjKT7mSozgrMztB8Eax4ovU0vTJIPOmkEcYkcgFmOBzj1Ndrr3gjxN8FrExeKrZPNntHW3e1lDruK8Zzg/pXpHw2/ZR8VR6jENVgeNxKvnIGwV5Ga9C8RfsS2nxBlEV94gewlEe1HmmLK3tg96ivi6UqLirmsFaSM/QdUtR4fsptO+DZuFkiy9xvxvI4yfSrq+IJoSHt/grCzKMgzSgx59DXL+JPF3i6x/Z/sz4B16f+2/NAeGTaY/K7nAAOfx/Cu+/Z88WOPhVaWfxB8SWjX63fn3O8fMYyM4PPvXyU1Y9xO5kv4lvr3H234L6cm37v2SQJnPXOTz/wDrpLPwlqHiK4a7sPh/pluzHI3DMkfvuz1HWvTp/iB8KLLG+8t5t3/PEjjHrT9J+LPwWsrvAu5RLK4DLvXAJ444rMZ03wb0LU9H0YR38Gw+XjhgfSuQ/blIs/g5ZapcL+5g1lfMI5P3fSvVfDXifR/EGnquiqphUbg2OTXlv7fCBv2dgT/0Go//AEGopyakRKKaPnL4c+KfDniLVwNE0gwMIyTIVIyMjjn6iuh+Nulanq1hb6bpWnzXVxPEFhgt4yzOcngAda5b4Q28EEyvDCqnYRkD3Ffov/wTh+GHgjxb4T8X+PPEegQXepeH4Im0uWZAwhZs5bHrxXQpNkqnFn5fWnhWHRnlvpIpEeO2mBVkIIJjYf1rwqHS7++1VrCztmkllkZkVOeMmv1a/a703w3J8PfEF/NoVlbeXZSNutbVEO4HI5xnrXyJ/wAE3P2ddP8Aitf6h458SXSrFbzF0R2GM78Y5B4x+tdNN8krolwUlZnMfBv9nX4/6Z4Tf4gpc3MlvIVU2RUbRbgjaufYY/Kvsv4U6ZoVxo9nrd/qMMbPEqyK8gBDKORj8a9/0PwXpXgrw6+gWMun3NhHnMMqZYp0wMY6Dp9K/Or9ofRviN4M+OGq6OviRtP0m6uDNpALkF4mPX09OgrZ15o5a1OKkfZia94ae6ltrPW7YrCeS0oGAPrVLXvGXhbR/wBn3xZ4wuNTV4tCn/ftAN5jYngkDnHvXxvoeh+G9LVtT8ZftCTWyzLunt1Usyr3HA5OKt6n+0z8OPCLXFr4Ft9Q1WQtvle9U/ZJzt2/6rgt6/MSKv2spIzhTi5H/9k=",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [33,54,55,65] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [26,45,107,82] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigD+mvwz+wT+xDbaKmn3/wCw/wDCFrkQOJ0bwRpszeYzFk2SyW0bEbGBHyf7OWwrtp3/AOwl+wVfX80fh39i34N+Zp8SpNBP8MtPncSCZclYre2DPlto/eY+R+P7p7nSWjm02DRdKkl1h1upCLmS3Eu5Fkli8uJ485VVcKUYMQQCxO7asVxrngTUdNPhHxNoP2x9ZuXs0j1fTvIW8ify1ZHSeP8AeOqHIgdSSsVyNgYug/nqWNxs6jnKrK7d92fqaw1CMVGMFp5HIaZ+wL+xJpzb2/Ya+E7LD5Ny9zqXwl0zFuhYNkxi2O9SDF8rA7lBwcOWaGH9hP8A4J/XdwzaJ+xV8JGH+oeFPhtpcxWVZhvRw8JIkUqxG0quw7ZM4Yn0M6T4J0FLXT/AFhpul6Y7rG8GnDyo7FJWZQRGnyNCI08xGG1CYvlLYBrRttU0vT3uJIbf7PZxX88tqZIISYlQbzCY8KUjCOw3soLAoys6hmUljcVd8lSVvV/5iWHpdYK/ojyqz/YP/wCCfN4rsf2KPhHEXVliaX4d2JwViBcp/o6LKyspBbhQxZdo+9VvV/2B/wBgvcXf9jX4R2sMruI5JPhfo0ZkVN+7ygbcAhdrhuWbKN0CHPrttNp/h+233OoLMJ7tLe3uI9QEP2iGeSNo9iqMMfMuY44lXDM3lpwj7i7Wb2bSp7WC21q6077EWa6uoZGjSCMq0CuzYfcqh1ztZCVLHcVwpccbi+tSX3v/ADJ9hRS+FfcjyyP/AIJ9/sCmUfZ/2M/hG5mLfZYpfhdpCttjLbo1DW4YvhTnzF3Bl2lskqEg/wCCfH7AtrZzLd/sXfB6e+LyPHAnw40pBhCWMag2+VZkJK7x0K44ANemTxJo2nRNr2raXDBFpZMl5BvEKpGH82di24yHczMS7dUYsxZ9xt2MM+o3Nja6rq8Uc1tJJG6XM7tEiLKzqwxEGRQocAqpTAZlSQBkNxxuKvb2kvvZLw9G1+VW9EeRXX/BPv8AYWFmIrX9hL4T3dzNGA/2X4eaMjQgmI+Yd0O3Kq4LbVOAJCEY7VNy7/YJ/YBsLyPP7FXwSWHCCSO5+G+lIwdnALBjbYYAZGOBk4wcV6xFYQWcd7YyKYkgmEVw6hHitkZlKEsQxTcWyTyMou4KGGaUd5FY24Nqolea3cW+2fmOKQowICv+7UDIGf3WXwpy26t4YrGf8/JfezN0cP8Ayr7jzyw/4J4/sIa7dT31t+wf8J7aAMvky/8ACtNFk2orEGVlWHbtYMhHVx5ihlBBxVf9gD9gA3JtB+xD8JXRo5JzLH8LNMIiUfKSxSBuANxAyCCpIBxivV/7Ps5I47WFC25U8y4keFJZUSVhuEzKE2liVLH5QSvLby1Q/bL6C58qS3sbJo0keXUdsbI2z94QkW9GQbAAA7Bl5JztVa6oY3Ffzy+9mEsPR6RX3HnNn/wTz/4J/iKI3X7GPwZaFoQ6yx/DfSGZV2sWDMLfaXG056Y4HfcJrP8A4J8/8E+prmRI/wBh74Nykx74mPwy0lTJghDhfJIwGPP0JJ6V6h/ZV2ijxBGy7XjwsVkjyzRy7lzDy2GZTvDcLgEZwOaekSXN5dR/2naJali9xbTMkggZgA+1CSBvMkgOWyDgDMYUN20sZiX9t/ezCdGktor7keXaDoPii10nQ7TwhevHFN5EWy/gnubixtE3LAuHTzo53RIN5lVNpWSTc6487R0XUfEeq2FtYaiZmm1e8QWmkwWSXNxZoyRPMl1sPk26ExzKZHeNHZ/kZyyqee0jX9Wt/E9tdv4dub1byXyLu21ebyL3R4vMMckTQs0dwr3DoUKOAxXaVZo3wdW88Jad4Riig1bT59Ns9MjuF1HUHsQiNJMZW83EaI727eQU8tnBT92haUeXKPkWtnLc+iavexJ4XvY9f0qHSZvD9xA17Z3ohknt5opr22hkG6VIkZJXVzPCi4GMAjcRmSt+21C/mkl8LQCzmktjeT2wluUaSyuGmtYQF2MC7eQJGY4BZSV2neaz4Le1uNel+Hen+e7rcWI0i11K6t103U7RkEuxVnYOmJQheAwx7SqgQuEeWato3iPxZ4Iv4/Dl/d6db3lxrhaCfTFaF7qCUNJcRTmVHElxH9nuAoIjhG6IEIpmcvRR1I5W5C2X/CRvd3+neOtYgtNDs7VI9P0y08NS3E6bghSJsTSTXDh38wMYFKebAokXaWftL+LUodKmtNWvo0nkuo7e3kglxvaZlkRmQwqcOp29XA+dsth65fSdd8QTg+JNsEc94JZdG0e6xa+a4I221t5ccMkjRqx3NveMMGCsImdIqvhbw74h062uPC3h3xAj6ppcdzG07xqbnUAkszqsjTSSzSCJI7befO/eFSRmNjAiUW+op2S1R0pvdN1l01tNJ02a5W9jg22MBecXodN9s3yMd48tPkR8t5QYoFWTa2/006jbxtLp1ncTPcRRT2c6STMqJCQrK5DqJA5ALDZxIQQxTcc/SPCcfiKS58R+I31ENb3MV3qUKrc2sOkW8ccTsTbiSRRcPIkRYSANhTnbGHL3P7LvLcSb9Ajeyiunee3i0wRXcE0pjDrtkhDfvJYmUxxEiRHSTMwnQva5tGjPlXRD7jUbLXNRu9D0zxRY2+oRWVld6iLCWGK5CyvJ5coUkq0Upt5I1OShMMmwncxN3S9Cm0ezS1h8S39zbXVlHbzyG4hjSBAP9SpJUb/KZCyhSTj5euK+Xv2xvEni/wCGXg7w9+0T8G/D/h+Z/DdzpGsXmorq4tEuNOniltP7OmtFh8t4RFdMXkZnaFb+dkEYJK/TVhr+q6r4d07xBY6paJa3mjLq8F9rlurpbW0w3iSOVCC+AcCNcYxkLjaG6lTfIpLYzqUpRgpdGWrKbyNH1DUNQ0KVGjUPKsuotklEfdGGkIEQBiVTIFEYMgyC0m007GLWIp1mvtN1CSBbyOW6u7e2KyMr+Y7GNmL7gHEgG3ChZE3KWYbpTHbSeH08XXOhTWTWdtLAbqKx3ko0sy7oZXdfKZtwIXCEFQQWZlREs31I6nFqOoW+7UtLS6vNP1rUhGEht1Vds5k8t5SUDhWZ38x8sWLYBO8JSRi42VyHV1sLnSordbR7aGK3ubiwCasVSVPKMbfONjCMho94fBjZwVZ2UMLGtPpovRe6hbxJCi24F5CjMhkh3M07YfjKxWykAHcxyCSzFMuLUbeTxZa39jp9pJPkC5kmnWOS4Eqyv9qZRNthk+0wH5t204lXgkPT9Y1yyuLK5bxRHNJZSpYx6jqL6dLIl1FJLJFkSO5ju1b5XEKq5VQDIFCnHZFuxg0eQad4qn8caJfeHPEXirVTcabBNZQaleeIXkgmj8uZo1nMKKsFwYLiEeeI3NuDt3TrM7ydlYeLX1+1tPGFv4uFza2eoX0N7beGJoLix2LqDykq25UEnmQlfJV0JN7hmk8xmTkvHXjfUtOsfDmhDQNW1G4uY7mV7a4sXsl0+GWRJhNNG0MMkKxXK3SCOeJPmlXc+SIQ7xBcWuoaJaz+KYpvsel3cZ0u8jWSP7MIzADcl7URxQvHGZYUQP8ALHBGF8yNju8WSvI96ysdFLqFx4E1Wwl1rxDa6SLbT7mzms2lFleanp0djgTbVAYXLSRvIxAWI+bF91m2R3dD1iSW2tPEl/4ZDwahb2d6Z5dMQFpJiDpznJ3uzAxwfuleXKLJtRZWI5jX9d0UwT3NtOba10JFS0tbbS23SXTZjiSO3aUq8iykybnaSORltkxLGTI9j4fa34C0jx9r1p4d1bw23iomRZJYL+KfW5kjiW0YzfZ1eYIn2WAtcRrsJt9v7o2+JTk500lsRy8vU39M1mz+JthqPj34cazouo6etnfWVh4j0OQXVhp0ELTpL5bxrMmF2RAiMxTHLhpTsWNdHxB4f+xaL/wiFpda7pumWk66vKdJ8O20anZcW+6Iyhgd0hVURIWljlR5fMSX5d/neqah4vsNJ0Sw+IXgW0jubvUHt9Mj0y1b7TLJeaZc29t9qjEuL9oWa5lmkilYSwp5yLPKVki68+E/iz4o1y1vbjVND0Ke3hnS50W51ee5i1OBkEZ+7OjxyXNvciYtcC7AlCFhKIskjGEdnb11JlGUnqeLeLP2x/AvwI8fR+B/jj8PNU+H+l6Ff/aNE1u602S+0i/gjhTyJI0UQvbyofKZy8Ls7p5fmJwh9D+Gn7cHwx+NH7Ms3xWvb7W5b640+4uIvC2lypfazqaQ2TyzWNujK73EpiYExyFgwuoyGXzUkbxb/goNb/Az42/BlPhf8d/2lPhhpHirQYilnJ4v1u3kl0eeSJbON2hsriIwqxuTK+VkjDWxmaGQODH+fv7Kfxm+IHwiuvE3gjxZ4fhXR9ctINZ1eHxUHSwe6spUuLQX7KomMcwklt2VHjkZ7yDa6yRxsfqcHlGDxuA9vBNSi1dO9murX5/I8atja+HxXspWad7d7+Z+snwd1rQ/2rtX1KPxToOn61oq2DWXhrR/HmszSXlrLLaW0FvFLZwoqJKdkvmTrPNcwtPPGjrFIQPM9X+HXxx/Za/aI8JeEWh8VeJvDut+HPDnh7wTp1xeeRultJrU3KNIIoI2DW+lzuIsKkZcFPmLSNpfAT9or4ht4tg+NPjbw9ceAtR8MaHpUfjfwFD4YfQbi0nvDFbXDyWtzJI5tknIlS7uIwDG6LGUbzK+j/2nfHnwf1v4Q/8ADSPiP4Ut471/wbqEWt6DY6RPFZ6pZ38arLAP9IkR/LlEGJ41Z2lWEDypWUCPixUMHUpyoKS9pF35dPwen4a99GdGFxNfD4hSnG8JJx+/y+4ii1O+1TUrrRvAHiXUBp76lHbWFzp1kLhPka6idIYLSddksU0zRGfckBkt0UeZhfLhsvFkmk6L/Yes3XiDS7K9kSW1uf7JZZNOilxCsCEIMxxSiMGOXJQeYqn5o4TwPw/+O2pfE79n/SviTo+qumneIlvjomg3ds0cVta22owRW9jI8QJgeGFI3kVJmuI2QFcIpC9vqfhXS7HU9KvdG8PiCC6vZIrxtJXFpAVRHKx24Ro1eGGEMJQkYjXEf7yNlhfjpUp3tPfqvzKnaN0J4m0XVdJnuG0TSm8lNLKD+z5nAa9Wb5ltbh3EjbJBsnjlUROnlE8xHf0Glf8ACudTS78Xq7XlxdyK9xqdj9mkaeO0DPFE5yQ6hy6vGdvlvNEFQvIrJkWWt+JfAvnaJrPhxtQWbTTc6RFqizXCXdvut1kWSHbvhRWaUBYxwkcbIZtjwpXs/E96+oCx8Vy3cCQaq0FysdrdWrTRC3iCxCFpCkqpE6gRRGX9+QqhJJcL304Plujmk9TwTX9X8D2fhSfwx4++PFtZ+MLfSls7LVdcu9KsL3U7by5hPPCTDIJIo7dFDGKOWWW3byn/AIVl6bw3d2N34T8MeJ9Jm0mXQ9N1Xz9OsNY0q8v7y+vPJ+wTXD+QzS+ZHJNOHbyGQRxNETCVdouQ+IHiWT4neHbHxpoNzf6Pqet2F0ms/DbVG0XULrw5NFPHb+XZEXDu4ktXSwO6RhJFeII47baYk6m01iz1Twba6jpnwvh0+4gupYNbvjb2+lCN578tts2tY2uGiZp0CQpHFFNFM7SytK0sMnk1I04NJP8Ar+v+Ae3FuSu0aXiO60vxVPc2f9ovYxazp63k1h9iv4NQ+3mKOHZcSMrfZpcCGTDuGPlyARyhSJp1+Fngy6vNX186PNc6xJaX9zf6dHpTukyS29mqW6XrSLElxJcWdmBcSNKdlvDDkoBLcVfhP/Z2teFNO1mx8MS+F9etNFWe00GWxnnuLiJJFnuYjMWkWXY8YxDnYWaCM+W0qpHZ0LwtqrxaTrPijwtr+itpEFvf2mqeJoY4Lm0Ro57ZWaOL92iiKGwBEYDHzo1OWM8r4cyjomU1c4DSryGTSvCd98HdW8cTW2pbtAl8RiN/sS3+qW0txI8N3cx3V48NzNFFczW738y+fb2NtKv+lSxn43/bG/bE/am8G/HDV/gfD8TvEPgOGy1Jk1TTtZ1W4ebSb24SW5vlt5Y7ZJRYJcz+VEkMPzRxRGNkSXyx+hh0Cx0K41D4i3HwzsBd+Flu7jXry00cLsMmmTM97ZExM7GQ7FkXz7eSWKztxIrBFW5/Ob/gq58S/wBmDxXrVxqfwA11IfGsj2z3t3F4nju4wjW7i5SBN8nnv9rkuAJH8pz5atH9oRhKv0fDlehWx8Y1afPfra9nfd+Xn8+p42bqrHDNwlbv5+h5b8I9S8BeF7yx8HeHvDvgHUpRqEWsX3ifxRp9pcSvPDdQSIJBK4ka2ZYx5luAVYTSRszCQ+X9YaR+3z8MLH9g7xH+zR8eL1fFev2XhC+07T9SuCt40006MttJPLN+7ieFnVk3HKpFGI0dgqP8AfBrwL8ZvjBqdp4R8MaTcTaFavJdeJr6WQWmmacibWkmvrgKRbhRCR8w3fuwsYJKLXufwe/ZFsP2lvH3h/4U/AJ5fGckdxDH408W3Xh25s/Dnh9ZpofKu7WJ5I5JzFm9y15GfOiLPsRFdo/ZzzAwxdVe2rOKg1J8vS1923on20vpZ3M8txGHpUHampN6a6dOiW/rr6Htf7RH7R+j/t9ftE+E2/Z9+KnjfWnsdUIu9Zm0aHTdN0mwdIp3htI7pWuLm6zFM5nlNuqrCNsOXeZ/0B+FN/4U+H1tq/wp8TfGCTxto+o6oLvYDcLK/wBojito4wn2oGBIzFiJ0Yj5wsjblaV/JLv4X/ssfBa5+EP7Lfw+1rw/oknhr4iGyh8O32qRWmp6vNLpN8Wu72d9t5M9/cNYxbbdNrIYvs6eWiqvtHw71nw1HEdR0DSk0+/Nq4k1yXw6sAldZ5Zri0aSWKGSVVuvtSklPLlW53RNC7EL8LUqU5YtQpJqCWjkruV29ZOy102S231PYlKbwkVPfXTt6f1uxtl4L07T7zxP4Y8OaHB4O0PXNIvob3WvDujy7GuXtFET+Y25Yb0oIUWUCQCJAByAG17zXbvTdQ1jwZ4B0izudTS1gtdbiuLKWMSMqXPmyzSM3mRu0cMsO7aPLJVvOZwCtbxJ4rtwbi90a0ttBkkt7ZBaQarFcWdqfMnMCS27xW+yIxwuyAyR5k3MsSqkjyY/jXVtC+L73PhvwWVt54NRxBa3U90JYRtLW8EZiw8JZkkRJ0EhEU4dd6fuj6dN/icDhz9SLxB8QdA0PQ4byDxFPBFompu93Pe3LoZHGYg32nJSWR1mmV5YyAsbGLELsZk29D1Sxi1YaAfFlrOfEVss2nXGp6x9kvWuCbmNbUwzQShZZEhJL+RMjztK20NM7M7QNfsfFNpqh8LeL/tOlx3gn06K1jjleJVSaaVpirW6h5GeeNYBsEeUEhUZSLD1RfH1raafL4NfR9b0++tjpujXGoabE0ECw313c2sLbLmJgBGVhMc0yoZPIUKrNLC/oqN1o9DmkvI820NNW8O6JcfEvVH1jwtFFpmoWF3oGo2ljaSHUjPGtvZyXO28Z4CoRYAkrsv22ZY/K/cwir4d8DSJpkdxr/jOWy02PRb608cfDKCGWSziuoTJNcm3uCzXIjUq8aSmRXZIVkjBlhXyNbRfiP4d1WS50DQvE0Fvo/iKyu2hOo+Ghd6Ylgtt5xEU29IYWME1tcuvmsIHfe+xTO0ckOm/EBrW6t9d0+4sdU0w3lxJJM7WOnokMr21kY44MTxTx+fbwlITH80any/tMUQX5jmak+a2v6/1vue970ktSHw/HZeLoIm8Rzab4puY11HRbnUDBLew2cyRxxpCJINyRSzXH2YyMVlQKJMkrFNLD4v+0P8AtcfHm3uNb+F37N/wE+IWo6tc+Lbmy1nUdT8EJNodtamUwXAsWhcQy20pljCtKYkMLGUKnn8+p+JD4X8DWdmviHU7/RtUu471ItUu7CKW7Ev2iGeCa3ctHeSArdozorNIBPcSSvDHv39f4WtPCEmrnwlqniTTNI1L+1lfWLmC3nj0vVdHkuYLNQYg8ySpdSNZxfZpX2LuKxupBKGFqUsNW5501Pybdvmlv6E16TqwtGbj5pL8D4f+I/w8/wCCpn7XPh/WZfjL+0BonhzSNFgSLXPDGl6pM0aW0lpCVCJZrctexJHCxHzuwkSUR78yyt1nwV/4Jn/CH9kOfwP+0n8SvGHh/wAX6kmo20Gn2fjw2+meH7a/mtQLeG7S8kZgFlbLyElo0Lutm0sMZP094j+Guv8AhDT9Q0Dwf4amtjIlrNqd5BqTS2uI53VLadk8gX8WbtEgjUREb5Y8o0jmDNtPAmhfG3wha+H/AIn2Phzxbow1S18SaRDr5tU025hubS7u4olR7WKO5WO2uFRZlaaWUR3Pny7SfM9NcR472TpwSpQ6xgrfj/wU3+XF/ZGGc+ebc33k/wBP+AfF/wC3RYeN/wBi34VWHgnSPDll4KT4raldr460Pw7fLHo8RtzYQtDZI2nWktpBcKkBlyXJClQGHnF/qfwb+yH8EvgTrnwb/wCEQ+HGli0106h4fu70iGHUHt73Qr65lmkd4Rc+eyzOvlyOG8smJbeFnTZ33xT+Hnwz8TeCdR8C+J/h/Yazax6kbO80jxbMscOj3YEzWlxPJE0sSokJCee0YeOOKVWMzO6y4d9+zt4J+Gvxn8D/ABC8O6ZeSW3g2+8WyeIfANheatdKkAsIrcMlsGlhnkEAv7dXWN3ljuY4UHmpCkXPUzKGOwiouUov3nK2qndaJ63dkktbm8MPLDVnKUU01aK7d/8APSxZ+Cv7KX7M3wJ1LRJ/ht8CPD99KJWuD4g1OyN9qtm0cyyGFhOZnhDW4kVwNu2SUIctuuK7nS/it8J/iBqFh4l+HOoySs8iS3EWhtaR2+oM8+xvtEpbZHERDEscEjxfOXgMgVB5dzS/h74SuZoNR8N6Zopt7fXYr+GRNZjsngtjLfT2kL/2ao8/YzOFWJzl1dJcLuaVkVgninxLN8OtI0m21VZGkXXtTsp5I1tbMXT3D2ccPmSOx85YwGhQTIyjaRmLPDGrWlLmqS5n5u/5s0UIrRIfpviDWZ9PTWLy5gu7PRZIIbOxh0uW3kilt83NvcXXneY+TbW4UGDYUklkEsRCqYNbwN4g+Itwy3V34V0/Sre81i9tpo9Us5U2ww+ZDayu4e4ZN0EqtDbmRCrIFQIFDQ5mhxRX3gDTLC88d6ddSQaZJp3iPxbfzGS7ntwsl0LhI7O4ZWiLvFB5KsuFlRcMgw2Fpml+O7S61PQvDMet6lomlXcNhLe6p4hgltZLG7neWeWWSS7F6jI0gMCPIrhbTyIxah0EvpUp8sXf+vPyOaUH0NXRtTTxT4VlTTNLs7q0sHs10U2ay6TbyWsc1q0Em+2lkW1VjAUWGVIixkjjAaOTcF8STpca9ovhtNX1LTribUJ/tOmaTqk89/cWxt2khZZ2jMryL9s2PHPLGoYNJHKWWGZ6Pw88Z+H9BtfO1bxX9mlv3ij0RtQvopXulijt4Ta/Z2kRZBOqymMhbfMiWySqTJsaX4da6/ibxD4d8areHUp7WaJ3toEjht4/9fFIIZliEDXi3Zii2sUE0gedUOCI+mVV0qbmo38la9u+rS09dSFT9pKzdvX8vn3+8/lvooor9yPysKKKKACiiigAooooAKKKKACiiigAooooA//Z",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArrvgB4E0T4pfHfwT8MvE1zdQ6b4j8XabpeoTWMiJNHBcXUcUjRs4Kq4VyQWBAOMgjiuRr0T9kG4ubT9rP4XXdnHvmi+ImiPEmfvML+EgcEd/cfWscTJww85LdJ/ka0IqVaKeza/M/UDTv+CBf7CVrIR4k+KXxVZlf5YrHW9K2ygoTxI1llSDt/gYHJAxjNQQ/8EBf2MSP3/xN+JgyF2/8TrTl6jPew/T2r6/uvEGhfaZ7iS58m3gmlVNSDCEsfOHzM+4IVBYHeSHyeQ2QDq3N950URMM8TTzD5vKzHtCbiUYZDLkYLEADPQZWvyaHEuZcqTqs/RJZHgE7+zR8pfDr/g3t/wCCc2pxa8vxI+NvxT0prfRWn0ORfEOnr5t0HSPymRdKlaUAyrIVjIcJG5Csu94szWf+DeD9j/w7rlx4d17x38U7W8s5DFdQPrmnZDrwxH/EvHBIJHsRyep+xZvEWh6XqOladrviCC11C+mDaWjT+VPNPDICjwEfMzLJsKspyGKEEcCvYvCPxk+GvxR1qD4GfEfwFreqeLV09r+41/w9FBHJBp9vBDEsc5mkRUlk+zTSxRldkgt7xo1UxsK93BZ9iMZTUHUcZrZ9JeW2/Y8jE5Vh8PU5lBOL6dV577dz82oP+Dev9iKWQf8AFzfipsBG/Ot6auOvf+zyO1ap/wCDcv8AYbik8uf4p/FX7x/5j2ljgZ/6h5z+Ga++/Gvw+8afDu5K+KPDV7EuYvNums4xbq7wlyokicxkhlkG1SD8jHauCoxl1Q7T5w2kop4TdhemSGAwc46Ht1rspZzioz5Zyd/PQxnluGkrwij4osv+Db39hS8OV+K/xYVdm4k65pnr/wBg6tC2/wCDar9giT5Zviv8Xsjqya9peOen/MNr7VivzDALuS+SFZFjeKLDb5FYcMODkAEd/wCPgYyRpW+sCIzbrSSR2b597ZG7eG8xSpyQ2RywHU8c5r38LmcKm55WIwChsj+VWiiivXPICiiigAr0H9kmO6l/ar+GUVlOIpm+IOiiGUxeZsb7dDg7f4sHnHfpXn1dz+zDplzrX7Svw80az1KSzmu/HOkwxXkNw8TwM95EokV0IZCpOQykEYyCDXPi7fVKl/5X+RthnbEQ9V+Z++llqOnP4wSW5vIzb3qz21/a/wBtRCa0uTaiR7S5EjEwybFPDyH5pRGrPJIwr55/aE/ar1f4BfEe41TV/irFo95p1rZCDQrq4/tG28QaZcXsk5uLbfLutp0+zGKQRJbM8LfNKfOCCfVP2P7mTxjp/wAZfFXxW8U3eqNocOiSavfXMVrAomS6Rv3+nPbyuxRXZ0WVHZtyszjGcqw/YF/Z5inu5tWluNTuZtBlstelvImPkefcxym5gS6N29vcOpuWjkVnUrkqGcSB/wAYoLKMHK1erJ3Wyi1v5vp526/M/UHUx1bWlCOj6tNfNL/M831/9s/xb8Q7zwt8ePDk3hOxudLMSeM5r+cWJuLiOWWSNbF57ndcfZo7kjNqjXFvJPHc5Jlh+zfUHg39p3SfjN8StD0/4afFbQrm+0jS9Ntpk0ox2dw7QzSnyS7xKb1IoWlcG22KpjZknAEUk2v8C/gH8O/hN4T0Wfwh4Ts1g0e6a+W8/sox3OnXstpaWdwIpCRzOllCGSKNWdyp3neS3omhXVpo14kd/q9vcahOp3ulzgg3BKzSLu4jJESqRwT5OwF8YOGMzPD14qlSi1Fbaq/kmkktCqWGnSm6k0nJq2zt8rtn0Foq6x8XfhBoOkzfFPQdJs7PzrHRrvWNVWwF9Ha3EMQQr5vlSlIZoi7K0mGVIFCbSZPEdL/tVEabWNXmmlmVXWNhHHGnykYUqTwSjNhixO/AIworqvhnd6L8R4bj4Z+MdYsNNbw/bXOoxaqs6+dFprb5Xd1MrNiN3EUsb7SixRunzTGJ8/VvB174RsLi8Miy5v08u70/UxJDawjzWBkRA3kiRvLKtJ5QxGFC5K7Pbrzq4mjTxEVdcqu732Svp0szx6MYUJzpN2129W7etyLTJZNSjjkf/nmGBMnTaN+FySfvA9sHccHNX5r6OwhSWCd2EkTvaPDcRhjhnUmRQWw4ZcFOcbTzyC3Ox3F7Yvbxw3ubhEjZ45kRjLjAysJXc6k4zx0YDHzVoS3EEhM0Llrd42tbvymKrfjKxb2Ry2AT5ZZXH3sgBPlWunB4yUUncmvSUlY/mNooor9SPgQooooAK7r9l6/0fSv2mPh3qniHULC0sLbx1pEt9daq8S2sMK3sRd5jMrRiMKCWLqU2g7gRkVwtFZ1aaq0pQfVNfeXTm6dRTXR3P3Du/wBuz9mKbXLjUfD/AMf/AAFHN9qWSbVT41jF1fQoRFFHO8zLvXy4YSxALEhCscaAxr1Wpfts/so+Rp2qeFv2svB1oHvVTXNNi8VaNHFcIiAiZke4Yhd8A2xRnCvInypHDGW/BKivgZeHuEl/y/l9yPrVxfiF/wAul97P3v8ABn7ZX7K8chufFX7T3w0Z7q+ZbG8tPHOlBraNynmxlZXL+WySSIXdlYIwCklXVVf9t/8AZVttEtbg/tSfD+1hJtkmmtPHVhNLB5UmxZFjaVpVQIPljjXAVhuVdpY/gfRR/wAQ9wf/AD/l9yJfF2If/Lpfez+h74Sft7/sp6D8aH17w1+158Nrt7HSba3vtL1bxzplhaa5ay34SSNb26lCpOgjRm3Fd0ZY52Myv6Hr37e3/BNrSB4zTwP+2B8M2j8QwGGxg/4S61UGAhnCFfPRY1DxwmMsXkiMaApgDd/M9RXv4XhzD4XB/V1NvfV267nlV85q18R7XlS2072P6GtD/br/AGJbGz1DSn/aN+GTyTWPk6XqMnj+0jktZN8Lkkpc4YGOJo9pUKPOPzMVXa7Tv20f2M9UuoYpv2v/AIbWKRzMLgnx9pxzGCxL5MwLscfKoYDcVJOPnX+eOisI8LUIpL2j08kaPParv7i182FFFFfVHhBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/9k=",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [47,38,82,89] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [41,58,64,75] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9lwvy8vg54BNN2szYByT6V+NnjL/grF+1r4s0BvD2tfF++slXiWbSrO1tppcNuAeW3VXX+EfuypI4OcnPnviT9tX45a7pNzol38cvH0un3SlGt4/F10sbgndlg7MSpIyVbPp9PzWfGlK/7qhJrzaWv4n20OAMYv41eEb/AOJ/oj90dSvLTR7GTU9avobO1gQtNdXcyxxRKOrM7EBQPUnArzbX/wBsf9l/w5J5F98bdClkIysWn3Ju2YeoWAOTx6V+GWu/HX9oHQJzZ/D/AOIeuyi8C3JsdQvPPjfayxgHewBbdMApPzYaTB7jy7xj+0rNq+rzPqPh25/teC3Vbe2hVWV5QDvVoyMhRgYVenORXLPi3M67SoUor1bb/Cx20+BsDQ/3qvJ/4Ukvvdz98fGf/BST9lDwahjfxre6jc7SwstO0W4MhUdW/eKigZwMkgZNeW+I/wDgs/8AA+KSYeDPBN9dLbj942rahFbNn02x+bkD2J6HIHf8ifh18aYdc0NfB97bTQPZP5N2rQ+WpZkQsyqCckhuDgYGRt713ukeKZrTQD4Z+Heq6ZaRR+YqJcRspmBJYhySQPnLZIIz3POK8nGcScRXS5lD/Cv1dz6HAcFcMNuT5p27y/RJH6B67/wV7+JEmnR6roui+Dba2vJ3gsPNtrmWSWRVYlQROAx+Rj90DArxP4m/8Fkv2obdxqPhXx/otnGBEZLeLT7ckb2YYVZomJI4JO7jByDjNfDHi3xx4puPjJZ6dqULFzpwVDf6i1wY2/fKZgrZCgFHxgkgsMEHaB2fg3wVbaVdtPOlsJpGMsUTLK+DwUbhgrJgYyQDk4wQcnzqmPzbSVXEzd9bJtfkerTybIItxo4SDtpdq/57nc/EL9pD9qD4yawfFnxY8f3Opx6gzrZxahfbYLFcscpH8gQlQpCpjIIJ2nJryw3c+meKJ7z7Rd3K3MbfaTd3kUzPE/BXYIl27QAAGdsgAknv0l1qkct/cWdzHPcR6XMz3moIy+W0kihZAqop2gDJB3Med2RgGs2y8K3Gopp+sSRxWFlcGdJp9wZFiWF5C7bsbMMmzjoXGc5xXC4SnOU6j1kelCVDC0I0qSVl+D8rdhjXQ8PXVyfDRjhhggCx/ZJAAGziNUyclQDyACQFA461BpWveL9DmmlNzLIumo8sssbFkOXIVCOB94kD2JHUg10OjaZHq3w7k1m5tpHlubxJY1a1VI9h3MZNpABHyA8f4g1tQl1DwXDqktvDDcTpqiwSTXKb/NVC2QygjOdwYZ6Hnmp5U04pK5p7SStJvQ6bw18Q9Qm0iDXtRF9Gzt9nlZVV1jc45A3DIOcfd9QSKyfGPh++sfEE+taJq9o8WqrLJGkm5Qjhfn3dySWJUc44yeaxLJYfGEaaVr+q2YWC7VrBpg26aILlkySqZJZRtOTheDzWhq3ia88JWmm2a6xaPptpm6m8uLeyIR5S4cp8q4cjqCeB7jlpYblq2XU2xWNnOjd7I8mLFNXu/EGs6bPe25hnFpZXmpEQx/J+73Ki568cHjrzxXt/hbwTbeMfhqmqahfLbWD/AOp1K7t0jNoWTeQTwW25IIzwcYzuzXDa6ngTS9H+0eMdPa0uJYTJa6fHKqhxuPD4bIUDaSd2dpzgng+1/AXxrYS/BzUNWungutMttQXYEhDfZY2aMNIc8FSC6kHkbs969es1yKUFax4sI1VK1SSd/wCux4f4YtvENlrOrRQ6mktraKsdtJHKTK8yY8wZwwHyshBXqGI4IxXLfEj4Y3HjfTJdR0vVdN0/WNPtkS2vHidZnYLtbzGVC7DG4ccjJzjPH1zL8Fvh34ymI8ITPbyXga50+zB2GWZow7gZGCGVQ2SCcjGQOvhXxG+Fut+GbuT+2YvsH22JhCJYTJIJWCnaQoIUFXyDkdDzkCroVrVFJaMiTveE9UfNHwQ1/wAQeBPibdeGvFsUpvbot9rluAWDSLsXAZc7lARepJ5PPPHvesahdSWV00MdsJrmdpCYjhkOQcDuq8E4PUGvnb4v61q03xNsPCEmpX0Wm65qNtaXUlhIwysckYOC33SHj6jru55Jr6J8BeGNX1TR1ttUa5lSPZuvzG7I/wApDOzBmJ+YMctj7wBbJJHpZilzU6z3kvy0MMBFtThFtpdWecWesXUn7RH2QRGRtO8OW8k07wYCq843AEkZAMu856qD7V7P4x0jWPiHa28ug62Jktc27XUWCWYSsfuIFwVLR5wAoOMdqwdEsL69F7plzBd+Zq2olLUQxFFMULsELDPA4Zhjg5I6YrN+H19430/4r+JNL8PafdWulIhaGOztt6zSCG3QohQFHIImfAXcSxzzyOCq/ay546cq+/p+J3xtTp8ktU2dBY6AsUC2Gn2flsbdBDPcQMCGQCNmVScLnaRtIJGQOMVrWd1q+m6LL4du5ry1tY08wFJgsFwu4KV6gOCc5B/unPTA3vAMeu3Mkh8RxxfZoYGjtb4OIXnLMWbYQQduc4zz34Nchp3w98T+NPH/AIui8O6hbto7arE0KajNshUiILOvl8tv3AksVAYqxBOK44zXM1J2sbVaDcFOGt9LHb+D9C1S98Cawmn6VcXS6bdNAqyRNE1twMbQp4KoMeWxIUkcHGK57xLZ6t4p0TU20+yRXnk8x7WJHA3Ivy8EnacDkZPRuma2otAuPDUVh4TXXTLfwsLhrh7vMUkgjVCR8mScHA5GApyDuyLyaPZ6nraQyaizS3Q815ZlDGKIqVcJHEC0gYjcCzrtzyGOSIc4KXMghRqOko2seOfDfxLdDV5Lc6VbLJAXKLe+ZGIJAAAWG5Tu3euMZxjiuu8baH4i8VeFgJrcTrFeyXEuozyRszIpc7C6HLgbunXheelaR139nHwT4mtluwl1q1xcLFGbW8V4bd2bO6RmO0YOATjIJxzznvo7691SezspFn+xyJKXeCNBGVyDCpOAG4I+YZXCtxlhjOrWlGoqkY2OiGFjOm6c539D5U1f4kWul+KYIrLS7qf7Zaldx0UKsaszfICZA2SODtK53EYBp3wP/aN0n4C6hqdj4nsQ9tGc39vHIsMdwXUqVWNSytujC5DsW3g8AEmum8GfDL45W19bW1r4Nexvle4l03zZrQMS3yo7KJsKA7gFSVJIz0AJLv8AZ/8Aj3pEniBdc8EpNruqXwj0y7fVS1pFEcRneIz+8yEGI2yhI3MG5x9LGNFxcJJW06+Z8rLHw50+f3v+B38z6Ht/jZ8K9a8EaLqWm+JLywd5Vks7W2V455YFQyIskLAFiuFA3YUHByBjNb4s/tUeExPYan458JmV7SzUxXV9OqTxOyMMGNBIrEcsBIcYBJHAB8u0HQPiDbR6Z4e1L4dDUtQ0QOkN7dy20E7XDZBlZItqMqhyuzIBAG4NjJ53UPgtql5calD4+0rV769naOWC28xWiMhJ3o7jcG3MBkqA3JXJBxXD9VjGduhpTx8Jpydr+qM7w/qHwm+IHiu8+JnhfwmLO2upAY7i/kknBkEgIlVsfIPvYUqAc56Bc+h3Wv8Awr0vwHZ6JoutalLeRFXiQtIizkb3KYdCqozNhgACQcZHUZ+jeG/jJ4A0iBdB+Fw0qIFxHHYaXJLBKSB8wQpsB4GP7pHGKx5PBHjfxSJ7zWvD+uLceeHlub20ZSJJHwsa5z67QoPG1R2Aq6mGlUqX1svO51UMzwtGHLo/wKGu+P4dEtY/DuqSyaRa6lNM8F1Y3IjuEkdi+0SHd8oOQoAHBC8AYHLaLe/FfRtTi17wmontXm2TRLfPJdRwrKcMNm1d/IJl2k7cBiT8o39U8JWls8Q1eH7Q9vIdsWoW5cJkAcZO5Ock4+gxiptJGi6T4ci1PUbiyjtzMd0fmskKouSeWXIPyDv34xzXTClCnT+G99/M4MTjq9afLTkkt7nbaN4quZpGur7REvru6zKJ4L142h45Lr86y5yoztDDHX0s6F8QLzw1cLLcaHFqEl7d73VZsvJuDIxC+WygBTI3JBOSN2SBWJe+Pl1zSBa6bAsVpbAT+ai8Y3DiR1XDIO277oOMgYFWPhjpfxG1ZJo/hvcvexpIJ2khkU220rgiVzIhbjnJcY45zgVg8JSnF3jYqWZ4ijy+/f0NHxlpl/4j1nTrTT5G0u7toyZ9QS2iN1JHjAVdwWOMbyGyEJyOP4s6WkQ66NRNtHNZtNqEbx28zJC8yqNyKPlfzJU3bcD5QGzgH7xwNd0PUtTvo9f0ZA04MhvbyK1ZllkO3bwXCqF6Yx0PJ711MPg7xNrmn2y3lz513aIWiuDdsqqMEs20AAjBIAOcD6VzvCJpRSsjppZk4VpSk7t+en9ehg+I01mHUk0dNcuDLBFl1RTtLK+Cm8vwQR3YkYIArN8Lnxf8OtUjvdC8S38llNdSTXekWqRtEQ3G0O4LJgHquckc5wK39D8S2XhPV5p/H02kWcdtDsiaCN98zYAV3kfhWzxgMASeh4FYPw4+Ovghvi1qur2dybiG8uESB9YtTNZsEUhfK81dhbJOQhP3ckVrLCyhBrluY/XY1aqnGet+9rHtfhe6u7KYx6f4Mi0qFLz5Ip7qOB5QRlnZEDZOc4PB555rpdQ0AanstJ9D0+FHj3s1xbG6z05C7YwG4AJZW47jFb3gTRfEFxcXup6P4kH2W4hCvZ3KW0PzjgMX8liqgbvlULknJYjAFTxm3jnw5JafZrOE2TyFJsETgEYG8N5ibeDxkHPpVuzloeFBRjH32cPHDbalevomieEbxLHy3aFV0RrdIwCePu4AJxztJ68eu9HZ2OqWKW+mWs+jPBK37+1s4RLC64JEfnBA3O4ZIIPGFBo+JGreE/DWlQ6pquseHZ9RRgtnYvr0VlMjtxuVj0bPGAV5bhh3seHpNFtbb7VcXujWks4Ek7X+uRyFWI6F3c+3bqfxq4tNJomEYc7TloctqBuNM1Vo20+N45VUQpca5NDPKmfmZkhSRSMBiPU8fL2sr4B8FTiS8sLm+VniO+yjllRncKAi75SwUfKMnbu4B5xy3X9P8K+MfEUdpb/GfTxqcyNJFFaXkEshizsCx7FZypc7QcE5J5J4rrtP/ZK/aJ1uxMOtfD65ito5CYdS1WOIzBQo4EdxbxqSfm65fPGTwK6YU6s1eMW/kzGEHB2lt3ucZD4CexX7BoPh4wW5GRJdSM7EMDuTEUiBuSckj5uOBzRL4Sbw9cO11oFjeRogSK3u0+zgFmJ3Y2vz6t0G7k4ArtbXwt8L/CXhGa6+Mv7T+h+F47eLyp9Og3z6nbOFGN0UMsccAxhgBIDj+DBr57+I/wC3X8EbKSPwx8GfHXjHX7iRTGdfuLK0SzmbcVVQLjynLDIztkYYBPHOPQp5RmE6ak1a+1/8tzB4rAPEOnGWsd3fRer2Xbc7m3+GvhW21uPVxp2ywBy2lmC0uIncMWUvI0avtBIBC44LYwSK6Ow1qTTLWfwhf6NbLbRxu1qJ/Ma3s+Qd2XTZxzxncvbOSa+U9T/4KOeEniHhzxnp/iDURLCJN2kWFtbrIxbaFdzdXG3aQWyATgjgcGvQ/wBnz9qX9n7xjqufGGuarZPErR2667r+rztcHI24j060jXPuXBGB1yQcZ4HH03Zq/wBx6lPK8TiaXtaFOUkuq1PWn8W+HptDl8GwyWHiR2O930JIoNhfjcjM0hBGE5eMcjjOBXL3PwtHiPV7WfRrO+sXim3Sqb5p3Y5IcbjZbUDAjkNkY+taF5+2L+zNaa+0kEuuKbWVY5bK11DWYUEiYBV1W6G/oNwbPIOeaoax+2P8Cnu1l03w1qUncrBJcKvX+LzHPmE9SW3fXk1tTyvM5q6p2+48OtjcNQqShWnyyWjT/Vbov6j4F+D7azEmpeBJri8g3Kbq5m8xo92NwQmLyy2McEjp7Vc1r4WeGPF+niPRbLUbUwRtI008EUziJQMsQJFCIOOSOK5DW/24/AWowSRyfDrV0Yx7POtb1IXKgYHKBD6Hr1GeaoWX7afgy13yv8O9Qu8xBFjutYbDALgbwzOHPueM5IAyc7LJsztpFL1OSObZdB29p+f+R5TP+158VJLJ9M/4lv2SQgmHZKCCMdCJRxkDjp2rM1X9qX4warcLM/iho40hES2sMf7kICSAIySo5Pp2FczJ4itoXC2ltpkA/urpyy5P1kVjT18U30YP2W7hiLdTbaREmfqVUZr6tYOgtfZx+5f5Hxrx+Kk9ar/r5ly/+NnxH1LzGn1ZJXkdX3JpNsHDLyrBhHkEdiDxUOh/tC/FLwX4r0/xhf2Wu6xbadcLPLYnzzFcqpz5bLE8bFT0IV1OM4Iph8W6/wCQU/4SDU1H92GV0H5Kwqhq11f6zEEvpNRusKQvnXkhHP1atfZRatypChjKkaik5t2/rudb4u/4LB/EXxDot/ZeIvBd3pKXsss8tjol+9lZb3bc7G2WCJXkLFiXkD7ickMck+d+FvHPxs1P4W6l8atP/bSsfDQa9T7PoWnapPbyzyG3Wd1d7fy1UqGVWYsuWSREDyeXG9C+8BWN8wMnh+MkcAu+f61Sl+FlnjKaLapk8EtRDBU1e7PqK3GWOlSp06EVT5d3FK8vW6ei7Ky73PLfF37TfxF+Ilx9t8ZX2ratIVQsup6hc3g3qPv5mkfLHqTnHPHFZ1t8T9bVAtroBjwThIvDkDhfoWBP6V7JD8LWH3LG2VegxHnH6Vt6R8BfGOqwNcaV4WvLmOPl3tdNkcKPUlRxVrL8Glex3rxF4ijHlhJR9El+Vj5+Xxz8U3kZ/Dya9C0hHmGB/s+F9AAABxkDggZ6V6j4sPwb1/4b6XYfDf4V+L9D8VRyImo63eXsJiukPMkmA25edyCFjJlSrGUFSsnb2fwa1dLg219Zi1dTtIvmFtg88ZlZeeK6Sz/Zz8XEI1vpEVwGAK/Y7yO4JX+9iJ2JFaRpYWmrLQ8XH8U59mWIjWrVZNx21dl5pX38zgfht4YstE0lNPkj1mYLIWYTTxrkk84KowH0/wAnubbRtAiw1zoN5F7y63GQf++YePzrrtE/Zd8U3VqZ5NIuopQ3/HpP4f1Te3pgi2KfmwrodO/ZS8dSYa7+GusMoHzm1tLZiPT5Z7mLPP8AntS9ph46c2h4daeNxVV1JJuT1be7PNduhoixpp2lZzybi/mfP4K6U83OkQYL2GjxgdTF57foZSfyr2Kz/Y48YSRi5g0iOLa3MF+IoiVHqYXmxn2B61vaT+xtrsoRtS0/TrdepaHWXckH/ZNouPz/APr4SxOEXUhYbGS+yfmn/wANmfEbOR4S8Mg/9eU//wAep6/trfFBPu+GvDg+llN/8erx+iva9lT7G/saXY9jH7bvxUGAfDfhw4PP+hz8/wDkatSw/b8+IFlbCGX4T+Crlwc+fPDqO4/gt6q/p3rwiil7Gl2GqVNdD3KD9vz4tWc/n2PgjwbH6pJoskynp2mlerkf/BRP4sicXM3w38DtIDkPBpVzakH1Bt7mPH4V4DRQ6FJ9C1GMdkvuPpnTv+Cp/wAcdOg+zD4deEJ49hXy7ufWJVI9MNqJH6VbsP8Agq/8XdNVRbfs/fCQupB86XwxdSSHHTLNdknp618t0VDwmHe8S1JrY+u5P+Czf7SJtGtLb4UfDW3DLt8y20S9RgPYi84q1pP/AAW5/aw0izSzj8C+AJgmdsk2l3xbHpkXgr46orP6hg/5EX7aqup9mj/guT+1eH3j4b/DjPtpF+P5XtDf8Fy/2uCcr4E+Hy8dtKvv63tfGVFH9n4P+RD+sVv5j7Gi/wCC3n7WMMJhTwN4AOWJLPpd8zZJz1N4f/rUx/8Agtz+1s+ceD/AS5GONIvOP/Juvjyil/Z+C/kQfWK38wUUUV2mIUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//Z",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+ivruz/AOCLf7U14jyr8QfhvGqCQsZPE8v8B54FuSBxkMeCOQSOa1p/+CGv7TljYtf6n8ZfhfbBUZtkmqaozcHHOzT2257FsA4ODwa8mWeZRHetE9GGU5lUdo0pP5HxdRX1bf8A/BIT9oOzYJa/FP4eXrF9u2z1O/bBxuwSbIAHHIBOSOmaz/Fn/BJ39pDwVFbz6/4p8IQx3IzHI97eIoHGSS9qvTcuR15rOPEWSSlZV43OqXDeeQjzSoSsfMVFe4Xf7BPxTsfPF1458JI1vaS3Eq/bbonbGzhgMW3zcRuwIyCAMHJAOnff8E3Pjhp10LK68XeEVmXy/PiOoXIaDeoYGQG3+QYPU8Z4zmr/ALeydf8AL5ELh/OZK6oSPnyivo3xJ/wTF+O3hezjur/xt4LkeQqBbW+p3LyjIJzt+zdAATnoQMru4zBpn/BM/wDaD1aEz22reHAvmKig3N0WYnPRVtycDjnGORjNSuIclkrqvEuXDmeQ+KhI+eaK+jdX/wCCYfx/0e1t7qXxR4Sl+0wNNFHBf3RYoG2FubYDG4EZzjj6VgXP7BPxgtblrR/E3hhnFx5MYjv5281tyrlcQ8ryTu6YU89M1HPsnmrqtEylkebwfvUWeI0V9GeLf+CYf7Qvg3QB4j1LX/Cs0BC7Y7TULh5HLbtgVfs4Mm4rgbcjJXJGRnnPEf7B3xv8N6Ve6tNLpV0unxvJdxWj3DPGijLMd0AAxg8EgnHANEM+yepblrR1B5Fm6WtFni1FdT4k+EfiPwv4Li8dX9/YyWk1+tmI7eV2kWQoz8/IFwAhHDHn25rlq9KjXpV481N3W3zPOq0atCXLUVmfsHJpHjjTWbT/AAxDHsVVVtSieFMRqduE3yGQAgEYVMtxxitQaF8U9SvBpkOiaVMPtCNI1tc5Mmz5VZn55AK5Y5AGApK4xLcaPomlW62uqadbWk6qbaNpbtoiwCgyiPoVGY1G0cn8Rh+geDtX1qEaxcXt3JDqNwEhtrlWRY2yFRA0yqWUkkAqW/h5Bzn8kq0aMneUVf0PssPm+PpLlhN/gxdL+G3xg8L6LqOtz6BLqV7q04uJBpOoQXVxHEu8R2qJbh2gWLtgHcXkbguxPnfjbUfiJYx6rbeM9Mvlupk8lNQd5fOtyrF443hlTPl7jMxIAwNuIh/F6pb/AAj1XTr64022UQl7lS2nzSlfMbaNvyMCgDHggYBLB+cmtY6BrWhxXNnrWvQ2qXMsaT6bd6lDFFcJgYiVWcIYwGYbMdiR1rFYPDOfMt/vPTXEWYKPJNXS+R86eHfFmj2fxKR759STfbLG+qXdhJHa2hRcMqu0e0sRMc8jtgDOTJ8V/AU978a/D13pfiOGDQLFpbie6s9SidXn2orW5LMhCK+SRtJzFgBuDXvVx4QtNYmv7yTw14aupNNK3cc9hFbNcRoVBZ3KR9iOpbOFwOAKzNR+Dvg/Wb4R2WmGC/NkAL60t2CqXDbQGO7AKsBgb0ACcLgEqWHhB3g9bNa/cdVLPYVfii1/X4nj3iW58HeDdX0rTtWvodrzysWm1ArsllX5JZmjG2IMA/BwXz8oIjwerGp2mt+GrfSfDk+dOvYgpuIrWO6U+W8kfmhSCXX+MFsg44+7xa1/9lbUJdZbxB/wk9rAY5ZxbzXekLEUi8s/MXhkRtzcFXLZIU5zkg9F4P8A2a9Us9Ne81P4pR3+pvJiW6kiYRRhDgRsyyMpIyF2vvZdpwTwo5J4aO6ev4HrxzjCyVpSskeN6peeJ/HKWviy08QaxDpekX0h+zfZUj3JAAJQ8TyjncAu0/MzJwvAyuqeLNK0XUNNubzw5DHFNMIjdTx+XdSAxgtJFH0WLCuSB84wRjru7f4jfADx/bWw0l7ON7OISQ2j6GyCK9J2hgAXQrFwQobjD/KvzEjl9N/ZK+J15psusWXwchvL2ZUs0Op6vaq0cOGbzFENyVDBGDAnYcgsPmABuNCMkuZ/1+oVMxwetpL77/8ADH0v4h0DwH8RrO1vPGuhm4sbGa1+w61byqkuJv3ZeQHbjy9zA5Gcou1TuAPhn7Q3wX174Xw6lrt9JcG3gtRL9ttR5kDISCu+ViqgspxtwfmVueBnU8FeGPjR8MPD194Y1Twx4wgtZGUvJaz288d0Niq8cYV2eAI2SRvUE7nIXcQ2T47uf2idZ0yXwv4J07X4rWefy5dU1K5upGjPOWlDMqbNuVCK2WLAN13LyU8NOlU0d0Q8bh6r+K1v60Phn9onRfEUXwAi13WLI2UUvjGNIrBLKOJVBivCJWKAEs5DnnqAPTJ+e6+z/wDgoToviOy+AGmXviY31xcnxbbL9rn0aS2jKNa3TLgsFALDBKqoGVbBIUY+MK/WOF5yqZZzS6ylsfm/E3s1mfuO65UfvLos3iq40pTol/YxW+zM7/2hbzLPM5DbQgQ8cKytuySevQ1op4t1TS7aW00nSJtIv7nMVzJptnF5qFc4kkIJQkndyw3ELjjGK8ztvjXf6Fq8+h6b4l8Q7V1OSIRyWs1yVfDFvKmhUovAJ+bLcHnJqWf4teLLJop211JrExON8ttOs9tIORLL5jjBP3SETdk8bRXwc6VVLY9qk6F21K9t7W0/E7jVfDTa1pjHxPr91Gs98kD/AGrV7i2jVSyhVyhkYsSWICSqS2MDIVaxH+EOleGNev8AxB4Y8P6bIsu4WH22RZ5I2jjX99uvJI/n3pwTnB2nJ5A4nTvHGs6rrV5qNjf6vrF4kSiKSRroWSpxk/vFc7iVyUDORhc4DDPRab4/+InhrVrfUvFtreaHZXV6kFqJdJ1EJeKQMKQYo4kznO8qfXdzwctSOiYQhh6lnbfr/wAFnVtb6N4egXR9WW30y81G2864iEIuZ7dwD+8Kee427toV2U8gdTitvwxokUFkLLxJ49la8vbX900dzbtfxk4YAMib1IQleMq209VwTxuravar/wAS668G3Gr2qZNnp9paxOgOAQRJI428g85UHkEHOa0bSz8YSeCNV8Ry/C/Xk0zT40iulhmN9HpsjlNieT5lwiu3yFVOc5G0fNzmozaVlqzpVNKVnsdJpWm+IbzTLJdDurW+ja4BWfU9bE1zJFs3rIZCqgEnYT5RYZf5GUda+vnSvtVpH4weCZ4XEaafazMrKd5IJTdlipzwclgflBOc4mleOviP4I8Maj4n1jwfrFpolvbGe/8AFniHQjb2tshIzvMVmFU8jG89AeBk1V0Dxzofjq1k8VeAviFZazAFkWwns7qdbeHfgtuaBip+YAYAUAjO3ioqYerTd3Eq3PG3bvsdt4f1m81SJm0rT9SsRLK8kVxd+HZ7cO3LKAJTE0nGeGB65wBuFcfonj/x7putz3fiPwNJ/YWsFlkU6NZwPaMN7F5GlmZUI2rKWCuRkHfhcVPo0fiG/ud2q+LbkR2kCvY6ToN2GljiVeQAXBcYGAuw5HykHpXM3i634r8WXb6Zr0USzgSi4vdUnkumCKCu61tVtzC6nIwxdumTkBQv3cW76LzMJe0klL8mdrrXxQ0mfwJpukeF55LzTbq5isReWd/Dq88KAHgpaq4V2MZywQ4QjcPTWk8T+CPB/ha/0nxBKdOt94zeXDi2SFnLEokUiMd4UhAQQCMD5QuRyfhe/wDijPZ33iPVfgPqMssTvFb3yqgtLvbkHbund0JCjJIUngEdcatp8Lvi341sH8Wv4Zg0PTLhfM3Twbrq2YD76uZZoV+6SGEeQCo4IzQ6NN7NfeUqvNC6WvofHX/BYvx1pPjX9lnw7Jpt/cTJB44s0ga70ZVd1FjfKzLdJIyuuQvyYUnOf4ct+atfpp/wWK8C+I/DX7IXh/U76a+v7CT4g2cdtqtxqaXAJNjqDbG4Vg5wexBCHkHg/mXX6LwzyrK0o92fJZtf63rvZH6E6l+2b8XNWglstTttOkt5U2NCvnxDHYZjlU9eaXRv24PjN4asoNM0mDTI4Lc/u4v9JAK4xtYrOC3HGc55rzuW98LyL8vh+0jPYpLN/wCzSGokvNAU/PpNiw7587P/AKMqngqDVnRv93+Z4ixuITv7Q67xR+3N8QrezWa48H6Li2LyhIr3U0EjEchsXvzA+9eifEv/AIKCfDjxb4CsY/hNJHqes22kz2b6bqi3bXU9uYmmmnbzS1mGjCyYyN8UcaBZ5WBY+DyTeFCWafwvYTZHKu04A/KUf5NYlx4f+GjXQvB8MtEaVW3CV5bvcD65FwCOazqZZSnKMoQtb01/M93J+Inlam5RU21pzX0fy3/D1PaPiP8AtjfHn4Kw6h8M/i34ZvfDNzeWMkD6VDaWFtHcq0UbNE628KGJdk6EgYJ3DggnHCfGL/gov+0X8eLR7D4kftCeIbmyntjBPaWivAsybQuG2SKCOBlRhcYGMZB5TVYPBOs6g+q638PdHvruTbuub25vJXbbgDLNcHPAA57VQm0HwQ7F4fh7oEDZyAlmWHTHR3YH6kGqhgsRBe42u/w/5Hs/625ZiIx+uYKnUkr2fvx38k9/PpurFHSvjMnhRbTV/CvxW8VaJqVkQ0epaNeS21wWDhwxdbzJIIwCFBA9+R75ov7bn/BQ/wCEng2L9oLWP2jvEuraFeWkMJm8U+JEvr64tpNoijkguWaRA4wyqrfMivIgZEdh4t9h0R5VlTwzoC4yCq+HLM5z1BzEanisNE3K58P6Nlfu+X4etAB+UVaPBVZ259fV/wCQqvGVOLj9WoQglvdOpfyvO7S9HfzNW+/av8W/FHx5cfEywtzpt/dbWkexZ4lRgCuE2sMDjd0HLd8ZPRWnxy+Ks2qR63H4zvYp41Kp5ThVTIwSFHG4jgt1PTNZ2k6/HpqbLXS9Oxn/AKANqSP/ACFW7b/ErV7eMRwaXp3HII8MWe7P18nNaxw0YQUXTj99/wD20+SxeYSxGJnWUuVyd7RVkvRdDRsv2jfjfDGsH/Cx9RkgH3baeXfFnJP+rbK5yTzjnNbWkftd/HjRYTb6f4rsIw3+sJ8N2DNJ1xuYwEvjJA3E4HArmm+LHjMyia2ubq3ZRx9itlg9ecRqvPv1qGf4q/EOaQSHxBr+4HjbqUy/oGqY0F0gl/XocbxNV71H+P8AmcP+3F8d/ib8TvhNY+H/ABlrtvc2q+JIbpY4dJtoD5q29wgO6KNTgK7DGcc9OBj5Vr6I/a48YeKfEPw7tLXXNQ1KaMa5FIBeXckilhDMAcMSM4J5r53r0sLFQpWSN6U3OF27n0Qfjz8JScjVz+NpP/8AE0o+PPwjOd2qjp3tJ/8A4mvnaitPZxM/qtPuz6JPx4+EXQaqn1NnP/8AEU3/AIXz8Jx93U4vxspv/iK+eKKPZxD6rT7s+hW+PXwtI41SH6fYZv8A43Sj48/DBiC2tQg46/Yp/wD43XzzRT5Eh/Vod2fRMXx6+GW8AeJLdB6mwuOPyjroPCvxX+CeuORrHxy8P6IFPDajo2qybh7fZ7OT9a+VqKmdPnja7X3fqhrD0rn2PZ+M/wBn17wWx/bB8BQxHH7+bQPEm1eO4XSmP5A07VvHvwB0tWe0/a/8EaiAOFsvD/iMMT7edpcY/XtXxtRSVFJWbb+7/IHhqTZ9a2Pxt+ADTGPV/jpFHHuxvs/DN7Kcdzh0j/nXQ2Hxh/YNnQDVv2nvHUEm35vs/wAI45Uznsx1VSR/wEV8U0UOgn1f4f5B9Wpdj379rHxv+z34l8GWlh8HfjDrPiO5TV0kkttV8HnTdkIilBfd9omBIYqNv+1nPFeA0UVcIckbXNYQjBWiFFFFWUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/9k=",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [30,59,82,71] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [23,46,67,57] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iv3AX/AIM0iev/AAUdA/7pB/8Afenr/wAGZ6t93/gpEDjrj4QZ/wDcvXSsHiHtH8UcEs0wMHZz/B/5H4eUV+4Z/wCDM1hnH/BR4f8AhoP/AL70z/iDQm2kj/go0M+n/Cof/vvT+pYn+X8V/mR/a+Xfz/g/8j8P6K/bK+/4M6Lux5b/AIKFlh6/8KjP/wAtqoy/8GgskQ3N/wAFCeP+yTf/AH1pPB4lfZ/ItZpgZbT/AAf+R+LdFftAP+DQuRvuf8FBSf8Auk//AN9alj/4NBHYfN/wUJwfT/hU2f8A3LVP1av2/ItY/CN6S/B/5H4tUV+0/wDxCAHt/wAFDP8AzEv/AN9qQ/8ABoC4/wCchf8A5ib/AO+1H1at2/If17C/zfg/8j8WaK/aQf8ABoM3Q/8ABQk5z2+E3/32pf8AiEDc9P8AgoQf/DS//fal9Xrdg+vYX+b8H/kfi1RX7Tj/AIM/2OP+NhZz7/CX/wC+1L/xB+v/ANJDB/4ab/77UfV63Yf1zDfzfgz90W1KIZRACD13VXa7Mcm6KTHOetZkmqRMuMcioJLws3B/CvVgpwPAqyp1I6m0+sOSG83DD8qt2mtxPGPNOT6gVzDXOeRmhbyZPuNgV0KTe551SlT2R2ObPUYSoOc9QTzWXe+EUuZMxMF/Osmz1i9t5PMikOfTFb+k+IEum8q4Xa2OtUn2OZwlT1TKSeCVjGWlH0Gamj8IQbfmIJz6mtzqOKpXq6mr5tZAAfYUXI9rUb3M9vCNufusB+Jpg8GL/FNketXYrvUY5dtxGGB/uitGNxIu5RQxe1qLqYD+C4s/LNj0zmoz4NmBws64z710tJtX0pNJ9AWIqrW5zTeELkDcky5pp8J3+MiVa6faCMGlwMYpWj2D61VXUxLnwjErnyYhjPGWNU5tE+zSYaAZrtTEpIOTxUM0UbrmRenpRz+RSqSOVs9PgklUSWwIzzWmvhrTJAHWHHtWqlnCp3KDgj0p7LGibceuDim5ic2zKHhzTh1hH51Kuj2Cn5YOR3JNXiVC4A7DJrN1S8mtpBGgJ5/OhSbFdyLixBeF6U2a5t4V3u2celZmq3csVsJFchmOCKw21WYEgAfjR0KhSczroZrSc/umB+lPHynJFcZHqN55nmxevQCug03WLi6twkiYfsQKLaXRNSm4mpgD5lFNZgPmaqiC4kUmVRkelRxWF2zmWC4wSeQx6UWuZtF3zUyBnr0pwBPQVAbLeQJlBPqKsRR+UNg6dqlkNKxfAxRTyAeMUEYGAKm6NiGQrGheQnCjPCkn8hyawdV8eaHpk0cVxYayxmn8lWt/Dd9MobnlikJCrx944X35FdHsHVqb5fAYdB1qboSaXQ4HxB+0B4D8O2N1e6jpPisJZRNJIw8BayUO1SfvpZsMcdRn2B6V4hpf/BTXwr4dj1i//aZ+AfxA+HFpp926Wmpap4XuriyuRu+RBcRRlC+08N/q32Fgw3KtfVpjYjFYGt/Dbwt4i8C6z8PddtWutN163u4dVVtqPOlxuEmWjC4OGIDDkADnIzUuKlK6k193+RvSq0oxtKCd/v8AkeU+B/j74l+PWlaf43+Gfwe8Uv4QvFM1tq6pYQ3V60c7o0Yhu7iMwxHywPMIYurtt8vCSN6BqVl4wltFl8O/Dm285lBMWua4LYJ0yC0EdxyM9gRwfbPXWVjDZQrAsjOyqN8r43OcAbjgAE8CnrG6tkvkehqr20uyXV191JGNoujXaWIm13TbW3uDjdDaXTTIp9A7IhbvztX6VfW1jjXCxYH0qzu3E8EfWlAGOTzT52Yyk5MrbF9KAoByB1qx5aZ3baCikgkdKTkSMX96ct2pjDDHHr2qZUCkkd6bJGzcjFDkKxYMoUfvDtp4IYBgeCOKxZbvVL+Jo1gCllxnd0q3pMWpWluVuiGwOMmjlaVzocdC8XTO0sPpRlcYyKzNQ03Ub5/Ot59gweAarLofiAHAv2I9C/8A9ehRT6i5UbfmxZ2eYM+maCq+nHesqHQtUI2zXX455q9aW17aJ5cr+YvueRQ426ktKxPtQtx1oYIq5bgDvS4IOfbiqV1Z6hJG0a3GQwxycYqQRYEtu+SjgkUiRsy5H86xIvDWsxS+YdSbHp/k1dtrLWYVwLoHHrVOK6MGkXipXgjvTJmKJlSKqvBrxbPnL16ZpJ7LU5UB4Vu5B60ctibISfWobI7brv8AdI70+31vT7ltqzgHsDUE+g3N7B5N2BkfdcdR71nzeDNTjJa2us45AJxRaJajBrU6WOyijGVH44qU46EUZXONw/OisuZm8oNCxgLkAdadkAAgUidaUoOnpRdmbiAORmjdzigJg9aUDH+NF2TYMD0FNePf3xS7lxnNJ5qDGTjPrSFZilQRjFIEAGP6UkkyKpw4z2GaInkk58s49QKLpFRpzmrpCPFlic0CLK8tUgIPQ0EgdaLmfLZjFTIxnpTdvORxUuR+VNDKCRnk0DsV4Lq0mjBztb60ye5FuA8TgjPIJr50i/4Kg/8ABOGNst/wUD+CB+nxY0f/AOSaLj/gqH/wTkljKr/wUC+CGCP+is6N/wDJNRZJ7n0DhzR1j+B9FwaxETtkXbnuGq+ixSxCWOYHI6EV8uJ/wUz/AOCdCkKf+Cg/wPx2/wCLtaNx/wCTNXrP/gqN/wAE7IB5Lf8ABQz4H7R0P/C2dG/+SaJJ9JGUaKtZwf3H0VeX6W2EVlZs8gGmJfPO+IztH518633/AAU0/wCCcN1IJk/4KIfA4N3z8WtG5/8AJmnxf8FNv+Cc8Sbv+HifwLJ9D8WtG/8Akmm3G25msL72sXb0PpAWLuNzTH8qrX9syYw5A7mvAI/+Cqn/AATtiXaf+Cg/wNP/AHVvRf8A5Jok/wCCqX/BOaQ/P/wUD+B+B/1VrRf/AJJrG9S+5u8PTa+H8D31bWUSDzDuHfitzThALYAEZ7183Qf8FU/+CbBA87/goJ8Dxjp/xdnRv/kmpz/wVW/4Jpryn/BQf4Hj1x8WdG/+SayqOclqaU6HJsj37VDBbKZImHqy5qql7byqP3gBHUE18+al/wAFS/8Agm3cAmP/AIKE/BHnoP8Aha+j/wDyTWdH/wAFQ/8AgnMrEP8A8FAfggw/7Kvo3/yTWtLmUdWc2Iwjm7pW+R9JS6lBCDhgx9jVG61eXkxj6YNeCx/8FPf+Ca7xFn/4KCfA8H0PxZ0b/wCSaY3/AAU+/wCCbn8H/BQT4H49/izo3/yTVqpG9jBYGonsz//Z",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAor+v+b/gm/wD8E3UGR/wT5+B59cfCfRv/AJGqB/8AgnD/AME4Og/4J+fBDp1Hwn0fr/4DV1RwspdTglj6ceh/IPRX9ev/AA7i/wCCcQwD/wAE+/ghx1/4tRo//wAjVbt/+Cdn/BNhCol/4J7/AAMIHXPwl0bP/pNWqwEmviRzTzinH7DP4/6K/sVh/wCCaf8AwTO1CL9x/wAE+/gXyOi/CbRgf0tqkT/gl5/wTXEZX/h3v8DznufhRo+f/San/Z8/5jD+36K3gz+Oaiv7Fj/wTK/4JnQkxv8A8E+vgap/2/hRo/8AW2pYf+CZP/BNGdmWL/gnz8DW57fCjRj/AO21H9nz7i/1go/yM/joor+xwf8ABL//AIJrD/nHr8Dv/DTaP/8AI1Nk/wCCXf8AwTWfP/Gvj4HjPp8KNHH/ALbUf2fP+YX+sND+R/gfxy0V/Yuf+CW//BNc/wDOPz4I/wDhqdH/APkamn/glp/wTY2kD/gn78Esnv8A8Kq0j/5Go/s+f8w/9YaH8jP46qK/sPl/4JW/8E4G5T9gj4KL9PhTo/8A8jVCf+CWX/BOlVOz9gX4Jkj+98KNH/8Akaj+z5/zIpZ/h39lnq9zoepwkrKw/I1Aul3GfnlH5V6A9lBIPnhU/WqlxoNnMchApr004dj576zU6s5K18OXd2SkdypIGcEVKPCGoZwxH1rqLbRYrZ9yY+tWvs6468+uKG4LYmVaTZzNp4V1C2kEiXCqR6Ctq3SdIws2GPcipLy4+wxmVxxz2qmdXY27XKJwO1VdyRlJue5Ymsbe4wZl6dKii0iKF98RIPrWJP4knZirSNjPQHFLp/iq4hlxKrOhPQtRqW6UkjpVjCj5jmlIUnJqodVilhEkMbEE88dKZNcXobMKhh6EVOpg46lxsBsUgBPAqqrXc0fzI0Zz161ZhDBQHfJHei9iWh23B5Ip2xfSkx8xOe/SlByc569qm7IsXaUqR1FIpXgqPzqTn0pXOhqxFsX0pPL96mwCOlMkiLLhJCp9cZpcyEQz2kdyhjmXK1Wk0S1aI24BCt1xU4g1UKFe9gJx8xW2IyfUfPxXlf7S3wh+MvxSudAi+HX7R2reBvst1IUi0bQDcpd3WFdHumLlRCkUdyuxtqu86gvnajpyml7v5mtOMJStKVl6HoR8GaW3JUnPuakj8KaXECr24BB75rxXw/8ABf8Aa38ea3q3hP44ftJCHQdNaKGxl8HeEYLGbW12W8q3E73L3Uar5n2iGS2VNsgAL4RgjeyaZ4NntNCj0HV/GWsakqKFNzNJDbStgAD5rSOHb0zhQB+HFNVKjWqt8/8AK5c1GOnPf0v+ti+tha20e2KIDHbFOeKPaGVOnX5ag8P+HNP8MaaumaddX8yIAN+o6nPdyHAxzJO7Mfzq8nPFHMcz30K7Anll/SkIIHI+lWDjPFNaNXxnt6UcyIIVjVydzY460uFUbQucdDmpTEhGMflQIUAI55pcwDnuFhiZ2IwASaW1voruLzomDA+lUYNAP3Lh3KY6b6t22l21sgS3XAofLY6GkMl16wglMU77SDjkUHX9MzhLgN7inHSLGQ5ltkJ+nWnJoulpki0Trx8oo9wVkLa6la3bbI5Bu9PWrFNWws1HyW6j0IUU8RbRgHI96ltIggur2C1haV3B29RmqMHijT7iTGQB3zWjLp9pKd0kIPrkVCNA0pW3LYx/98CmnDqNW6jku7SUZWYe+aYbq3Cl1fOOuKc2iaeRtFuuPTFIui2EI3LAoPsKPd7iKd5qDRo89mwcqMlD3rOg8aBpNtzboBn+HIxW/wD2PZq25IQD6iobjQNMuP8AW2aHP8W0ZpqUFuNOK0aG2mpWV4m6CcH1B4NWQikZzVCHwhpcL7k3j/gVX7azS1TYjsR/tHNS3HoS4roTUoUEVDb3MMyEiQhh2pJL1bU5YllP6Vjzq9j05YaaVyztBOaNgHNRWt9BcsEVsE9iKsTJ5K7mIwBkkGnzK9jF4epuM2jGKCDnHUe9Vv7TidT5QJYdiKliS5nXfhR9KTlGO5McPUlsh4bJAz2oaRU5Y8VXuY7qJlw2c0kCztN++bAz0pOpG1ylhKnNZlpGVxlTS1daxtjbjacHswrONzGkxgkcZHQ+tTTrRqCrYSdPVaokAxwKKjluIoV3O4Aqld6ykQzCM++K13OZQbNDap7UgVax18SOTiRR7cVag1KS4wI05ND03LVCbMUXksMn7xDgUk9/d3S+XHGcfSvy/m/4PAv+CaEw+b4AfG/P/Yv6P/8ALSoR/wAHe3/BNAfd+AvxxHH/AEANH/8AlpUe3oX3Pb+rYy1nBn6ixf2lbkSbsFehq4NVuruExXExGRhgMV+V3/EXv/wTQ24b4CfHAn1/sDR//lpSf8Rev/BND/ogfxw/8EOj/wDy0odeg+oLC4pbQZ+p1pb3kX3Lodflq1Hqus2gMeFYDvX5Tr/wd7f8E0l6fAb44j6aBo//AMtKjuP+Dvr/AIJwtxD8CPjbjuG0HRx/LU6l1aMt2io4bExVlBn6sy6/fHiWAnHotWbfxJCSDPGRxyMV+TJ/4O9P+CcbjD/Af42fhoWkf/LOhv8Ag7t/4JtHp8B/jd/4IdI/+WlS3h2rXD2OMT0gz9aZfFFuqGNHIB9MVj32sMZvMifcD6ivyuH/AAd1f8E0iPm+A3xwz7aDo/8A8tKaf+Duj/gmq64f4D/HAfTQtH/+WdOEsNDqTKhjZr4GfqnDq8MgxOCD7Ur39vglRk+9flUP+DuL/gmgP+aF/HI/XQNG/wDlpSf8RdH/AATXUjb8APjY3qW0TSB/LU6v2mH/AJiPquLt/DP1OadJH3FceuK0LO9S22yIw2gd+1flTB/wd7/8E2IQAP2e/jVx/wBQLSD/AO5OpT/weBf8E3uVH7PnxowRgg6BpHT/AMGlROtRelwhhcbF/wAM/9k=",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [22,49,67,58] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [29,55,67,62] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAor+uz4k/sH/sIeE/A0b+Dv+CV3wO8QXvzxTw2vw08PW0zIYZApR5rRh5hk8sL8rfMRkEZB/IX4s/sOfsg2FjqzzyeGPD17o+qRafq/hvWvhzNp13ayy2x8meWWKOdIU84yRmKR7Yl490jIm0nmzHEf2fVVOUb3+XyV935I5Hi4WVkfkbRX6S+EPh1+zfZ6Smg+JPgH4RuDZ6vd6XqUyaHF/aEMWxV+3GNUkCOqTTMsDsy5ti+cImfXP2MfiL+wb4a8Z2sHxG/ZF+EOqeGrRLg2dlrPw5trua7Etx5agTzRzP5URnZleeaR3KJGXXYQOGnm9Oc+Vwa1Wu+nfvp23I+uq/ws/H6iv62v2cv2Nv+CU/xm8NXfim5/wCCefwbilsbuXTtT00fCjSC9leoFZkz9mww2PG6k4JWRSyoSVHR6r/wTP8A+CbFlpMniDUv2DfgZYaejsPtF98M9EiwACcf8e4ycA9B2r6OGFhOkqvtFy73ei/EtYtON1H5H8gVFf2KaF+wL/wS2sokE/8AwTt/Z/1A/ZopQ9t8MNAnDxugeOT5bcna6EMpPDA5GRVDxN/wT5/4JqartjsP+CbfwRsZFYksPhLoy7lPT5RbVpTy+dWS5ZJrv0CWMpQjdn8fVFf2Cab/AME9v+CcPhbTv9J/4JxfAm5knP7uS8+EmjPjAyCA1r05H1rJ1H/gnP8A8E39RuhqN7/wT4+C1rE+4Itp8KdHVWOfQW4HGfyrWOU1nNptW7kPHU1FO25/IjRX9eGtf8E+v+CZ17aQaTpP/BOr4KieOFY1ul+FukK0jdyVFsdxPqTmqKf8E0f+CdGlTSR+KP2AfhDATbloFT4W6QGLH7pObY8eo4rWOS1XG7kl5dTOWZU1JJK/n0R/I7RX9L/7c3wD/wCCeX7Onw8upPD/AOwX8DbjVmhgeSyl+G+nxXItJpGi863VLUeY2Uk4Dq6YDbW6V+cnjjWfgbNb2/hrXv2YfhpZHUJZftSr8PNCsrlLZthaaKWK3iwFSQ7WBA+dSQFQOPns2xNLKqypP35NX0/W/wDSD+0Yp25Wfs38Rf25/gn4U8J2+n/Df4zeDfENh9mfT7vStQvJ7q4RYC8EtzLceZLM8XAw5jcznayMwbB/OP8Aae+OXwqs/A7Wt78Rr2Xxlco1p4jnFnIimIrDbwRQxTosjH7PHJGTN5fklFEbDefN8U/4Ym8aDQTpY/ahuAxEZM6eGNsrBA4DORcb2Kh2CsT8is4HB47Twb+zZp/h7QY/D/ivxsuv3d1ITeXp0z7O9wgJCMN8krCRdzL5gOArAbQzFm/Os6zzB5jX9r9YTWiStLRd/eVvlZs56zjK1tj5+8G/CfSF8YXNov7QOj6dpekXUqQa/FdXlzKkpuSiulogVgjRxuWCq8YgRxueQxh9P9nvxnrPw71+51z4h+FNT8RaN/Z0thomka14o8u1A094blLdpzcxELF5gzEEG0sqqjtKwFn4yf8ABP3xWmgxXvwZ1tNX1RLt01CxvIo4BHCUkbcjPJgYLIm0hmy6sGUZr0/wf/wTc0fwbYQSXfjDUbfVJrKB7gx6awWNypEiofPUPluhKkY6oc11riPL8HTvUxPMn05XfTrotO+qt2QOrTpL3pH6nf8ABNr44ePNZ/ZhsfHfxp8f+FY/DyafZnS9Ql8YyXlxZRyLlItQkuizRXG14UKtLyQuY43aQHy3/grx+1l8G/Ffwyh8GaWLfxDFZSG7hv8ARL8BIZlifEbO0bJcRSKZWZYpFKta/NxnZ8heG/2MPC2hWmo6VN4n8VudQn/0hEnt4vIcnkxIsQCkliR65AHY1vaP+z3Fpnh8eCfDnxa8ZW1jJZNa3SSXdmWnjeR5gZHMO4gM6gEFVAAIyQaxzTjvBVctWDoSvdq8nzbbvXe+y2f+WEsVStaL3PU/+Cdv/BRr4M/Af4NatoXxT8e6cssDwTwwWdykz30UdkFiitYFbzmudxhjkeSOKM7UDNuR2r6otf8Agp3+zde+JbLRPFGtazpj3tp5815qdtFssgIHm/fKszShQsbLvRHTdxuxzXwF8B/2T/CfwGTxVpWvX+m+K7/xdoVxp2qjXtEtZIFErACe2iKySW11GuQkqMWTLldu4YueKP2bfhd478WXXiHVZ9TE+o6CthF514JY4ofISFp1+1pJh3w8jOx2l55SRggLOG8Q6GW4WFDDTVo3veLd+yWq077P7zN16Uo77H6dap+3D+zu2q6da67+0L4bFxfRFtOgv9bhj8wCNXGFlIAGHHBA5yv3gQMDVP2xP2V4dSuIpf2g/CjNFaC6lnGvQPEytI8fySqxR33owKKxccEqAwJ/NLxn8Kv2btDsYdU8X6JH9n0yxWO3mW8udyiFI403DzMSBUjQfMCSAuemaveDfgl8M/i3o9v4gTwv9j0LlLJ78z3E98CrIxUTuwjgICsu0ZfaGGF/1nt0/FOhGEZRpPzdrK/3sJ4rC8q5mz6B/bW/4KsaL4E0+z0z9nzV4Vka/KXXiK7tkdbgGJHjS1V3+YEl90jx7QE+U4ZWPmvw5/4LA/GPwP4Qk1f4l6RD4ht5JhcPPfWUa3cSO7L5WYVjRIdoV0d1LgA7pGGQOW+KH7L3w38Q+GvsCWeoAib7RNeafcStdsVLHYxfcHPJ2kLkE5ADHcfMov2T7DxV43utZ1C41OTw/d6FLbs7XawzRSCB/s7tIds7YfyvlJIkKAMxUUqPEuKzTFPF0sRyu3w3aSXblel/v1OijSpV0pU5HoH/AAUG/ac8OftC6tpHj3wVpGtQRaLFJb20Wook0E891G8UcZXcFtHdfMO/95kRNgFlKjwn4U/Dj4leP3PiL4Yx6Da6hJGuieGte1V4NOs9XuljmlRbbfCfPuxBDFD9oUAxm7tEldZLqB36vxp8KPEfiTwla/DbT/iBq+q/8I9brZ2WmDWJUit4JGDF5oo8Mz4LM21xvdmJDbmArfHD4WfETw1pXh1fgpoUI8XeHLCza78RaLpv2fVtUMtjatK88kci/fljaRfMkUhppDvOcUQxMcXiJ16tS7k+9l/lbsdVPCqbbvsdhquleMrjUH1a3V9Nun8qL7G9vu2q8UmdmGLMRIrLjcTkN/fqBh4msoLqx1WJtl1cyG4tgyltoBCoCrLuYZAVhhTtL87SW0bv4s2mkaJZardxWk1zfwq00s6JEscSxN+9Dbi8WTMu1uVyCq54dZ7HxzpUupaVfwWDQ27W00+mXNy/mWtyoMwZP3xjLojKWGcHcigEYZB+JQlWi7cm36HgSlGatdnm9t8S59D8UeGLC/SR7jVrd5FtbcvtAMkEgUvg8ZaVcnD7SqBcrmveLDX4brS2XS7wq8cyo6tGu1UZVcSgmQZQCRVJ5G5Hzt+YJxFnqup/2fqDeDNKs9Q8R2GlC9OmXWbwXQtpEkkKPgxwlydyiQkuYwqv5hTb5x8SNR8R+KpLOH4bax4ak1nRb9213UbKaVbaSB7O4MMkcjW4May7GdTsRUW4hc/KJ5Y+yOEWYyhDlUbdb/P/ACQrTbSW57fpXin4g3cL3ugmK6dEhiDXsbICdr5kaRhzmYJGo28EyMT8oVtXVdQm0lbK81KGWK5mDK0JhcqoVpFBaQZOBtB6EbRycsAPjDwf+1nrvif7L4FOhi5VXe2vzbj7ThCwRGMHyBI1yR8oLB9pO8sEbY8BaT4p/azTxR4s8EfF/wAJaBN4c0u7vz4Cv727tLi8sYLRZbq8juHgSyaKNVnkKzXUc5jgl2IzBA3pR4SxUpOLilbW+5awOJqyUYrX7z6E8ffFy4gaW0n06wjtbeGKbUJDOixwjy0dZfMb5cyArhVIZN5BPBDQ3fxp1/ULRX0bw9DbGa5Syszd3MlopdysagHA+VhJyA2OnIyN3gH7Zl9cfs/+J4v2cPD3inQtR8SaOsml614d0bVnuHtbqJUIguHRfsk8ryM6+XazSMkqNGyRS/IfpT9i/wAMaV4V/Z48NeKfE3jK31S4vNEstThTV0W2js1a3heCKBt27eCT8yfO525U8LXZm+R4TJsvhVl703pbv526fNnt5llGEy/DxtLnqNe92v5EXw6/Zh8ReKfGkniH4yWkWoaaJWls9NlhIaXaqxkTPuZRtxtXBO8yMW4wF9vubax0GyTRLC0jtYIEXaqwiNkGMgJyqj5QcAkHtxk03VvE/hrQzcW+o6hptlbJPDaXt9cyiLZJcIBFI3nEKS5ZVywwNwLHDID5p47/AGj/AIUabYa74I8KeK5NRFrCxtNTs9QbbevNJmUxSkl9qZ2HKgAAGJguxh83QwuY5pJOMeWmtL9F307nLkvDeY5/jFRopKPWT2iv1fZdX23PTLhkuUSG7Ek9uzLv2qjOHyq4OM5HHbocf3iKs+Cv2d/iD8bfFEngT4L+G5tR1i7ma5vreCQRokKRx/vJHdo0jjOI0+8Nx+Xq4B8F/Yc+KR+Kninxr4F0LxDfNpnh17c2cvliR7ZpYJI5IwqqQYwtuoyq9QWPDYr75/4Js/tLeBPgh481Pwx4v8PXd9qXinW9L0Lw9dWsO5ovMllDRtJJjAyYmcklmIUsc7Fr1cFl3sc+hg61Rxg95bO1rrTVJvYrEZXPKM5lhVUuou3MtL6fM+Dtf+D3xe/ZC8dal8NvG/w/16LxNdaidY1aK6XzoyJbiJHgt3KMjp825Su7zAs21wP3idFrPxE0jSZpdN03UrYy2ciTXNqsIL3VpBEUkERch5JB5S7lJzsR+CVOz5++AX/BWj47ftffF97D9sX9qzRrzTdbiiWaLxfbSWkVlepG8Vulg1rAbexEshjWViILdt8cs7nyA6e4/ET4aX3w5vbi++FcMVr4ruoltRaXhiJt08+QXFsXeQ+XNIG2EnAbzQpO18j6fOMFWyjEOi5Nxkk1Lp2s+mn/AAT0+eGDpypu9pdf0/rU+atY/ap8CzaFp3/CQvc+JLCwklkg0O7v5jaxh7iCR2VMK0aSPGrGN8EyRQStvOzbc8eeP9D0xNH1jwx421SWxsvFFjrl5a6pGLiGzW6REj2sytJKJEkBZE8lQIP9UwBA+YvB3wf8U618VIPBXhXUPD3ia78Tae11p13b3hTz2Z2gFt5zBIwxljjDSYwPMDeZGGZ15jXobjRrOz0rVtRuGna2KT297bXEf2WZSdyEMu1xnMilXYFdpYKcpXTR4ewimlCV7a2vffy6dTxqWCUpXTuj2P4yfHXxVL8RLDx14Qiu4JbXSBcWNvtWYQABWLRgjGXV1kcbSSrZICthbHwl+K/xi/aU8Wr4NtvDukate+JdW23MU+lb47NXkilF18hLvKC7pvP7zy9235wDXI/DjTtZ+IcVxpdzZyXUK6bFZ2WmxyQwBNjicTv5QXz0Vkjchsb2jiLM4QqPY9P+DvjLw94m1X4ea7+y5d2F3qWv/ZYDY2DRztepIy+QbgRN5ogcOJYI2Dl41R1TyjsuvDCYSg4qK54rR6aLu9tFe/yG4UaTslt/WpyXhT9nyW6fVl1X4jXOhT2Wtr4d8QRahodzGJHgZ4EshEEjbzJY0MbZMZiw4k2iR/L9z0z9ny+8P6u/ibwxrNtB4f0iW91Cx0bRNXubi517z5VRrcSy5WMbY9uWID+THK0jZR4+s8Efs8y+E0uPFszT+JIPD3y6fJq1jJb2rt5wCbWlEh27nmYGMNDueR0iQTySV3uo6Dq959i8Na5PB9mm1uJLu61XR2hvo45IgoF7GwRrZVlFxKI4DtDSMVGfkj+bxfEcvrMXRqXS8v8AgJkPM5UK0XS3PjNH8LfBnR/D0Pi34UNdfEC2+Iyaxqc1lcQyTX6QrdSARyIzPapJLLAHjWJQ3lBiGKKze7fBbx/+08LDQtR8U+GdG8O+GNG0cafY6M9lM80lvHGkaQ7HZ3D4WMBmy3zKQrtiusfwb4d8VfEia38GWmnz61qOsPFfa3FaaXaywvhbcIkkjIkCkylBl0QIzDIVAVp6l5OmayuhSXwkMEUDalLa3ixzGNv4mkK4Y5JG9GDMcYKkmoxuaxx9HllBOTvdy1av2V3ZK+n4WMcTmE68bS1Zj/tha1f+JPhNZL8NtKe4vIvENhqOoCz0fzSrwLI7l1lXyZh5pjzDJkHZGGTY21fI/jL+x/rugatH4ks/jrqaWuk+B5Y9Z1i+tUVJzY29rHaWlusflAtPGRiNmd/9GlLvK4OfqPTvCl8nga88KzLqlo9nponlhj1NxHBdSfK07NLumljUyeWgYuWZx80gwH84u/2RL3423Vp4l8ZfEOXX4NKgjOp6Ndxx2CzW4nVSE8krIsbhiI/vDCqS6mRFZZZmlTBxhQdRQhFt7Xve3k+3l3Z04DO8Zg6MaUJOKTb+/wDp29TzH9kL9ov4O/B2JvA2l/Ca9/tjXtVtRc6gl0srmVYY4lCbmycy+a+3K7ftLYOFXP13feI9a8Q+DNbs7C7t3vrvTXt7HXY7eTzYMTRzefAqsybiYxAP3bFFeQYO4+VzHwo+B/gLwl4UXQPhx8N7TRRdaZHplz4ivdHkvY7qQuLkKjMwkVkRVdAVXzk2uYmZlaPvPseuatbaVZtp3+gvJHFf3mm6Unl2U135c4kBQKqwDaSrO6qgjULuUq7cebY6hi8d7fDRafdu7fTz6DryliazqRbbPFv+CqPwF8U/tN/F3xD8VPhXf6Bo0l/aWN7qFjBol1Cr6tNbRtrNxGDE00EctzNcK8bFjKItzFgkVeveKPFOh/En4o6/q/w7+F8XhDTZ78QwWrNFbNqRRDaQ30ivNNKHe2itnkNw+9nKEF87ko6/4t8ajVWufDN9bQrNoW2ZrSFHjmeE7I1Mm0nzZEXzdp3KxdQShKBE0XxVqUupXVjNpq2g1jU549Y+0RwO9lMiW6rHMVby5AsU8aFQXKmNMSRsF8wxnEOZZjQ9hWSte/nf+u5hPF4iadOb0v8AifA3w0h8ReAfCd/Bpd3qFlpt3fJda34lgUl57aWfyWlRN8UkkbBmDKFLqXBI3ohXu/Ftr8M/2lx4S0WHUvC2mPpunMttaC5TS7RoN+JrgyLOR5sUZheS3PkmSSRwiyMEB8A+HXw7+KHxi8PXa/D/AEGKTS00+eXUri41OPyUu4VSbbDvKuZXgHlpCxDOV3CRtrhPZfgP+yL4mtH0bxR8QbjQ52uriGfStNl1OV/ssolYWovDayB0jlyyL5c6hC/JEkb7Ps8VHD5dzVatRRnq0r3budqjHDRk5Pc73Vv2JPhbc+P4PEnw31XStN0ifzpNNk0/Xft0YtZrNgquBIZGMDh2BwFuC7ZxbmIP7L8M/BbeDNMstEk0+40m2vLiS0nuL66uVutWEaXGFmFyInVpC+A0aeX5TmQlvOkdovCXhnSvD/gWLQG8P3d7cXcItreOLUZ766kSO+tXgl3KjBY0jSGF12hCGLBSkpkG3c67cWd7oa6Z4Y0+21nT5Y59d+z6xLObi2e28q6nmhJYSzgRrAGnmZ5MiRTIkcZT8/xuYYnGS9k5NpbX7eff53PJlOrK8Y7Gpp86i6tfGsHi9NOumS1FrFpGqSSGKzghjSOSeZkmAmZptqbZPMZ5U2qCU20NN1A6foba1f6i8dtDBBfXFtpGmb1c5+yJczRATTLF5exQuzyl3MkZUIxOvBqlvDbWPhnRddMFnY2bbNStbMXYSzFrmOzSaZN7NHC+GKEeQnzbYzKC1bXfF8/g3S77VPC9ppt6+Hm0OPU40lkukT96bVpQU2B5RL824BCXEaRq8ajzqdN1JKNtf6+4uFDnautjT8PQ3Ohh7rxN4f04Xdjp6Pr00PlzyWn2mWeMw3ETL5QxNtjyPIZfsybT92QV/Fuj634h8MXHjyy0LV72zuIrcvrzaeWg0jT1mjSOdxaKwaLdlQYxjdKiIieWpPm3i/8AsvwR4hOl+MdeuNJnik0u4murWGVpbGcReSZ2ulIW0jCopPzfPJMqukagEdN4UvA3hG61LQZbjw/ZXuoKljqd5YJINhDRs8Bi+zR+Wg5GG2KrJuOS610fVpwno36fp95jUjGMuVPVdN30NbwBb3mn6TENR01Y9bvbdra4v5NCiMZlmMREBnEhjb9zIJpFC7m3BmXymVhTtZZp/EMt3beCobIWLLHpXiBTBAZp2kD7szIWJTybiPKofKlCJJIzxPGa9hqcvjXwna+KWmtBpVrYtePDbW6xwSYbzN6xuv7zH207Q7fNlGfLACodEvPDy+Im1W401ZWgjtJNWubmBXj0uLYkTTtbvkLmZof3UkkQxN878xk6xpqMNVc66NOMYJNX/r1OztYfEfibV4rDUPFUlzaXNutncbNYjaOOLygscLISIiQ7PJulXY0JRWGf3a7j32gaJoxuLjSbLXbbQbg2cjQ3sMs0m1AyiYRiZsJ5b5MpIG+EqACwj4fWdSt7TWW0bxE09xqd7pDQQXuq6XcrawypJBcS3TviKSNELuqBHkCiJi/mRiZ4+g1KH4gy+BLfT/EU9/MnhS2a5vLy1cwwXUEkiq9zFDC3l7CsUWYldoI/IO4eU2JiPIo3Z206tKnFuWhBewfbdOj+JPiSRbGaw1kT6PAl9bqLiSdCbSSJpFKXMu2Fd3ybMKrqFRzKKWuaL4t1LULWfWbBLSeS5uUe4n8QxSyAQ2DJBdTxCMRJGhkZlE3lrHvfOfnDSaD4zutD1COfwZeXiz3VkIljukDLd3apNPFCsZleYwSYthukUBihIAX5RlaZp2mX/irSpfGfgnUD4eMFpdEq5aWOd0hUbSXFtcBBE7JHI5jLSLxl03JxUGv6+Rx11CEua+/kfjt4Y/4KE/th+DfDv/CKeGvjNPbWLag19JENHsmaW5Y5MsjtCXkbdlvmJ+ZmbqxJ15P+Cof7c0qWsUnxrjMdlDJDawnwppXlxxSMWeMJ9l27WJwVxgj5cYGK8Bor+g6mT5RVnzTw8G+7hFv8j6J4fDyd3Bfcj25P+Cjf7Z8SJFF8aZEjjmeVYU0KwEe92Z2YoINpJZieR1x/dGNFv+Co/wC3XJey6nN8cvMupYVi+1y+GNLeVEG7ARzbFo/vk/KRk4J5VSPAKKlZLk6d1hqf/gEf8gWHoJ3UF9yPoa5/4Ktft/Xs5ub79oOe4kbzd7XHh7TZN5kKFi262O4/u1wTyuDtxuOaNp/wUy/bbsjceT8Z0K3Vy89xHL4X0t0kkdSrkq1sVO5SQwxhs8g14PRQslydbYan/wCAR/yGqFFbRX3I9rk/4KKftjy6BP4XPxiK2NzN5s0EegaemWxGOGW3DKP3UZwCBlc4ySTXT9v/APa2j0x9IT4rqLeW1nt5U/4R/T8ukwUSEt9nyXIVRvJ3DAwRXjlFUsnylO/1eH/gEf8AITw+Hcr8iv6I9quf+Ch37X9zosfh5PivDbWkTRmGOw8M6bbNFsZmQI0VsrKAWIwCBhUGMIgW/e/8FOP25tTmE2qfHq5uiIfKIutEsJAw3K4JDQEMwZVIY5YEZBrwaih5PlDWuHh/4BH/ACGqFBbRX3I98n/4Ke/ty3Mkktx8cS7SnMpbw3ph3nEgDN/o3JAlkAJ5Ac4xmrkP/BVz9vu3kuZYvj1g3umPp19nwtpRF1bOjoySg2uJMiR8s2WJbdnPNfO9FT/YuT2t9Wp/+AR/yE8Ph3vBfcj3eD/gpn+3Fa2r2Fp8dp4beWaSWW3g0PT0jkaRy77lW3AYM5LkEEFiWxnmkH/BTD9txIVhh+NrRbYvKWSHw7pySBP7u9bcNg9xnnvXhNFV/Y+U2t9Xh/4BH/IboUXvFfcj/9k=",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD4N8P/ALQHhr4RaDqXhr4VeCXvgscFsPFOv2n2O7t7pJknmKWcMzwLiZZAgZpCjok+5ZVQR/Tf7GH7QXi74o6npGn678VdP8PaaNWinbRNWN/NbrhWeGeKK3dfOljKoMM8UQ/dnexBx8k/YPjvrunWnhrxz4Sm1Wz8PwCK106CzdTZrjLNsQAqzlg7OfmcgMxJXI7P9nbw78ZdG+KWhatL4O8Q6TpkD3Ev9oQWciwwKts+1C5Vtgb5Y9zfMQ5wc18xXxtL2brVGrwTaSlvbVdnqeW5217H6sftCft3eE9Q8G2998PvHuu6bq+mM0k8FtpBCXUBR0kx+/VeqloyS53xjaO5/Ojx58c9Y1XxgNH8RalDponuryLV3u7DzpIZm2sWaIurecSChkbA4BCqcPUuiSeOrn4p3XjLxtoWs21uUls4b648PzyLemUmHzZpCwCqPM3kncGUMP4ya5r4kat4N0bV/sGi+FrbTojbNa3Go6rpMsNpDJJGvLw3JchkVmcCRGYEbowrhDXydXMMdmeYxqYuKm5JbaJfjv3MIptKR7L8Gf22dW+AGrWPi3TtA0z+y7vxD/aF5qOnyzQ3epvLO6/YzvJ8qJVt0lCxBgokgZmDyur+/wBv/wAFVvjp4r+Ix17w/D4bs/DmkIZbnT4Lb7dDdRckmR0kWYsoYEmNo1B27gAST+dWufBr4g3Wof8ACSa54Yh1i0urGFdMa1jKwwyfZEljtkIRAXVmSBmKKrt5pQsdrV7v4k/4TL4K/Da58B6N4Cls7nT7p4NSvow+p2EnlvNuImUKqwsU3q6hlJZcv+8BHv1s0zXA4T2eEqWk3sraX6/I0ceZ3P00+HP/AAUW+D/jTwZp2p/EKSDRNWDLDq0NjG5s7d2neIOJGOFBCiQxkl1DbRvIyfQpP2j/AIFjS31sfFTRYrKG0+0y3dzeCKNYsA7tzYH8QGOucjGQRX4teF/h98Qrf4R6pqGsLrs2k34lubq20S2O2AIGYSbwMv16jKlXBwduK3rH4f8Axy8R/s/xWWi6BqGrLOYF8m5FpbkIwkdTFEGBMYREGVOxThQPmXd6mXcY5pCooYiVNxWjez9d7EqnGU3zaH7I2n7THwk8S/D2Hx1Y/Frw4/huFWP9qPqsMUMYRxGd7uRtwzKvzY++v94Zq/E39pf4P/Cnw6+s+P8A4g6Xp1hDPFGS1yJJPMkYKoCJl29TgHCqzHAUkfi/8Ov2e/2h9Llu9Kl8H3tnpwtys04VPMnLbuYjzyAWyDgjIODwa6LSvAfxDsJm8In4JX8dmX8xtUu1bzHkYdWkYgDGQMAgDHPVq9qvxxhsMnrF/wDb34lONJRvc/XXT/2k/gRqGlwa5Z/F7w2sFzbrNbvcaxDFuUjjKuwYH/ZIyO4rhvjJ+318GPhH4sm8OO9zrl7DLcJef2QEaO3uEwRG7swHzljyu4DByOMV+Wus/Djx9qVxcaTHqF013psXl3U93akJFAzkkIXYLI/+7zjnHBNd7rHhf4qeJtX1q/0bQpLffc3syvd3CSkzSSSYfAdXKsxDYA3AHGFP3ca3G1WrTvh1G/T+rk+xhy6O5ynx6+PdzrfxVuPF/jLUrrUvEN/dyPPbXmoeWYz5QUxkRFkRTEvoMBQdqjAF/wAOfGzxlYX+l+JfCcdvoYsLs6hb3lrCtyVmhljAMofO4kqpGQAwjxtK9fG/F3hHX9O+It7/AMJd4b1o3E0i/aILW1dn8nYoLlpF5427iTnJY5rofF/ifWrTUZPAPhbTWtDb2Es99F5cxe2jQrudo1AYANk8FV3HGCeK+PdCr7RTesr3v5gsNPmV1qfV174Vi+02+oWyQOUMkYnQfNCGwXDZ5HKLkeq+tZ40nVmugtnKZwWJ2ogBC7SQeeuPQc549azLHWdS0iGzsbHVbVpo7tIL+2D4AlcqChLEfNvLcE4GQTgghd+/1a7n+yWLzfYpZL9Htp5ZAftKs4UFSTghtuMnIzkjO01+NOtiVre55v1howE1/UZGZn0qff5zeWXjxkq+1hjrwQR+BxnBq/4u8LeE/HyWeh+P/COm6lDs8/yNTst4jccYGe3PI/i9OONb+0/CTR2mq2EnnMkz5WZSAJS3Awx5ySx2kcgjsau654i06xsSbuzijhD9pFRS5VjnLY28KRnheAOpNJ4pqaa0fkWq0Sup8P2mnW2l6dYQWlraQxxQWkcG1Iowo2Jt7DbgAelXIrnT44pdVu3MgkctG1uy4QhuW249eAOn4Yrnpb+21C5udSgsS0E10i26o4Kssb7TISQcIGRVLHIywA3c1geJ/iJa+C3huNWhEmmzDzLsi1CfZFONzy44xl4+MDIPuANKUK1WVk9WRPm3huehXeoaWV8tRLGG4MkuMZDDHAHH5np6VBvMXkliWVmyZIgTsOOhGMg9+nSvLvEfx38BRW9jDf69Bv1ZWSN47mNsEgKpbJRVjJxh84GCST0pfC/xA8UanJdQ6S6W7ReX9miv7pUabcCu9Ax3SNy4bAIACkjkY6o5di+XVaEx9vP3T0TUPEumeFZ5ntpnjijDbXbgyqWZsjJyOST2Iz7ccD4Z+OafFbxU/wAPfBVz9mu3kaO5untnlW1GCwfC4PIU9cAE9eQTkXVr4+8aXkGpaBpZvknnMU9pbytGmAv33cnbgDkoOoBJ4JJ9d+C/7O3gj4WgaxpugQjU7qNRdX8lwzsOADGDxwDk9Ocjk1v7Ojh6UpV3eXT/AIJlVTXxvVG34Z+GvhDwr4ftdE+x/wBoPbqD9s1KJZZ2cHJfOwYOSThcAZ4FSJ4P8HPEkkSvazQyFwtjaIik8dRgZ6VrX99bW6IkUqK7AjzC+eMgYxjnn+Yp6Nem3ivYrfMTIyYYYYkZJHOBnlfz96zoY6tTkpJmEK9anK6Z5xreo6l4cv7TSbrSmmS9eSM3UKMSBlOD8uAMHk8fczg84rL4GC+LPEnj2xvhsvraVlMpA2NJKODg4Jw7c4wK9E1DTtMvEkU6gsjhtkkIbBBBGRjgjrXL+NvA1o3h5PD+iW089rtYNaC5Yu5OeSzHLAEngkj5hkEDFfU4HiarTg41NWe5hc1jJ2qaM46DxAdA1NNbaw0+e9nMRsfMuA6+bcZxHtIVxcMSW38ptkUFsEBqkl7pOjaq9xHd2rQu7OkRhM4ZA/yqmclmHmuVOcA846CvN/EHjyEQ3cmrT2Wl29tp9lcWi3DOqSSR3GSkbsVYuxjO0bueQN5+VsD4u/EnWYNTWw03Sg01vO1nYSpbeSjTTBSYWDcMNsi7dpGQFKgKwVfncJl9erJJLc8iEalTY9xv9UjvhP4e8JSzLk+fLqM0LM0Tx4eSZgjHy1AXLHsSTz1rgL74+WOu6y3hnxrBc6dfW9xm5uLjazPAEASYKrAPuKuwjbacbQc548w0L9oHWLXWoLfVNd84FIZ1jgcNvvNzRyozL99n2LIApZArgBuCq0vFBfxN5/ifXb2eCKOfS11yXTp28qCIXFxvQWrqizzbZzsDSfN5LqAiIXPq0citL97HY76eFnUdpHWfED4iah4V1+18Mf22Ibee3aOCOHYXuMRuiFiB8zBvL4ZY2HyZUbgBW8Z/8LUsfBKyeJNTs5rfWbQWd7aSQYZFYeQ4lIYMu45Xj5j5eQR8xqXw3rOt+F/H2j6l4k+F2qWMGp2N4umLqOVj+0yxr5rxsx2t8qIATjlmH3kYDrfhJpfj74p+KtV0nxH8LtTttPMsIm1GO7RrWOUFfnWKSZFkQJg7F+YK+4E4XPVPDUMNSVVJWWrdzqnh3RgpbE3wF/ZP+J/hrT9O1DULdx4Y1TQmtJH8QaS1xaXDiQyA2shEYdo5DiOaJgQ28HKMyHpm+Hsl94vtfB9l45t47OF2ubeeAASxy5KsgiO7nG11ct/DghhivcfDV34n/ZB/Zff9or4P/FPVdN8f2fxNsNCm0SPUFgsjYSWz30aXKbZGZXaCZcNuTCv8hzXM/tDf8FItE8BeIPGf7XPwb/Zu07RfiP4l8H2iaf4qvNQt5dP0LVH3R3d7aBgYJpz5kROzdIJA+WbzJQPoaGCo5rlqlze9JaPsfTYfKqOKytVYrXXVPa3lsdbZ6F4b+HkenweJNHGmf8JDE114fjlhMb6nEoIaWKPKmWJMYeYZVC8SsQZI1e8+radBc3CaVEfM8wRxDzQcyA/d5Y7TyDg+o5548v8AgNqOh/En4S+H/if4k+IWqa/e+IdJjvdW1XUNSE91dX8iA3Us7ttLusnmKQB1UZAHzVNBY6BZavcSafqN415HLH5VvLGFcK4GACPvn5vQYBU55r84xtKmq8qcb+62nfuj4bFQaqNJM79ru2tZY4tOslaQ3AVVYb2Mm3BGCRkDpjA7ZBzVjT9XtdYlU2dkGjypndgFYkHCsCOSSV7DHHI7Vy00EMYEC311HLLsSWFmI3MW4KqehyARkckAHPFWNIsdH02dZNLuTA/2po5CbhigbBB3Mw2lck/KTty2Mc7TxKlrZmHsJ3uzZutQjsRJa2GoyxkO4kiu7I7oSAuWIJAAye5ycH04ltLzRbrdLHqO7aoZYmBjGMdVG7PcHPTPGRxWbb614ftrxLKykdoIfLAkJBxGFAHQZGCuOR2z0NZUetaFrNy803iB2u/LkjAuJSOAyhjhiRkbQAFwckZHetGpRWg6tKUNUj5R8TfFDTdJ8T6dN4l8Tw3dmYHVVu1TekSzybAVhUv+7bMhTklWGN2FeuF/aG8VaFrvwr0bxLdX97YXEFw89sl3akyXMz3Qhkw8ageTvjkZXI6oUJZhuHFaxpV54++Hun674k8aWVhr8Gsx6FpuhXVsRPbW0SedJNdL5Jcjc0UceDI7+VMHCBUMlf4oDX/D3g1fDXiHxjc6jcNeJ9mij04tJcDEZaW6k+0bYywb5QFld2hYv5ZbJ/SsDltOhVgr3kme1Rwvsppvcb4Fi0eXS7m7uPCmjy3jvKW1QNMl9C5BMeHbI3MwUkIpUhwAQSwG98JfFc+keJvsM2nc6ZLJbXsTwRpK0A4eN4GySrJheMgkYHzbaqeG/DFsLWaC68P3c6/bY0vbGyVcrHJLiNHlXcVkOBhDglRuBY8D6r+BX7KngXRbebxB498Pp9pkRJpL+7lErCFDLKigKwEShRh9wJyMNsxtOuZY/CYKlL2ivfZHQpwgrvU6r4Omz8Y+E7TxKubi21VlikuHuJIUiZYFRYnikjZQB5QAGBnC7grZC+haVZtJZta+GtHuUt1lzaW6QvDCjgNnJIRD8sjcYJyckgkE09FsLbwcU065uY7Ii4UQRXEqG4UYDoyLKckFCdgPXKDBBQNt6hq9s0bJpt3HmWNXgtnsi5RhuUk+UC/zJl+jFQo4Bwyfl+Kq1sRUfLe3Y8upVrVH3R55+194k1rw9+z8+jaDbi7tL/XrDz9KBW2khuVE9tbzxqmdzLLdtHtBGUuXkw2xWPwf+1X8btE8Wfs8/DL4daXqdx9t0GHUP7UtXU4Mr3kpyWzzhg5AIyN57ba/RL9o/wAN+Jtb+HGr6FHb6a+pTWCT6SkG6Ny0IWRRuPzFzLGACNmM85IO385PjX4H+DHgDWtTs7fwhqLXkN3rFtd6rqEch82V9PhaOMjfsSSGeVWyEGVn6kBSP0Dg3GOnglSqL3ovT0PqMrxdSllUqbfXby0/U+yf2A7htE/Yu8Kf2pPAvl2t3dyp5QdY4pL65ZSzbwBledp4Hc5yB6ZdX2g3Ul3Fp8FwcbnlulIQuuW3NtMQAYMr/NzyhyG6V8d/s/ftvWnw68CeHvAsnw8jfSdK0a2hUJcSM8khBM0jhjtbczOQMYA46E19T/C34rad8QtMtPF1tqosdPmt1mmkjCrI0uwSR27qF2svPHG0LMTgg5PzWeYPF0MZOrONlJtp+rufNYqfvt+Z1ehz2msXl3Zw3WpQOYZJLaS9iRG+1Rt8yKTtDIBIW3qrFeRt5Aq94atLy11Z47B44Zrp2ihVkLhnLbmB+8d2Y89AuG9UOMe38Qw3enXOoTG0WW7kaBJoQFMknmIJFRgvGA65C/KcjOSGcVLbXND8S61b6noWqzxw2aPHeR6lb4jiunLMD83MRKyR5BYKFYMMbznyaMIznd6ioOFSVpao6fU7a1urjUbG6tIMROPMXTreUJuMagph0G0/N8oIKNsyMqBnEupYJr+6tINPBC263Runl8vyMRFtuWQZZVz3IBXLZAFR+MJrjW1eO+aAafKkr2tuL2SN7szLEWmY7tsckflBF8okdcklUI5GF4LLTL2y0vTBa36QDzV48oSKx3Fi4YkFI2VkV12kZyOVrrdFx2N8bB0dkfPv7T/ju08aXvhzW9E0Ox8Jpf2eybQ9Hgkkg1ALKweSEKFWV23tJl2XliAS7Oi+dfD3QvBnxn1m/g8b+JfEMNpaRO1vJb2ySCCZ2ISaST5QEBQBl8os/IUxsa39Zk+JPxV1J7EW7aXpdtBHb3PkeTOkW9Y1PnGF3UHDFJEbB2xNvjALJX0V+z18A/Bnwg+HMvirxPb2OmxW1xDHFdaxqaQkIypE18IYNkr25LywtbuGxv8A3yuiEt9ViMyWCwfO5fveltTCpiJJXveQvwc/Zh8CeF7ad9QsNSutauBElz9m0yeO5KRxbjBLHcYRHCqNzsqrgLt+Ra90ufBOmta/aNTaeE6e+Y9NttLkSI2wZ8MzBGZWKlkwQSfLzt5JGH4j07UdNuX1SRLKytrJZCdRnucQqXLytJPHNFFG/wC7lgkP73IMhPzbct0Os+Dz4UhEsOuXklrbqxvdV1i0dYpWVW8t9pMSxgvHkj/VL84OQfl+AxOPxeJq3qSbOP29bmdtSPw54T0dZZob+ZpzYWjC1mtL9Y0kheExtk58tUWMBX5IZWOBgYqpcQeDNHhurPSbib7O0QMMt+fJuLv5h5gOGCblQZxjafKYJuLkLBY+JNRm1nWLrxjPpq6db6kJrXQLa1LS+UwQR24t3dtr5dQwSM4IGclsIt1P4r0fSR4ke8jvrZ9MM/2m0t5YDKkmVJUF5WcSYkYsVYHYAGLACoo+3Uk5PqdFJzkryGX2h6FYam97Fohn05DJviea62xlAZNhYja0mHVtisWHmKMIXBPhfxY/ZTX4qaff6Lr1pHpml6pqkepqsqzm7Fy4jikCPkjYqMhICMSYXBYbMr9D2um2PiO7n1WWynSS1uZpYEuL4iPYzIzLcbYAHkQKUyyHb5hOwhVxV8Z6YfEWpT23iq4IvZpvtGnBYJbZYJFXEZKRuqNuwUZics21SqDKn0sJi8Rg25QlZnVCvUpwcV1/TU/PzxL+yH4w+H/jOLwOl3FdhrRWguoyRG672QAFgDkbCMYyccZyCfoz4O+APGHw98L29hrWpafZPaxRBxBNJcSiWU+WpESEbmKKqlc7g2xsYYZ910a00vzZ4l0+KaT7IJXvlhIdohnZuB2jjJCqAoDMcdecbXRrz3H22PXLO2vLOwia0dIp4FS2eN3RvtMuzYoCll3cEMvzhFrtxObYrGU1Cqr+ZwVed6vqN0vT9c0i41KF45ln06GaKaWay8yOFZGbc+0gKqsWOSuRkoQd2SYbOx0i2ijGva9JeoIFWO6RhEtxKEDCI+YyiN04wq7vMfCgEMCcDXoGg0SCxvdSntZxOZNUS0jimhuxLGPLgEmwkEPuwXcHOSzKQc7NtoV/pXhS40fQJbfWoruJ57jU7qzSZIYNsmYAxbyy6xiN3ZcnKMMId4Xy6LVNNXNMPLlbV9UZvwt8QadN4bMssVpL9nG+JGLyQfZw3yxFo12jeVwC67S4K7u9TnSrKOzk+2281rBPBHdT2zi3uBHIwMaIQGIJLIy7F3cgMM7iKueGPBGj288k0Hg25tEvp2k0+W0v5Io/LM/lrF96MSKqYPJkyRG4Zf4meOPEN14etta1PSGuLWaxR7M6fe3BkIUqV8yTPzK29JsDcNpAOD37aVT2z06nW4VcbUjBauTSX3mX8Ivgbqvwd8OCSPxvMZtS1HbeQB5jPEkd2v2Z3nLkhPJtY5AgHmhXc4DDjcg1XTdPtLXVfBekaheay1z9omuS4cWtjJk7pHyjyuVSNQVCxKpkYFWCFcPw34Tvo7DS/EazRw2+61NpZ6hMqqtvblhIZIYV8471X5T5iOPKYlVJUvraRrvhnU47PUPBHh5tz6bDA88Vu0FvZSqPL8tTLcFYo9hjRG8z55HMZIO2NeSrUqVZuVTXv0ON3nLY6HSr2/Ooaho19bwTLPJ5iJoqMiAOGURuzq0m+SJXT5dqLu6FWIO59gu7u1sb/R9SEF1HLJHcLFfLJDdTCEoPKkZv3UW1yh2kBxHyCABXn0Gt6t8OL5/FNtLpsOoJpUAl1qTUvtEMmoxAyuqsy7Y4zDuQxxKxBDEFSysM3wzqPjnUNXa917VrswtLJZ6dDHHCsdxcBVVwjQM3myKZGwYiUJZGAI4VRw9mnsaJqCSilbqd5b6YNLun1e28TQ3q2uj3Opk3G6SSF2uAVnYRoHeOQgZAKgru3qPLFQafe6xpsjasb20A1Bla3s7K4kiLAuVlc+WFEzLs2kgMTjarKo45PU/E3h7XdXstIkuH8NaVrlhcQ6LqFynkosEcALTTN5YjgjO4K20qQXG1sN5TV7nxT4LTxNeR+Jbe4utZ1+9hsbWxslJsykrwwyvguuAhaUkneHiSUPtcAVtCMtFa46dS07PY6nXNZ8QWmoy2mmWdlNdXO2K3sBcRQw3E7x+QU3TgMoIBO5AGzCzhG2sC3xnex+HvC8fiHW9KWRZ3QmNrIOWQ5dLaNWCszFQ7ZIygyDjJFUdch03TxNougadq19q+hkXuozGzWR3uLVWlRSI1jUzb0UsPLCpvii8wAIRVh1yDSLGz1bUdFsZLu60xDZafNNmSMzFZI38hZFNtIyfZCVdMbSSFIkQrPJSjsjKpKnFXiXrHSNavLKZ9Nh02G+02MPe22r2a3ElwfLQgy5YvHucxZyeWd84AfE+k2mvalaReGItWBimvkhvZL1XDxDa8DrHAWKeaFRMEqTG0CYZdrboNH8W6xrt1f6d4X+F2oJBo0Uly17O0rRFHlD+QJJCYGJEjERxbSUYqVI4Zv9qz317Zv4K0L7BZ29o1pYD7W8ZyzTB5skBTMVW3ViC2H3nzmHzHCXPSTvscqqJSsth08uieILK0j13xBa20FvG0amWNkmmw+4s+5gj/ACHywx2R7CzFSFAObrHidI/AkmgeFp9Ii1BD5NzppvIY5oSXg/cTttZ3XdCWbZsaMqXBywYdNf8Agy6ttCutT174fPplq5jng1uaSKMWKJHtSUyKh2R4iZGGwkxwoArkrjjfBXiHwX8RvF9rrtnZRXNnqDGSwT7BLJ+8giVN6yxiF2tmlCqqklEjZwqlkzWMZXnzdhOE4x3sS6L4b8Srrt54h8TxKt3q8KvHpptpo4Q7OdtwkhEbycxybAimLdO8i7yZK5X9s7xP8QdH+Euq6tdXmn3xh+z3EF5GE3ylJv3gdY3IjALkbAMDeBu3Bs97oXiDwJrBsdW0/Vo4EN1DO6SSpPZ6myxK8seJf30KFvLkwzrGvlxlnYmNap/GHQNK+KPw+1PTYrCK50y700R3VhLYvFcWU8cM0qYV5sQblG7yERWYggoDCWf0MDiaccZTlLZNfmengMRCliacn0a+WqDWtD+LHiJ9Ze+0vUYEssWFrAumyXE8iAhROHh/dERrEo+/uR1LvEVaQVb8J6zb+DNWsvEWt6VLpKWFzcLZ6LfoqXKiO2kjjURvHERxcRbmLl18mNiw3hHf4se78FvqWgaXoFh4Wi04M93YThLe50qYK8qo6eZvjSTznkCsjtIBGRyzA8zd2ln4e8FzzXml2+qarf6XDeNBdzS3SziRkkd3mjYl2KkEMXwqKBvYhVrmSnXha25wSnPlaUS9Zv4n+KFsdeuFghs7gpqMULwCCWICVZZY51RsShbeRyRKCzJFIUXc7BtDXbmPxboP9oX3ifVrK1t2s3jaNJXikh2NNBbpIivKQ8luko3D5W24bCxkeeWvjR/Dmi2uqaNZb7ltPhs7fUFvYpw92IVRp0+fbEyzRxvtzszHEpUNkt6R8HbrQtY8H3vh/TdVs0sHtLeKEJKbj7QVijZAy7hHBCysRG4dnCoPMgYNuHROlUhHmXQzj7+kfmVNF0hItK1KT4Z+IpNPvTbXLRRaVFZzCK5E6LNNNMwSVgLdlcScyBYgrNhdzdMug6rLbJchIYrtYXMtpe28DyxTK0sjzRybCix5dH3nYY2dnIHzFaV3oN0dGj1ee1ttP1GCGKKS0sdYQW+4ecVyQ+0SqsaN935pBuAG1RWMqeIb/VtKGnvepYafcm1uL2ERLNM4l+dYlm4cH5d2FJJuCWG0Owz9rKaTNIzne1jp9Vj8A+E7TVPFHjTxXplpqGo/6V4gmvNPBs7GaRkmZoWZ0jRwyPHEhkDOWjZMunEnh/wO2r+MtTsPHnjQaRcm3j+yadFc2LXBgEdvFITJcXUir88pZmELkpagSFfMUHE1zSfE2peKI7LTPEdzFeTTNp9tpN55LRtIZknE6JHIUlm3BY9m4DeFZcLhI4ksPCESnVdN8NaZBcCyXVv7ah0Mquoybp7coiRTGEBZUY+WyqUaGUBWLBahqTg2gUHKVrDLLwZq/jD4tSeJta8UXWgeGJGNiLCO3TeYJreMq1ssmPmzCZvLSMEr5SsiAqTM15bWuv30Xh6xgmtnjKWby6ivmsqT7LaQb0UJG4dQA7N8pYFRkBrSXun6N4u069mnu5bO1RZtT0/7ebm7a6NtJchYo43OWkEluioOVErODKZFasfwn430C7trTxu+nG7sNThmttGstVsFmYW4uWwyBGeNIllV1xIVz9ngZXRC4fOcpzXvL3UTNU+SzWp1F1pfhfUfAmvTXGnrqWiwyorx3k93Elr5Mq/IrwhWm8rzVARZBvLLvDEELzfxI+FVlYa3qPiOfVNWup47ZXbUtbnja7vGuJ2dYyZEmkaNrdSx+eJyYhk5ILO1vVvEl+ZbO7nuWtzYrcfaZLO2cWMrZ/0i5eNvvbZAxRMqSfm2kqyHibVBY3WteJkmm1afWcxSa3Np8IskkKCeXYYWkDyhQE7FYyTmSRVlGfPD4YvcfOpU0u5ljwjrup6mrLoEWk/Z7drWytoLwwxyNdYkEiMRhCFTG0fMyMzngIW6Gz8JQeF/Dc+gH+0Lywt9QlMbW+Dp7Ri7wy2floyTIqFIlZGVRt4zlBWdoviDTbW3t9WSwvZ5IXn0uyudPiF0kcipERCzeWRKVWVhKrKcJEy5UBUqbwvd6Lpnhmx8HS3/AIl1O7W5hgtdais4ICLSMXSxRf6KZIpYpdyyqiI8geFxlE8qBGpNydtEgoSSd2f/2Q==",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [42,54,57,70] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [47,32,70,69] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD0n9lnUtR0v4jzTaRbGa6fTWSCMfxMZocD9K9k8V+MPEvh6O+ttZuFgnubqVZ7ONFbyPm5UPz3z0PQdea8k/ZI1p/D/wARr/VY7owGPQpczhseX++h5z2r03xJdeG7wfbrfxBaXUpkPnIXO1FIDb9xGG64+Uk5GO4r6bB1sLh8uhKtJLV7+vY/Nc/o1MRxA4QpuWkdk3/wEc1dXVpcaeq+WWL5O08EH61butNvILRXsnGyOJV8tn6Z9PT1rJ1PxdpGmTRpDIk8hJV2CnZGo6HJwWJ54wMep7c9/wAJje382+WUYzgxyHIbB6VnXzvA2tTTk/uX4m1PJsXJXlaCXfX8Ed54he5gmjsUsnGImxO4++O34ZHX3pnhy20rRdVku7mMySBAV34xk5yQccHj9a3fBnxC/s+1t7JLdDHEymXOF3YHfua9auvGXwb8Y+H47bWvhZo73QhEct39mjWWRNoGS4UMGHQEEHntgUqWPpzhrTdvX/hjgrYb2EfZue+9jxKGGPW7+UQIxaVgqRxrnJJ7V9B/Abwtc6H4Ys7LUyVZnYmM9VBJI6cUz4Z/DbwOdM1HUPAi+TBDMZ5LGZt5A2jhGYkjgZwST156Cuy0RbWJll+YHOIox0HHNfsvAeAy6pR+uUp3l8LVrct9db7+T2Py3jPMa8P9kUbR3T3v0+R09rYWtvpzRQQgRzE5mkb5iF9FHb+Zr5D/AOCnz27zeCfsy4GNR/hx/wA+vvX19bXcltLb2L2BmwuXw3Y8gZGemelfJ3/BVg2S33gm2smZhH/aWTswvItDgfTmvS8QoKPCOJ/7c/8ATkDh8M5N8cYS/X2n/pqZ8iUUUV/M5/WYUUUUAaHhq7+x6gZj08vkevIroLjxzd3s8906qHdiRgcDJqn8MfBGrePdYu9L0WLzJ4NPa4EefvAOikf+PVY1HwhqOiuwu7SSPBwd6Ywa6Vl9WtRVVxfL36HmVcXhVipUuZc6tp112KNzfyMR5kmST09atWmoSxOrbhnPXFULmBC3Mn3R61YtYpHQbEOfTFSqDUtiKkYOB6N4dvTLZqBMWPTK9hj/AD19K0rvxLd2BwzdYsru9Of8KofDuyW7sidvQDLL1zim+INLuIJJXKMMqVQAcMfT3r6mlhJRwikkfFVPZTxkqcuhf8I/G3xfH4jtvC/hLUI7aa7uFR5pbgxDlgB+83oEHqSRgckgDNfWvwG1eaXw3aPrccbzWkezzmIaN8fdO4ZDjGAT3IP1r4j8JfDbUNa8QfatYVrH96DGksbBmG70r6q/ZSsPsK6/ZDVEvbWGKzEBtzhUTdMMhT91jxkH2PQ8/ReHGKxdPiVRXw1FKL7aLmTt30+5s+T8RsHlzyNulbmg4vTu2k9e2v4HvNvbtEkmqanqVv5MzcLb5OcHtgYA9q+Rv+Cqcdjv8C3Npd7y/wDaYdMfdwLTB/EH9K+tYLfwzcWS2a6rIF2gYkAG1ic9RnPPfAr5L/4Kq6fLpbeBLR3idVGp7HjcNkf6J3FfpniKv+MQxT/wf+nIHwHhk1/rxhP+4n/pqZ8iUUUV/MJ/WwUUUUAe2/sF6Y2rfGO/tFTd/wAU7MSMZ4+0W9fUWs/syaN8ZPtekpbW9vemIyQ3DR4UsGHDADvk89a+Z/8Agnt4j8IeF/jPqmoeNfFem6Pav4XnjjutU1CO2jaQ3FsQgaRgC2Ax2jnCk9jX3J8KvjX+zjpPiKe6vfj34IhTyAqtN4qs13fMCeTJ7dK/cPD7B5Pj8nhRx0o8rlK6ckn+d0fzf4o4zO8BxJUxGAhPmjCDTjFvX5LXzPkP4pf8E6/2kfCs5udH+GV7rNmHKrcaDF9qMmemIY8yge5XHvXZeBf+CTvx21Pw/Z+IfF3iPSdBa6UvLp8zPLc20fbeEXbvI527uOASDkL9/eG/2qP2TLSPM37T/wAO1IQAbvGtgP8A2tWD48/a9/ZVtgGtP2jPA1wCrBUtfFVnJ6f3ZMD8cV9bDgLw+wuInXq4nmhbZ1IpL5qzfZfrpb86q+LPipiqEMLRwXLO+slSm21ba0rpd2/yV7/PPgv9ij4V/CHw89prU11r93MB5tzeuYURxkfu0iYFQQRkMz9MgjpUdz8Pfh5pdhLp9r4ctNjt82+Mu2cjHzHLcEA9a6n4h/tMfs/axbsdP+NPhRmKsQF8RWxwePR68kl+OfwzkmLP8VPD5QseP7bt/wD4qvef+qOBpqnhVSUbaaxenq22/mzXL48Y5rzV8d7Xnbu7qS18kkkvkkamufBzwFrEASfQ3hcMWS4hlZWK9xzkEfrXV/DXwb4e8C6HcLotiywNjz8Pl3OQAxJBz/KuT0z49/B+OaKO++J3huSEH5lbXYMKCOf4810Wm/Hr9myKwljvPi1oZk3/ACImu2wUqcdfnzkVjh1w1hq/1ij7KM9rrlTOnGUeIauH+r1IVZRvtaTW521hBop0uVrfVwHYhwsqkEc9BgYP6V8q/wDBUq0igXwHcRXwn81NTJYHoQbUYxXvSfGP4EymPd8dvBgiuUOMa9bBoscDcNwweK+Wf2+/GfhDxbJ4Wj8J+MtK1cWrX4mbTNRiuBGG+z7S3lsducHGeuD6V85x/j8FX4UxMKdWMm+SyUk/+XkD6Lw4y7G0eMsLUqU5JLn1cWlrTmt2u5860UUV/Np/UoUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/9k=",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigC1oeh614m1qz8N+G9IutQ1HULqO2sLCxt2lnuZ5GCpFGigs7sxChQCSSABXS+Lv2fPj54AAPjz4IeL9EBnEI/tfw1dW37zDHZ+8jHzYVjjr8p9DVj9mXW4/DX7SPw+8RzTtEmn+N9JuWkUAlBHeRMSAeOMV+vdz+2zaeF9ePibxxoVhPJNaP5tp4hjSeDUoGU7orq2dGEkcgJDwuh3K7LnbjHFicRXo1oKEOZPfv8AI8zMMxp4Fe92ufjAvgrxk6708JamR6iwk/8Aiaq6ho+r6SUGq6Xc22/Oz7RAybsYzjI56j86/Rf/AIKKeFf2bh8UrXxh+zdoV1oq6xE9zr/hO1tH/s/TZ3JMclpIRhYZdsmIP+WTwybdsbRxx/E37QHyLpMJTaVe5yD1H+q/wr6avltKng3XjJ6W0a63Ss/S54eUcTTzTFwpKC5ZX1TeyTd/R2POKKKK8Y+vCiiigAooooAKKKKACiiigDQ8Jf2b/wAJXpn9sX0drZ/2hD9quZkkZIo/MXc7CMFyAMkhQW445r7Z/Zs8b/8ABPHwhpkU3xl/aMi1DULx0SWGHw7rENtppXYxmUQ2370HEke1lYMHDMgIIr4Woroo4ieHs4Jcyd07Xa+TuvvR4Od8P4fPqap1qs4xta0Glf58rf3NH6A/tG/tg/s8eKLS28G+Ev2nrfXfC9rLc3elWMXgu7sZYJJWcD7URaJ59wFAHmFpcIyqsigFF+O/jp4t8J+Krywk8K6uLtIfOEh+zvHtB2bfvqM5wfWuCorrr5ricRh3SmlZ6tpWbd7300u3vocWTcH5dkdeNWhUm+VWSk4tWtbpFPbzCiiivMPqwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/9k=",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [36,39,92,70] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [38,39,52,53] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD1il3t60zefQVX1a+aw0q5vhOkXk27yebIuVTCk5I7gYzX1baS1PLLbT26yCCSdA5AIQuMn8KcCo4BFfGmp/tW69H4ot9cvRbX1xZXDPDJahkSUcgBxu5A+8B64r3L4EfHDxB8Uri1GoPpAWazMzw28sgmU+m0grx3GfxrljiE52NPZ6HrWQehoqJnZTgUglbua6V7wuQmoyOmaj8wquR+tCuT83rRewcjJKKbvPoKN59BUicWh1FN3juKN5JwKadhJXHUqsVOVNMZiDgU6nzD5dLlOs3xxoT+JvB2qeHklZXvNPmijZG2lWZCAQexBI5rSJAGajuLqK2gaed8IqksT2A61k5QtqaQjNn59aZ+zZ49XxM+k+IdM1bT40maOS+ktmjhBxIFYuRtwXVVz0O8fj9Efsv6L4/8NyaG+maNZXGi3tgsst4bfZIsbgMCZOctg/d49K9UbxX8O/iJZ6h4LvL6MpdwvDPE3yMy8/MpHQgjcD2IBrzD4E/tE/Dr4e/ALRbX4geN7a3fTFntpfOJLhYriVFJA9UUHiuZ+zctGbezqOJ9AVUv9f0PSpkt9T1e2t5JHCpHNOqsWJwBgnrmvDPH3/BQL4A2fgfUrvwT8TrGTVktiNPSa1k2GU4C7twAxzz7V8iax8Yf7dcatN43aaTzXuDLNOWzJvLAJnOMHp0xitHXXQIUXbU/TgsMcEH8aAwIzmvj34I/8FHvhz4P8Avo/wAXfEd7fapayj7IYIDLLcxY6FmIXIOOS3QHgnGdO2/4KxfCq41Bof8AhWuvLalsRzs8O/GepUN9e/al9Yh3BUJX0PrDIPQ07zPavFfA37e/7MPjlIRY/EVbSWaXyxFqFpJBtbvliNuB/eBK++Oa0vjh+2R8DPgJBAvirxOL+9uj+503RXS4n24UlmAbCDDD7xXP05q1Wg1e5m6U+bRHrHme1Hme1cP8Dvj74C/aB8Gf8Jv4De6FqtwbeaG8h2SxSKqkhgCR/EDwSPc9a7UuoqlWp9xexlzWsP8AM9qq+INatvDui3Gt3nMdum5lB5PsPenm7iGevB9Kqa02m6hpc1jqsJkt5kKyKI9xxjqBzz6e9EqkIxvcqVGok1Y8yl1/xvdxEWnjcQ5+7iyQ/wAiM1k3914rmtnivviFcPuHzqsSKvHIwOcVyS+M9Tt4ZnikyYwxi3FsYA4zzVa68UavLYSvKyZMTcqWyOD71+dQzHMZJXl+LPpvq+H6L8EVvEXw28N+G/CuseM59SmuPsGn3N4YTKUEjJEzgE5PUgc4r86de+JOv+I5pE1K/fy5J/M8hZMIrE54H419xfGf4pX/AIe+DHiaWUGUHRLiIqSxzvjMf97/AGq/OuaWTfvVzwc9a9nLa9epGUpv8TnxEacNIo6KHV5xON/KEnPT/Cr9jqeyYF3G3jjI9a5FNQuNuN36mpbfWJ9+Hb+f+NepzPocclc72TXLJLYiNUBIHPm1RsfEEj2wt8AYBwdw9fpXJT6vOH4kOMdMn/GprPUXCIwY5J7fWpTbZN7F/VfENzbyyJGwzuPcev0qtpXiHU2umae4aQFf+WrE45FQvbXerXyWdjZyTTSthI4oyzMc9gMk+temfCz9kn4i+OdREOpMmjw4PN3ESzYPbB5qalaNJalRhKWxb+CH7U3xE+Bt2bjwbrThTP5kljMWeCYDqGAIx06jngc1+j/we+NmtfFT4XaP4/v9KudNl1W1Mr2E9xvMfzMvUABlIG4HHIYV8s/Br9kL4dfDbXB4g8R2n/CTXcGfs1vdQKIUbkFjGciTg/xdDzjivabv4o6hppt7GEBQ6hYViiVVQD5Rx6D0r5/H5hOp7tFv8Uejh6EIu80euwa7cCQuJCMsSVDcH8Kz7vUNVhxCmpzCMYVVDdBj1NeYn4s65HaTzgj9ySG+UZbHU57VNafF25v7w29zC+1cHtk9PTFeXHE46n8Mnb1Otxw8vsr7jhLHTrnTD5ZuWujM7STyNdbxGTyFTjkAYrMtvAV5EjpfazmCWTdJEkhOcHgcNwMcVuyWUds4jSaQHHTdUw0q5kQhLggkdWbIFd3tEne5zKk2fPn7Yepz+DfCUXhrTbm4kh1gFJIyNyKEYNkE56YUY+leGfC/4Pav8RPHKeDrp209/JM0huU2syjacKGIySDmvqP9qDwvc3Vh4YvWjEsNnrsf29iPl8piincD1UnHFJ+0d8Kb/VNHh+IPg6FbbX9Lnja2uLRSsjIDypK4zwO+eBXo08ZGnTtcwqUZSlojldb/AGJvDl94YUafctZXVvEMzrJv8wBR1UnHXnNcPpP7DHjO+KNdeJ7GPJ+YRQyOeuOMgAmvqzw4dSudCt21FYXleBfP44YkDtSOLi0kK2iRoB/sj/IrNY2pF2bD6s2j44+LH7NifDPwq/iceNIL1orpLdrVIWVstnJzyMjHTP4+uf4a/Z/+Imv+ErTxZpelI8F1EJIkadUkKk9cMR9R6jHrXvv7VuhXGveArbS7GGNZJ9atk3KnOWLA/UDOa73S/DOh6F4YsPDaGQ/YLWOEOgHzBVC5555xmuhYy0LsxdGXNax4H+zN4q0jwHr918N/F+gS2V/qsqpa6jNDiRW3j92c/KFAU9D3717lrl/4i06ST7LaqIon/c3ZUN5h7fKGyOfUdq4n9obSLGaLw3NomiPdanb6ojW7EDc4BHycdeMgc8Zr1PTr5rvfBc6UUjdMHzohg89uetclWpTqO7OqFKSRBdfHqLwleQWuryy30pYCe1s9PLOrbdxVtrEjjnP6VkeH/wBojQtf8cCysfDF0iSTni7QqUGeG5HHPOfStSb4eeBbnUJ9VuPD0bzXLA3Ehlf94cAcjdjsPp2qpB8J/BelTS3VhoUccrxlWxI20jHTGcVMIULalpTvqdxL4z8M3dtJIkiNMowYgwALem4dfrjms0eLYtPutkGlF3QgyzbDhl68Edf/AK1c/F4D0xnje3so4vLKtiNyoyDkH9Ktm6kfUPIgAVlIORx6VMuS+hXLLoajalBLayyG0Cup2hfN5B/+tWl51pgwqFUjtvzWXf8Agldbvo7uw1B4GkjBYDgBsZOMVDbeCtVsLprmy1NZJCpBV+/HYk4z9eK4vZ6bmjk7Grdrpd5A1rexxyqcBkZ+uDn+dOsXsJYBHbbHiTC4DZA9jUVvpxt1Vr3JkA/eZIPPfpx19KgtY5odUc2vlLaGMs0QQht4Ax0OCPwpck5DUrIsW94zDnTzGM9N3A/SnTXVrGPmgBLcEeZipIJ4JI2lZPutggCo0Gm3JbaHJ28bgKHTq7juiC/8MaF4mshbX1grqJEdeckMucHP4nj3qR7Wzht9q4bAOcMahme6s5gttOwGMgFj/SoLsX/m/IygE8AE4P1qnCrbcS5WyW6sdNlEc1zbqRGpZWJwVyCCQeo4qeJ1iQRoOvB5qAxLKrIXYjkKCeMelOR0Eigk5DDOOlS/aFvlLNjaW9uV2RYA6cn0q1Ig3s0adR0FVlv7BlKJdxlwcGNT82aEuZwm4NyOTyeazftn1FZD/OMRIZcc9Caght9PeQ3X2ZA7EszZ5PPrTbmZnYTE8Acimxx4tkuFc4c4Iz0oSq8urEyjB4p1e0cvHZCZQeAR/hSyaxqZbe9m8QJwGIzn9KpjxQFcR3GgC3J7FR+gq4ni+/iRXitLYIDkgR8sO4616LhN/EjJTI5dY1ZUMq3ZKKeV8pf54qXT9UvLqNkt8sV4JUA4J/Cq2reMJ2iNy2jQzAAfuVjyx59z/nFRaVq11HCl1Bp6QGYBjE68j0zj2pOD2SDmfUvtHfpJ580O9g25dp6c9+OD7VLFqstsWuBZESFcAb+/btSW+pzFC0sUe5jk4U/41XbxJaG78qXT1QDo2A3OOB2pqnV7C9pHqWBq2rX9yqibY4TONikqPy/CpZxqsDNbXOqmRVHAMQABrMtbyGDUW1C20iIyFjhiwGQc+2e/rVy8u9UuZdphgwxAcjIOPY+tS/a9UCt0M6TSNbnvmvrHWkZFYgwEBef6+tSnw54nmle5TU0VAD+7MS7hjg8fgahTwprFoDcW3iOdV3hmDtuyc/Tp7Vbj1m6ku9zXDgM+dg4HJz9aVqiWhV9Vcu2mj+XZKsl8fOIyw2gbj9P89KZbq7Sz28zEAxEDtz+FVLywu77WItStb2SNolwoD8H1yMHjk1QeS5tLiWWbWriVSnTaFI4HPFVTU2W5I2Es/scD7NQET5BAdcnnHPJq3ZQ3M9rFdYIycltvUZrk9V1+w8QTxW9rquACEurcr8xxzwfUf0ro9IuUjtIvtOsKg6NE0p+UZ9PpVzhN9DNSObkudTngkMenmRFBwFkUM2OQADgfrVTT/Efizw8ZbWXwLOYyP3hVyxXj72VyDgdq6tvD8Ydo4GKKDg4fmntYarZp5Ok3KRjpJv8A4k7jivWnSi9GeeqsonM6l4ivbWWKWwtjJ5jHIYfd4J5GPwrRk1HWr6NJ5LOPYY8lIz8273HbHStO50O3uHKqzANy4yMMfU8cmqNvpuoW7Mn2tHXb8uAQc+/NJUIRdx+2mQiy1Nysjr5QYZAA3ce/p9KyruWVHVPsjGTcANz4DH06cVvRW2u3UmIb2FFT5SjITnHvnNPuPD5udR+2TRxhY0O1UOB9cdCfSr5FaxPO3uZtrBqEUAnCKjkAiKNt/X3xUssV2bUz31wkMaDdK0xChRnHX8a1YbEonlIq88hm61meLPAdr4y0abR9T1a4S2lwZEiYgkA5xn6jNZ+ziy1WZClhLcWyyWwikt5j8k4bluf4ecEZFRC1jNuJAuNmWBz1IrW0bw5a6LoEOgxQubeGARRicZ3xg5A9xzV6eTTrbCpZxgg8YiHWm6UF0B1Zo5/Rry7kiuHsCQQdsoCg5GR69OatPfXn39RsbGGaRTujWDII6cc1r+WkcZu44U+cAsNvXPrWValtQY3dwsLDYdqmPlefUmlGnCOyEqs2VRpWlXVys4gYtg7wq7MHuBjqPc5p62sN2SjSbFxyRzVu81K20xUf7MnCAk+X+FUodUimcusKqrDoExVNRfQFOS6n/9k=",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD1dVXqDSnOOKjyfWpMg9DX1h5LQDpzRRRQJK4YJ4FOVMdab06U7fxjFBV9RQoByKWmbmHenBsnGP1pXsMWiikJIbOCaYhacm0ZJPI6U2gHByRRfUSZLHIztggdKREfGxl4PU0qSIT90Lx1pjysxyCR+NBRXUKeCKUKQuAeaj3c8DNLknqaVydR43dzRkZxTd5xigORxxRpYaVh9A681GGJ6E08MuOTRdDSH5T0NNBIORTWkVRmsq88feCtO1FtJ1HxdpdvcoMvbz38aOB82TgkHjY2fTFS5IEpPY2N7etKHGOaz7DxLoOrFV0nW7O6LRl1+z3KyZUHBYbSeM8ZrG8QfGP4a+FfFFt4M8Q+L7S21K72+TayMc/McLk4wufcj16c0vaR7jVOfY6oZAyxpetQpMrgFWBBGcg04vgA/lVpp7CtbckoJJ61F5m45IxQXGODS0AriTuTQJCRycfjXnH7OzfEPRfhqbf4v+I21HVY7+XEu4yskPyhF3AfPzk59Gx2Nd81/aptDSj5/uj1riWPwvLrNfejf6riHtB/cWtxPRv1oyeua5zxH8RLPwtJGJ/DuqXaSShGks4AwXjOckjPf8q4v4ia38efGPgi70fw54LGiXly0flXEetr5sQWRWJDLjqFK49CaieZ4OC+NfejWngcTN6xa9T1fzOMlsfjQX2gMWwD0NfNnjX476Z+y18E7HXf2gb7VtQ12e6nisrG31ZxLfMCWUCRWKoqqUBcg7cj5WPB+RNZ/wCCmn7QN1r1zqHh+40zSopZd9pbRWxmEAHQbpGJkPQkt1PYDiohmFOorx1RcsE46Pc/RD9pr4vXfwU+DOq+OdKWFr+MJBpwnGVM0jBQSO+0Fmx/s1+bGofEK91nXbzWrzU2N3fXEkt1IZfmkd2LOTj1JOaZ8TP22Pjt8d/DH/CKfErx0smni7W4FjaadBAm9RgEsih26k4LEZ5xXkV5rhVGsQ2CRgH+X8qcsWpLYccPyxs2e26L8WdY8BOPEel+LbiyaIFBNb3LBlzyVGDnkZ49K19E+J154huz4sGpNeXwyEubmcyMSBtBJbJOOOPYCvl2TXdXW4ktprpjApO2M9B9PTNemfs/fDXx78Q9Xj83xC3hvRLRvNvNXvQwjChgSiLwJJCN2FyB8pyRxXPVxMYLmlsaKg2rJ6n3f+xl+098QPG/ja3+HHiS6/tG1e0dvtLR4a1WKNjnKgAKTtX5vbFfUq3trM4jiuo2YnGFkBNfHnhLSvgfbCWw8O6mLaGZXWSWJArTrlQ3zKMnGARjpz6nNPxR8ffhZ4AE0ejXE988BIEkTeWS5Y5+Ycj1zjjtXLDO6KfLBNm0suctZtI+z2vbaJPOkuEC/wB4uMV4p4l/bc8D6R42Ph/T7D7ZpSFQ+tW2oxNk/wARWIZJUDuSCccCvB7r9qb4ceNRB4RvbO9Gl3M0lxqdxc3TMXcAbflUDPKjkmoj42+Bq6Gbyy+HqG6E22O3QSMWQ/xZJ9O3OP1rSecpLWLX3f5kQy+F/iR9D3H7QGlyo8EN8jyYziFc4HHXnNYtr+0LBfiaC2sZHMblWaNwdhHr+X4VwEl5oVrqK3l5Lsn8ko3zHBQ54PaltNU0MSSNZQInmSFW8yTIJHORknA5r4xUaR7zxFRnRN+0d4ivr86ZZ+FpGYOVxJcRjj14aq1z+0B49luk02LQipfH72SPCr6k8elY13dtI7G0CFjjOxhxx1qNwUmImupAdu4uWxgYrT2MG9EL6xVtufOH/BRn4oan4xtPDfhnVJ1e4tJ7qYDywrKpWJc4znaxHBI52Gvl+00nXry0l1Cw06eWG3ZRNMkZKxlskAkdM7Tj6GvrX4d/CHwr8SE8afFvUdQjutS1bVNVi8Ky3rb4raLe6Q3AXrkHpgkKqjAyBjU/ZH03Tfh78MZvDsuiebqZ1WdfECyPzE4O1FxtO5NioR/vk+uPbhXhQocsFscEoSqy5mfHFlqN44EKIzMemBnNWb+31K01EWuo2c0MgVS0c0ZRgDyMg8jIIr7/AINE8OzSM9rbG13rhvswWM/mF5zjv2rzrSfh94Nn+OnjbX9f0O51Gzs9N06xitraFZeJYAZSy8ZPyDpzh279dIY5STurGbw7ucf+z3+y74A1/wCH0XxO8a6r9tmuctb2FuNwiCtgAgA7pCVwRggZHBr3HQPhX8Lba4MU+kNL9n/erHvYw4LYUbWwCeueP51w/gbw54c+G/xs1PwJ4W+3R6Pq2jxalFDLA3lwTRuEdUzklisisQMYwBjivU7jRYpgV+0oTu3KAwz0x6/WuCrWk53b0No00lsQx6l4I029RNNtSkI4kQ2+CABjClQMf/XrD1TSfhfr99JYWHg2DAVnea4gY5bOBxv56knNb6+H40cO1zICnpIflA9gf50xNJie83LMcKc5UjkZ71jGoltI1VLTYx9O8PfDuztUhHgqzeQcFVswFZup5x/kVPqWk+HZYxpO+WxZIwuLGzVGXj1OT044xxV2S2tNUgkMMcgXdtH7kjoe2RUg0cRERxPcLjIwZSc49aj2yb953G6N9EJoGjSfZzHq14ZZFY/NO2XI44NPi0nSi7rBeBZGGEIPfn3qyrWlrKfKdpSOX+Yccf8A6qo3Pi/TUEaQ/Z40TAkZHZvL6cZ5BqVQqq9matxbJG0ZrM721CQu2QxDEfpmq82kfbYDa6jcTyBwUZluD8w/EZqWDxd4euZdkskhbojMAEk7DHqemKG8VWBufswtTIdu7ezkc+nAxVKE/mJW7GfYeE7TSIrfRdK0yGC1t4xFbRpMw2oBgDAGDxVqexsNGulvIvDiNNMqxXEkZKlwvQtjrjJ5PPNSp4nFxA2dNECqBjzCSX9x046Vkz+OrI6h/ZzW7PK2cRLLtzjqeRj+fXt0pK/MNuNjWumsftXlRaVKpZdwOTgfrVKxsbHTNSnvLdGWe+kUzsLbmUqMDcfZeBn8Kt2Wsai8jxyQxw7ASzpNuIAGeRinPrNwZf37Aqy5Vsc9+aq8rWBRQS28bTLcrZkyKWLMwCkLxnB+gHT0p8epWtqqRNbSNIq8uT1469eKzZtYtr66lS9l2xIu1CucuSB7cDj1pqatpq5a2t7mZynG1QeM+g57VEqdRrRDTiupo6jewXBDwtcBpF+VYZcZPfPr1qhBrsSrHDptzD5of98Lu5JdgT2A7+lV31WAIXOkXSIxyTNEQFz3zwMD3rC8Qr4fmuvtr3PkuYgqSwvuY4ycLwwzlj14z9TW0MNNrWJLnBO9zt9Kubq93TSyIX2kgGQ7SegGcVPZ3Glahhx4j08zBzHKEvwQGAGR9ef5Vyq+LbN2insdHvI7qEhGiul8suvXJB5H6dT7U2z1wxRtFc+GltJt2Rttfndh/EW4ySRz/wDXop4aSbbiE6tN2syreavoGnXsvi2/MiyR25R5DKdqxAHIweMcknvVm68U3U1tbyWumw/Z2jEkZOcyA4IK8AdhWfqnh7Sbt5NOk1FJ43jBlgDAkqeOQcjBx+IzVfSdOt7K4Wz09TJ5hIz024HC9fl/pXrezvocCk073L1/q8s8CSXESxFmJiTPIPsM/TpVbRtduLSNrS1tbu7ZmLLLdoAe3HB4HFTXumXcMoknVnOMRoi79nT3x6c1DK0VpFLFY3hWfC4KJnYM88+pBH044odCPYanNvcy9d07xVrmtRS2Ovy2kDAiREjxxjjHT8/fNbem6Fb2rPLLcRNNLKrF7mZfkwMYHfHepU1WzFooneC1nAxG8oLbjxzjaQBn145pkloLcyXtzci6mUZkaFVxH3x04HGMDHSp+r0nK9gU7Gnqc1pptq8VhctPO2MOzgcZHf6CqOm69qKkyX6JOEYkNIuBz0CkYIxx3NNtpcxoiaOWRE+dppmLHAJJJxx6/p71bj0x7oiNIQU2ncADjOOvHpVRoQ6IHWbdrji7CB4hpwhd1/dAqRsIYHjP5fjV7RvEP9j2sKRx2oeUEyCNNpX/AGT/AI//AF6yLu31CGcyQ2rNHHkTyKMs3Ge/J+vTn14qLU9Pmu9P+0x9HUAo8YIDZ555rVQSM3Psbsfi9rgLZ3mgxyx72w5Ax6/Nnn04/CqF14jupdSNrb+GYJIkkAbenyopHbPA9enaqsNhqI8tI5iQ6A52HKEc8+/+FaOnabeXCMbi73qjDPHGefy71VrivqLJcCW7W7aCFSxCqFQYUf071dDR36StqEwgEab9z8FufU1VTQ72BQ0ETOZJCUjfsOeAT24qK7sNXvhunvn8qNDuhjXg/hxzQ4pi5mXdQ+G6W84ur2ztmyy+YWy7AdMY4B4/XmnTeEWluPtEdko8rHlgPjIB69ce/wCddCJ7i6QRmBYQR0xyKaLe6kV1E78cLhSCP1p3J1MZPDWtXqRri3Eav86zSEHaT22g5OP/ANdF14Bgiu2fEbbiBjecHj/61aa6XJHMpGWlc8lhlj3+vT+VSpaqZhvuyjqv3VOcjPt9aE2FtTm4/hzFb3bXCpCSZAWYk/Jg9AMY78Ve/wCEBuppPMFxu2ruAd8KBwR06n8OOa6FId4aCTzcM33wpXPt7/8A16UwtCSFhlOOFBUnn8qB7amNYeHIreXfdIrKcghsN/Sp4dFWW28lJ2ypAbJ+XGD7ZznFatnp1zIojaOTPOUYdT9P1q9e2OrhhbxxFI0yG2nGDyORnn0ouJs56bwzYIY8yucr8+0gc8dP1oi0NHuB9ntsRY+Znl+Yn0x/9etGe2mV2hnV+oPKHqB6e+aR7a9kjMdvCzlpMvMOcev+fejUV2VLnw7bW8LJv2sPuAN/9alsNBsxuaaRnd1CnB4BPTtWraQ/YW+xtavM0hyRIcjjt05FSC2neR2jTylOXdBHgJj0/CgLoxU0Pw68wUCUuo4JY4Apy6RAIyiNiM4y2ecV0dp4dWZFuhApUnH3AM1ZPhZJY1DHCAAMygfnS1Kuf//Z",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [18,27,89,68] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [30,37,79,66] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD967lRs3e9MvFB0yXHH7mp7kYTcT3qO+I/s58H/lkf5V0R1aR5TXLdnhniRDELu6LZ+z3LJt/vdDn261wHxBuftGrTE2c0WFIxPHtJ47V6nqZEN3K7MB510xGf7xwMD8q4H4lxNJqsxAOBG2SB7VxYunas9expQndpnm2pKMEj+5WXIxUk5rZ1ZNrYzxs6/iawb4GOR5SPlGPmPSphTbirHWpIcLko3TP41HLesDwp6/3qp3N1Gi7zIuCeCWqGO+a7Yw6daTSyJ98KhIx68Ulga9R+4rlKotjYW+K/wH/vqmNqL4PyHp/frMiFzc5/cLAB18+dfm+mDSNbQk7kmzj0Irvp5FipO7MZYixoHUmHzGMn/gVC6wVOfI/8f/8ArVStUZZhtU9+3tV+OR1QDZXsUMnh1lden/BOWridNi3p2p6sjmRLMQoyfLKX3bhx2xxW5pU2o3t5FbzX5/eD5WVcbf15rFgRpEX5T90HgVu6JbFUO0MflXPFepHBUqVLkhojz51XJH21e48sqPUVFco72DKq5JjwB+FS3IYgn1NLIyJbhpDgKuT+VfJxdrHpyUZSs2eMeIQx1mxspRtWTUhuJ4IwT3/GuN+J4TTb24OoOsAaNgvnMFzx2zXfeJ9DsPEST6dqUDSQNceYAkrI2QTghlIYdfWvDfjl8MfD1hoQms7d7i9OpWqO8lxIcK0qqw+ZscgmssbHmm5LyMMM+ZWe+pyfibxjosHmxWc32iRYTjyjkbufl/z61zlpc3GspHqN20sPmoDJBnCqQMYx9RXXX3hjTtNMkel6XFFCoBiCgegyeeTznrXP30bJePGUAIxwPpXdlkLyXoa4l8lPQhE9jZjEGl2zyDhpXVizD35x6dqjbVtQkJUXjIoPypGoAX2HGcUkkTBy23r71XeOVGLbDyewzXuwgrnNeUktCWa5MmM4/KnW4HAB/ipk9s8YBaI/gM/yq1Bp15GwDw4wQT8w6EA/yNWtHoRZomtlCuDnvVhW3SbB+lMjtZs/LH+oqeCxulkEzRfL67hXVDQibbNCwGMD/YrpfDsIkRyAfur0/Guf06By3zpxs9fpXV+HYDGjkJjKr3+tb9znk3Zo+wZmDLgetNu0L2Tgf88j/KnSphc570TkR2hkYZG3kevFfCrdWPZUb6y2PL2Di4lDtn5zj8zXk3x7zH4PkvEOJBd27b++RKuDXrl0VN1KyrgGQ4H415H+0DC83w9uFjfaTPCA3ofMFPFJJtnLhuf2l5eZzmtQQAOFjAHkr/6CDXGajaxnVnJQY44/4CK7XxE4DSFRgGPIA9DyB+AIH4VwmszSLqMjK7Dp0PsK7csUvaXXb/I6MRbl1LE1hZiASGBeY5T+Iicj9QPyq3cf2Fo1ncajcxwwRQpIXllkVFUDyMZLEAfeP51y3iTxLD4d0OfWtTvHS3to2dzvPAwQf0JFfB37RXjn9o/9rr4g+JNB0rxRqOk/DPT4ooDZQvsXUIyi75XwcspIHJ68V6dSpOnqi8Jh5VW7I+9dF+MPwU1fxVb+BtJ+JXh6bVLicAWMGqRSuy7WyMIzZ7dK6yRdMXTvP+yfN5DtnHb7JHIvftu/Ovg7xJ/wSi8P6n8Bbn9or9k7xfqeq6l4XAfWfD0043YjPzeQ5+YS8565OPavXv8Agn18f/Ffxf8AhhdaB8QdYubzWtHujG81y+WntzF8hJ6k7UKknqAB0FPDSqNu4sTQdK2h9G3EEC306RRgLHLIgHoQQP6N+dTwQB7cIAM+/wBazEvz80j7iWYljnqT1NXtP1KNlVTGe/U160YnnNqxoW1qxAVMAhfWun0GMrEQ2DhFrnbOUM2cYytdDokoZGwP4VreNO608znqOXQ+vLhdsec96bcrvs/LJ+8uM/hUlwMpg+tNmwIFH0/lX58nqfQrk5XzbHlrL5F7cJnOJSP1NeQ/tJyeR8HddmC52WaPj12zJx+Oa9lu4FN3NJk7WmbB7HmvHf2lYoZvhX4ksY5NwjsVA2nJwZo+taYi0rnm0ef2hheIGK3Yix/q4yM+uWY/1rztLO71TWTp1lEDLK7bAzYBwCTz9Aa7nxfrVjp8cur31zFHCttG5cuAuWQHqfckfhXzj4r8fa5r+syWtjdvDEsp8n7MSHx1POe/PTsa9bK6M7p9LGldS5NTuPi58Afir4/0rR7HT4gNF/tRm1CWwvFkYHaRscDlcgk9Mcda3PCf7O0/wgtWu/AXhBL6e4X7NKt43yNC/Dbhg7uPpWt+wL+0L4X0LxRrXwz+IWs21hBJbh7ae+cqrSF1G3LNycHP517f8WvHWg+CLb+0dG1S0uoZWJgkEoZHHPI2npXfP2cpuMlsetgnGjG76pHkvkL+xeltqEHgu1sPDt3ps8+rQWk+ZNV1aSaTEQXbkHHIPIxn8fDf2XfgTYfBjwPcQNb7b/Wrs3tztGFgLlWMajngYx+teo/ET4jaJ4/1eHWfGGvQTPBJ5lnFb3C7IH7soJJz071kw/ELwTY/Ib6a4fO5TEu0fTByTVUpUqe5x42tGs1yGvFYuYyNx6/3au6baESKm49D/DWCvxUsbiQW2leHbydm+6/mBRnuMYz0q/ZeJvEl4Ve10ZIS2dqzozY+pBArrji6EXqzyZU5nW2FhJxyfuf3a3dOt9qcyfwjPFcvoreKJWD3tyArRZC24PB49c8V2egaWssJaYyZ2LknufyoqZjh4xfI/wADOcZJH1lcNhOOuabOwECk+38qSORLm2EyOHDE4ZTweaW6XECBhxkfyr4lbn0EKbnCx5R451W90TwlPqek2f2i8W8dLa33AeYzN0ySAOncivFfiX8P/GviCxuNO8ZfEW4JljJubazjCxuAPuljyR+Fex/EaZbPwjLqEpxFBeliRzhi4VTj6muG+JFyw1WYSP8AKYzu47Yq67tO3oefBx9pzI+cPi9o7eF/Dktk2rzzR3LK/wC9lzyowFA9OP1rhvhN4LvvG/xBs9PsrV5QW3TFP4VwQP1wK3f2h9Wmu/Ex064uGaO2UIqAYAkyT268EV7J/wAE0tG0KbxLf6pd2SNdCMp5shJAGCcYJxX1GHpvD4Tn7RuKpNSdjN/aI/4Jr+JvEGjL4+8JRWs08Vv5s+mv5YKEKfnBcgZAGODn5qi+EfiD4PfGf4N2v7Nni/S5NJ8WaTYRxWVyikpNLGgIZm7KcYKj8K+5tYvbJNNZbiRWjfCMq85DcY/Wvye+I+val4K/ac0vxfpjFJYdXgNwEOA5D4YY6dM9q4MPWqV7uXc9OE4Sgkux1d98Irzwrqtzomq6YILmCTZPHFIPlYe+SD16g4rW0TwbbQgZsdx80EF2B9K9a+P2nWN54p0/WobYI13okDyRgnhhuyfcn+lcnpllCMfu/wDlp6/Suec6kN2efOPKQ6X4ehhAIslU7jyCMjitmysDEqgIeM96fHDHGh2Ljn1qe3dchO9KNSUluZtGxosZBUEf8sv8K67REHlnk/cWuS05ioUg/wDLOuq0OU+Uct/AvaiTbRzVItzPTv2PvjBb/F74RWt/NPH9vsFW2voYz8qMo+XH1XaT05z9a9UvGHkpx0P9K+M/2K/Glr4P/ac8U/DLwlcQ3ehXsjGB4mwqNEijI65OcgnjpX2ddoDEq+/pXnSSU0e/T0Z4t8ZYpZvg7riQPtke3llifONpD8HPYgjNcD8R5itxDI5JLaejOc/eO3kn1Nej/FPDfCvXQVHy284HsN1fK/8AwUd+P037OvwZk8a6Y6Nqk9glrpkMpwrSshwx6/d6474xkda3dP2mIXyPHo6r5v8AM8p+Jtw2o+LLx5HZz5h5kOefWvZP2JmvbFL6S0umiJZdxicqT83tX5lp/wAFFPiFqmoxx+IvB1jc+bIDI0Ny0LEk8nO1q/Uf/gm/qVn8R/BFlryaPd6ebiFnkjvbPAbDuPlbPz9OuBX1Uai9hzPaxzV05SaTPpXxTrkvh/wVPrcjO7RW7MoU5JbBxnPvg/hX5r/EqK51v436O9wsXmXepxs6/wAGS2SOnSvu79pr4r2PhzWNE+F1iEmlulee/jB2lUI2KOhyDuJ/CvjTx14VmT9o3QNJsD5gXWY4wSvQBiM15Kf2u56uFpNR36I+gP2g7lR46itoNyRxaVaBIxwqgwqcAduST+NcZZXLCRVDty471rfG3Wmn+KWsI0JxHdlEBfO1QAABxwB6ViWs4UhvL6NnrWE4XCcOY3IpH2EliefWpIJsSg81yXir4h6P4aCQXUxE8hG2EPjjPXP5/lWjo2sJqUUV1AxKSKSDurJaaGbptq52thchVUnd9yus8PyCSEkZ+4vWvO7e6kRFOT93+9XW+G9WeKA/uycxp/H7VV1sYSpNanxX8P7/AOKXwW12Pxh4W1a8g1KPeqpaW73DYcnflwMdfy6dq9If9ur9teKaKfQbvVZ51k3RwHTWfzRg/KVOAfXk9q/T2Pwj4UtW8228OWEbf347ONTz15Ap91pWm29uZrewhR0QlWWMAjg/0rhhNJ2PSnUfLoj8ufE//BW/x5pvgqbwF4/+BlvbX01lKLm/u7+S28xd2WkCrbsCATzzgZHJzXxn/wAFH/2ytf8A2nPEWnabf2FpZwaHZxRR2ttJnJ2454GCK/Zf9omD4baD8CvEnjPx54a0q9t9M0K7WZtQtY2+VhlSWIyMuFHBGc/Sv52fG+sza54nvdTuRGJJmy4iBwOO2Sa9GnSSlc5FV51ct/DS3s9S8WWaalH/AKPHdRtKMZyNwyK/ej4TeMotO/YjtL/4b2xlvbOCOOwtoJF5kZsH5icDAYt+Ffg58LZltdYW6RVdo5FYJJ0OCOtfqd8L/j9beLPgFYeAPDaNBFDMkly0LEbiF7EHpnj617cFbAuK6e99xyyXvtmRofi3xqfH3iLxX+0br8WkalaxqY5kzdzXDD7iBIhhcKTyT/Ot79nfxvo/xc/aX0XxJHFI2n6ddKz3Fyhjkk+X5nKH7vv6Vkaromn6wsgv4S7S/fkJyx/E1X8I+H4vBly8/hyWeCQqyiVSN2Dx1xXhxrXd7bnqQqLkSPRfiZ8RNC1vx9q2s6fKJILi8ZoXRs5GBzx2ride8a6tZwh9N8LyXjtwEjmCjPuT0+vSkTRkU8iT/P4VcTTYguQX4pOo2EsTbZHF6xq3xB1mYzweBGtZNmFzqCNjHPYfhXD6h4G+N/iDVH1aPSYbSKc/vY3uMu20bQSMew/CvbRbKhyu7PpVm0tmk25Ruc9BWM6Sn1I+vSWnKeGr8MPj5bqJLSTzBjAijkA2j8a878VfGPx14G1W90X4hQ67o8ts7CxknnxHfKrojmI9wpkQnGcKc9q+zrGxdQGVH+56Vx37SHwSX4t+DLGaxsbSTXdC1BL3Qo7+LNvPIUZHgmHAMTq2GLZxwRg80oYRN2uJY1ydrH//2Q==",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9kNfUNeqT/wA8x/M1z3iQAWrAeldFr3/H4vP/ACzH8zWB4kUG0Y+1dVSceU8Oi7zPnXxT/wAnL6V/2C5P5V6FrP8AyBY/+uQrz3xZ8v7SGmSDqLURjPow5r0XXEVdOaIZwmVX6A4rCM43Omaujju5+prmtd/5Cs31H8hXSSMVcqPWub1w51SU+4/kK9TLJp1n6HPVi+UrKgIzTgMDFIn3RUqRKygkmvcTuczi2VH++frSVd+wQN8xLc+9Tpo9oyBiX5H96huwRhK5l04ICM1rDQ7IjOX/AO+qvJofhnYN8s2cc/vB1/KmpxRTi0c8IUIzk1MLWPH3j+dXm0y0DEKWxnjmpdmhjgyP/wB9/wD1qPawQKLZ9Y+IoY0iNyM7wuBzXHavcXF1pzyPfRRkMQFYVznxO+Oery6pL4U8HqHu1fIIiDYTOMc/Q1xmu/8ACxNadXuZHjJjAdBHjn14r46pJcprQTVQ47xpeLYftC6bcXU6ugiT516V2GsfEPQ5Lia080bA5HXnrXKal8OpZ9Xj1XU45Gu4R8j7yMfhWbqHgVhduwST5jk/OeprGDuzrkWPGnjA2sTv4cdd/wDDvG7tWB4a1jV9cYS62yGZid+xNvfA/TFTz+E7mCcrGjYGOpzUtpp406TftxKPvGvTwE1SqtvsZTi5KxpyeH72Ry9tfRoh+6rYyKljg023QQXeqxCRRh/mA5rgPG918QYbua60e+KRsf3Y8sEAYFcg8Hiq8Y3WoXsrTOcyEHAJ+gr11jKSMvZSPb/7S8JRfu5dZj3Lw3z96yLn4neELO5ktPtIbynKbg/XBxXjE/hfUppmle5uMscn98ahPgiViWbzSSeSZTzRLG0vMfs2j1G4/aL8EW0725hc+W5XIbrg4rFm/aG0FpnZIXwWOOe1cP8A8K8hb5mtWJPUljV9PhxBsH+hHp6mp+tUpbEyizQf9pDxKHIis025+X9x2qifjxrhOTbf+Qqur4TmVQotUwBgfIKs/wDCFD/nyT/vmk68GEYs+xPg94V0E6lqfjFrANqMeqSQJO7sQECoQNpO3qx7d66HxrIXla7KIJNg5VAP0HFZ/wAIgF0zVgP+g3L/AOi46seOpZE3BWwPLFfPTg3EqkrTucJqV1Nc3bSTEE9M7QKyb85uSSB0Har08jtKxLd6xvEOvWOg6fqOt6kAYrGDe+T0G3NRTptM6kufRGP4t1jw5oFpPrniDxnbaVDaLukScJ+9GM4GR/Kvk740/wDBTD4V6P4jvtN8HlCIWVUmVt4Y7Fyec9818k/8FMv279Y+OHxCuvh38Orm4gsLOaNGlt24b92u7n65FfM0r3NnL5X2pnYKNzs2STgE9a66OkjSGHnN2R+gVz/wU/1m5j8gX6mIfdX7HF0+u2pLb/gpp4XjgWO/0JpZgP3kgUDcfXA4r4Js9TvhbIBOen90V1nwss9e8X6wdMXSTcIrYU7Ov5V0x95l/U6nc/UT4H/GnwR8Z9Msryw1CKKa7t0kaEkZQkZxXpz+HtLiYxGEPtONwY8+9fmH4U17xd8C/GsUuiwapZZk/eCW3zFn/ZLA8V+h37MfxJPxP8HQ3erz+fc/ZYyzHAwSoz93FE4tIzqYacErs67+xNMH/LsP++jS/YLRflWIYHTmtQ20SkqU5B55qLyIj/B+tTGSjuc06bRS+yW4/wCWQqyLeADHlipxawY+5+pp3lR/3f1qvaxJSsfQ3wQdp5fEtvKcpFcPJGp/hfaoz+gp3iKWS509ZZ33MY+SfrWN4EvbvTv2kNZ8L2M7RafLHuktFPyMSWz/ACFbvjyNLWee3t1CIhIVR0AzXE9hwjqcBOAJmA9a+fv+CjvxIu/hR+zTret6Zfta3F7H5XmpjJGMY5r32ZmMrEnvXyP/AMFmtC1bxH+ybJFpNw6G3mLS7O4zRBXZ10YNzPyMnuJ4byW4R/nnYyOxAJYt8xPP1r2P9j39iLx7+1P4hutas76SLSLFCs/HylvXNeU2Pg/xV4nv9Og0bTWdJEjVnVfvEAA/qDX6hfsG6ppXwB+BCeGrzS47S/v4JDdbVwzsZHKk/gRW8INM9CjTakfB/wAav2X/ABb8APGdz4K1Wye+WOfZb3JU/OCAwPH1x+FfTv8AwTw/Zf1cavZa/wCK9KEttcIHWGRMBQT0r0f42X3hbxudP/tzSoLu9RjmeZct1OP0x+Vex/ss/E7whYXFr4S1XR4LZbJBF9o243Y710U1aR0ODR7/APGD9kL4RfGf9nB9EbwtpzatbWCx6fMse2SHC4AypGce+a+bf2Yvg/qHwg0698PXwPm6bI1rK57tGdhP6V9hWeu+GbyySPw34g8ncg5ifrXm/jP4bavDc3l7p07D7XcSSySr/wAtSzElj9c5qqi5kc2Ig2kcn5rSfPn73NOCqR0qs0c1oxtJHO6I7G+o4oE0uPvmsJQaPPqwdkWqKgEjkDLGpx0FZtWOdxcT3Kxiit/2qpTAgTzNJR328bm8yUZPvwK0PiLLJ9uuRvP3j396hREH7U2okIPksQqcfdG9+B6Vh/E7xL/Z+p3cEsjE7yQS1L2TZUI+8YSszFixz8xrzb9qPw/4K8RfC6+8JeMRDctraFbSC5UMEK8EgH6VV8YftC3HhLW30eDTVmUIH3lQeteM/Fv4h6r8QvFZ1e7nlWKJEFtbmQ7ITtAJUdFyeTirpUHzbnVSfJK7PJ/C3wc8AeCbOHTNO8L2Ae0dwky2yhgSxPXHvXXroF5qkaXRckY+TJ6Y4/pV3QtGGuXP2GGMBy3LAdzXrnw9+DF1JZwRzxCQc8Oue5rqhQk3udVPERi9jxab4X6lqUi30jMx6oTzisvXdA8U+Ene/XVrlMnPyyEV9h+GPgO9lffbLyzjkgY5WJ4wVA9geK7XTf2Zvhv47l+y3+jae7N96N7OMgH0wRWnsXDW5ssTGWlj4t+HH7R3jPwukQu7i5mjjQBWeQnIr6g+D/7UXgvxDaWo8R6z5jGBPMgmfIRtoyuD6dK5f9qv9g/RPh5o8mueEdTw0uXFpB8qRZ52hRwAPSvl7UPD3jLwPbLdrpW0lQTIq4LH1JqZqxM5e0Vj9Bbvwp8PfGLm+0eSCP7QfMBjUD73P9a4vxb8KdUs932GV1XJ2spxkZr5r+Cv7V/ifwvMkGqwSTLEAoWVywGOO9fV3wu+PfgL4gJGLzUlZ2jBeN2yFOORg+lYzVzmqUnI4Ly2i/dOeV4NS5Pqa9O8Z+ANP15d+hadBBu53QQquffgV534k8LX/hMbryZ2/wB5jWUonNUotW1PYNR1F9N/au1K7eRti2C5XPB+eSvLvjz4rfXvGGoXdjM0caWwTbG2BkFucDvzWV8Qf2gtG8O/HW6uLO5MqS2QiLu2Tu3yf/WrkfEd3Pcx3F+ZnP2qQyDLdj2rtw2Edepy3sKrH6vHmep5Ddahf3l7PLd3s0rCZgGklLHAPTmr2gaQuv3IsvLVnJ5YjJrd0v4dy+IdUN/CMIxxtA4yK9++An7O/hzbb69qxQOzkMrKOxxXoLK5U3fmOWWMjFXsc78HPgxZaRpdtq17pVvIxLEvJApJ+Y9yK9/+F3gjT9S1JJk0y3EbdEEK4GOOmK9F8O/DXwMNFhSNItoBwAg9TXQ6X4HsLK2QaTGqxjOxkUDv7e9c81Gk9/wNKGKVWVrHl/i3wNdaL4lurtXYWxcGOEHCKNo6DoKxB4ktNMu3+yxLFIG5eNQCT9RXYftX6s3gz4SXeoFysiQt+9Bw359a+D9J/a+hs9Oitbmd5JEBDu7kknJ6msZ1VZHfRfNJn0L+1B8RY/GWm6b4c0+QxzRwKkzxnBdgOScdTXid3pVtIn2DU7WOfyRsInQN0471xmqftNWd9qEl24BLSEqTzisub9rXR4Znikto2ZWIZigJJrkrV1BLQ6Yx1L/i/wCDSFnvbCzjhErF1EUYXqc9qwtI8Mav4FczwX88JJzmKUr/ACNWZP2mbS5+c4KtyoPQCs64/aI0mdiJrWJxno6A1zSxa7DlE9g+D37UVx4fk8vWtVuLkLxi4uGfp9TXsV/rfgvx2gZr/fuAOGbNfDjfFbSPMZ47GEbmJ4jFTw+I9fi+e31y8jB5Gy5cfyNVTqKt0Mp03I6n4Ox6TdeNWktJzcq67pGmO4h88jn8K7vxW7rqrRq5ChBhQeO9VfDv7GPxF+G37RFx4k0jJ0e+0qG9l9pGBB/RVqr4ymifxHcpA3+rco3Pcda9zLXfE/I4MZU5qNjpvhsxGqouTjd0r3az8SjSoLC0Q4xJzg46mvmfwKzDXl+Y9u9fRHwyAfVYg4z06817/Jz6Hi1pcsT3/wAIX5vxFcKSFZRgduleieGSftCpk49K8z0/K2ke3jjtXSeEHfz1JY/nXlZjRvDcvA1P3rML9tD4W+LPij4El0bRlHllCPl78V+Wnjb9mP4xeHvFuoaJbeB5biO2uWRZl6OPWv2rsgHs0DDPHeuO8d+Dre9kluhAmXYn7orwafve52PYjX9k72PxR1D4Q/ES2vpbe5smgkSQh4SeUPpWFc+DvGVvcyQNZqSjlSdvoa/Y7xL8HfA3imxW1uYUE+3EpCD73evmf46fAPxL4OnurjS7dPs3nubc7B9zcdv6YoqYb2i3OinjFJ7HwL/wjPjYcC2HH+zVxPCvjLYM2a9P7tfUUVr5cSx3MK+YqgSfKPvd6hMMWT+6X/vmuWpg+W2po8RfofMv/CK+Mu1mv/fNWx4e8dgf6tvzr6TEMWP9Uv8A3zR5MX/PJf8AvmtMPQ5L6jjVv0P/2Q==",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [52,38,75,59] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [29,35,73,88] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigD9D/8AiGX/AOChwba/iz4ZKe4/4SG9P6iyIpV/4NlP+ChzEBfF3wxyemfEN8P1NlX9BP2H1FSfYP4iGOK8361UZ1ezpXsfz5H/AINlf+Chg6+MfhgP+5hvv/kGkP8AwbK/8FFB18TfDL/wprr/AORK/oMkshtwwPNQS2HQhT09aaxNVg6dPsfz7S/8Gzv/AAURiXc3iP4aH2XxLdH/ANtKib/g2n/4KHr11/4cf+FFdf8AyJX9A7aew5AP0NRnT3HQfnVfWahPs4H8/bf8G1f/AAULQZbxF8Nh/wBzHdf/ACJVK1/4NzP28b69m02y8a/C+a4tiBcW8Xim4Z4s9Nyi1yv41/QTcafmMl0Ir8yvDfxm1/4M/wDBRzV/C1p41RJvEHi7+zdSjuhkTB5xtGzopOUweMfiaar1HobUMNCsnrZo+NB/wbZ/8FCm4XXvhwT6f8JHcj9TaYpR/wAG2H/BQo/8x/4cf+FFdf8AyJX7+QaepXYQcjtUh07d/Can6zVMXTgj8AD/AMG1/wDwULH/ADMHw4/8KK6/+RKhb/g2+/b9SUQP4s+GauTja3ia5Bz9Pslf0BjTsNt2tn0praRbPIXe0jLk53GME/n1pxxNS+pPJE/Agf8ABtL/AMFEmGU174akdj/wlFwP52uaP+IaP/gor/0G/hr/AOFTP/8AI1fv8mnjGCpHpT/sDfw5pLE1eYHCJ1D2Sr02/lTxbJ0OPpirEyKSTimiNSc1ypdTfS9yvJAhXmMceoqu9oMHGOfar7gcjpUbIOuc1cVchmdJahV+YDrUMkK9FTn1xWk0YLZYfhUb2yYyOD64qkkTfQzZLRWH3eD2Ir86f2lPBXg74Nf8FOtL8Z3WjWrW2t3+m6lcGSIEIWIidjvGAd8TNkdMjnNfpJJb4GcEnNfn3/wVb0vP7RPhe/tldJU8OR4kQ8jF3MQR9CTUyk4K6O3ALnquPkz7zitYwcoo6ddtTfZo+gQVlfCfXB4x+GOgeJy6yNfaRbysyNnLGNc8/XNdG1qjfNyDTvfU5J+5NrszNa0UHgc+oFIbVc5wPyq40eTn+VMaEhucgE9xVRJbIVtkLY4qVLZAeV+vFSKijjHGOuamjjVowTnrR1BNs1JACxBpinjHvT5WG8ljTA6ngHIrLWxXNqNfJfAB6dDSFQAcUpYDnpikwd27k+9WrifcYyqTnFY3jLx34K+H2k/23438T2WlWgbAnvrhYwzYzgZ6nA6Cte+uY7O3kvbg4jRNzHGcAfSvz0/bL/anu5vFWm6hdeF74nxJpxi022uoFaPTYPMKZIwwEjEEtnaRkAE4FKc1FW7nXg8LLFTfZH2p8Ov2hvgr8XVuB8OviJp2pPZp5l3FHIUeJM43MrhWC5IGcYNfGv8AwVLntr/40eHNY068imt18OrGZYJAy7hcSkjI4zjB/GviX47+PJvDdo/jHwH4zubO+VhFLNYXToXVjtYHaRnpz/8AWrf8P+L21r4f6To8eoTXXlkzXN1cuTI0rqoYZJ6DB/Wsqkm6R6eHwUMPiLp9D9cP2Pb06p+zd4UvQcK2nssYPZVldAPwC16ZJHjjFcH+y94SuvBPwA8JeHb2MpNDosTzIf4XkHmMv4FyPwrvwG9PzrWmvcVzxMU08RNru/zK5iSMbSvNMliLAZPtwKsPjGMD8qiY9vStEtDC5EsYLbDjAHPbNSHYgAyMdqQgkcnPFeCfHz9pq0+GfjifwtcXhWSCVGMa7ThWjVgehPepdTlRvQpSrytE+ipfv9DTFZRgA0x5cc5/WmeYMEZ5qNkZvYlZlPG6kMu0YNRNPFjazYPvVbU9X0zR9Pm1XV9Rt7S1t4mknurqdY44kAyWZmICgDkknAqk1bUlKUnoin438Rt4e8N3mqeTA/2e3aQpdqWjfAJ2sByQcY/Gvxe8ZeO/F+m6jfareeJ5Lm6uScoVEoZejIMkgevbgnnoK/Rf9rL9sDw5cfD3xP4C+FM76hqyuNNuLqJA0SJLbRTNJGwyGHlTgA8cg4PANfl38QPBtyWvNYjv7kF1ZvsyHCs+en6/zrmnWg6nKz6XJ6FWjTk5Le1jnfH+m2OutDJBpJs7W8zdzxzTFhKsZYFlHoWG04wMjv0Hp37MPgK68feKvD3gGKPB1PU4IGO3IVXcbmI9ACfyry74XLqfjq1msvE1/dXF5okMVpMLpt5jQD5EAP3VA6Acda+3P+CRfwkvfEHxh1T4kanYM1l4asHjtXdOPtUw2KRn0j838xVStdQOivVUKMqrVrH6T6fCsFnHbQRLCka7UjRcKoHQAdhirKuSM5NUrWZygQj179KmaUbDhscE4JrqWrSPj7tu46WRV+Zs49aaXTIIIwfasq6fUy5a2ZpEx90N/wDXqW0uJTCv2jIfqQeo/U/zrtlh4xjdMlS1LzsFQ5OOK/O7/goxfq37VNhb20uI5bW3a6UdCylgcj12qBn0I9K+/dd1+20fSZtQvJFVIULfMCc8dK/J39qX4qf8Jx8dNa177cVVZmjgLOSV+QL169z37fhXk4ySjGx7uS0nKq59LH66y3AVinJINVp7i46xN1Hc4pskrBic4/Go/OYNnt9auzseRfUSSa9RN8rpgdW3H/CvgP45ft4eK/iFdX/hOKVodEuJ5I4bdTt82HcQu8qfmyOo6c96+1vjTez2vwd8Vz2jfvl8N3xhwCSH+zvtIxznOOlfif8AGvxjq+j+AbrXLW58qe1bfGSx5xx3+tc+IjKUoxi9z2cqhFxlOS2Pcv8AgnjqXi3xx+zn4ihs/FrSXFn4nKXlveIkwkiaCARlgwOSfLKgn+5jpVHx/wCF9PtdUmtdRitotpd7gthY48HJY9AAAc+gFfn14N+OnxP+F93LdfDrxxqOjSXAAuGsLtkWYDOA652vjJIyDgnipPH/AO0Z8aPifHJH41+Id/dLOpWeJGWJJhnPzrGFD8+ua7KmRVquIcozSizupZrTp0uVrU9o0T4sfD+3/axuL7w3q0k3hzV/JsL+73FI5JcKgnG7oivjnuu4/wAVftr+xN8NvDvwu/Z90i00axSO41TzL3U5UA/eSsxVTn0EaRj8Ce9fze+H9Qkt71PLb5hkjk8e9f0pfsn+JP8AhKv2ZPAHiN1UNe+C9Mmk2sSNzWkRbk++Rz6V3YnBQoyjJdFb1PGxmLnUpcvd3PTVkKkhSRRJdBUYnP3TmqyXIJ5b8jTBMT169+a50kpnlFGPxz4ViTK+KtN3Y+59ujz+Wc1b0/VbLU0aeyvIp1I+9DKrAfkak3qPmVQce9NXZGD5caqPQCuqVbmjawKKTPDf+CgHxhb4TfBV7xGbzLxzEmzuxBx+X1Ffk/4j8VXOpyT6i8ztM8hbgHn29elfqN/wU2+D/iH4vfs1zp4WhEmoaPfx3qRbTmWMK6suQDj7wPpxXw9+xp+w5478efFC2f4iaE8WnwzCRo2ZiDg5y2O3BGOfzryqtKU6h9Hl+JpUMLds/WyW5JYjPeo2vF6EkVUmuMuTn9ahN0DySOPerSZ4L3G+LrNdf8MajoRAIvbCWAhuh3oVx+OetfkP4B+H/hj4g/Ffwt8P/GulxXlje+LbO3vrSRQY54/OXejDGCrKGH5V+umpSRz2UkbS43IVyD90nofwr8y9F8CTaJ+2P4U1uGVjbt4vVypXA3G4bgY74P1rmqtqvTa7nt5W19XqI/Nn9obwBpHwx+P3jT4beG757jTvD/im/wBOsppFILxQ3DxqTk56KOTyfbpXLwWsLECRiSehruv2rNetvFP7TXxA8R2EIjhu/GWpyRoox8pupMVwaSbWAzjjr719dGTcF8jz170TRgtYYbhZ4kwQOlfsz/wQt/akb4nfAG/+A2uXiHUfBLq+nqchpNOmztAB7RyB146BkHpX4v2l06vgyHb7k19N/wDBJ39od/gV+234Rnl1tYNK8STPomsB3wrJOMR547TCI59AexNZ106sGjOpFyifvjBcL370kt3zlWIyKoRXsc0YkhkV0PRgeDQboMT9a8eV7nGXlvCgzvOPcUNesw+Ukf1qiJsgAHv0pDOAMZ4xVWbYK5auZxcQtBKoZHUq6sOCCOQfUYrP07QNB0WQ3Gm6XBDIwwXSPBP4/jT2nj5O/jHrUM10CmVbHHrS96+w7tH/2Q==",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9VviDFv8AG11uGQZufzretVLafDKzcmNSePasLxyS3jG5JPJm/rXRWKq2lQbu0K/+g14P2j1G7IqypnkjqahMQJJA4zVqcYH0PFQsQen41cdTJtJkIj547VIEAHJzSjPc0MGA6fSnuNa6siKBidwqIwjJL85qYgHqKbtYnmtEmRJqTKzwhDgj6Go2UKcgdatvGGPzL9OaaYk7Ci2t2S20rFZlDcKPrSeSM52/rUqxNjKjg06SMqSQOKFrqS7tlUockgUvk45UcVNsIHPQ9KVYyfuD609h31IfGQd/GNwQOk4/nXS2KgaZCCOTCufrtrmvFbn/AISqd89ZRXSWJH9nRNjgwL/KubZ6HS7aEFyp5GfpVYhhwPxq1PjPSq7dT9auK7mb5dgRtvWkb5OSuR9aB15pHOwbiOKrYW2jE+SmtkdTigkdSa8u+N/7Wvws+CCTxeItWjkuYB88EcoUg/Lgcj3/AEqm7K9xwg6krRR6e7xDl2pqMrnCsK/OL9rj/gpJ42+IHg4zfB+yuvDcumkyyTzXaO1wOm0bCNvb/Jp3/BNn9vnx1478RRaH8Rdfa7TU8mMXLZdGAPG4/hU1JShFSezOiOCnODfU/R0Iq4VRxSMgxhhnPamRTCaMOGBz6U9dv8Vap6HC7p3EMayEBhTY49mec5p6RqFG3il245NNpol6GV4oct4lmOefNX+ldRp5zpkIP/PFc/8AfIrlfETh/E0gX/nquc/hXTWjFLGEKf8Aliv8q5dmdcrW1EuJApIxxVd84LDFPuTkZJ5z2qFm+XgnOKq5ixyKxP4etI7N0PTtTVkbBKn86GYnqR+NO6bHo0YXxK8T/wDCGeBtU8V8f8S+yknwT1KqWA+nFfhh8Z/HnxM/aX+Kd7fPqdwFmuXcMGJUZxgkA/7Nftb+05q1lpHwG8VahqFrcyxR6NMHW0gMsmCuBhBy3JH0GTX4u6L4r8MfC/7OfEeqR28lwhaF5E2sw6ED8x+dNu3Q9TLYKTbf9ble4/Z++JUWjOLrVzIqjLIcndznjmoP2ar3xF8Ofie+gESQTW8qyQl1wVwev6ivQta+O/hHQtEh1vU76Wa2nOITEQcnjP8AMVmaZ/ZOufFLRPHemQOsWpWD4EvfDpg49ev51nOrOdLlkj2KlGEFeJ+zPwn16XxJ4C0vWZ2Uvc2iOwUcA88V021T04ry39k/XU1z4N6XKjjdFH5bnPUjv+NeoBhxhvpzWtJp00z5KvHkqOPYkJA6mkbOQAetRsx3r83HOeaesgIz/KtFzMw6mFrwY66Z1c5eQE8++P6V01nKzafCB1ES/wAq5jWGH9oB2yTu6D6mukt9sdnGA2SIwMqevHWuO6cjqk3KI2dzyGPX0qB5VA5b8M066kKJv9+9UzJuJJOfStVcz0LH2hF5waj+0spJySPeqtxcmJCQrN7KMmqq6rIzbDaTY7ny+P50JLoD3LmsWlprel3OlahAJIbm3eKRCoIZWUgjn61+Ov7Zfwl8E/BL4zaj4H8W6EbiC0upJNMaRVH7hnyhG7tjaPqpr9eJvEmn2qedeXQt17edxu+lfnb/AMFk/wDhXvjHW9E13RriO5vrVHgv7i2k52EgqCR78j6t7VTtfVnq5VOca3K1p/w5892vib4aXfgyK1XSIbryZWItFtwMZIHyjp2H5Gk03W7XxL400gaNYC3traFljiRcBMsBjjgdP1rzHRNVtxpa6YZUfy1wAI/nbkn5jjBr2D4KaJa+LfGejweHtEmT7QEiu23Agy7gCyj+EH05rlqWi73PoazXJaJ+mX7FTTW/wuFuxYKkwCr2A2npXtZlIxtJ4rjvhR4JsvA3gyx0a0gWNo4B5pUcs3OSTgEnnvXUCUgct+ZrrowcaSPisTPnrNlnzT0BOKd5xYYB249OKg81PWhW5wT1rdQ0Oe9jP1Zv+JiP+umOfqa34JsWUXB/1Sjj6VgeIAYdekgwAElGP5/1rXgmAso9x/5ZjHPtXE3rsdclr5C3U4AxnI7iqkjY+63X0NLPMM8c81AZgW6/QVSaRD1YXlxHBC9w7YCKSea8G+Ov7YEHwzSddGhieWIEiG55yPX5TmvafEk2zQ7pxniBun0r8uv2yPEstx8aIfCUOoxwx6jdiJ2lb7uWAwOeM1E+Z/CduX06c5tSPaPBH7Sfjf456pJqniy9k0ywXOPshYoMjjoOckCvNv2p/A2n+J7iK3tNR+0wPljJjdyCuMjHXk16npXgbwn8Kfhra6SdRiebCjyyBuHOSSSB6isKw0S38eW0ttbWhlZV+STau0HrjdzjpXlVcTKc9GfV4fDUqcdEfLWn/s/WelXH2hZPlHUOp54I6kH1re+HXxA0f4K+MoJraNJLm3lVre1dwctnJBB75x9OtdR8ZvFOlfCnwTqninxQRBHp8ZBTA3SyEfKiHpuJwBz1Irwj9jexm+Lmo6v8XfFlyWaK8aGytjJ8seVGWIIIJ7Dnj8a6aUZzoSrz2X/DGdfl51Tjuz9kfgT+0H4U+KfhSxmluLey1GSAGWxa6DEN0IyQMnOf/wBdejeYjKGUggjII6EV+XXhHx3d6Ffpd6bdNHNbsCrK3rk46196fst/F6b4q/DW2vNQuFe/s5GguSXyWC42sfw4/AV0YHGOquSR4GZ5X9Wj7WLurnqO8+gp5csfpUKOGGAQcdaa0pTLZNespJngu72IvFE6HxHM2OPMGPyFaETk2kZz/wAsx1+lcz4k1yzOsNOZxiRwwww4HT19q3LO9SXT4nR1IMSnr2xXnSfvHXJvl1FuXyp2sQQeearGVzjnp3onnJ3cgDJ5qtJM4GQf1ppaGbbZHrrNLpNzFu6wv1PHANfh5/wVZ+IVxY/HWKy0qaSCa13yrKr4IbcMHg8EY4Nftvrt08ek3Mq5OIG4/CvxP/4LH/CW40/4i2/xN0dJTbyo0F3GWJ2uXGCPbtXpYFR9pZ6l0Z2mrHK+Af8AgqV4y0/QY9C+KGgPrLW8YSO+t7sJK4GPv54J4696n17/AIK0+P8AStJOnfDLwrFpzs2TPczmQ4/4CRzyeTnoB0zXx3NJKmRtB9yKrPcSfdbI+ldiyfASqc/Ij1P7QxCp8qPUPij+0d8WPjXfvqXxD8X3F6rPuS2B2QxnPZF4/PJr3H9hL4qaTofw313Q7u+jiuIL7zkjeTBdTHkEcjjII/CvkJb4oNol/wDHqm07V9XW6WDR55hJMRHshZstnjGFPNXjMvo1cK6MVyp9vVMnC4udKspS1P0i+HHxAtvF1n/alhPuQuVLA9xn3NfWX/BP34iX+i/EebwrJd/6Pqtu2I2Y/wCsUZDenRcfj34x8D/szeF/HXwy8OxeEPHmkSW1zNbpfW0jniaKUE5AJyMNlfqpr65/ZA1pbD43eH5zIBuvQjAngghsjrXxcoPDYz2a6O36H0U7YzAS06X+7/hj9Excupyj4z2BqRZzIvLfrVISoRmnxy7WwDX0dux8Cr3PG/FXxCmhnkxNhkB4djx1/wBqr/w9+OVlEy2GoXQ+ZwpXJ/2Rnqc9+K5L4s+Hbux8SXdukEqjfjG0jjkeleU+I/C/iex1BdT025c/MDtZcEDJOMnj0ry5u0rn0lLD0qtHfU+yT4s0m7jD292rKeQVcc/r0plx4l06Jd7z4XHPIOP1r5Q0Txj490i0C3cLsm35S4HoPTPpVDxH8c/EunIyNp8jbRztUH+lHtLIxWAjezZ9N+LPiT4etLCeFtRUFoyMbTX5mf8ABUi80XWfCl159zA4ik4BZTzu4PPfNdv8Vfj18Q7q3kk0fRbtieuEwAO9fE/7VPxW1bxXFdWfiB5BOJcfZyOh/vc9efyrpwkqkqqsU8HSoK99T5yubdPvFRgeg61Ru4YN+VBHtxT5L6bBRiT9KidlkUnf+JNfUqTSOFtN6DV0tZQNrjP1/wDrVpeELtvCnirTvESWkc32K8jnMMq5D7WBxWba3boxRz9DWjBcwmQbl+m4CnNNjSsz9M/H3xE0H4m/C34ffErw8IljNjLZXGxcbSyq6D2PysME8Y963fg/qU2k+NtH1cSEJFqcDk5PQSc96+IPgN8fbvSvCFz8L9VvcwR3kN3pQeTARw4V0Az/AHXdvwPbNfX/AMJdfj1bQbfVY5OUKFWzzkc56+tfEZpRlQxTqPrr+R9HlMnPCuk+z/G5+rRuUKK0TKQRkc9qfFMuNzPyfesPwxqS6l4a03UI5FcXGnwShlOQd0at6+9X1mU8ZI+tetzpo+Ln7smf/9k=",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [38,59,53,73] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [56,42,75,63] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDyr4feHL7XtZ8+0023uBa27GRby/jtkO5lx8zumfu9Ac16lD8fNV+EHhoeGLPT9OuL6CctHaGC2vLW3lXcol3O0yysAQVAwoYZ5IOfFPBGv6HpfioX/iXT57uzS1Uvb2s6QtMCzZQuUYqDtGcDPTmq2p6z/aOpyTwwBFkkPlxIDhRngcknpxyTXdOUJPXYiKaOy8NaB48+P3j+Syt7qK61PUGkur/UNV1KG2hhRVLyTTTTOiRooHc+gAJIFfQfgL4ea18DAnjjTvDllqGiTWgt7y5svGcUA1JTjdsnhlSQRsRnjGV65HFfO+s/CrxN4R0mC88RWbWd1dRLLb2t5bzLujY8NlEbI6jIGM9cYJrOtp2h3gmNXManB5+b+IbdwJ6DFZVHGaUU9Co6bn3H8Ov2gJINKvPC/wAEdY0vwq+oxObuO0miu3cBgSk8lxII8HJ5zuPq3Q9x8G/iZ4N0C0P/AAtnRPh3aeHy6i7uvCvxMj0u4SQ7t10LOCZo5m9Uwq7snd8pFfnAmu31oSkL3FsoPKF8BvcYP8+eK6rwF8ZdT8DrLLpdhaS3EgwLq5to5HQEYOC6kj+veuaVCy0Zal5H3x+0X+034I1j4bJ4P/Zb1TxD4Vgt/wDSLjxL4p8XXdqb9WUqxiVL8LcKVbBOx1IbChCAa8I+Ay/Bz4taJqWkftJ/tP8AjubUdNheLwZoNhf/ALu7VUDCJZXMxibcOE2AYX5Sx+UeJWn7Sni+6tE8L+KdX32Mjnypk0+KWVSQxCZYhsDgABumeOOcfx940sNU1Nb/AE/w7pcBQIwmtJbh3BXpkyMME4GdoA9MdKmMXsxuWmh0fxt1fwdDr9tL4V+G1l4YkQulwml3t5Kty6tgORdyOyuNpBxgcDAwBXReE/heNU+E2o+Ptd8SeEbLNqZoV8R63apLcqoLeXBDIGaWbCn5UwwPUr0rxi/1GHV7Z7q7jiJPZ2OVJPVQTyeO+anvfiDBb+F7bwvaxy2scWTcyzX/AJkUzZyGEZQCI4wCQxzgdK6lzcvK2Yve6PS/DXwu+IdjqWlaj4Sv59MsdUJH9q6RK1w6Rjn5zDMVRsgYjLb+edvSsr4yfBm++Eml2utL8SdC1L7U5DaShmi1KHgHdLA0WIhzgq7rICR8n3iuP4M+NPxQ8OzW0Xh3xNPbzW5QQTxMWk+U/IMnPC8YA4FS/EC9utRuL3VPiNYXM2uXh8xL2/E0DIx+8+wFSxOB97cvH3TkYuEqkZ6bFxUZKzMbwN8Tde8IapHq2iRfvoZBIgaJX2uOjruU7HGeHA3DqDX0X4N/be8VeKNO+3fF74+65YagllJawaq82qy3cgDL5cP+gXlpbrGAzHdKhAycK53k/L2japqXhjUbXW7DXJba7tbhJbW/sJGikhkVtyurKcowIBDAgjAOQa9W+Mnxh1H9qDWbbxd4j0axbxRPaxx393pGk29umqOOssqQoPMkK4BY5yFxgDAG1TkkStGfPcewXLvsyViVDn6sf/ZqmilYfOSAfXFS6Nb32u602l6Pp881xdXEcVtBEm55WYBVVVGSWLHAA68V0/jD4MfFPwLILfxl4F1LTpMAlby1aIgHv8wHHP8AnBrzXV7s25TndM8W+KtKuP8ARNWSOMA/LEpzk989P0/GtPRdW07XNXE/jPVHtIlJkmvI18xiB1G04HQt3HTGRmsC7gMMpRgcjHU1HEzfeXgVPPfYLH1r8E/Dn7DHjG0Twv8AFDU9S02+EYe11+KeWS2vCRwjxxxM8LccgEjkYbqK5D4waT+yva6rdWnwz0DVXZGZY7geIHlgJBx9x7ZHHPPLHA7GvAdO8RahcxLbqBvgzHwOMKSAevpiun0v4k3mlg/bdPjkkZQAwjQAYz2Ax3rHlqJ83MytLWsRTaRd6Vc/2kbu2SziO6eaacRpGB3LN90D1PAr1DwJ+0H/AME9LawTwJ8Vfh/qN/rlzbiO11bwr8RbSVbiXnBlhbiI5wCobnBwBnj88/2rf2gPFvxH8V3egWWpTQ6TYSmL7FExjSRxjLuoOGOSQPQfU15Ro/8AaBvIrleGVwRg4rF4mMtDshh0oXP0m8U+ANWspJNYj0pLawm/eWm65Vt0ZOARh23fgTWHb27QzNGJI/u4YHd/hXjf7Pvj/VNT0WHQNVvJ/OSMGFpHJBU9vbBPHtXuPhj4h+M9B0R/DWna9OthNdRXNzp7HME8sZyjOh4bHPHTk13U6jlBNHDWp8kzctPhN8VvCnhGz8fJ4F1AaDcMBY340ttsjEggJIf9ZycBRkk4HOK9U+K37Gfxz8CeGNH+IPxE8A6nplrq0saX19f+RFBaSSMAgkKtmIHOSzqqjOM5rn/jn+1f8V/2k7PR9O8b6Z4c0rSNEtxHZ6F4Z0ZbOyHOTI0QJDvjueAOABk5+yvit+07ZftB/sQRfBD9nP4Hatqsq2Ef9qaz4t8OadZWcbou6Q2qR5Hn71ZVZEGDjLHO6idapTs2yYqOxzln/wAEPdfT4Yv4sm+NljN4gfTzdWPhrTrBLhrnrgJL9pUMGwAGUMO4z0rxvWP+CWH7ZmifDeb4o2/wUuYbWxjmkvNOjlT7aEQ8t9mJ3tkfMBEGJC9M194/sDf8FP8A4SeMfhLZ/Cr4vatp/g/xt4XtFs76119E0qwnVGKRmJzkKfLCbgVUFido2kY5f4lfFj9v34i6zrfh/wCA/iPTrrwFqF9M178TPDfh37Ugh2MDDCywh751AEfnW8TKW2r5i7X2H1iS8w5LH5H/AA31nRfDPjGDxFrNpeXEMF153k2t0IZGO4kAPtbafcDPp619f6H+yJ+1d+23pdlrvw2+DWm+DfDbqXi8QeL/ABZK8synkDJ+YjByCIQMHlq+M9C85dWj1FLZZlhcO0b/AHWA7HvX1H8C/EXxD1XTH1fRfGepJBaEytZR3kvkoe48sE5A+mK8zETcHc7IRTRX+Pv/AAS78W/Anw6+q6r8VtL8QXcQHm2ujWMrp1w212+8Ae5A/Pivl7UbRtOunspNyspwVcYINfV3ij9q34neK74aNqXjBNZ0+HPmaPJiOCQggncy7WbBAO3d+gr5+/ab8T634l1SO5XwnpWmeRgG20q0MeMgfM7Ekkn646d65KeMqKWq0LdLQ84uzJp14JopCPNGDg/U1Uu9YmWBpmdsKvJ3GsTV9buRgzRfdPTf36VznxR+IGi6V4VutSvbYWcUds5uHjkLZ6dAcDPoMjrXbHFqUWjNUXzJnifiDT5by7mvwwxLI8jc9SxzSeHdHcXUbTgAeYv5VsNAt3YNNHnEi7l47HmodBW2sZ3kuvvFyFLcgcH2968n2zUnc9ZRTjoeufCaOMz2U8cWwQyKFZcAkAkH88V68uo6jfW7p4N1m2jvY9ok+2WryRgdCOq85HUE4r5z+H3iq60/xHBeafKrBJdroMgOMkYNe/eH/E1rcQSXWmanA0KMn21C5b7MWyQSAeM456euOterl2ITm4tnm42k0lJHVadLqz20MWqXaS3GxRK8SlUL98Ak4Gfevt7/AIJs3vxV8S3Fx8KpP2mF+H0VtKs9nDqHhpr26kiO7f8AZnkZfI644yCWJIPGfEP2Z/C+hxXDx65pAuru9aOGySSJWjVy2FYtnGMnkjPA/P8AVvwT+wtG3g7wl4r8TWml3viPw04u4LG8sUNvOdhzbyErkKScBgOMA4OMHsrVY1HypXOGMUtWz5s+A/8AwT10n48/tHeJfitF8RbbxZZ6FrDwQ694ijTzzfoofM1hFiK4h+dflfapIPB+bP1Z+0D+2T8IP2A/hdYaV480JJdaNqPsOgeGdLW0gvJM/O8QbCRx7iS2CxXPIyRn45/4KMfHHwb4L+OHhf4jfssajD4Z8Zwzvp3izQLWBbW9WWORGjEyodpGSyEg4PHUc11PxG+DmnftJfAOTxB+3FN4/u/GBjnuPCMen2Z8u2h2AxxxrCDE4LEFnb5yCBnCgCVy05czNGm1qfnd8PfGHwk0f4W6ha+IPC8954inJa0nikCxRZ5IOTzg8AY9MnFWfAX7YHxE8D+CT4A0Sws7SwYtvkdQZX3dcsp7815nFEFtwkUwHvkVDJbMLfYYfm64A7UqlCM7tocZtbM1fHnjjUfFMj31/dom4qZJNxAJHGTyB3rmrvWriygFppFzcW0ccn755YT5bDHReQM5K84I4I68i6YrqNdotmJPYioLrTbm+hNrIiZJ+55ijHfueK5XhtNilVlc4vVdNt793lZ3JLHJBHr9K8r+L/wi1Xx/awWEHiJreCKTdcwlMeZ3Ujg5wR6jr3wMe0tpAtGLXTFI253nDc/hVHUNDtpITNGHkIcKyxRgnB6HkgdeOueRx1rmdKdOV0jb2qcdTwj/AIRrWtEzbyyrIOmFzggcdzxVa98MG30y9n1K/EZulzDufIjBUD8OTmvTvE3hvzFfytPmLFSVYKMjn2H9a4PxsINDtra68SyGK0huUSfzVJVkY45x2yB+ZoxEYYimuXSRph6zg9Xoc3ZvrXhQ2sUEBlhS3mjuMAYlLElHOew3fXHpXt/7HvidtP8ADN74agDyTR3ZuZpphl2JCquT/FgL1NeaaoPDuuuuj6Nq9ub+5tGaytVIJYhSEKjOXGVzgckA/WvZf+CV/wADPiF+0l8WdY+GngYW8mr22jm6v4pAoWOMTRpn5z6sMLyTuOOhpYOlKlV99WaNsVUVSjofQvwV/aD1T4QeMNA8TQaXmXSdQWeC6ZVdTh8iIxspU4yQN3BztwNoJ+8PEP8Awcb6LqcM/hj4U/Cd5NdtAy3X/CQ2c8MSnpuABXoTypIz2zXwl+0F+zx4g+Cet/8ACMah4xtdQEi4abS2ACPjlSV6EHngkZ9CMDgtHu5JpX0jV9T3ToSbd2cnz4+zZP8AGOjDnGM9GFe5GFNyueRqke1eMPi9qn7THxh1H4t/Gvxf5N/qVwGmubS2QBFAwiKFAAVAFXnnA6kirGjfFv4n+F92qeDviJqwigBhguotUbYi8fLy2APb1NeR2aPaoIobhiCeQT1rQsda1mwgNnY3sscJOSkZGM/SqcYhzmDbWC+WPNnVwPvM0aLn8gBTHYCIwIzFAc7d5xmtFLWMQYZPr+tQLZq3zIBz609kJWKiF2O0L+dOksFSXeYhz1+WrhsT5YZEwfTFT6bouqa1dfYrSFmfaWJI4AAycntSG20ZsGjRmZWMKFRnHyDiobj4fWKxStavLudCFTIxnseMcg859q6658LGx2QRXUcz7BuMang9xz16V3vhT9m/x34m0R9dfT44LREBke4nCNtI4bGc8/mPas5cqWpOreh4rqfgPw5qulw3Gk6YBIbf/SBsJ2sBk9f+BZ+lcf4o+AvgjxtaDSvFvh6O6gViVAYoVJ7gqfYV9B+G/wBnH4j2Npewx6LcJZ20gKTyRSKGiYZ43csME9M9atfDz4GW/jtrwT67a2n2OUpKjj514zkjPA9zWPLSfvItOUdLnzDF+yx8IIL6yu/+ELRzYMPIZppCQA27k7ueST+NfQHwJ1nTfhR481v4ifB/S7Hwl4i8S2iw61rNtcSIJ417bCTHHkgMdiruIyQTWxrnwXs9O12Tw7pN+1/KDgXEafuskdCR09K5XVNI/wCEZv5tNvFzJE7I4j7EfjWtlNApNGzrfh618Rf2jrGq+PrCS7gTzFEjMz3bE8qnGM5OeccZrhNZ0K3awLWJZLqP5oJI2wQw5GfY9CPeteSRZMSQZx6d6ZdWGqSoU0/TJZZjjyk8liGPTkgcfzq4waVhOXUzdGv21OA+ZD5VxCdtxDnPlt164GQRgg9xWlETt+VKxb/TtYW6j1rTrCOG7ihbz1S4BhnjycKQTuDDOR349K1NL1O0u4PON1BGu3PEwf04ymeef0q+V3sQOaRXdlVMY7UkUOG28deOK+aIv+Csv7NkeHbwL41Lj+I6dafy+105/wDgrX+zpJ18H+NlGPuppNnj9bw1NzRWtufT89u6LmKAn6A113wktdCS/mm8Q3bQiS3dIwMgFjt64IJHB46Gvjkf8Fc/2bPKWP8A4Q7x0NvRl02zB/MXlaGlf8FiP2YLa7hu9Q+H/jmTymBMY0uyYHBz3ux/Kpkm0JNH6Q/Dv9mXSPEmtQX8k0qWiyKXd4tysDz16Yx717V4q8JajeMvgfwM8l+sSiJLe1j37ySBgbc5OB9eMV+efgH/AIOLP2FdE8NjQvFfwr+LE+0LsFnommAD1GTqAOP8K9t/Ze/4Op/+CVP7O+n3NxH+zt8b5tTunPmTx6FpDgKSflDNqgIHIOMdq5JwqzlZou8IrQ+4Pib4Q8c+APD2m32q+EYU1jU3j0/R9GlbyzeSFuCYyS27lmfCkgDPfA8j+OfwJ+Mng/wJqPjP4qeB7PQ7ee8Dy2ulTx3Kxbi2xD91hhcYJA549z5b4y/4PCv+CY3xAntdT179nD4zwXumTiTS7hPDGjTNF86sfmbVVxu2heBx19q8X/bC/wCDqr9k79ojSJvCvhL4UfE+w025kU3Jv9C00SOFIYcJqDDOVB/D3rGFKsp2a0KcoOPmejaNaaB/Z2qI2qzWjSRL9lVFKszbid2Q3BwenbrmvNvEdhLJPJqE0cm4Sci4t42J46sSpJyBnrn17ivBz/wXK/YwuLYxXPw8+JaERgIE0TT2AIHvqArnvH//AAW1/Zn8ZRW6R+B/HqtFDscvpFiM4yB0vD2rugpJmLtY+hIrGWdmeD5GcEDyiUP4benTPFUpbeynk8+6hSSTg75DuOR05NfMNt/wV/8A2erRHig8I+N9rrg50qy/+Sveq0v/AAVs/ZyfG3wX42H/AHDLP/5LroTRJ9SXJimt/LYjIGB7Dmua1W2/sq+luHM7abclDcQJNjypc4Eik9ARgEewr58b/grP+zkTkeDPG3/gss//AJLqK4/4Kvfs5TqyHwd41wykEHTLPof+3um3cadj8+KKKKgQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/9k=",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiv0x/4I3f8E+f2Qf2rv2Vde+I/x2+GVvrviCy+IFzplrJPr+oWIW0WzsJQN1vcRxja0sxG5dzFgNwAGPNP2uvhf+xd4d+IOrfDv4H/ALKNvpMGjXX2afU7rxTqlxcS3EbMsow168Qj3fKAFLHYGDjcVGdStTpK8mb08PUq/CfDNFfdf7NXgz/gnNNqEXgP9pT9m4yf2mSlh4i0jxRq1vcWtxuQbJENw8Tx4SQfcQ7pNwc4ER+5vhl/wSf/AOCV3jv4TaP8cdL/AGdrTVtJ1m+mtodLsvHmqJewGGTypTLG2ogrtkDq4YoQI22CQ4B2wyhi/gkr9uv5EVqVSh8SPwuor6E/4Ko/C74OfBn9vLx18Of2f/hz/wAIl4QsRpcmj+HP7SuLz7CJtKtJ5E864mmkkJllkbJkcfNhTtAA+e6JRcJOL6GSd1cKKKKkYUUUUAFFFFABRRRQB+m//BGnUdS0L9k7Wtc8P/EDXND1CP4jXYhfTbsGMAWNg28QyBo/MGPv7dwA4IxVb9rT4c/D28+Ic3jv4eeFZ9Lt7iGNtT0s38lzGZgmJJ4pJmeRDIwLsjs5Vmba4UhF+N/2eP25vi9+zP4FvPh98P8ARNAuLK+1R7+4k1S1nkkZ2jijK5jmRduIlI4yCTzziuq1P/gp98dNZnjn1PwJ4Kl8oHajadd7T9f9K5+nTmvJxNDGVqjSS5fU9GhiaNKCvuen/C34aaV8V/iUnhvRLdCbFnkntpXCS/LIPmdNuVjLFt2MErswVZsr+i37Pi6X4K8Nw+DkvdN0G4t1KWNtfAR2dy7ujPtkB2KWklYfvAuccDHK/lb4f/4KzfH3wvbG10X4Y/D6EE5Zl0m8BY5zk4u8VbP/AAWF/aXIKnwL4F2ls7f7MveD65+15rvwNFYODa+J/MxxOI9vKz2Mj/gsH4p1/wAZ/wDBRn4jeIfFPlf2jLJpUd4YQgUvHpNnET8nyknZkkdSSe9fNFdN8Y/it4h+N3xI1L4oeKrGwtr/AFQxefBpkDRQII4UiUIrMxA2xr3POa5muhtyd2cjtfQKKKKQBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/9k=",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [44,22,77,67] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [51,57,74,72] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD6m+I3hGzurqzn8M6fHp1/88kV0IyizgEj2DYHGOvGawtHu/FlzObbUypaF8SeSPlKDqfr1r6N8HeM/scWr/BH4wfDqwlh8p5fD+rQt8wzyAWXlcE+vOOc5rzPwN4D8Saf8Qh4VuYLe6gmhcyzucMxYkKRj/PHNfP4LMniIc1SVrM87CUayfMn1OWFhNfuDDBuUnac8fzqj4x+Efh/WkguPEGjIVg3eXuy/XGeAT6CvVfGPgOXQtVjt7eyJBRRuXs5YjHX6V7T4W/ZN8P6v8P7bxdrfio2F1sy21A+3PZlOQDx6V70MXgqqu2n6n0UMXC2tz4et/2c10mZNZTwzcX2mbREbG0YI0Kf3lJI6Z713Wn/AARsYvDkkPgnxHvCpv8AsV3EwOPQkgc8gcHFeu/EHRb3QdKlTw/db7VRz9nIO36nr+dcL4SvH1aG61LT53e+s1/ehYzkjj5duMHtziuPG5nhGo8n4HBXzTkS9mvvMP4cvYaF4fvNH1zQLq3uElKeYsishcZGcZJ29a5Kb4S6/e/FK28Rf2rKbC5G57eOYiEnBDfIx4+Xnp16V0fiz4geI7nXfs+l2iLcxBWvVeAERhufm2g4JrR0D4ufD20nfS/iD5dtqEEfn2N5aSMVkjPDAgnaMDcenauKGeRm+WeiRyTzrEQV2irZ/Bfw/pOs6hq1k4Rpv9XEsRbdwB0we1YNn8CodPnbU7jTZIoGvN7ySBsDpk8ngY/Cuu8TeJrqe5F/4SM8tpsVzhBkoVBDZ9DnIweleY/E/wAb/GK+gbw14W11p7W7jKTKUAZC+VZRkemK6qmaUZUklP8AEl5liK6s9F5HW6TcaD4KvptBv7V76EktBcQSp+9BHHHUHII/AVJbeOfD+k3MhW1udLfyyjm9gYCRT1AJXB6fqK8TttC8e+HdLu7jxNqF0kqoHtQwAYnPOCAcdO/Suo/Zl1nxL8Q01nSfH+tW13FDHvh07WlMckaZb5o5sASOOOAQPXPFeTPMqXtWvafic86mIerk7erPqHwx8Tfhj4Z8BPp1yLGe/wD+WCSkqU9cE8HPH5V5xqnxJt11+TU9M0OCKKc7bq6tcOrD0JXIHT9K8Y8Qa1YeB/iha+AvFGkvcLfkC0lknbb17EHvkflXTJ4Rvvh3qMup3mr3dmLiX/iWRyQ77K8gPLRSFQdsmQCvTIU5NN5jT5LJt+Zg8RWvZSf3n0LcaD4ijSLwtLqVtJdKwkjuJDmU5GcZzyvOOlLpXhrxb4M8XDU9RZPtKQB41mjYbtpJwATk/wD16xvgr4rvdb+K2j6Vd6KlvZKDGLpkIQHec5XPrXpn7bd74N8KeKtLlsPErfb/ALOzyWhUNCF5wQMfK5wec+lfFwxEOVvmPRpUq0YsJ7ubxBYx6qNKlt2lYPCLiEhlkHTr7jOPesb4o/tPx/Bm7g0rWGR3uoc3LuxAZ1xkHnHG7pXH6H8e9SufD7W8GlG4WGY7bmL+BgoODk9RwfxqPXtQ8F/FvQ3h+JeoRyQD/j4WSMeZk+hAyOn8qdHFTmnyyYSlOPU6+y+MvgB9Pn0nwxZWUo1AASSmQSKu3OOQePvGuc8Zaf4utvClx4q+G8Fva6k12hkJgJheMA7hgHJzgd68N8eeEvE/wT8a6df+FJnjW5KSW7QEyBEJ/iHI3Cu08UfCP9oC71mw8YfDTx7Yq99aFrzRbmZg0gJDEqRlQxIHGO5rrw1fnbszyZzkt2VfiNofjv4rhvGfh+6Oj6xYWCR3rxReV9rjAG2ORf4uny98A8nmqWmeBtc1qx0WXWvCNlaCK7Eaa80e2NpDwUcvlSOcFfevUrGXxPBo1hoviCzi0HWre1RtQklYSJdAqMHI6/p+FaWmwr4j0+fSfETWd1p8T7ytmCMuOQ4GTzkD8qOSc2+bVGc5xaM3xf8ACKz+E+p2mv6L4jiOnTW3+k6VF88CzEcsDk7Y2OWxnALYGBgVzWpSWEsYvdL020mleXB8qPdg/gafrPjK70PUp9OitmvtPiICQXRJbGASAcjuav8AgTxB8M/Hmsm3udCudMmiUCGR24eUHgAAcc45NYOhXlJpGtOcdkUTAl/4akttR8PWzTvcEKktud23auOCc4zmud1T4H6j4wslsZtMj8u3kDQhYWUxDuqkdjgZBz90dK6f4japqPhe8B0rRZLoLjaxcY6njtU+ha78SvElqo8N+FS12Rza78GT6HOBj39a8eFDF/WavNeyen/AO+M6TgkzjPFPwotY9Jhn8Q+Go72a0C/ZLq7fZIu3/aPXORn6CotD+IG3xFFp+qaVd3miTOqzacYjJ5EmNvmR8cY55OeCa6Xx/q3xw8O6wyeIPhlqGnWt0PLnjlTd5MifeIfG3adwx9K4HxDN4i0rXTdeEvEaabqxh3Ro8QkimBIOzGOGJwc5xwfWvUwzrwSi2Z1KcOVySPpPXfgxdjwxPqehXohuQmYM/JMrBsbsZOPUc8iuQu/hP4316aLV/GN1JerBCq3DznJfaSS+c8cHp7Vt/GP4afFHw1rsmuWXjCC80a5lBh33qqVjwAAV5zg8ds4zXNN428W/DbULeyutFi1iyvQguMwF0jVztYgj+ID+lediMijQtOMvd/U6I4l8trmXpHw+0XTdZmvNLeaB2lMfliQmLnHzbOm7nr7Culg8BaLpV1DqSRLJcpnc7p8j9PvLnn865/VvFWkzatb31l4Y1CUwzGUSyZLMx4wTt5xgfhgdqsWDa34mu7m7e0mG0rhZYiuM56evStqco0kznlKp1MvWNWtX8v7Vpok67f3mMdPatL4SeEtY8VeKrS/0PxhLpN5Zzm4tYbtyxbbnK7cj5SpbnPpxXBfFfWbPw2I/szi72bt2Ds9PrXLeDfiNquvM7pH5IVTgb93cewr9B4a4MzTFpYitStSkk07rX5XuetQyCvir3ja3mv8AM9b/AGo/iRoz6xu0oQXL3LFruCQEqZDks6MCCq5JwvoevFeCwxfFe71lL/4ca/Pakud9tGSY1yMEYJ9M1o+OjFLDLFfRGXzQZSQccn/9dZ37O2pX0Xii702xm8qKJfMUEZwPSvrcx4RyvDYOVaLcXFXd9n5HVjchwuFwrmld/M95+FfwKvdZ8NReLPiJ4w8i/WUrLbnLGU84+XIx8uKm1zwra6NLHqHhy/zJHOF/1WPMIOdvXjNUfFur+MZvC/2lLzFrOoGPL+7tbB5z6iqo+KevXdja2FrZbpYGURgS/wCsYHgdOMmvy+VfDXcoP8z4pRqwnfoP8QWfxD8dBdN8Ha3aGdcCeynTD9eSrfTpx1Fc74n0/wCKXw2sTLoGv3FpdSf64OxfbjpjkeprtNI1TUbrUk1qynn064IEVzEku5WOckngdmx+FaXjDUvH8OkyR3UMN1ag/wChmWD7o/ixz9PypVa1GvBJu7Wx0QdVavY5rwP/AMFHfjj4E0O08JfF/wAKxarZPlTc6hZh3cDGc5+opnxn+IHwf+IV1pvxJ8AWax6gyCW4t4R5cYQAhl2jodxXn2rTWG/+JGjmLxB4RN3D08vYZNuevIxjOP0qpL8ONG02xlMXhByiw7WXz9vlrxz93tjGKqnSouCdtTSVWo48t9DR8B2Xj6/uVt9cvDewx7dxmYkkDHQEY7V3GpOdPguXuPDx8mWRjDIWIK5UDAUcZrgvEnxE8TfDqeLRL62YNJGqC5hTY2SgOTjGOtd54c8f2Gt/C8Q6y7PdxOH3y4bG3kkEnOSP5VxV5YipDkktD0KdKilqeP8AjH4p+LvDt9NmyZLZM7JCnAHofes3wv8AHbVfEAnKXTnytv3QV659fpXb/FKHwx4g8E3EsG3zlZiF2gbiFyOR396+Qfjf+0ZH4W8AXvh610ubSdRgZRHe20hDydc5cYbjj869rhnAYfFY72eIXum/sac2dp47+KOm655nnXJHmf6rpx655+lchfeLNKtrNTF4ilsmVgUkhI+ZsHg89Op/Cvhpf2sPincSSwzQTF4JSjo8zZBFaHgn4m/FT4oX76VHbai6FC5AlclcEDI596/oSeb5XhKMKfMrJWSTPs4ZhhMHre9z6K8WftLarqPjH/hCtM1J76eMrFK0BBzzj1HPFfUfhr4aapH4d8P/ABF8KQ36T6lC/wBosZIlUqyYQhtpPqCOtfEnwU/Z38UaV4xfx6uqLcbpY5nEinftzlvmxknJHXrX6XfC7XNci8DWQitiBHcYSSQnIBUE/TOK/KeLs+jjqLo0JaX6dT5vHZz9ai6cdNTK03xJ4n0bXY/B3jCweLT7uASsHiJIcDjGeAPxrL+MvhHxneaWni74MtDqSWEkbXdpBJiWHByZFAHzMB2JA4r3JtUtviJoh0PVNIhkmhhKRTtCrPydxGTzXH+DfA+qeBfFh1Xw2kaC4Zoby2YlFdTwrYAwSMnrX5bhqOMlUtUi+X0PBqxw3Jo9Ti/D/wAOPiLq2lWmo3mv3cMlxGGniKYdSTyMDvj3rsvhrefFLQvDN1YaraW+qWdrdMLT+0n2yIMnPY56Dv2rZ0fW9Z1C91A/Ok1lLvMZYgMOMY/GnzCHxnp93DfajHazQIZWgaTaq564Hr0rvwmGlLGKDTtr+RMlR9h7r1MXT/i58Qvgj4vaCPw/Zy6ZqA8kx3L/ADhuxAAI/i559MVv+NJdSstRhOoQmL7fGvmxA/wuN3HtXP3GhwveHUvF2nyvb2ZDvcSIrqM98k+1anxT1SfxbZp4i8N3E97Z29sifbY3JEOFxyc5GPavbll7pL2l7RXQ5rM828afEvxX8QYWPivw/CL5FT/SbRDsY4GMAdPlwOfSlkXxHo9pFDaasbiCeECWKa3ZSmeDg4A6V95+Af2OPhJ8P9Yl1KG0kvUd8xw3eWVfY5PI9Pwrzf8Aam074ba74x0/wToMVnaSonl3KxwmLnJAAGBnHqPzqY5VjJU3KXQ92WHglfU+W/C+k2+t6wdC1vUGhtriE4fBPlOM4bjk5OB+Fc58VP2O7DxPpkl7p2mLqEgJ8+EAHfnpnJ46GvYfGHwdn8M+I5bnQGaW3SMMjRAsNo6jnn1rG03xomnXLmO6kspExlWkY7vwP+ea86lOthqinBtMwVZQ2aPhyT/gmHfeMde1XXdE8PtarMpAjimQkzYPYvkdfpWr8CP2Y/FH7O3ji3bxT4MluCIXil+0ouHVsAjIOPf8K+tZfGBvL8eKfC2upG0c26e2jITLv04OAc4P0qs/xR1j4h+Ib7Q/GujQgxqPs8w4KqMLnjjqfrW39oYnE6Tlaxz1cbVnbY4yx+H3wZ0vTIrDw3qSw3rIqT2jMcLx8wGfQgCu60HWNc8E6SI9UDX+muQ8cUTx5HYYxz1x1rO1P4Y/BPUruL7ZJcR6mIsJNE7rubvjBAOTzzWvoXgaTQFW2muZGtlB3x3BBJHbJzxzjpWFarJxRlFQbvcbH+0MfD3iGwtPCWhxw3s5JFvqL5E45GFIOAfYntWlJ8b7iS8u2Fk0GsQlGWyuhgIQSS6noy+2STisT4pfCi7+JfhGHRND0i1F3Z36XNhqcEpSa2A+8uVI3ZOeueDW5eeCL3To9PDaWb67t4Y3vpzHuZlB5yx6cDtWlKrWlaNjL2Scjhrf4+eN5ru51jT4rIpPP5csscTZ4PQjtyepGKT4un4kRC28deB9bsAlzbFb2yuXBWY/L3B+XHPXGc8dKx7Dw/4h8FeK9Sn0bSoW0y+bNzazEsRht3Gckfgea62HwvN8Yvh/e6dGVtru3m+eIYjLq2duMYHG09PWplKaqdjSFGLnY2vCHiW21bw/NZXs6JNCF2JJPkHOc9Tg9BWV4ktfinY2Ukfw78U6clvIP9Mt3iJVozywHbdnbz061n3Hwe0/T7CCx8RSXkVw5bF7bytg9OoDY/SsDXvF+u/BbQn0y4vpL+CbJgufKHK84HTNDqVWrOTsaSo049T9Jfipo/xV8IeFpdd8C+KrrUPsIEk9lcR7nkQEEhWUDJ/CvmTxh+0tonxh1mxT4geCG027ivdljqVnbs1zGrkIVI7A4OSRXt3h39sO1T4fXGr+MbOMX0DrCBFbsEZjx8wLH+leO6vdeG/EXipvGFxpkAt7i7DJ5MePKfIO0DsBkHnnk816ONzKsppRdkz0cTjnOh7OxzXg7Xfi3ofiu8sEa0vLdZGW33z8TREDBxnOecfhWF44+EzeMtWk1ca8NJnBP2u3eE+WpPTaeM9D+ldZ4l8V6Q+qQ6bo8JiuTMyvKq4CoBkc9jnNVL7xD/aVqbG8a3Qj7zqcO31yf6VwTqtnguo2cLafs7LZ6rbx6jctP5EnmyvG/wC7+XkZx2/GtpvDttf+Kp4p9NENshVYrmCPaHXHOGOQRXoXhnxunhGwfSYRCYZIikaMgYqD1wTz6VkvBa3MUsvmnCqWTBHX0riv7PYIu5y/xB+DWjx3NlrejXt1JCkaM4jlDMHxnPC/d6/pV/QLvwxdadMl9dNLcwLjyZo/3ZPuf884rqtF8nUIobW5YBREp2g9cAcGovEWqeA7TztNOliG6hH7zylwrHrzn2rXm0uZxqPmsXPDvhNWvILzTFt4NKurPfJdRyhxHIBggKP9oEYzS6FL41tm1CO80dPsYSRftCSDa0e3kn3x2zXE6J8WfDC6lFolj4tezvPMKx23l5iQ8n07jnr1NZnxU+LnxL8LavaG28RxT6PcwMLkrAQCRnKnnoRXZCvSoRUpvQ39u0ti78QdT8IeGdOk1sGK5YSjzoYpFYqD3IHIFdV8CPCOi/FPwpL4i0iGyQrIRNGx+4ozgkA8d+ted/Crx54C8R6tqGn+LbBJhcW6sqAcMN3QV2l34r8FfDLSBZ/CZJNPubyYxtIGzsVuSRnjjtnNc1XExqTbjszSGIaa0IvFllqWm6lEupW0bWY3ZnMZ2p06tnArE8VeHPDniGxile1huURTEmzDLtPOeO/FdNFZ3XjPSm0+5vhslgcyneAVIA24z0zz+VcDZTnwsy2byzSxGfYwfkjrzwB6VnKpy07ozq4hyk1Y+wfCP7I8OieJr8a3rEV5oc7K8VnJGd7Pw24nJ6HI+leV/tkfCEeCbiHxR4LZLWyklUSWi3BQK4PL4wd3GOOM4ru9M/4KB/CTxn4lu/CPg7XbeS7ggMoSaT5WTb95ePn54xxXzd8U/j78Svi7e6r4Y8W6FaW9jHPvsLlV3YKklWA4/n2rnzy0Kcbd1+Z3VXFLQ3joVvPd/wBoNqFvGco0kUrYaQhVJP49PwrM+LGi2ei3KX1ooHmRCRkxjrjj8K5f4eajbeILttK1bWre2ltc7TI43OqjPC/XIrrPGmp2ninwcPCmnvmYTpIrdd23PGPxqJ4nbQ81ux5/oWu3HhLUodVuTNdGKdEuLGac4IbOPmwcdD2r0rxx4g8B+KbaG70q5l+3AqJbe3fy0RNpz06kHAzXn9loiaraJqyz+XLa5uIjtzjbyR178V6dH4p0T4ieFrOO90qAXdvBtE8XDZPc+v0p0Ze2bCpC1jK+Evh4eO9Yv4fCWpyR3GlL++FxOWDkHBQD1zXG/tBa74y0vVJrGHw7d2s6Oi3E8nAfleT6ccV037OuqeIfhr+1hFq62/m6dLF9nvIYj5SbX489vvZIPbvu619/6j4L8L+JtJk0/WdFtLm3uodkyvbrl1I/vda2hS+sNq9rHTg8Eqkm+b8D8nRpt3FqC6083lTDaxjAzg4A61saj4+stX8jw54ijDRvtTLycLuONx4r3X9pX4C6J8JPHMllYRSSafdKJLJpeqrgfJnvg5GeOBXkWr33wasLz+xPGukW4ubiLbBPI2WO7IVRxxzn86VTD2XLcjFYb2d9eo/U/wDhBfB8ui6npcUUshdlJgfORjpnHX/Gr3i3VodZtbK70Dw3ech/NXYOPu4/rVXRdL+H5jCWV0GtxLjaB0HHFem/Cm7+Hket3OiqPtGnXVuFstUifY9nMM5wMHdjPPIzxXNUw94ctzjSs7HiWo+PvGWgBCNPvo/Nz92Lrj8fermueIfEs2lQzW+hzeY7qzNG+5jlT1GOK6DxX4NudL1hzZahDe+Z97yT9zHryeuf0rOhu9bNlB4eWyNtdSXYCZbduGG7YHtVU40aVFRc/e7WHy+9c//Z",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD37w14H8efHXxfYeHNI8A6bqUk2oAx+I1Qxw2dqqEmWRRJuQqOoO/lCcjIUaniCDV/CUWo20njCbxBa6RO0N3deG7dwihRsIK3HzSR99qrjjPNUfFXw0t/FxtJPE2hxxvFcRy6fqd5aNIpkztATBXDZwODx15NPuPAkF7rsEUGjXk0sUohSC1RSZDu5+bb5ijgYAODyCe4/h+ddVYWm7di5uLgk1qjNtvGevaJpt7c6f4d1K0XUJ47YXup6DbQy2iuGxOjBt0Ywp5KruPH+zWlpmq2V1ffYZR/wldra3QTUre50W3WdJCNwlimKyJIm758swYDAHSuptND1Twik+qa54dbUJ4mMEGkzIIZB8u4JKhQyPnjKkDk4BGaxrDTNB1KXyfEWlKskaqrm1uJCkLOMkLkBlwTz05BrzcViaikoyjdficlaTa956m5eaNo3l2+sWOozKbe48+xvLSYy3cZHVXRwqEYHOd4GOPUJ4l0mGwuFl1jUGVbm2Wa2kmWSEzrIu4GNJFQYI5+V2z1HXil4Mv/ABda/EOy+G154Ve5sdSAFvqrSFY7ePBxLOVDO4OcbfmwSfThnibxF41tNRubfUtClFzZo1vd2VzIlvaX5Dk7opCu/LE8s54GM4ArimsRNe9Jcvpqn/Vzkm5U4czXozp7D4WX9l8P7Dxrq2raWi6oJoYNPvZ9kpt1GPM2SnLq3QNGS2GHPJxymraXFuOpxeC7WLSJLbKeRqTxoqg/K0sAnySMH7oIxgH0rCf45aDYJIbHwPFp8Nvds0yX2xJ0IO1QrKxD7uOdwZsDAyMHZ0DxHe+KTPrmg28sMI4uJjGY492Bl1woLduRke3Ss6tKrTpylyrS2i/P5nLOqp2UTX8O6Z4L06G01fUPE2g6harAds/lyLJaqD8yoXTcXJIw7Angrg457TUv2dPgX47+Fy/FqPxKun6VZTSwGW+jsVmup5DmcJIYQjj5vlXymxsIABGa85vofHunXBn0LVbK4vd6TWE8cs2xoydrKXYABsDooOd34jZ1XTNd8XyQ/wDCZyxxW+hIbzTpL24DCQtkMESQthjnsq5985Hq4PFYeFBta+nfT9OhtSk4pqSueW+KPgX4d1f7Xo/wulhgVtN8qG5Hi5beOF93+vMt1G+0dR5nlgDdlWBVaz/AH7L3hu2kk074j/EXTvFN/a6JGb26u4I4ne5DFGcTCUGYYXgBckYOGJNeoWugX6WUeqJZ2L3FxK8cl5dzKXuNv+0csOO4BwB07VX8Qad4w0rVrbQfDGiW9pBfSLHLqf2AYRQMspkYbR07c5yODkVvUxmIp0brVLW3UqnBTdmWI/C3wqGiWuhnTtK1SzhBlhge8Z5Q4AIIBbnAHJ24PHFcTrP7OvwZ8QajqXj2z+HlvGLyN1n06RBbJ5wxyEg2uuSOFJVQeckdfQG0XXbDUrSHw1d6NeWMTr9oWZI/taANwxZk3juQFOBxnBINRax4d1XT2e9m1S08wXoEtlNrUbFFIy5jg8zcODklELdTk4K16eCzevRg409nqdkIzpKyeh7l8R/hx4W0u0K+FPiNp91Ywybrqzsr5M2y7sjchZiACQB+deW+JoNF0+4xaGSQStw8Ny6DB3Dd8pGTjv1OetRrqdnY6J/xarwnNptlMgmn0WxswSZOTvCYbcfYg54zk1s2nws13xR8PX8b+Iby2sJ7SOIpod3pz2l08bHqQSOQpzyoPPJ9Pk3TxmJm50O3otFra/pte51YycHLmhG0TA8O6Fcz24sEuUt7UXIlSa8u5GUxrgCNEG7kfN1GSO9WW8Iafc3+Wtbpo5HPkf2fZRyEY+bBLKXRCc5A+9xkirOleCdatL+Oy1CT7KocPFDcqxI5AHTkDqOvat3W7/w/qmiSeCnSaK8WR0QWFwBFcEgY3fuwQRz/ABHr7Yrz4Y2M5XknpucUqcpK5xXjPQknS4urW/1+0jAxDJZQLEiBDkhZmkkZtrZwu3GTjB4q/Yf234h1mTVorJ7u1hjU6ndWl5KjS2yqFYKfldQdvPByRnHNU7bTrzwPox8RaxaSWkYZY727RBJuXswG5mbB4xnj6V1Pwb8U6J4l8VaRrnhS80uGzn02STUJ7GKG5iR+DDLLDLzbZJAZx3yCBnNdeGWOxNTkpU7q6V29E3tzWTaXnYnD5fXxlVQUkl5v9NDzbxd4N+EmpalLP/YU1yBqP2t9Oj1SQGaReUEvzDewG0fOMnGPaodF+FdlHqs1x4t8QX19aQOp03TL25eKOyiIyY+rBl6ZA49BgV6Jqnjr4kXPxI1/wzqemWvmqgSfUYFgtzcWowYSUjAyO4Y5xx17YFzZSeJb+2k1XxULeYR+RE8jFRKMgAbicJkg9gM845zRXhiHV9jN2kt7N2++yf4I58Zg54DEON1K2zWpgWU8HhuPydFtrGxs45D5URulj8xc9GjeVSQR6qeD24NXL9rLT7lL/U/Bcr3Gmxl7BILhA6Agg8qXCnrjI6fppzeAo/E3iiPwjpt6kD2Uu68vBcxWa20kLO27z3I+QHOSCM4+lJ4pttTt9Ylvv7Q0XUPNJihuE17d5yrj5opIgV2FjgM3ZfY045dUmrwvy3s9/nt1PPeMm3eSG2Vj4dneax8PjVV0aWNZ7U6nE0KrOfldEGGBwGIO1gCME7elY3ivxtq3wq14+H/HEMjWkzhg0C3LncqZQjywV3YwF3HBx14Fa2q62fCAt2g8KXsNraI0r3mn6kk5cADcSS+fvbeB045rqbXxv4A8bTr4l+Kei6pqMrYnkubW6gCsgAI3E9MAn7vB65B69dGjNVGpXjrpf4bdtXfT7jali6e5yVh4xs/ECGaI3cNr5H2lZnZEMigd23MzEemMnHOBWNqvjjwVqMVv4i0rVPKjEjRS6VeXchllCuSJ0ligZUPPRsHlsA9au+INUhu9aur/AEKzaTRYSRpqXoBE6h/kw1uirIwUnndnII5rl5E8K6JqEkeq+BowIkE8s8jo0MDZJBZQWXB5OQOMfUH2MPSgtFr+Z2U8V7X0PVf2X/2hdO+Hnxn06Xx5YPcaPJFJBPJDiaW3kbBSQKF3MAQQQDnngHGK9I/au+LHgv4l6fZeIPg54qm0i+h1B4769u7eWzMkYXGAXwcjghx+VfMWlyeF9O1C18VaN4itdU099UUytpeqRG4VVb5wRtLRMRnDbQARx3rrNB8FyfFXxt4kg8AaVqs0On26Nci9ZbiWOOQ8FWG3zGJLHGBnHUcZ7p14UMt+oRguVvmvb3k/XovI7q1WpZw3R0+jzeMb23mPiDXZr91ja4nuby9b5hgEyLK+QzEnABIyWAHJAO5JHp9rbfaZDfMUQNbyrZiQuDnJKxux6A9j74rz3xt8W/Dmu2Vv+zf4BvvFNhqsS/atO1DXtLaNHu4gdoAgkbcjbQTg9ARzWZ4Q13xPo2o6prOreLpm8W6lbxW11rOm6Lb2D6WRyyWrAea7ycffyTxkkDFeJXy2dRSq1JXm7JXt/Wxz+39nOLn8K37/ACOhfx/4B8RaHq/hLXvE13dW7W7RzW8mhySRuhP35GR8gA9O4/CtHwH4E8HaXHd614FMqXnkJbahftpgspJ7ZWU+SVZjlPlABIGOCKseJrnwroOiWWv6P8WRbatcWO3UE8QaPPfSXIGF8vbFA7xvlckuxBJxkLk15q37Q3jT4O+KtPe0Wy1LTvtESTSXVoSkiPIBIuEVguFLHfzjHIr5yphM4Vflwrtfqnvbz272NHUpKjz9He2uu57dL4qXW/CbT+GfDAmi0QmHULua5jiZUYsVOSQGIO4hcnjIHtl6podnqNhHexwi9ExkCzi1x5eMZB5Oee/H0FeTeOfF9xqvxK1TV9F1mNfD6RPqA0i6z5NvH8owqngYLIOF43AAdBXPfET9o/VdS8DXMV34tOmaXpujTLptzpacb1z5a7ztMjsz8542r0JFfY8KcAZ7xVjZ8jVOEPiqTd1feyS1vbX9TnwlOpile3u7HqutavF4Z1dfEc3iOwaWNlLRhFHmKgChWVRgjbxg+vrXKr4h8Ga5rlxpkDNplvqMgAtZQuwuQTiMkApnHQAdPxryn4d+L9Z1HR5NQ1rx3pmrucyIsdsV42kkZ3HPAz+FWvBHx2tvFPxI0/wfoa/bbX7RFcX7Qr88cQkKuIc4Of3bZ553DHFfpFLwwwOCo1ZVcTNtKTvokrLs09NO+x61fJMHRwrnN62v07eh7Hofhj4US+HruLSfB+v2d9b27yPfpqD3rakVIAj8ougVMbu7HAAA5rb17wTqDfDyO80Hx/CI3tsLoNvbMxtyG3GNzK2RwT8uMfT7tdZefBo+IdT07xtpPivyHYL5NmbI2yspUkK65JORznuOawNdsNQ0fUZNd0y5gltR5qyiNhJyOwC/xYzxjOR+FfjmGx8p4mdGpDma0Xl/nc8D2NGjB2Sd/wADG8N/FnTvCvheTw/4l/Z5sPEk8Nv5cd4moNa+ZkAAn92yqwBHIHPBz2rofAHww+BHxLgtrWHxDrWm36o4K3+lefa3UoywjWRJPLU4AGJAN3Yda5eHV9P1HVbWO5kuTaXUixRS2sTKQz52jD42j2OOldV4m1S88I2f/CEnU7q1ulcST3KWkQiVgT99Ay5OCVHXB717M8VBTipe646WSS+/v8y8M3F/CrHzda2vw++Dsl1Y2VtBohlVZTfRxSrbxRcschFcBj8p+6f4sivW/hj8RfCcvjGXW/BHx+02RtX0kW2pGz0uVY7MkZEgneNY32jvgY6ZHIrwfQ9e8L6vbDStbsLhrFZC8sRu8ecW4Id9o647DNdLo/xF1zwFA3gfSdL0kaTPdtcNGUmaWFZGJwJVm6KCMFw3qcmv2DG8BVqc1Uoz5pdU3ZJd/U+mr4OlKd49T0rX01r4TeHtO8T/AA58QXer67qWqlNI1Wzs3dmhiyJJzHhQEYfICS2STgkEVk+M/H3gyzGu+M9V+HSx+I790k1OS4uJmh8/DDzIwI9wYhuU6duxzgSfEfyNAis77xpc3skcw/dyzTSTsMlt0cn+qCZbAw4JxnbyCdawj8P+IdNWDULGLWZ71A9xHrJKrA+4Bf3hbGcHGSep4r5zEcEYttwqe8t7XVr/AJmVTLFL4N/Mp+E9QtPGHhz+0/Ct4hu45Ha7sruVFLZP3kAJIB9yOmMmty11bxJqmmjw9Pf2ehQQFnLo5cybgeQQCq47tkfUVJd+C/B3hrQbrUPANkn2a2jV72ew0Nnggyc9dzuwTLZ/dkkDgEmlsPEP7PnjLwtfW3wH+KvxM1LW7eyaC9v9G+HmdMjYkZZxqH2cSIGB4DgkDO0ivIXCssF/DTUfy/r8TnllNKnWhGq3y9bI8J/bK+MOrfDn4E3/AIY8C+CG8ReNr+6h+0a1oqLMi6akiz7XmB3kllUHag246k18223x1m1j4YlfiTphtLbyPMltry424XaRt5I9eD1JzX0b4j8L/tJ+FfDM3hnQPEVhJdXl8v8Aa0lnocVjcXNozAtH5gLmBO58o7sk4JyQfCrD/gn58Y/iNfz6X8VvEVk2nSO7BLKTcu8NlCSFwU5PAAOccYr9H4SzTC8P5ZOFRq6d9tW33Ko1aWGc4L4U9DwD4feM/jrqs954I+B8ty+nzTSmKS6Zn+ypLu2qhJ2kbW7k7e3ofqP/AIJ9fs/fEH4ZeLrzx94u8RXWp61LakINQlZo4jnIG1emS7dMd/w7LwL+wJ4Q+E2mW+qaf4n23cMiqThd7D2UEHGB16dutfUn7M/wRm+IXhy6uPCviCS71+wEsUv+rthtICjfIQftPGRtBXaCeeDn5zijPMTicvqWqcsJaPpe9/6scuLqYvENQppyvsl8z2z4b+NIfB3h7xP4W+Knw8uFi+yW8tjJZ3QdzG/yZBjbCmNiCSD8obB56+d+PbTw/F4wOn6vpt1ZXb6ckkM0aFJJFkUMpB4L9chiM8cniuS0v4jeJNBt9X8CeNfEn9n6jpMc9lcwB2mSN0I2xhlP3futj5lIA+U4rEns5NVSHW9a1+5N5OBPFc/aXYkYG1tzc8Agc9hX5BLLW4RnFWcbtOOl7u+r6+XY8lVXCTpT0l18j0TRdI0nSdQjn13WdWmjuAJ/OSYsVA4xIScq2B1BqP4gePPCOr31rP4u1mS0hNqUtRpdgDGz9fRSQScZJJ+X3OOe0bx4wspdH1Jo72UqUhkD4Plj1IGM5z+FYH/Ce6RaeIY/B/iTQ7WdHQFZLx+YsYYMmOCQCxwfT8a7cPh6sGoVYpt7vv6nSnD4os8SXTtItvLSdvOcYLhCyhT6ZPX8h9a1LPWr2yV7DQLmezt7lEW7iiuG2zhScBx/EvP3TkVlWOjalqclrLa2jTG7nEcKoy5c5weM8fU4HvV7U9HXSZzZS3URkRf3iRuH2HupIOMj2r+03hqcp+Z9HPmT0LlnLdy6otuLmUggfLbptY/N0G0fp+lb+oeL9Qh0+fRfCoudGs2mUzJFdkSsQM43AhiMnPGPQj05CxtSjgqDhjwQKvtp90m6PzUO7GDnB/Lp+tJ5XTlNS/r8zH6xUgrGppPxD1vTri6uINRmt1kt3SKOAly5bht8kjM5yCwLZJwccim2OtXUtrBGkIEtpP51s88+4Qn1QHABzk98k9Kzbe1+z5jbDEehp0wkgvEvbSGN9jAvE7Ebse+ePyrlxGS02+ZK/l/w7FHFzT1Z23gmDRrxbi08RXk91DLdCWSRJFiZYz2x5ZJYkcYY8/wtW54D8LeDrG7k0/TPF9zBFFIwSa8u7USjj7oBdH29c/JtB5yOlcHJqrT3IWygjhiZlISW48wDgAhiFU4zzx0HfvWjaeKX8N6wry6fpd49tMht5beBZI0dew3h1k553cg+9eFiuGcFWV5U9X2LlVp1fi2O28Ta7eW72/hTXrKOa1xi2aWSMMApJbcwARgecHcSCRxxg9p+zz8TPGnww8Qap4Y+GWseVp86CdbibSLRmU4wxErR7uOB84VR2DcmvC5/G3iLxNqsXmvDPFAW8qzkuxGke5TnazHC9AcY5Pes7UvH/iHSNXW4vtMljt3JCnTLF52hwvXdknJyATwPavKxfBOCxNFQu42s+/3fkJqF06btY63x3pvibU/iDqWj+MtUbUprmJrxr59ZtrxpWZidxeFlCSDnOQNvQ5NYy6nDommP4dgia5nVRNpyXcwdpFfnah5I5OcDPUe1aEXjXUDpkeq+JNMn1FizyBZxJM/lqu7cQM7cg8EqSD07Vs6T8Wra0gsb3Q7iz0sWgDT2bzyOZJCnMnytsVsk4IG5eVJHIrxMX4fR9s5YeXu9FtbTY82tl9OdZzvq/wCu5z3h/SfiJqOhT3mveC10xprd2S3W8KT+SGCux3su0HcBnCn2FS6j4Mv7u4s9Zj026RoE/dyTL5jAYGMHAroL34m+HtWhlsLrxjpST7SINRa2JlfB43eYXAjPPTHPPqKoNosmoaOLKwv/AC764BaLzr9wsyjd8yAgIoU4yN3ODgcEV8zi+FcXg53lT0762/Mp5XGCXLr/AF6niunz3CyoI5WypyVVjx+FbNucTLeNuL8E7vXOayrVYYL7zk4XG0Z6nNaccy7DLIrYB2qoHWv6SUNbnoTZp2MxursQgKvmtjceACT1z2rUvtPNlctZRXcVyUODNHuKk+xIB46dO3FZNisNxGHiZkcD1xj3q6bqSLa4feR1wck1vGneV2zklK5MbdIg0jQscKS21eTgcCmQWtrO32sO6o/RZSBjHH4dKsQyXF6GHleWgxkupBqW2U20UVs9pFJGz/6w4PqeR/WtXFGelx+n2OlxxPNMfNJYhVQDao9TwSfoAPrzUiaGqWfmKGdP+WcgHf8ALrU5jso4ma2iIO0/KFGM/QVYsbWW8s/s09w8aMeAshUD/DrSdNbkSnc5+z0gW2ZUiUHPJZcHv7VasrK6uIVuZCWjUkfJkjPv+lax0qztGWJPNaM5/wBY+4/iTT7WZIbGXTLaJQsq4JZBlTnOVPY8dawqUKclawRk76MxtRlvtWd7nUrydwkQijaWY+YFA4UZOcDtjgVjRtFZtPPFBdiSND9mkjOMSBhhieSeM++cc10lxYm0Jmn5DIGRZOrAjIwO+R09c1UNvE1o8kdr8jSEujLzuI59wPoa5lhacF7qNY1GnqYOs+KL7xXvXXbZJpWkzJIlqqOxAxyVAJ+vX1rT0TxLHp+n2+nKmqskW7JhvAu4HouAm4492PU9O9M2YS6YWBkgkYk+YiAlee2abZW17BdC3t8krnBK7hyM+lYrBwkveVzsjVe5zyWiRwRRxHcQu8sR0HUHn2NXLW1vY4ReyYaJm2rll64z0znp3xivm+P/AIKnfsHmRRL8cwFXof8AhF9U6d/+XWrsH/BVv9gSO9WVvjiohRRmNfC2qneQMd7buefTtXoLSyREnG59JwiOzjBt2/eTAbgRnGfrWxaaDrNtDHfQ24kaSMOhhlRyoOR8yqSUPXg4NfLtv/wVh/YCe5NxN8e/LUE7E/4RTVOOeOlrV+x/4K5/sAfbWe5/aC2RkAY/4RTVTkYx2tP096q7XUxaifS1tLKUMcq4X+Pn8qvW+kOQ0m/d5ak5wBjvgV85H/grt/wTxsrZbu1/agieSSMuYF8F6wWjIJARt1nt3Hg8Erg8sDxTLT/gsF/wTz3hJv2jWRDww/4RTVyB+H2SumEodWYOEkz6Tht5rpWtY3GMEuGPAHQnHc1o6frGs6UG0fSNQmgSaHZM0MhTevTBA6jgcGvlm9/4K8f8E6XPlxftEluflkHhPV1Kn1/49Kntf+CwX/BOi2jRV/aJ3tkCRpfCWsHPq3FoP605Tg+pPIz6fu5bXTYoxPOTK2fM8zge3OT2PtSzwpbyC8KrtZQWjVcbTgDGfrXzWv8AwV2/4Jp3t19kk/abihXJ23k3g7W9oHXJVbNjzjHQ9akH/BZT/gnVc2iw3/7SoZihWUjwZq43DoOBZ8cfn1rGUlcag9z6Jn0eGdYphBlEI2LngEd6x7TVri5nuLG60poBFJgndkMckcHbjoP/ANfWvCG/4LDf8E3hmBP2jf3bDGf+EQ1jj/yUpkf/AAWD/wCCbSziN/2hSYwuNw8J6wDnPX/j09Ki6NYxVtT6CeCzkVXFvt/hI3cn3yKgFjPHIJ/MC9cfIOe1eC3v/BXz/gm7JJbyWX7TRUw5AE3g3VmUAnP/AD5ev161Vvf+Cvv/AAToVWNr+0WrMcZK+EtYwfztBVLka1N0on//2Q==",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [29,36,60,64] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [53,36,79,58] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDxjVvBuimcS6le4luoRHBEOMkKSSfbn2/lWhp/w8+IPhPU9O04eHX36rb+fZx+YmJYyoJx82M4OCucqcggEEV2Hgvwt8P/ABRePp3xA8NaVqumNMqQQ6zFvg+0R4IJX+IhuOB3yK+l/hP8KdJWeAfDb4YSWuiwXDmSEWapbRMGK4iVlAJxkM+35uw2soXxaVONR2bOilKDp2nqzzH4G/ArxW9y13r9idOmiCv9mMg3kbsk4/iX6ccjntX0T4I8GWtlZtLfW08cdzGryRSQKzBjwFYqQrAgHJyegGDuArpfD3w70Dw/HY2cvhbSoIzsVJ5o41mMoUqoIKDe+1cZHJ7DFdzfaXp9hbrixRnR8osKpkZwpIyQAcZ7iu6nTjSjZEON32PKDqOkW3ih9J0vWnnuII5GvYr1WLgD5tyMuFMfIH8fOBw6tW3FFPeyC8dsxkgoGXlQOCvIB6g12V1ZvNKkmwBSo8vbCcAAc5PTOSfz+teH/tvftE+FP2Wfhvo3jTxH4zg0wax8QdC0kSXkaMgt5r+AXqjK9rJbuTJORtJB4ADlDm2HB2R6G0wS1fzLMxIPvF2GfyUkY/Gn6RcaW25ISjELz8p7/hXj/wCy98ffAfx0+Lfxo8BeDvitbeJk8MeLNMm0r7FOJbePSrvQ7Ap5Ug+R/wDTYNR3BCdrfewTivWZdOexkUEgDdgYI/pWEoyi7NGitJaGgJ7ZJNsi7M9sUrPGDvVPkxwaJszkJ5IbC4HFVrWN4Z5PMRlCtwOxqRWI7o7W+ZQwOefSq0kkfIK8Dmn6g8KyFlkYAZyD/nmqAvoTLsMgxt6e9BW6EntLO9VlMCsx+9uX1rF1bwfFd2xha2gdVOTHLGGU9MjDAjBxzxzW6l2pVmV1wR075pv9oJGjNIApHRS2M0Eux8m/Cf4Na1oviiHTLXQ11SfSi0skus6Wk1sj/KjykOA20YBLJuYbDt/vV9h/DG28ZaXpU3/CSafb2MG4OIbKUXAvgm5kmjcylERhtIPUngjADVb+Huh65ZeHLSLVpo5JlgQXIjfKxttG5QSis3QEswGSTgBQoHWabpWrXGlSxyanGrzArDqMsKSiCQZ2P5LHacNjjIyQOnWtKNONPfcaUYvQpwXN3Y6jJND5pgvdixzR/vJEO7hgrKyqpU9cDAJ5Ha0bOaLIh1i7hVpGd1kjikDMXLkncCw6kYDYAPHQY1LjTVjuY5vMDqsR8tsAkE4ByQAOgGDju3asbUQipLHLeKTtbbHO4UN7fT863bsrg43ZM2ozCD99A3yE5kQqQwzgHscng4xgdMmvzP8A+DjDw3onjLwh8Lw/xCltLux1DVZV8MxrIVvo2jts3bkfIrQlQi7huIupNnCuK/R+1tGurKNNSKRyPGHkEUu5SepVScFgCfvYGcDoTivzG/4LJfEP4ZfFz4mW/wAHNZ8T3Hh618EaJqE8us29p9ta8vpbbz4rOGGInGXgt4S0pjQNcMWZFhLV2ZfB1cQrK5y4map0mz59/wCCJmv+Cvgp+3TpV94u1nUo18S6Fc6Hp0dhatKJLy4nt/KSbYCRCfLclsAIyozFVVjX7T3Frpeqzm7gkbyUuQm6SQAMcAkDvntjrwa/HH/gjHpHw5139rnRfGPifSPED23h2c6fpmrX0Vstp/bV9Zag1vDKA3yhrS0vnTDOzS7VAAQsf2VvbvRLKyk0+809JLeVyGjMSlTu3FiR3BycjnOeQavNoQjiV6CwU3KjdjpbLRtbtfsdrdyxyBguYm9CDg/yI44PbrTbOPSbiMQw3e4onO7IZu2cdce/4VUsrC002ze4isAxJO2K0QAPyNp7Accf14pmuPJag+Vp87AMvmGGQcEcgHB5H6V5jimdugmuaPLJdRxzac7x7SVuIphsT2YEhsn2BHvWReaIkc2FiG4DOA56fjWrFqd/c2sgaN42UYUSrgg4/HNZ8NxrElvM15vhAZVjjlkUsxOTkAMT/hj3pOKYWMm+0i4kZ1xsO0kFXx2pINPMOntNfPhc5Zt3QDvWtMz2ahr5Gbcg5HQE54+vH6iqEMkUEZjgnYgZ4L8VNop2GotnpmkvJDJKtvaSJCoZ2uZ4nZnOctyV6EnOcnP4Vcm8QaRd362cuis9vHj7XfTQSIFBxtVCybXOSARuGMng84w9ebUWgSwF9f2c0Fyql47oRrJhwRlQ6txx0kAIBBQgkGdtS06wjKyXC+bJMFUSpIwEhIK4O0qMfewCCApbAAzWjSdmZrc0NNvbq4mKTz2AgiUjyoiQ0TfKVHU5G05wQOq9jTZIILZPtEARvnZneNANzdSTgYz/APr6kk5c6X0lxFMNfyg3tdb14cEgqEIxgL05zkdeTmqkyS31zAANQ8sIrNMJEjRmGWBZM7uSPTHOOKi/NB3NlDS7OK/az+MKfBb4L6z8R7C9toNSgEMGmNdTIv76SVVBRWQmVlBaTZnBEbE8AmvyU8b+M/h1r9pfw2mqW9zqc+ot9vuZnE03mEnzTKzZYuSecnOSTXs3/BfX9rbxJ4P8S+HP2fPCOrmKW3s/7a1EIUYF5C8MAIzkMgSZueGEy+gJ/L/4b+N/FVhqc9vDfu9xqF2ZZpZSTvc5JJIPUnP519Lk0oYfDqTWsvyPBxylXq2T0R9SeEdM8Bx/HzwFBp3xA1DwlDN4usItV1jStSFo8VtLJ5Es8cxBEE8cMkpjmI/dsc8ZJr9w/C2n6hpPh6z0u91K61aWz0+OKbU7kxGW6KIB58nlJFHvfG5hHGiZJ2qowK/nh+Fnxiufh/8Ate/D/wAa+MYJ5rLwr4w0fU7q1tgCzCCeKZ/LDMoLkK23cQMnnjNf0RRWN2fPl03WCI7yPABAlQjGNuGBUA57YOB1rjziSqV00rHZgIOFKzdyeG403V4JMzPA5UhLVkMLOu3PyhgGPBzlabb6fZwlY5bZSi/wy5bIx7nn6nP9aLpfs9t9mjvlimeIgXDLzhcDPXoAQOvGahsjfu7yXc8JAkIiEUpcMnO0kkDBxjPX615N7ana1qTXLWcsc1xaNFC6qpkjZe+MYxkY4GAenFZd/wCVe20Wqy6e0UsbHy1ldWK54P3SRyB2P9ammlFuXWSYyxyMPlA79/5/l+VVJZbdh5cAcK38LSlgD7Anj8P60lqjVRaaKV1rrXpNtJEjmM8jOD/OmNNHLbkCJlCnowIx+dMv4jDIse6N8ceZEoGenUjr+NPmxbwNuj38ZO4kA+3HNY9bs1slsdpeaJDoTnU9ZvJLWIuipaStbQqJS2M5KjIAJ5LFsLwM4qquuQ2tymnaOhuvNnaZp727O9PlAQ8IAcJwNoXPJOSxJj1DXWZfMtrNLyV5YowtumxcvKimR1yzrGN2SRuxjPODixqM+pR3y6TBteC0somk22oVm5IJGGC44Y7c5GDknjLnKTemxz8juMebT7i6TQ3voWk+z7hbQ3IjkRWL/dAwwGEOCAPun0OJWlukgFrFqV1aqGDeWUBL8YC75ELOB6hhk8nPFZmrar4dsnlluHtXvAhW1jnZFM2BnG0ljty3Pyk98EVTXxVod0P7JEEduojWXyYkDovVAC7KBs5zhMEFVzxyYcnaxbtHQ/Kv/g4j/Zb8Z6T8StD/AGvvD9ut14fvdLttD1+RZPntr9GmaKR1z9ySIhQQMK0ODguoP5raf4jvoZsoFQjA+UkEdD69elf0Lftr/BuX9rP9nDxf+z3qFrDYS6rp6vo2ppc741uYJVltiV2ggGSJA3+yzAE9a/GD4/Wfgjxv+wx8Gfix4YmMmq+HZtS8JeIJ7jzBLLieS+tU5+VkSK4bawwQkiIf9XtX2cDi2qaicdWinK6OZ8cfB34h3/w88C/Gm80PU4dC8SXs2lWutppdy9uksU2wZmVcGR2M+EXLEQNtyVYL/RLp+lz/AA+8Maf4Z0y9luW02yjh/f3ErtMqpt3F5GZmJ5bLEsSOTmvjL9glPGPhz9lD4d+EdA8TT2unr4XtL2O0tbrarG63XUm7YMHMkrkr2JOeRX1R4TvdQsYvtusXk87ywqrGa4aUIFzwoYkKOTwMVy4vEupVd+h0UqLhA7LTtaZNES+1iLz3RdyxoqmVz2CgkAscdOKksrqa7t4tY+xXFmtygY2t2EEsWRna4RmUEY6Ake9UvDrae0iNpZecuPLSckHIGCR1HHOfwPtU17cQ2yz3ep6ulkY5NggluEcYyACcL3zxwD+eK529CtRdVmsIrxEhuPnaMnaDjp3NYeoCe4ykUbocAiWDg/Toa1r67tpowjOdjKc4yOtVZLhIbbc8G1yOEDbgvPTOBnjvgf0rNSaLg1cz7RtTliYXETALnDbevJ/zxUSXd4UMXkSMCMEGTseK0PPma3jkS2IBcna7AZAPqM4z+P07VkX0t4blrqwXbCQCQTnHb61JrY6zSIfD2n3kuqWsTCSUssrXMzxkndksVJ+Y5BO4889cdFbU7yy0TyvtbSRMxMbiZ5XCjncWdjkMBkjpljtKjGORu9CbWtbmubrWryyZSBbC2V5XkjwSFAx8mWJBPTGR0qXVvEgsIrrTbXwpq9zd2gjEZt4IoYZ/3aMHUs4Gw5C7cl8q2QQQzK6sS9C9qniG4j0ua5M+AkTNmNAHYgH7qsSOfQkjpWDq3jdpIZdRspXmFpE7CDZ5IAxnbn5SpDHGT35z3Ny51caj4bm1TRmubO4nt1YM0KO4J/gXkAnjGQcDg+lcrf3UlrKtrI12ssSzhBd2sSPO27cGJEYOVA2jHYnduPNY3uzLS+hQ134iNJZf2vcJK6Oi7YhJkKM42nJ5IOeTyetfi9o/wZ+Id/4nuf2I9PtJ4NPvPiBbyWF1qFpIZI1t4rqDzkGQrKYH3vtB3eUh3ADNfsPq8i+KJpItRkETRhR5X2jIJBIz90ANwcjHGRyetfnl4m1y6/4e/RaHq8z3EGl3yppaWfD8aeXVH4G4h3bjJz8oPOVruwjabFVipJH6C/Df4caT8NdE07wv4cGLbTLKK0tIQxcxRRoFRAx5wFGB9a9A0iWa5dmmRo2EeN8nHGemf1ridA1O9tY3FjIzlV3RoFxuO4Z5BzntjGOtddobatr9jMb6OS1UgDiZRvyDlcAZx069a5/tM6+RKOh1fg7UXhuAtrclkClpPLl+4w4OcdD0Prj2zjWml+13Ly3DGVuf9a3AU88fkK5fw9ZWFnAzaNNNKqFd0aheMfdBJP8Ah+NbTkvGQ0eRJjez9e3HH0qJPQzatqXdXOnWdpHd2lxbhNyidQjFkB4BCgfMcnoKqPDAkK3aSM4dRuy7KVJ5xtPAPTpVXTpLC5snFiSWkfzFVASSmCV654JHXvjg0S3cVxLIfL2FFRghyGIYHHGfY1Sfu3IabROHuLy2Etq4cPlEVHBxg7T1IHBFRazbSeQbeVQDxgqSMcjt/jU5msxidmJkRchemD2479KoS3fmKyOGIZRuKgZyDkcdao2jGSWok9r4hsbOKO5CXUzLtllKNGmwAnB4bGemKrS3Vvf293o0eiie7VAHFregMAMDloxu7qNuCPl/ATjVtG1a4k0IymWVwwXy7iRQYiMbmx8qkZxjPJzirN94f868h+xxQQJBCwR0hT9221VC4GMAgAnGCdoyay5uZGSdzA0i01fUxNPbSriVjuIJcdSOoHLDkZ4H+yCTUVxaLNctLd3N2ymMrbQiZSAVyScHDnII5yR8o4HzEz3WlRaRKbDS72cszhpYlvn8qNkU4xHk7AxY5HTn0AFTtPd3jyWTxJHBIpMxCkeYAQdoJ5HTPTnGD1pJalcjeqOQ1X4bWus6skksqmNsyeUysOSD1wetfJ3jf/gkv4guP2qIP2h4/ijfwhtbj1FrEW3lmKSNw5VZlctg7eDjI6c5r7iGnLdPvik3sW2bim8qeuCR/wDW9adFZ6Po2mveavqEVrBbTCSWSd1RBnCjcTwOSAPfFa05zg9GW6akjkfC3h660+JLhNISRH4AaRt4JwcYwST7dM8V0Nu9zGqS28eyPGQsto3zY6gZxyDkYNbHjCCxigWNJ2ZcqBITuDHcTt4HfpWfd6RdW1oyQybHgVmeCOILgjnAIIH4/nUauWpTuW9Eu/El9p0dtfyoLhQFaW3szGkrE9SpLbe3GWqxf6rZxX8lpZXgmlYgrBCwdoVIyMrnvj9apae2qwpHqMkBkYKomwzMAvTPO0Z5J59B0q5cxS3EgubiVlKx43wPxyQQMnnHpxnmj3loLc0LLVLF4fN+ztCx4LEZ4AySSOB+dZut6RHFqcmrRTl5thjjdXbCoWB27c4PQc4zxU9u9vBCsTSoPLQYAO3K+h9enNTSWUMdyLm6cKipgxqAAOv1qo3sTbldzEuWmkhLxXBjkkX5pJJmPIyBgdFGMcYzkZz2DrOC7iiF5PMSAgXBJyxHBI/E5xTNQntkjZfMDJKcKqSj5fmDDHHt6VHaXMqybrm68yRPmSRgPmyOuOnSjW5tZs6K3h05xPPAskkpQiSSRRgbVJ5x0xhiAPfjJrLtYPEGqMmsX5W0Yp8pSQSICRgfKD8wIOd2QcYBA5FSSzy21xHJ9pOYgsTkwRo5TeSVO1QW685PAUYxzm3p+sWR1Q2d2biKNYg0KyIoBYdVONwxuzgg5IGehwI0MOViXH2CBESS43FslsoxDY9ATx161A1lIuY4kR0lTgkEkZPUcZHH4c1f1HEl1HeQXRt0EbPLuj3q4BAHIZQvAJ5zwRwKo/btQvZvNF091EXEUTuoAVSSflCgcc9fcZzTNo7DdOe30KSNNYlWAyMZPLGGLAggZAz6dfaqy3Gl3d1JeaZI6yIFZhOrElt2AMHjgt06cnitfV9EvEQNd/cjUKs1vKqsncEHqefqDnHTiqIuIHkl064jliYnbGyqu7OD0znJxzzxxQMrRXUV9A+lzTy5ljZQFBG7PGAx4B7+oxn3qODTrrT5X0sy3JRoNpa6nDuSevzDHGCO2anuxLaMVaMBIgXikkbAzjvxx3qh9sGqXKTm7lWSBvMAtHGJB8v3yVOQDwQCOvXpVLcnTY04J5ZhFp7I8cmSjhBncDwGweCOvOOxNWpWtrKZ45kJQ/KVYkgcdT6ADPPbr2zS211/aDtJ5isyMxQx84QHvz2zgnpn06Uk2mQ30rRKrNIxDKYyAWOOevtnv2puzJfN0KBu1sxDPe2nkOeG2TtJtweBkgZ69cd/bJt3d+kty5ZwUCYKc9aztUula6jsYbtJRktcQzRsTn1DdOMZwCfTBPFTmGKa0jtDIWaeYr5h52qAW6/VcfjT2G21AzpxC8klsYABFt2Oo5PHeqAvMwbw23ICqGHPoQDz2xV54L2yu5Psys7ZJCgH5ueB1/Co7y0TXrVpX228vXysr25HQ98UmaH/2Q==",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigD7+1n9lD9jrTtf1Pwm3wnhge01G9zqv/CQ3ssMNtDcLEisftSxpIwkQt5jqEJUE8kr2/h39gH9hLxLai/8P+C7rUraSzU6bdwanfrHqEqukLgFpwF3vuaMA/MGHTBUZNj8J/Geo2mrzatczW1yJZrgiSORLm4mlfzFtnt2GY2cQxzI/CEsq7uCE7L9nn4fzeGr3VvCXj7xebaC6sIJ4baEjzPKOoxtEMBmKqX8pmIG0tncysjBeK8uW7lsex7Km9eVHM6B/wAE4/2Tr3WP7NtPB6asJdMuJ7eW3167H73cxTfEkzMqCMRuPmOQ+MyZBGbqn7EP7H+m6lNZr8KY3jXSluRLNrWqRiImQ5LAyZGA0SZ6ck4PBPsvwM8XXvwz1i88Paloq3smqIovUaNlaRJZkQKjOpbYsRPJIG1SGfNeseEPhLqHxFtPtGs+Glgsr8RXWmx20TTMyyI24cAFABFuVui7ioLblFYKvJJ63CVCm1sl8jwjw9/wS+/ZI1qzF7F8FLeUXUrPbbPE+oqiRsflBZrkbcdAWxvHIr6o/ZV/4IE/sGeItKl8SfHP9mO0lt54EOl21v441xJDyd7TqtzH5TAgALk5BJIHBP0R8Bvg54d06BbyDRIITK5nkjjtmULcMijzfm4dtqo4LKcEKMDaRX0PLPIbRbWKbaqqNqI3AGfXr/8Aqoh7WPvOT+8xlRgtj5Jm/wCCAv8AwR7fCw/siqjA4YH4g6+f/b+opv8AggB/wSHEeY/2TU3DqB4/1/n/AMn6+rLnVhuCROcgcjHT8arLr4vW+ygkFHBUopJ9xjv/AE61t7Rtbk+yhbY+TL7/AIIE/wDBJeEgR/smMvqT4614j/0urJk/4IN/8EpUk2/8MqAj28c67z/5PV9prcTOvllGbk43LisjU5CuEKAjdyRxUSnPowjTjfVHxtc/8EI/+CWCbjH+y3gAcf8AFb65kf8Ak7VG3/4Ij/8ABKrS5yNY/ZG8+Mjt4511SPpi+r7Ilux/dJyOvpWPrOw58xTtxniodSp/My/ZQ7Hw7+2N/wAEZf8Agl74F/ZC+Jvxa+EnwBXT9c8N/DrW9W0uZfGWsTG3ubawmmikMct46na6qcMCpwBgjOfwXr+lH9u8/Zv2JvjI0KhvM+FniJSy+h0y496/murrwzk4u7OXERjFqyP1t1P4xQ6KdR1a60lZLy5um+wzNZfvbi8keMODHtAiCMQFyRsCkSFnZRXQeGbvU/FMfiPwr4k1M2kv9l6he6STNOwt7qaGaCPdyds0bNb+WgQOH8xlOWo+GPwvjvNKtrrxd4v8PQyW1wJ7Iakvmm8uplWVE2kr5kQhtt4+Y9JPlVVZT7L4G+C2mpqeiQ61oihrLRPK1K6uw8cQaFZYRIMh2CMRL951XYkbEHchbzbtnrXsiv8AB34V2Hiyeyk17wzJdx2OmvZ2og02J52Xz44pN6zhh5pWBW8xtrAKNmVd1b67+GPwy0DSdIsryfw80E8hE3kzuZY4sHAC78KAOWACkAsCBwDXJ/AvwF4f02e3sLHWo7u88sXEUAYEvCVYh1GAM5DANjG1NvJXI95trZbKEOTiWNf9ZvY7MZOct0x+XFdFOKhG7MG2yWzksUVftDM8gGTtOWbJGTnv1z+NTXl/FYM9xPKzkR7tirnAx0UKMn6cnJ+lJpkEH2U3EtxKhdSyuJGMZwpIIHq3AGMD8uPL/wBqf9oHSf2ePhXqfxQ1WFLua3jEWm2El0sZup2OFXLEfKvLtjLBEfarHCmlerNQirtmcpxjFylsjxb/AIJ4/wDBVjwB+3Zqtp8LLfwbrWl+MrLwPbaz4klfT0i003SvHDeR2zfaJZNgmliaLeSWjk+YhlYH6unuZXiUWcqQvEd0seBmTORgEHrnnPIIB9sfjF/wTv8AiWn7AX7TMXxM+Ierx6j4N161/wCEc1PUrWKKNdHSW5hZb50XaPJRoVLsuQse4hN20N+yYmhma4aNVEqqMlkOSCO2ffn06jr068xwn1Oso9GjnwldYmne5PG8tuqwRyMQsQHmSzl2445LHczHuST7nNZ+p6gbaNpFfc5bgE0WzyNGfNlwM9doz9OlZOohoYz5pHll/uqCAOT+OOvNefdOOh2KJINWEqbHjLHPBU4I/CobvEkLbAFfHcn+gqqbiKAB5GAyBgHHPWobrU/tUflwQNvLEq3XHHt9Km4+U8a/byhlT9ij4yNcMcf8Kr8Q4G3HP9m3FfzXV/St+3vcFv2IfjEXUbj8K/EIPOR/yDbj/Gv5qa7cJ8LOHFq0kfv14e+Hni/TtW06PTvDEdpdwKscV/rFq0M6Rwup8pt6OAhchtq5RicjdtBX6M+Cnwq1vR9Hv31iw0rTjqpguVWzQNvdBj5/KihG0phRndgYJDbFy34TeE9OsRDr15oqvcwoBbrcSttgJHzIFzsAAPQLjcMjDAGvS4okhVoopQu9d7eWilXOVGS69QQVAPoOuK5VFRjqj0JyNPSVs2kWLRJYoIg37xhhgJBkOM9sH5exyDntjWIAlyPkhVG3yyfMOuMYJ3c5+nHUZGcmyCfO9xOisVOyVyeWA4wO/fjvis7xFr0EFnPb25kmjLbTE4GJCCDnGBnpnDHgjjAwSr21ZBa/t2WES6Tp2qStZCGNYbYQxoo2k/MQqjB5xgADAGAvIP5lf8F8vjFJp+q+D/hRofih7LUG0DUrzVEdSf8ARrlooYmBHIJNvcDg5G335/Qp9d8gObl1W5fP3mzgdwcHryDjPevy9/4LrfClPiN8dfhHfeE9Zm/4SHxfZz+GZEvZPLtIzDdQNbuCASAX1GQMx5+UYXABbry2UYYtTl2ZzYuHNh2j5e/Zz1y++J3xA+FvwZuvEylJvHOg6ddSxW6SJDaSTxW28pIHWQqZEBRkdWOeCOD/AEH21yWt5brCxADy4hK5LSjr8ykDAyeBk9O1fzg2fwK8W/Bv9sPS/hV9v1HTYrX4iadZ6brE9uGlWCa4Vra4Kj5S/lFJNoOMgjsa/f8AvfE+uXsSSwRvNFJE8kzRXe2VGBQIqRYw4ILkksu3aBht5K9Wa4h1nB+RjgKahf1O4stStYlMk00eGk5CHGT645P+FZ2rzTX1ggdvJdnG6GVVYqepU7Tgt1HBwMd++TDrkEbLbRFjMMNkLjd69Pp9OR15pt9rDvC90b1sk/ecZP69f614/NqenytPQN7+aFEQOD8u8Yx+FJGyC6aCK5Eh53uWxjjn271XhvZpI/PZ1PGGZV79P51SjuvPnMgRuc5BxhecZHGPTtQncfLY81/bwvN/7EfxhhSSWSJPhX4gCljwM6dccdSeMDtjmv5s6/o6/bs1WK2/Yn+LkO2SRpfhj4gj+SNiF/4ls/JxkDtycV/OLXdhPhZ5+N+JH9V72VvociQLBHJ+7GSjH5BnOB69z+ldbaQ/Z9sd0YPNCK/znPzc9BuYFcAZ6g4zgVkaZb2WnKzG2R5JCSsshHz9c/L2x15APfpS6jfNbW4tbK72yS5KxnPPJJCYyAc5PucVyNya1OosT660VnNDdaPmRDIBCZwzHaWwwKHknAIzng888Dlta124kia5lUvHsJ2tKEUdBk8HocDp1OO9Gvancear3KyrKAzsGk37iSep75PesZr24jkItd6vKjK48wfNycr3wPu84x+VRZlJXMzVNTuLSF5WmG9uGVB0JHPbOa+QP+CheoeDrbW/hP8AELxZebJ9B+I1nJaXl5Myx21uSs0+4k7AubaE7j08s8jJr6m8Wy3M1tKHuCEbkoO2T0NfI3/BSH4Z3PxD+H+h26aDcyyR6tiG7itjMEZ4pEjtyikMPOkZVVsEbgF+86K2uHko1k2TWT9kz5X+EfgT41/HT4v+CPir/wAK4e71Cz+Lb33iC+OmLHNbeXJYTBJZiAY4cvN8nCps4Ar9hvCs19c6dbRGxmSSNdsUNupZ5WJztU55OT+v414P+z/8AfBPwY8DWfgX4dR3K2kM802bsq0jM8pclyoG4jIUcfcRcknJPvWlm7toIYZJEkkYFjKMltzAMRyM5GcH3p4mu60vInD0pQvfqaN81zbmS4jEkqxFtiqAGHJJ3e/JyfXPfNSXentDmWCQO7Rgbc8YwduP896XU7qTWp1u9bjQ3CwxwEPgIY4wqqyhRwdoXk91OeTuMCXBhgeKdGDY2GRzlSDhlI/A/oR25wujqWxXnTUFjWVCy78KwY8Afj71XSW4LlRIckgfIBnPXPTr3qxq1yr4ghmE6sv7tgv3OnHB/HNVJLG4LyGxMwDDn5gD354/pigGec/tywxr+xV8YHhV8P8AC7xASOwP9mz9fyr+cKv6M/23dS/4wo+L8RmdHHwy19HjPfOm3B/wr+cyu/CfCzzsd8aP6uRfyWwju7zUwEjBE6LARn0wxx7jpznPHQ4mt+J7maSKSyYeXEu55tpYjA5JA+6BwcZB+XGcZr8srj/g5mmuCVb9ipChUghviKSe2P8AmH449we345t5/wAHIMdxH5cX7GO3LZYyfEXcScYz/wAg4Y4J/OsfYVuxt9Yod/zP1Mt/Fl088t/exLPFIm0tMhO1RyApHI+6O/rxg1LE+iair3ulJ5bzR4+zzDKqflJ5x83Cntznp1r8qn/4OOItgWD9jV0wvK/8LHJUHOcgf2fkdu56VLp3/ByEumW5gg/YxB+UBGPxE+6B6Y06s/qta+35FLE0F1/M/Ty50KzvEK6tqLxh9v7lLMNnnkffXjp19D1yKyrP4Z+INSliuLTw9PdLLkSOkqr9nXuW2k/d9AfocV+a5/4OQtylX/Y3kO5svj4kEAnH/YP/AM4q1D/wcu6tb6TNpEH7H5WKQfKg+Ih2BuOSv2DnJUE8546gYAFhq3b8h/WcPbf8GfqBJpXhTwvaQadpFrHJLCczXQ5M79lyOFUD+EZJOck8ATT6rEbjfDbPaExAsgACsBjIz7nn8q/Ld/8Ag5Nt5oHhuP2Jk3FleOWP4i7WQgMMf8g45U7skdSVXkYOYR/wcir5vmSfsZs/YCT4jZ4/8F1H1ev2/If1rD9/wZ+pU+opeMkEhMYDK4cbmbPB2Y6AD155Jplys1mIxcSySTBmWU+Xu2Afw4IOSOeK/L2H/g5PSKRZJP2LQ5Qgru+Ig7dM/wDEu9BVdv8Ag5FuCHK/sd7WZiQR8Q+mcf8AUP8Aaj6tX7fkL61Q7/mfp1fQ3HmGeR5otpwQD1G7gELnPOOvpzjFWtW1d5FimRERIww2rI2W3AfMefavy9b/AIOQxIkof9jmUMyjyynxHAAbcpO7OmkspAYEAg85zxg1ZP8Ag4zZwgT9jwrsIIx8Q+Dg9P8AkH9Kf1ev2D61Q7n3l+29Mbn9ir4tPNckj/hWmvkK3Of+JdPj6c4r+dev0J+Nf/BeOf4w/BvxV8Jj+y4dOPifwxf6Ob//AITjzhbi5t5IfN8v7Eu8rv3Y3LnGMjOR+e1deGpzpxfMcWKqQqSXK7hRRRXScoUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//2Q==",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [34,9,56,83] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [42,33,55,79] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKK3vAFzJDqN3bhbho7mwaOZLeRl3DejDcF+8odVbBB5UHGQCO00a+uLTUt51CexkSJo7zEzxySxTBkmDLkbg8blHXcodMqeCTUSnZ2SA8tor6F8U6jrXh1fDXibW9ZtbudrG2vdIubK+sLm8so0jjhiSd45p5IUi+zwhLa4ZSqbiqRB8t9B/DT4NfGzS/jCmq+Ffgf8A8IZcvpkjWvh3VLe9kvBqsV15UyWNtbwG8gvI5IDc+Ts3RQRb5MQSrG0yqTjG6jcdj896K/c34s/8FHfhxqP7N3jHw9+0F4W1q++Kk97cy6ZpHifw2kNjaXtxELK/bULcQRxXF9HHvs0M0Lur6RDNLIzyuK+cvgF+1j4wm+JXg3XPhl4a0zw7qngLSI9J8Oanp+i2iXOn3NyJ44LtDLHIZc3tzBcOJ3LEQssD26zSBM/rMeZK3/AGo3Py/or+934Xab4m0T4eaPo/jS/t7jVLaxjjvHtpJnRWA4TfM7ySFV2qZHYs5Bc4LYFVvjh8FhqGiaQfi74X+1+Jra5ufDdr/b9t5mrQ26b55LZd+Z0jX5nZMhByxArpIuj+Cyiv76rzxJp9q/kmRQ+CQrEA8YBOPxH5isi9+IVrZAPNNEivIsaszYBZjhR9ScAepIHUitY0ZyVyXOKP4LKK/op/4PR/iNpGufsqfCXweltrZvU+Ist0Z0sJ104RjT5lKvLgRPOS4KKCzBRN90E7v51qiUXGVmUndXCiiipGbfw+tVu/EkccgBjCFplIzmMEb/4l/hySdy4AJ3DrXtnwD+BGpfFDT9Y8VXnjfwx4Y0vS7eNdR1fxBeKYYxNKIxtiXfLI2NzrGiSMVikl2pFbTTw+H+DBcyalPaWrygz2UiMsQY7hgHBCkcZAPOQMZwcYraFvfTIlnfMjJH8iK+W2jng46D5unqR61lKUVPUD0nQrXxp8HPiXqmj3Wj6PY6t4b1yWwu7DW47LWLIXsExVjLA6zwXMQaJgWZZImwuCS6iv04/4JK/8Fb/hp+xl4i13SvjbceJ7/WrfwY2naPd6xaW89por2mnBktkjS3F6pne1t4fs0MiQBzl93l/bD+UcV1a6BFaJoup2l1aie4KvcW4JWSQojFlY5YYhjkGcgE9CcGgeNbvWtQn1LXr2S4uXgCyySlj8q7duzaRtG1So4KrxwAQRmp8srwYM9q+LHx78cfG/4g2Ws+OdXWFvDfhmw0nTP7IsoYHt7GwhSG1VRGqeYFiVFE0hL4Vd7yMuD6p+yf8AGn9pT9lu21Px18HviBpuiNrenyaFcNbeTc3VxEJFulmh3KWtnjkCMlzHtmjcjy8FWK/JkPihm0EQauZzND5MUcklwJC6ABlVl3YCglmG1QN7sSScCup8D/GjVPh/bi7jso7mCVsTxT2yujo28E/O2FAJxu4A4ye9ePWhiVNunq/xfzLTvoj7M8B/8FM/ibBBfeF/Cnx98UnQ9f0ue3n0uLV5vs+o2kivFNGYJA6SBVecAMhVWZz95t1eQeK/H1v4is9TTwzbPHa2dvAsl7Z+UYJVVh+8No4kL4yzBVYZ3KzfeL185waJfaP4Okun1KGxgsLCZor8XzMNReVvKWGAI/ls/wDpCuwyuI43JDlWVp9YuviJ4DnfwdqkcEWrMsck721zHKyLIiuFcxkrvKsDz8wycnBNFTKpc/PCbXk22ga0ufrn/wAEuf8Agtp8bPh543sPhf8AtPeL7nXdD1bWC/iPxb4xutQnvrK3MQjgCIskwi2bVJQQhpN2Gc/LIv61ax+1x8DdD/Zmu/2tJvG0Y8E2Xht9ZjupYGtJZ7YbxGscN15Tb5XQxxK23zHKhc5FfzF+Gvg5+2SvwCtv2jZvhoF8HRzWttpmq3+sWcT3G6VEUQWUkqz3GWIAeOJhtRzkhGK5Hiz9pT42aNoms/Cx7TU9Kt9Zs7ew1zTryCSFrpIpkuYYHjYAALLDHIoxksM9zXq4XEYyh+7kk1011X/AMp0mz68/4OIf+Cvvwo/4KAfsy+Ffg58GPh7runaTpfju01u41TxILeO4nmSy1GARxxW80yrGomJLM+4tldi7CW/H+vTvjj4r1DW9EttOvIo4zFco06wxKq+ZtkHOBnIBxg9OgG0LXmNb0pVpxbqu7v8AgOKUVYKKKK1Gdv8AAT4eXfxM8YXOgWl/a2zRaa07SXTYXAljXA5+9lh0+vavctJ/ZLa8AbV/GmlTGGUGd7WR2QNv2Mi7VIDD7nPRlxgYw3mf7F0uixfFa7bXbHV7iD+xmJj0XU47SY4ubdmG945BgoGUcfKzK/zBCjfRZtb3XrHfrukeZqBvJXl1zUNSmkuLiNkhWONwzlCI/LfDABj5zBshUx5eLwuNr1r06nLH0TZ10fq6p3mtTDsP2ePA1lqAi1XxFZeZHJJbX9sLUBfMX5SCSybSHDZyMLtKnBNXvD/wD+BFzNCdH0vWCZkPnRJGxRFOIyHXJP3cscBuM4IPyt00n9g3l2J7iayiZEiVbbTrUKFCoEX5eWPCgknJYksxLEk9Vpdws9okk1jK0KRoiPqE+1AgwFABJwOVAGO4Fc8corNWniJ/JpfkhynQ6ROP0v4CfBdLLy28Azlri5keSLUbuMTO8cYlXCu5baQiglVwdzqu4kqeY8U/FXQvgFeXfgjT/wBmTwrq2lGMta6lf6H9ocwyIMQyTSQyF3j/AHkbEsN2CVARlFfS/wAKfCvwt8X2Daj40/aK0bw2EuZ0XQbDw/f3eqXqxxgj7MFg+xuXdhEomuoPmBLFEwzQ3/h/wkfFUmofD/wfP4q8PLBNANQ8V2X2KSTfAUMzJb3b+S8Ujl0CTSBjEhcFS0VdVLBYbAp1JTfrKTt+LsTGTfwxPhX4d/Drxnrfim31DTL3xFZvb3Ed5a3WgadBc+TdpJ5kAVfNgjh25dt4b5doAQAHH1j+xv8AAXRPCPhnxN4r+NemmbWdbjsphZWWpxzAq8ZeR0urKTyN587dJCQJYMGNgZFlA9M8QeN9SvY59Q8Tagb9rqWC51HTfDGkRWWnNdRxG1jm+y2UcVsGSORwCsS7t8rHl334GreNLzUJ0llCus+0QPMkYU7d2VRWOQcvnIHylDnPAPx2d8b4XDXo4KCqSW7fwp+m7/Bdmwqzp0ruo9ey/Vmr8QvDXgDVvHkF14I8VeN9Q0yw1BZ7LStf8WzzWE3kiMWr/YC0iQ+Wd67RI8ZVkUqApzvXviPxVJ4dvNJuvEFxFa3iyPc6daSiG03TMZGxEmEAMjl8KASTnHeuZ0ItpcEdxKrG6mYoot5hsjHTlGPzHgkYyAOg9LGs6vLa2U/l3F2zx44RUIbKuSduMkk8FQcAAZxnn82xme5xj6rlWqv0TsvkloeZicbXxVnKTstFrex81f8ABRPxFcv+z1p3heWWKUf8Jja3O8E71xaXiBcA7cYPPG4EDnnn4nr68/4KEHUYPhhp1g1j5VqniKIq/lYDN5NyVwdx/hbnOMkZ9z8h1+v8FTqSyCCm72bS9LlYdydLVhRRRX1pudh8E/iLY/DLxXca7qIufLn09rfNpEruCZI2zhmUfwev4V6zp/7VPwpErS63F4suQ+4NALe3VGHODgTfpyPrXztRQUpNKx9++DP+Cmn7B3wg06xu/AP7Hut+J/EEH9nXE+p/EXUUuLATxwBrlItPsZrbKNckgG4nnVoYlDRAuwXn/jV/wVm0/wCOt9bt4p8MXmnabaXlw+l+HfDOhWOmaZpUcrFmMFrAyqZH+QNK5MpWNA8kgRNvxFRQNTaPtHwb/wAFAf2ZNJLy+LfAfjHVFdSHsktbSKGQkY3OfOJJALdMDnB61f1X/gpv8H7i2Mem+HfFkMYZvLsFsLVIVXgqAy3GePnHIb7wPVefh+ivGzHI8Hmkr4iUmu3Np9xbr1HDlTt6H2hpn/BSL4VafBayR6J4kjntt2wLpVuyR5UgDJuwWAzjHy4GfXAtal/wUh+A2oXEeoN4Q8UC6ijby5o9LtkxLjKOALrGA3VeVI7dh8S0V5D4G4fcubllf/EcboQe59z6l/wU7+Cl5bCCXQ/Gt1uh2zJNaW0SOwUgEKlzsAyzHBUgA4HXIzrf/gpD8D5sPqXhLxZu8nJC21s4EuOT/r1Jz0J7gDIOBj4poprgfIErcsv/AAIao04q1j3z9rD9qX4efHXwfbeH/CWja1DcQ6vHdNPq0EQ/drFKhUFJW7upxj15AAFeB0UV9Dl2XYbK8MqFBNRvfV33LjFRVkFFFFdxQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/2Q==",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKtaJomteJtatPDnhzSLrUNR1C6jtrCwsbdpZrmaRgqRRooLO7MQoUAkkgCqtdh+zzY61qfx+8Dab4c0q9vtRuPGGmRWFlpoJuLiZrqMJHEByZGYgLjnJFTOXJBy7Adv4V/4Jxf8ABQ3x1cXlp4J/YN+M+sy6eUF/FpXwu1a4a2LglBII7clNwVsZxnacdK1p/wDglJ/wVHtYHubn/gmz8fY440LSSSfB3WwqqBkkk2vAA7199fDo/tg6Z8Y7zTZPE+veCPHGg6VaXF5d3vjGbRZpra/lt1js7rUbiaMDUJv7QgSIXD25RYMNschoc39sf/go38b7vxLep8UPF9h4z8S2USrdat/wmkkosbZo/LtoLfUNLntxfhWnNybZWuYbeQP952vGfkoYmrWULx+JN3W39MPeU+Vqz/r+vxPzKu/2e/j7YFxffA/xhD5YzJ5vhm6XbyBzmPjkgfiPWuPr7T8YfFr4oX2k3WoN8RdY1Gw8SxvHZ21t4luX+zuZrlFjEczTzbG8pzgOxAMQdwjRCT4sropyk24yabXb+vILSUmmFFFFagFFFFABRRRQAUUUUAFdj+zt478L/C39oHwL8TvG+m3N7ovhzxjpmqavZ2UavNPa293FLLHGrMis7IjAAsoJIyw61x1FAH3x8d/+Cif7F3xk+OE/j9tI+J8Hhe9urWa/8LQ6Hp9u1x5CEIhuhfPOqks3CSIACAOFUVq/tff8FVf2LP2o9Si8SL+zb4h0nXJDZtqmu2sNvDNeNbxzxx7o0uPJcoJhtkeN2PlRJIJIoxEfzyoqub3eWyt6FqpUUlJSd0fVvws/bs+CvgX4kWfxMm+F2s2d7ZW4FrJpd9K1xBK0JhlcTSXO1lKuyqhjARAig5Us3ylRRWahCLukr/5bfdd/eKUnIKKKKokKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//9k=",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [40,54,60,71] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [48,55,71,68] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAoor72/wCCO/7Ef7Kv7UvgXxn4t/aO8Oyak+i6pb2thFHql1bbRJHvz+4kXJ+Rhgg5BPoMY168MPT55bGlKlKtPljufBNFft5oH/BJH/gmhrOo6naz/AG78m0vRHaTW3jDUP3sYCrIWDXmQQ/mD7oBCjnnNbeg/wDBGv8A4Jp61qc4tvgrYtptuVFxcT+MdXiuYflJA8o32XLEY4A65HbPAs3wjdlf8P8AM6v7Pr2vp/XyPwoor9zNe/4JI/8ABMaCE2+m/s4wm+chbOybxzrUckzMwVTl7gqBk45KjOckAEjA0r/gkN+wEs4s/F37PcmnXSXQSRR4s1ZopCYwSECXEjYHUZIbGSeMUSznCLv93/BBZfiGuh+KVFfs34n/AOCc3/BMnw3FfRf8Mz2N21p5whFr4w15p5tiBlJjF421T8ygkAllI2it3Sf+CX3/AAS88QaRdrpn7MNza3MK7PP1HxFrfyybN3yxf2gjSYzkgfTg0v7awfn93/BH/Z2JtfQ/Eeiv3F8Af8Eqf+CXms6ZZvrn7Mxa5lsXluoIvF2uF4SZCqc/alQnCt0JHIyORnfP/BGH/gmvpxP9o/s4W6POjtaR3PjfWghVQGJMiXRjU4BGGYD0PQ1TzfCJdf6+Zn9SrJ9D8G6K/ST/AIKz/sNfsa/s6fsq6J8TP2e/hJDo2pah4hsoBq0fiu8vxcQSWjyMFSS4kjVSyg8gP6YUgV+bdduHxFPE0+eGxhUpypS5ZBRRRW5mFfc3/BKj4q6r4U+F/ibwRD4wtdKtNQ19bmfz1XdIyWwQKp4IJ3ZyGGDGPx+Ga+s/+Cf9r44tPhH4q8T+EtP1G5S21qGGZbFMkF4GGAQuV3DKlskAEZHNedmqvg2vQ78tt9bV/M/Tjwp8bfg/o3wstL9/HFzpENpJP5p1h45Y3cEeVbxpF5TZwVAOMsX3FsZrY8DeI9H8NfDhI9euv7PvtXumF/rmvac9lbm9leQoIba9YTXMxG1M7dpPzZb/AFVfJnh/9nr4v+G9S0T4i6x4cOvRtIjTJHcrIdNQxlsCMEpOEby4yNudxODgF667xh8ZP2i9B12/8U6T4fi1W8XT/s0d9bOsl1o8btzEpARot/7suRGx+XO/aqsnyUrxe59P7GL2PW/Bmp6L4y8bfYNdtr3wzZ290XjuTCLqe8gKgq7B8+Wsu5vkVWWNQAGzyvf6L4f+BvibXZ7fRvFUeovPJukL3iyTrtABYgglcgDOBknkkkmvkzQf2z/BHw21O48QeKfD2o6Zrlrew20Wn3t/JfOFdXLAwbx8wQNtLoiHYcSKHIry/wCOn/BTX49/ETxhYWfwk0uHw5aabdiUXllp4e6uXDAlR5jMqIQDlAMEMwz0CxGmr2NHQqyemx9e/GV/FXhjxlo9z4P8RR6gbW6gEiIGlmMSSoWjKsVV0csowWjxvOW+bdXr/hbTL+5iuYNdgikuL6WT7UQLgxRKN5EYmUyQgoMLjc2eGyd28/Kfgr/go34M0O4tNU+MMUNxJc2iNmyVDKZWSM79rqhQhSwKEkjB+bAxXaWX/BSH4M+OdJudJutWMkpt1aXRYrX7aIJG+8nmCLZIi5YFt4HAwSWFZx5G76mc6Vflsen+EviroXw11698Iw/CdWWLUXuYtQjv/niZyxHVj8ufMAXACKikKBgj0HVfFOj+PNFt/DktzqVgZLo+dFYXsTsEAZ1JLDqAin592DliGAwfjy++M3wo+I1xB8SfCHiyzvYbW9Dz6XJHJG0duwZBCqbQGdGYZJcr97hcCtjVfjEdI1o6fPPJBciZGkmtjAUmAhbKM1u5G1m4AY9eyjoOpOLszOWHU1e2p5z/AMFv9J1Hwb+y5png6e41GW1n8aWV/Ym8EcYjjFtdxqpjTcGOCf3gKZwRsPWvynr7v/4Ke+LtL8R/BnTpLUA3MmuRGdI3DJAqxyAD7wZWJJBDJz5YwcDn4Qr63I23gb+bPnczi44mz7IKKKK9g88K/Sv/AIIaSWkHwd+IJu7B5Yp9ftY52CtjAhJUgryjKx3BgQVPIINfmpX6Q/8ABEefxfYfBvx7daFYR3dnca9Bb3VvFYefc+abfEZT96pVfmcH92+QeqYBPk502sBK3dfmehlkVPFpPzPu/wAS6tpv/CJpc3Phu3JgWMz3E20pCQODk/8AoRye9cTZ+IPCXjSW51lfDtybazbe91caoJVuNqfvIcMn7hAFzxxklgpyxrO8eeAPHmrynRfHqXumPfW5ls7iziitAdgRSZ1c4HBHCDIc5ZeQted3fgjRYfEDyJcatBrSqEl8xEWcbSmHR40VhwoAYYO3Ayckn4lVpxv7Q+njQgnozy7xn+y9YeK/EevePZ7uxtEuLm68lbR2lP2aWR5I4hn5wVyoJcccje3328Ul8FyaQx0tLW2E9umxYQzpcLKjFeSSE+UDJwckjBIzx9M6v4Zi8P3Vxomh+NraeSUJFLb26BNw4IkBcbmOWblgGYqx5xXnMPgK81bxOZZfs5REd7u7tVl+zRQly3zqrfKN23kjoMZ71jGbT917nqRxEmrM4jXNOvNXtLjVbXToBdPGBdqI9rShRgncxCD5cYJUqOecAE4Eei6TdwG28MXDWV7ayI/nW0rOjkZyu3bxgNgEEnsRj5a9v8PfDjwtqFlc6LK0kPnXk/kwWUsaxsqySohRpJIyqkKMMD6gn5cHjm+Hs2m+K30fT9Plgju793gUSZVU80hVY7Qm3gfOSQMMN+AK6aUpwVmJ1IN2D9lvU9F8N/FqDw1caVeXsWsia3uoLeBla4eVWX7Okqum0HcF2qGJLsR8x2H0PUJPEmk+L7qxk8UW+oTqUtp3xIoCi3djCrOPmTaxVGD7ZI8tt21m678PY/CPxK0C7a8NjZW8rTNqMT5lMbRPljsUryf4ShBOBkHDjtfj/qPhubxhBf6bp2hzzCNZd6XyXTTKCDt8ySHMpjBXIjkG0EKrMm4tVuvU5qjTlofM/wDwUC8S6frvwSS2bT5Ib+21+wS5a605IZW22soBBA3BcYOzlV3DHWvi2vrz9unxFa3fwiGn6fds8F14hguESckzIsaTogcsCTw7H7x+8MjIzXyHX2WTLlwVvNnyOb/758kFFFFeqeYFfpR/wRC8VXfhD4F/EXULFVLSa7bibfGNoVYOG3kgIVZg+SQcIdu45A/Nev0N/wCCNd98VR8IvF+n/DC00C4P/CUWzagmrX0SOiGJSGVZCox+7IDBiS2Plwua8rOW44CTXdfmellMVLGpeTPrj4lftSeC9QsbHUD460zWLqRfIvdL0vUIoWdpCqFix8sSMgU/e3KNqHOAMc3rd/HrejWPivwfNqMxSYtaszr9k1CKNWZo5T5bxlWbbgttHC8ZGBqeMfCnjjxN4xuNL8X6VYapfy6cs0WoWVtHfLaLCrhjHa3X/HxEw3vIE3NvQLGCGMSeRfGfw78CfDfim21PXYLGGFY45YPEGh2X2HSriYvkosbzy+RIpZ45FCw+V5KFl+YkfFShKXvH10YR6HVa7NomuX+peMDpDiJ7Vr2zgvIo1QrsMibA5ZWAjDkqrEESKVxjB47TXh8OzanDoFvI0kxeSdEtGV1LoN4wQMlCD/CB8xznGK890u/0nTPiFrGl6n8VtTsLTULdJNP1GZ2uJxL5iZSRQQqZihK78nKLECG3DG7q2jz+FPFGo2Gg6my6XI0ht7+5tDGHTdu2x/wZGCpYt1XOBk1z1qNSCvHYqC0N/S/FHhnRprbUE06OeW0jeF7NYDma2cZcMQwYNvAxxz69K8y+IXiK6urS78Q6dLcQwwBZYLtbhYvLyV8tWYYJc7uQMbSoJJzWf4u8ZNYeJLXTdQZVRbWWe4kWZmA2kq6ZQqrMqhmKbiCGUkjiszTrS++JOlxXOozPFpz7Ui1C5tFSaedFG8sUdwQCQSzEfwnau7FdWGp1GlKQ2ktUdh4PuvEXxGtrUtq91cXMbeYFRtyvIR83JbcxJB6ngAkgVYYreeIb3w/q13a6ZOLwolnK6+bApZyYnllVVZRgg5xltmAC4BoaR4y8OeDPBcfh+ymSCaGV2nMd+zPMpQbIyDGEwCVOcNkcfLimz+OPhvf6te3/AIqf7VCun2u9rbVjFPLNsbbIPnEzkMSzYQDAwBj5m6X70tgUbnm37a3guz8PfAS2vY50aUa/BEfLk+VsxzEnBVTngZJ9fxr5Gr6T/ashvU+D9qLMu2lx6tF9k80Izxq6zMqsyg4JGSV3HBPQdK+bK+qydcuD+bPkc5Vsa/RBRRRXqnlBXt37Lf7efxX/AGTPCWs+CfAvhHwxq+n67fR3V/b+JLa7mjZkTaF8uK4jjZSDyHVvqK8RorOrSp1ocs1dF06lSlLmg7M+p/Gn/BXH9oXxrb21rc/DrwJYJaIqRDTLHUIztUEAEm9J79Qc+/Jzyetf8FE/jdrc889zomiA3MJjmSSfUbhHJjKFyk95IpbG0gkfKUUrjnPglFcyy/BL7COpZjjl/wAvGemXv7U3ja+jtIJPC+hJDaOrm3hjuUjmcMTuZRPhfvYwm1cAcVr65+258UvEItlv/C3hhRay741t9NkjBBDAqdso+U7gSBjlR05z45RTeX4Jqzgg/tHHf8/GetX37ZHxN1HxAPEV14f8P+ajhoYY7OZI48O7oMLKC21nONxY8AEkZzJ4g/bU+K/iHRbPQ5dH0K3isVUW7QWsxKFQRlA8rLFlTtIjCggDjKgjyGihZfgo7QQv7Qxv87PVtN/a9+IWm3y348L6BOyKwRbiG5YIxIO4fvwR0HAO3jpXSQf8FCvizDox0o+AvCLyyXMs9zqD2t79ouHcY/eEXQVwuW25Xjefw8FopvAYN7wQf2hjf52eu/G/9srx98dfBEfw+1rwP4X0fTYr1LpU0O1ukbzVDjJM1xL1DkEewxjFeRUUVvTpU6MeWCsjnqValaXNN3YUUUVoZhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//9k=",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvf/DX/AAS5/bt8WzPBofwJZni80TC48SaZB5Rjx5iv5tyuxkyNwOCueQK8Ar+gDwLo8fwciuvHso1Gy8q2kJ827ilsri7W2RVErpIEh2yM0Ko2VZj5hEpAdPJzTMKmA5HFJ3v+Fj0MDhIYvm5m9Lfjc/IPWf8AglZ+3p4f1OHRtV+BIS5uRIbaJPFOlSGZUALMmy6IZRkDcMgkgA5IFcX4t/Yx/aX8C232/wAU/DGS1td5X7YNTtJIMjgnzUlKYzxnOMkDPIz+wP7Y/wC0r8M/BmgaTdavpMck6nbomktfzPJNIsRKsiGWL7uyN2LuQX8kFlDtnzH4dN8LPi7rWm3mp2ds/hVba+g1ZdavJ7qOK4eZZIMBrlW3bVcfuwZSSqEKMuvkPiDEJX5V+P8AmenHJqPLdt/h/kfl7pn7LHx+1qZoNH+HFzdMiIzm3uoHVN5cIpIfAZjFIAhO4lGAHFcj4s8H+JPA2sNoHivS2s7xF3NA7qxAyR/CSOoNfrv+1gnwk8DSav4t+FttY2erav4ftN8cdzM9pI0c8oR5NuxkmSVrhlYsAqAtJvAXb+Xn7VfiSz8WfGG+1vT5RJDNvaKUgh5EaaV1Z8kndtYZzzxXoZbmeIxtblkla3S/+bOXGZfQw+HdSLd9N7f5HnFFFFe6eMFFFFABRRRQAUUUUAFft/dar8WNU1/XNK8Syxt4Z029nuruNbWz1FLrUJWP75Zrt/Lto9zYSOHdtYs4RfN2R/iBX7sH4T/EAPf2XgDwjcS6Vvjtwt94hv7ry/I5jjRLcxSQrgbsxsy+WZlJKqa+a4ilaNNd7/ofQZCk3Uv5fqfOf7SOj3/xL8R6L8O/hfp+sX2txWN/FdabJLcOswZEkMtpNcSM7RqUdHLrFtKgPhiwT57+Jf7MPxg8JXuiLpvhK/OoeI7y40nSZdOvgWXc/kb3YMUWKSV7lFZiBKqsVZlYSV9l/wDDDnxw8S6rdeNrzxPe2Ed7stITJcwkajAs6TjT87w4gWZWUKAwG0uU3qJWjX9lf4x2vhx/AEOlzXdxqET33hTV/tW+C3uRsiMhZkYxXGBg/II2E5MefKPmfOU6jotOLufT88HG2h8wfHDwnbaH+yv4H8IeBhdPrdh4gutBvlinL3Ree8uALaZYANyuUjK7w+9gwTaRIi+G/wDBQzwN4a+G3xE8F+CfDul3NnJY/DfT11m3vNN8iWPUWnunukeTpdOkrPG0y4G6No9qeUUX9ANE/Zo+Nvgj7Br9t8KfCd5rlrdLLFY604eS4uPKkCrEk2IoxOrIrY3CMeUYkja2jV/jr/gs/wDD/Sfht+1Ronh3TordZ28A2U2ptbaYlqJbprq73yEISrlsBtyhUwQEGxVJ9zJsQp4lU2tdXf8A4B4OcxX1dtPS58jUUUV9YfLBRRRQAUUUUAFFFFABX1HH/wAFof8AgpZHcXN237SXmS3kZjuZZ/B2jSM6HPy5azJ2/McDoM8V8uUVE6dOp8cU/VFRnOHwux9D65/wVY/b38R6YdH1n47LLbNMJZIl8KaUgkYBR85W1BcFVCsrZDLlWBBIqOX/AIKm/t0S3Ut4vxisYnnIM/2bwTo0SyESCXLKlmAxLqrEkfMQCc18+UVj9Swb/wCXcfuX+Rr9axP87+9n06n/AAWT/wCCk0UJt4v2lpljZNrxr4W0kK/AGWH2TDNwPmOTwOeK8Z+Pn7Rnxf8A2nPGFr47+NPiS11PU7LSotNtJbPRLPT44rWN3dIxFZwxR4DSPztzzjOAAOIoq4YbD0pXhBJ+SSIlVqzVpSb+YUUUVsZhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//Z",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [32,41,82,74] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [35,44,56,60] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+itTRfA/jXxJZtqPh3whql/bpL5bz2WnySor8fKWVSAfmXjr8w9a7fRv2L/ANsTxFa/bvD/AOyf8S76HGfOs/AmoSrj6rCRRFObtHVibS3PNKK9JvP2NP2v9Ok8rUP2U/iTA+cbZvAuoKfyMNTWn7Ef7Z9+jSWP7InxPmVDhmh8A6iwB98Q1fs6n8r+4XNHueYUV6ncfsL/ALbVqhluv2O/inGo6tJ8PdSA/WCuSuPgv8YrRnS7+E/iaJo2KuJNBuFKkdQcpwamcXD4lb1GmnsczRXQD4S/FVmCL8M/EJY9ANFnyf8Axyug0D9kz9qjxZp/9reFv2Z/iBqdrvKfadP8GX00e4dV3JERkelKPvu0dQukef0V6NJ+x5+1xFcfY5f2WfiMsx6RN4Ivw35eTmrc/wCw7+2rawrc3X7IHxRjjf7kknw/1IK30Jh5rT2VX+V/cLnj3PLqK9RX9h79tR2VE/ZB+KJLLuUD4f6lyvqP3PSkvf2IP20tNh+0aj+yF8UbePON8/gDUUGemMmGj2VX+V/cPmiup5fRXptp+xR+2XfxPPYfsk/E6dIxmR4fAWosF+pEPFcF4q8I+K/Amv3HhTxv4Y1HRtUtCoutN1Wykt7iHcodd8cgDLlWVhkchgehqZQnHdWBSi9met/s2XOvf8IjNYaZdzLE+qTuyRKCMrDEx3Z4GQMDnkivrX9ln9sv4w+DdHuPDWg6vqFtbtJuSM3rCKLA27FVWGOmen418j/s3eH9b1nwpPFZteLa3OpzQStbQM4z5UWWOODgNgjOfnBr6A/Z/wDg58U9G+2eIIfDN41hcKDareWGJ5lLFQyqDlSOSR6H6V49OtVo46Tg7a9DOtBSifVPgz9pfXta0yeLXNSeB7lwZwkh2SbeRuyeeayPE/xj8SWJLWV/Ph23JHFEOmep9a8+1v4X+MJ9LSC80W7ggxvmk8nbt/PArU0PwX4p0S1tBb6dO8LAshucNK47hhj5BXqTzGslrJ6HKsPc7ew+NHxKfQpLu81m7QMP9Hnim8txx0IXt171458SvEMYsrm+1KE3NxNIS0m/HJ/izSfEvxxqmjXxaAubiNPnh2sQV5z8uR/kVmR6nqPjDRH8jRMbTkfKMkHgcHmvKxOLrYtpyeiOmnTjTVjirTxlaaPG8MFtt8/AkmGSxAJ4H5n869a/Zr+KnjPRWZbKxjGkvNvv5ZJcOOODktjp6+9cND8CPiR4ht5J9L8FS3kO8hJ7WIsM46D0rqPht8I/iv4Ra+0XVvDN+ltNHlWMDGNm4xzjAGM1rhZzo1OaDswqwUo2Perb9pqbTry4Oj2U37uP95LOFxt9hg81znx9/aW8XeK9EjlubucXCW6rHJGfmRAB/dA6D1rmdF8DeJzp0S3OmPG0MpFyYSAspXoSx7EY4+uKxvHWqXnhS/bVYvDFlqivEbeawv4HkjZXGGICMp3DqDng89q3x+ZYxwUOeyb1MqdCK1sch48+LPxO0PRJdYj+ItxMUAY2zzvhVJAJyD2Br2f9kv8Abyt9f0690vxZq+rrJpOhzDR30loVD3gdRDFL5hCxwN8waTDsuAQjdB8p61EdP07UJZNPmmedwk1hJLtVUwqkKCPlx8x+tUf2VPtsXiXWo20maTT/AJRKlsxVt2WIClcMB34wOPpXBg8dXw7clKxc6XNZWPvT4wfti+BtPng0xPiX4guJhpdqUYixlSS7Emy4TbDM728Q/e7HYs7BI2wFlBH5Z/t5+JrXxj+1f4r8SWVw8sd19hKySHk4sbdTn8Qa+lrjw1beLr9NfbwRqNgUn2pIuoNO06KSQxDjjPHGP5V8nftX2Nxp3x9120uoijhbRirJtIDWkLDj6EV6tLH1MXG0pX6hToqnO6R9cf8ABKbw6978CNX1yPU5FaPxbdW/2VQMFWtbJi3LDuq/lX0ovhvxRZTDUbLxxF5ccpJtEs1UAYxgtliTnr+mK+cv+CVGu65pX7OOtQabosNxG/jafLtDvdmNrZjZ2GMc8mvpSy8TRT3EVy/w+WJZELiQ2aKVBGc4wCQfx457142JcVXlr1O+MU4o17ceIjbCWaNLlz8pFv8AKvTrh2Ofz/Cs/wDsbxAF+3fa182VTgbFGwYxtxu/U8VKPFFhqkA09vBEPlLIFiWaMrknPIAH1PNNj1uwZlkv/CVmFYDyk8siQ+5DAcVnzxelx+zucR4g/ZafxTqTaxqfi1LeUglBJZIShI5BIlGRzXT+HvgtFpnhX+wXWCacCNRfRWgBYKRjO98EcdM+ufWvSNP8JaNq+mI1hcW7bH3GOKUKVbA46emOa9T8A/BDRBYQarrsDSfuwTE2cZx098V00qSa0GsPNvY8P0Tw54j8PRNoelaiJRNMZI2FqDtz/DhX46e/0r03w38PPEkcUcmqRrlgC/ynGfpXqGleEvBehZa10C2DcFmaMFvwzWofEelKnkwWyhumMCuynRjF3bNFhX1PIbnwA/iAzwS6WTGoO4tCCD7VwfiP4KXkkUk2kaNBFOoJCyxgLKPQsvK/XBx6Gvo271uyiRo32qXB4IrndS1zT41JaFWVecACtXQpTQnQaPjaT9mLRZ7zUtV1+zk/0y4+0C3ms0zFuZ1aNmyc4K5445Jyd3FjUfhX4V8OaPFZeEtP0nSpkBjllaIquTnHypgd+B/jX0B4+1y23iWDaXbJKAcD8vrXl+teLJ7XVjpb6T+7WM75Y3B+brgZBz+n+Pm4nDQpLTqYyikzyTwJ8GdS8FfEyfx0vxRhdWthENP+zlY1bjkvnngHqvf0AFfCX/BQOW5n/a88Xy3dzBNIzWOZLYfIw+wW+MfhjPvmv05sdW8OaxeSQa1p7TFWKQs5wScngkEKeMAcZ9zmvzK/4KGJYx/theME0638qEGw2R4xj/iX22f1zVZdFxqO21v8iZJWufTH/BKXxGumfs767YPb3c+7xjcMkNrbliWa1swDnoOn4da+irjX10XxDFp0mmTBbqRAX8xS44XLNk8gbhyueuOuM/Hf7Anjfxr4Z+A0+n+EtFluPtPjx/PnjI/dqYLNWznAHBzuJwBu9zX0n4c+IvibSPEM2l6nLdXDQ2qzNLdmNPmO5gigsTxGCzsQNo25+8M+djJU3ippt3TNo35Uj1qwmmvZH0y1S4uZZ0wsMMGSme4wMjpXR/CT4EeFtW8TS6141s7i4FpABDFdzMELk9wMZPJ614hpPxY+JMXiF7/w3AvnRMqOEuAsZVlL5JJGeCuSMkbhxyBW34t+Jnxr8RaaND0680+CeSQ/6WkzYfhdxwFBBxnBz2HTippuhbmlr5Gyml0Ppbwd4C8DaL4wl1J7COGNzsSBpPlGPavT9c1BbSzXMioOi4OPwr5G03xt8RJfDMWn3WoKb3yF8q6dRmOTGMkg8qCQfyAqtrHxQ+LOtQRnXdXmRYbiKC4l3PskQkqxXgknjI5zzk46V3rFU1otDX26itmfTlxqTzXRtzfRoVj3kGQZ2+vtVaC6UXZljuEmA7o4Iz+FfPC/EG70OIgC+u5pM7kjJLAbc4AyPTOB78UmoeONVtp5HL3EYIG1XyhUMRnjk5Htz+laLEQ7kPEz/lPfNTmlurmSMTAuoG5A1Yev6Pqbw+Wt0I8tjLN0rwq1+Ml7PZzyWUc9uhlK5mZjkgcfd3ctgqB6g9uao6n4z8U6nK9tZXtzJKC4e2VGdogRlSdv3eueSDjHPXDWPpwViHWnLWx69q3hy9uLM21rfRNIwOZd+QB/WucsvA1lFDPBf6rBLdkNIqBgSoz1Oea5HTPFHiLR7Bn1YSLcCL5bV7o4Z8klC2WyMAeucmqXhzxrrt5r1v4e0q0svtl/clCt5eJbRl3Hy7pZiEjXOAXdgo5JI2mpWLWIqRhFXlJpJebdkc1WpGnBznolq/Q6m++GqXyi6a5I5GfKPXnk1+WH/BQzTBo37YXjDTRK7iM2HzOwJ50+2PUfWv0H1r42yaDq8MmoWMuAvS3DSBflDE7tvYbuDj1OAQT+df7dfi2x8dftVeKvFGmpMsNybIKLiLY42WNuhyvblTV4CvCtWdt7f5EzPpX/AIJb654Vtvgfqeh6zBB9puPF9yYpJUBO37JacZP0P6+tfUcfgf4dpIJdcbzzcjE1vFacTttADMoByMDODxnHUivyC0Hx5458K2zWXhfxnq2mwvIZGhsNRlhUvgDcQjAZwAM+wrb/AOGif2gcg/8AC9PGOR0P/CT3fH/kSsq+WV61eU+ZWb7GtPEcis1c/YCPw94Us9ONvZW6R7BuZcDcE6bee3I4HcVyGv8AhmfT7WSTSdRWGPzJCgYk5QA4wOMkg/qK/LFv2kv2iWGG+PnjUj0Pim7/APjlMj/aI/aAiiEEXxz8Yqg6Ivie7A/LzPas55RWmtZL7jX63F9D9ZtIafSbOC6kkLTT2+SGccKR/FnP5fn0om8VSQXAgu5o/LO3dGsgxkDP0Oeue2a/Jt/2jf2hJZBNJ8d/GbOF2hm8UXZOPTPmdKhl+Pvx1nbfP8avFrnGMv4jujxjGP8AWVP9jV0rc6Mvbq5+tF744bVrY3hieG23FeGVSQOTjB5AGSfrUmlahomu2bJKgeKYGMRynOSByhDHkYOehB/HNfkvN+0P8f7mH7PcfHLxjJHx8j+JrsjjpwZKhtPjx8cbD/jx+MviuHJJPleIrleTjPR++B+QrSGVV4yu5oTrroj9e/7O0nw9aR219DDbweUzwxxQZITaMZ+vGB3GMU3W2mt4Gk0bTn3soEjSAIQud2NrYOee/wBO9fka/wC0X+0HJjzPjt4ybAwM+J7s4H/fylP7R37QxAB+PPjPA6D/AISi74/8iVc8rqSi0pIlVXe5+qsGreFZfE0Elxpq/ap1+V3wzADOcEgNzkE556Dtzt+BPHOleBPFVr4g8M2Wnm6sxK23U7dZ4supUMY5AQ5U7WAYFSY1DKy5U/kW37QPx6e4S8f43eLzLGCI5T4lutyg9cHzMjNRy/Hf44TSCab4y+K3cdGbxFckj8d9VhsDjcJWjVpTSkttL/g9Dkx+FwWaYKeExUOaE1Zq7V+u6af3M/XG81LQfFmqNd/2XB9rjkaRXEJHzHOSACMZ3Hn3r8wv29dP07S/2s/FtnpUXlwB7JgmScM1lbs3X/aJ47dK5KD9ov8AaDtW3W3x28ZRk94/E92P5SVzXiHxH4h8W6xN4h8V69e6nqFxt+0X2oXTzTS7VCrudyWbCgAZPAAHat8LhKtGu6lRpt/53LpU6WHw8KFJWjBJJdklZL5IpUUUV6JQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/Z",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAorV8EeA/HHxM8UWvgj4b+DdV8Qa1e7/sWkaHp0t3dXGxGkfZFErO+1EZjgHCqSeAa9B/4YP8A24v+jNPiv/4bvU//AIxVxhOSuk2Jyit2eU0V6v8A8MHftx4z/wAMZ/Ff/wAN3qf/AMYpP+GEP24f+jNfit/4bvU//jFP2VX+V/cLnj3PKaK9W/4YP/bi/wCjNPit/wCG71P/AOMUf8MIftw/9Ga/Fb/w3ep//GKPZVf5X9wc0e55TRXq3/DCH7cJ6fsafFb/AMN3qf8A8Yo/4YP/AG4v+jNPiv8A+G71P/4xR7Gr/K/uDnj3PKaK9W/4YP8A24v+jNPiv/4bvU//AIxR/wAMH/txf9GafFf/AMN3qf8A8Yo9jV/lf3Bzw7nlNFerf8MH/txf9GafFf8A8N3qf/xiuU+J/wAB/jj8EvsP/C5/gz4r8I/2n5v9m/8ACT+Hbmw+1+Xs8zyvPRfM2+Ym7bnG9c4yKTp1Iq7TBSi3ozlKKKKgo+nv+CNXiDS/C3/BST4ca9rVz5NtB/bHmy7C23do96o4AJPJFfuvP+0J8Okljht7y6uBIwBkjtiFT3O7Bx9Aa/n5/wCCcd0bP9s3wbcruyv9o42nnnTrkV+ruleML6SRIvNk+9jk5rvwuYVMLTcI97/kYVaEasuZn1s/xo+HivHGPEAJcfw28mF9idvFTr8XvAJIjGvoWboAjcfpxXzHBfapMu43LDJHJrZ0q/MUJNzhmB6pXYs4qPdGf1OB9BwfFvwVdOsUWrHc5wA0LjH4kcVn6x8evA+jai+nTXTvsHM8a5Tdn7ueufwxXjcWtRKpBgPPQlRxWLq0ZnmLbFALZwelTUzetb3Slg6fU9w0n9pLwVqN2LOeKeDLEGY4Kfn15+ldVH8QPCcln9uXXYDHt3ZDc4+lfLsEeJdot+Bzkd63rbW5EiSJlwvQAHtTpZtWXxahLBwex9EDxx4X+ypenW7YRyfdZpMZ4z0PIpp8e+ExH5o8RWeB/wBNxXg99qdva2gYEnvj0rNu9fwvm7D/AJ+ldH9ru2xl9TR9S+Efi38FJ7G4tdctnnmht/lniu2jzJ85BIfCgf6tflzgAtgk4P5N/wDBzB4l0TxHP8GJNFvLaRY/+EjLR204cRg/2XjnJ9D+VfVFx4nvpHaONRyO4r4C/wCC4V492nwv8zG5f7bzj/twrkxOZe3w8oW3/wA0zSnhlTmpdj4GoooryDqPef8AgmTph1n9uDwTpoZR5n9pct040y6P9K/XWx+HFvaSCaW7ix3AFfk3/wAEno0l/b+8AxyJuB/tXII/6hV5X7MvYwGTm1DZ6AJUt2ZpCN0YSaPp0UQQ3KEDsp61bh0u1EYeKNCmMt+8x/OtOPSLINv/ALKUEHjI61bg0nTSY1a2jZhJxFJkIRgj5vxwevbvmlzGij0MSz0K6mJlUEofug9qW58LXkjcwkj610K2TWNobq8094VBwzEHbn60sdzZPGHhQMDzuGTkU1Ifs5LocvL4ZvIpMRW7EZ6hqmbQL4AZRMgdz0rYv9as7GRI5bVgHbG/GFGfU/p+NJcu7AmKE5x03HihT7EuNjJutJvHh2hSTjGAwrOutBuDF+/AQjoGI5rWnutXRv3dqSPXFU7qXUJGzNZsw9NmRQ5k8qMP/hFdULb0KEHqd1fA/wDwXH0qbTB8L/Ox8/8AbeMHPT7B/jX6HteagF2xWZ9srivz4/4Lq3NxOPhYLiMLt/tzGP8AuH0lK7sKUfdufn5RRRVmZ9B/8Er9XsdC/bz8B6rqMuyGI6mHYgnGdLu1HT3Ir9kx4/8AD7p5sWowFScAhq/Er9gbXtI8M/taeE9b13VrWxtITfeddXs6xxJusLhRuZuBkkAZ7kCv0oHx/wDhNbTtaWvxX8NFFAKka5bBcnn+/XnYzEzoVUkr6G1OVon0XL8Q9JhbaL+3PHQuB/M0+D4iaFKxDXlu2P7koJ/nXztp/wC0h8MGtmkvviV4Td9+GVdft1yB35c05f2nvgxFPuHxH8PEjgZ1u2x9fv1zRx0n0/MvnsfUA+LOh6h4cufC+p6mZ455EkRLfyk24Vh8zMdzYJ6Arnv0GKmv/FPwY2g2+nabY3Nu9lAkMrW4DicrxuAYkgkAdzz+VfOCfHP4G3l39tHxh8PhgQdg8S2ypgdsbs/rU15+0F8FlY3EvxT8Knc2FVfENuxbjrw/H41axlS1uU09tJdT1bxX440fUYH1DSPEt5DGYVi/s+dUVwQMfMVJVstzk44PQY5wND8a+M7Rkg0zUoJtmPMgaQMPoAxBx/u/nXnKfGn4HX1q6L8V/DcO85OfEduOh7/PUumfF/4PJvZPj14bikK4UR69a4X3y0mTUfXKyfwkupzPU9js/ilq0Npv13TII5hLtMaHaHXsQxJx+tTat8RtOgsVmtAXmYjMBPY/lmvH7j4rfAyRkmuvjV4WkaMDDN4ktiT9R5nNRyfHX4I2olTT/ix4Wdzgs51+2UE9sfPVRxFdrb8CHKPQ9jm+Ifh3zzZGd0KBSXfhec4AY8E8HIHI4zjIz8Df8F0NU8P6pH8K5NE1hLp1/tz7QqMD5Z/0DA4+h/Kvo8/tMfBnxH8P4/At38TfCFpFbarPdm+/tSIXUvmrEoiZjKVKIYiy4UEGaTJbKhfij/gqjrfw41uXwLL8PvG1nrGwamLsWmoRziL/AI9NpIQnbu+br12+xrtdSP1iEaesWld+dtV6XPPwWIx1alU+tUlBqTUbS5rw05ZPRWb6x1tbfU+RqKKK6zoCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//2Q==",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [47,41,65,55] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [50,60,72,73] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDq7vSdATXp9RkiSOwlXEMRdg3X5TwfT3rKvL2w1FZW0q4UCKIMxY+9WrLTbi91Gdr7cIYfkLxr1b0H61N4N+FWma+ktyt0wiltiCr5B+8MdPbd+Yr84k3UXM+h83ze0VzmNI8Vaf4d0a8uLouytO0nmRgHbuJOTk9B+lVrfxnba3qBwszclVZowBgfQ+9dVP4B0CwvH8LfZFMCOUmGSd6k4P14B/OsKexsG8Yi6gshClxfPIIP9hX549DziufmpXbZzylGMrkOo+KINEgW4hgLOzbSG9Dnnr7VEmvaG16bjUopMMSXJ7n8D9K6q98EaBPLJ4tuYzJG1usa2pQAJtZskYP0/M1yHiO10+81eGeKDy9iSMwUY3MxUfhwtcvPdcxhZz1RDrPi6SC2Wxtom+yr8yEqMg57evbr61V8P/Esb30/T97gS7ZgYxlSSc49eh/KmadDdeImm0xrUQBGcoshPKl0IORnspFOuNM0vw2xuLW1wI7lsqp6s2RuJ74yePenJKLVxKDT1N6+GoTyrfpcDiVIyD6MN3Axj60yz8Qtp99f2YLs0aRRwmNAQuIlx9cKKzvDevXmra5Do9sx2tKCGZBhWO3IJ65wAa6S6sLG1WbRbC2WOYwzo8+OQSi/MD1JCqw59RXox9i6astbHbDl5TS0zT9MvtEn1IXcluqMQT7YGT39cVj6+yahbxSpKXa4ZzDIxwdxH3jj1rU8PTWNr4Ou4NVnVmt7OQNGh+Z8mMLt6Z+bHWsdYHhkS3vUIkhg8pR/dII6/lW6TnBJ7FPVI0NR0uy1O0XzTIohhUIvriNF5P1SlsbTRE8L/wDCN2NmsbC3Te0hyrMoI6kk/wATfnWdr/ieexK6aYg8k1qzl8YCjb/Pms+K9uZfDM+p5BeCRNqkYBDbhg/98n9K5atKUpuEehnKLbsb2q67KJHiSfKS3P7tCDgk96fB4n1rStali0eYeRuCOSPxJ+tc7cmW7kjUzujM37rGckj0rU8MaXqb63d2VzDI8aXAUXD87gNpLY+n8q6fYVY2bRqqNSFnYvarq2psmqSWsUck88I2h/4gc4PUckEmsu9t73WEiLQEG003yOOBznPXr+FdBe3MKTW9wumLtaES3AVR8q7yuDxyBj9ay/E11dakok0G5WBA0YeADBKjrjHTPOaKlOUlYc4zl0Dw/rGqR3NtpLW0QXeqN6hcjJ64zjJrqrvQvDmjz/27fWivdeXvkeUFtmcggbe359a4nTXn0q+TU7oM20/cc9T9avfE3xdPqNnp6aVuw9uoneGY92PJ45rjeHnBcrIceRWKmteL75tRsrmw0wPawSqJWI5Chy2Qc47jisu60afxfai61VPItoA0gAHLsOdvfI4x+NUI/EM+i2F5JexyTQpGjGMucHLhc4/Kr8PxI0TVfCX2dR5KozmU+Zgou1QVH/fJP41108GpSUXuwjST+Ir+DYdHtry8bR9VgaNJlLrE4YwyBVwGx045x71a1rVLIa7dxX3iG0nvlt0kNtE+XAYDYWAJwCAfSvizx34t8e6T8UNcvPhl40v9N0zUbxZpYrS9ZRkIqEEdDwK9a/YxbxNr/jnxX8RvHmiXE7XlnaWthqF8dy3EaNJuCkjHykAe2frX0NXIa2EwbrTeltup2KhFUm0fR9ottqWh3Op2cT749yqsjDGdo57dM5/CuUTW7zSZIjq10GWU8M53EHH+z0/GmXWvXGkynTU1CSNH4kVJiAC3y5IHU9KS707RtO08SXD+fIgLCSR87ie+Dn1rw6eG55u5zU6PtJNMfP4tv7rxVaLbQRPbNBseQRtkKAAT19PatszW08peKTMawl5Wwcg5AFYuiSWEOn/bYpkby0CkgY3HHKk+9dJZWNmInMsiIJgrfc6DA+X6d676GDpxfPJvU9ChgqaV3c6TwHfaRrSLPfWFvHOjsEeVgWwFLcZA9KZokxstQa8aTzEZTvGcDODkk/TiuBsPGWq6S8Vppln5k/zncAPRiev+zx/nNWPDGs65q6PrE9wixqoRY1PcqDnGMdHxXPUjVlJRscjjWlJKzOm1nUopZLqS2uFVZIikSJJwACTx+JzWXp7/AGVTLf3BSMyRsZZOMAHkc9c1k2+rXVzfXdrLYOgtGEcRGP3jOVCkc9sjP171Y1G38Sz3Fro93Z7YHlcSEY+YIwBz6d+laLC7Js3hg605Wdx/i1tTuJpH0vm3Uo6SGbZkFSDx25H6iqLx6k+nCSdZlUYCM6nG3tj2rqbSS20bA1SHzYp7coERQeAw65x6VX1CAJFHYyAGCULHCg/hYHJJPXGCKrEYKEffcisVlzpe+5fLqcN4x1W30XRS+oRfJMo3FuMqDnOO4yP0rx74ueNzp1mmnaFMyCfJfGVIDYzj8+a+mE8N2N/bRafrFpDPsVlw2cYIPH5GvlL9pyfR4PjPqFpYMqQWnlJLGucJhFLfrmvXynCUqmLjO90twjh6e8ZXPPdSjt4LEyxIqO+7p1J5/rXrX7HfiO41nw3r/hjUdQVYrFY5rN5JOUZmcOgye2A3tvPrXz58T/GltZP9l0q9O1YixVFBI46816d/wTq8N6r4iOreOLO6km+yazCyW0jcECI7gR0IJIPOa+kz3E01lslpuaytCk7n0bf+BzcakILfxBtC3zzM6xZ8xSMhfvdB/StW20bSkvG/tTUVMTYDxYGWwOo59eapLJqlhera3mUmMbSLlR90ED+ZqFoNa1DU7O6lSRbWW6eIyhF52ld2P++gK/OHieWTaPKliYxloaS6dpUcko0q7xbxSl5Ii4IIByMjt0NL4g8XvpiOglje3ilKpKJAuQMgHd6V0Pjj4TJoyzX2iMWgbMbSLK3ySA85B645qLTvhjBqDrpV7KjxXEQEZJOdwALZ44HzrjHoeneXiZVVoxfWpVVy3sdFqvgaa1ia+F0HeST5l6Dn/wDVUSaAnh2DybicuBcP5zKOihAePfio9L8U3D6ebe61Dd94xLIMAuMf0NUHv2vLJdRvLssr5COxxkAZ/wAa74TnLVp6HuyznESVuRfcdDrR0nR9PuLjTcTNtZVaT5trsoXHGMEbRn3qlpkEc9uUYnMayPx/fL/ywDWBb+NdEttBm02SbzVmuzJIYuqr0z+QH61i+HtSvbrxCtzpcAdjMFhSQ9dxwM8ihzqTq6HBLGV6lW60fkdbqOtDUdIns9Nid5kuIbZ12ZyCJ2J9uQBWMI9T1C6SwupQDFKfMiRsAHAzn3xVxpb7TbCZriBVeSf5R1zITtA4PTk/40zwatveXN9qtxMFldR5K7wAz9xg89MVviqdSp7l7DxM60naUmVPEfhTxHo915em380lqtuHEjP90AHg/l+tfEX7Q3jU6P4z1a9nhMqz3kzBu+c4GfyFfoHrWp28dpE1vKG8yP8AeZU8DkZH418j/Hf4ZaPL8edAuLy3im0+fxFZ3NxDPGSs6NOgkRhjlcIRgep55FdmUTlQlPm7E4VyUlc+VlutL1iHzmSRUckspPbODX2T+wibD4dfB60a/t/Jk1FXuPLB2qAZDgn1JUKR9TXh/wAdvAGj2vjXU7rStHWBBqJiSOFQqPubnj1JyTjHJNdf4J8X69Z6TZ6LFP5cNpYpDENvICBVGfwFdGa1nXw/s0b4tqVOyPpFvE3/AAmOtmURbFjTao7leSD9ck1padf/ANkW8cBj3CKWR9ueTlieteSfDW61m48OteSWWEN6TuCH7q7Qe/qD+Vd/Ndana6hLYXFuirgA56jI5718rLDpaXPCnSt1O5s/irbXmn/ZLzKxO4kXzH+7nnj29qS71fTtXmnEF2rGwJSRU5J55P5nFcf4dg8G6prUOizRFfs9sXu3dsHPyhSOO5znr+Fd1o9n4N0jXb270uc7J3ZhJtJyMjHaueMVTqNGUHyyOGvJ7/Q9qXtxLPGzsY2lYhcnJwM56AY+grqbHSbq9uLa1ZTJo8cJDIy5YloiqbvQl8NzVDxXb6Nrlqul6IUndCTlpfmhyCCcevPeq+jXviTQbWMJdBLGZoIppJOMSRovzZPYn/0KvpuWEYN2PpJU6ajcoWPhCy8K2sWhzXbPM0rrPM/zMeRxgnJxk961/Ctlb+GtLmuNQEslzHE01rJFGSS6nhR69QR9Ki126tDfTvclXmt7uXc+/BB3ZwR2Iq5a69pMujxQzKhnLZjfzh09Md64VVUal7HE7KdzobDTNU1XSmfVbNY94UxyFcncfmDbcDBH161kW3h+YXEs8dunlm3KqNmCGGTkD8RXUz69YLo0EMNyvnIVEkeeVBUkZ/SuV1HxYulRxKZBudm+feB3JH6ED8K6HiHVfMVKo6upXt70+VDHc3GVjUx4kfhiMnv9elc7458L+H/Fmv6XrF5LAX06UNGpVW5HTnPGG5+orR1IY8OT6kJ1V47hWXJ554P/AKEPyrjtN0fUdW18vFM4Ik84naTkZyPwNbwjJRvc2hFqI/xZ8IvCfiq6nvr+wVo1uTOXjjAVW6jkcAjPWsy2+B3hDUJANKdUmb+J5c7h0x169Pyr0qHS5R4Xm0/O6ecklsYx6DFYOm+ApLadby5uGWcdUycKex49q5q9We1zGpUbViyLCy8PW0Wi6bb4jChmwfvHcSePfFLdajFc3dxd3WlFmUF923e0hwTjpyc8Ve1xNNsNJlv7u5P2xJF8lOgZMOT/AJ+lV9GurHUNPE3lKZDYtcMS/wBxcnr+Ax+NcGrm7nBJ3kzOfQfDhvlvpJxDPOu8o0oR9pIbGOuOnHtW7o5Flcx6bGjCKWRIlmdyQuSWJz34YHr0Aqw/gfSrm7tPESX3mutuuLdWBPIGT9B3rT+ITaPL4ssotCttxs0IkSAFhISqDII4/hz+NQ8Peo20RGkua5zWsmPwjqVpPFprJNfSkTq7H5gPx4/CtZdAg16WEWls7QzW3MBkbJcSM27GcD5do/CtTxjdw6hqSNBaozx28l0k6MPmIHyqeemSK3JJ/COnGC+0qWSTzodsccY2h5GTDclegJP5V6karkz0nN1JXPKPFbzW+o3wmyJZbqVpuOr5wfp0qLStI1bUGsprMAxpzJ7ZI2np7Gu0h+GlrrGq+RezOn7+WS4YkEsSVbbwPujPH16mtK/ngnaa58vyorcxxxqvZckHPvxXPV9ypzLqKo1DVdTI1CZrGP7Zd3KIkhRWJ7sFx6egNY3jI6Rdw6abABjOztvDHGMKMHnrk1y/xXHjHxV9p8PaPDKiqYXWRSNp+VQ4HPbc35d6h0e0urC9bRp7aVWifzpQYySoCqeo47r+dd1FRa1OqhT1LC62w0OXR3eRjLfqjZwRgsiqM9R83NbOg3ljpt9MxhfeIIEDLzx5Sk9T6k1g/DLw7ea7rUj3SGOSG6iki2cgksTyOT/CK6DTvhfLo0ENu00rtcIqucD5CABzx7/pW8uWKsdM+T4WbMuoSpb288LPi5dljCqC2QQO/HeovHWpy6DJGul20lxIAgnyBkkpuz17dKo6V8ONSh8aW8MupH7HICMnB2tjsP8A61XLvS7bREn02e4Y3M+0TKBwAGAYjjsPc814tWolUPHqNKbRVjsbvxHodrqWrRHa9sXKS/KxHOT8tXvBfh+0fStUhVQizWMUUBBJKRK5JXn1Bx/Wt2OHT9O0zUY5LkiLEbwsWBLlV56DkZZucdqwdA8cX+q66PM0seQoW0hmTPOEbJPPoR6daylVle6OSbak7F3Tb5RAIdPEhkjh8uIlRk5GP6VZ8NaVdNrc+p+IJGt4orcujlRkuCoA/Imp9dl8K+FtD0a003y1vm8uS+jAOSw8w8nGOr+vf61y+pePtP1y6j/sueKQzLu8sAls9sfhzWbxWJ5rX0MJTqM6TwDpltozNeanAb6KC+kjyXP+qYfKBnqB1/D1rofCcukaT4ft3v8AS3lttLnD21xt3fusqACOv3iR0zzXh+kfHTxBqDCKztFW1SRIQuCN3DZk6dBgf99dfX334O+OtJi8Lan4f8RaWvlTwxNaStEJC5BY5GRwuVXJHHFeq8O3HmPYVG0byM/w7ANT8X3WsyNItjLIXg+bG7BUBSOoyW2njsKg8VWun6Lqeq2qOBBbzOI9/Vly20/U4qC81W98NajPrNxJFsl+eG1WUBAVcOcDoM4AxisLxe134s8YXdut5teO6KBQ2Vmyx2NjPAIwR14NYypqyRhKnfYkuo5IhO9vbhpEd1jVV+9hiBn8BWH4htRZS3WvpO/763kQEnjjZn34yo/Guo8UeIU0W7uINJii3vLLF5wAGNshUkAepXPXvXCeKNdk1jTrq3ggZEinmRGilyAXjB5wO2wcepzXXS5r2N6Daeppfs86k9xcXOsXFtGgMzJEVH3mOQvuOMmu0l1Gxv45LexaUq7xESupBIOdxFcr8KLTSNKtJDb3IWFoeqYb94VxuGO4Jz61v+ML8WUi39nGwtYbLhY+ApZflOB06de1cmIUpPQVdqU04sXUbOOxWWSK5kO0lkkJ5CgsAfxyKq3eiWd1oFpqscu+5uoHlRnkGWAyR16ZUZ/CqmleIk1Kxjd/3zMMPD5+5sbwAOnfJx9KXUdT0TVJYvDlpbLBNGR9nU4ZmQ/uyq8DIG/OB/dx9OONOpe0kcqjUk3dHnmseLfFGpeMhoErSCBFe3fyhgKRv79Bg12un+FbPQ9CtAmrlZBbiS62yElpPbH4fga6CPwtoOmyNo80SbpI5ptQuyAMTFizc+mG454C47Vy9rq/gmwSW7WVpjBp6hIy4ZfMLRgIPfDH34ruhQTijphSUlqczeHxF4v1TU10aQzG1lzGHVgAjyKBzx/CwNdR8K/CGmeE9Yu9V1vRnjEKwnR4jFvMk5K7gTggLnd1I4NdBaanpGl5GlWUKxzxEPdW6hSdgGMgDk9MDPGBXYWXxJ8PeIfBkXhq00CFZ4JGmOqFzuIBAxyMDB9+taydOnG3U0SoqFrn/9k=",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK9P/AGNPgp4Z/aK/aU8NfBrxhdanDp+tNdrNJozRrcho7SaZApkVlUF41BJU4Uk15hX0b/wSXu9Lsf2//As+taiLS1MGspNdNMiLEG0e9Xcxd0XaCRkFgCMjvWlGMZVYp7Nombag2j611T/giF+zdp32dYPHfj65EpjeSZb22RFRztUZNiU3llbAL9D/ALI3ppX/AARS/ZT1K8S0T4k+OD58m2CT+3tOWPPygKXa025YtkcgYIOTwD9r3em+Gdav4LK21rym1aJbm21IzoGu7KVIS03mDO4uJ0Y7FwvVt3LVb0TwmbnRIUttMmmurSyWPUJni+1LfXAkaWW83hgYVAeNUEYKIjEE7yXf1ZYbDcrex50cRVUtT4n1D/giB+y/pEZg1Lxf8RluRHyh1axTL5OAM2RB+VS2Afp0OMnW/wDgjL+yzZ6YbjSPGnxGuLkOF8mW/s0XkrgZ+xE9CTyF4AJwDkfcPjLxJ4X+H1hb6p8R9e0zw/FdoyP/AG0EjdkUpI/k+Y5ORtTAQh9vGSGG7kPDXx8/ZU+Jfg3W/E1v8UdGXS/DyRjUTqNmLV4ZJY2aCJEmC+a7fZ5CsURk3GN9oYt83n1FSSsjrjKclc+Nbz/gjx8ALOFbl/Efj7ymQMZW1GzAj+8cH/RMH7uPlJ67ugpJP+CPv7OjWs13Z+NPGsrCOR47ddZsfk+U+Woka1USfNgE4Td2Azx9CeFv2vvgfrWrp8PLTSfM1TU/Gg0TSLKESQ77SeYKt9JLcW6LDgHJgyWyAM/MwHuHiDw54YuHura20z7LaS3skllZAES2abyQm5slwAT1KknBPQiuOpWjS0ktTT3lufAw/wCCQ37O1vGf7Q8X+OUcAn/kJ2QGRnjm1yecfyxXM+Lf+Caf7KPgVYpPEvxK8YRmVt6wLe25cxhsHO2zbZnBAYjHOcEDDfeHijSNJ0FbzVbyVLWwit3Vr3VJkiEJdtm8liOobADZGWPGSCPzz8f+LfGHiXxTewagzTaudT8iCC3lSRrqTJVfKRDmRDtAygKjKAdVzeHcK6bd7f11BN33G2f7Cn7Fl3dXEQ+NfidYYo1eO5luYIkcltpjHmWq5YZDE8Da3G4qRXzd+1V8I9A+BXx6134W+FtTlvNP00WrWtzPeRzu6zWsM/zPGqqSDIRwoxjB5Br3HRPHGr6H4tjsfEWj3VlMAVewvw8JjL/uyxVsEc/ntxXjn7ZujeI/D37S3ifRfF/wxuvBmqW8lqt/4YvdMubKWwl+yQlkaC5JljJPzYbj5vlCrhQ5RUZaPQ0urJW1PL6KKKQBX0Z/wSY0fTdf/wCCgfgDRtWuIIYbgasnnXMYdIn/ALJvNjkFW6NtPTIxkEHkfOdfQv8AwSp8Y6R4B/b68AeK9ckCQW0mpKrtKECSyaZdxxMWKttAkdCTgkAEjmlKXKnK17Ez0gz90Phx8GPAugwaRqun+B7cX1tay2VrqVrpVqrW8BRB5YkKAxwHMeYw3yqszl03Bxyv7X2tax8HvgV4m+I3wv8ADkT6okZcQW0DloI98RnaJiPlEaeaysDu2hjlMANF4g/aWfwv8JLjUtA0yzOlz6i62k+opKjQR7TMqyBoJEjlk8lFZnG2I3WxmO3a9T4y/tI2/hX4U3F3DpM95o6Sb5Wt4C9tNcqSojtZAFLlsn94uEZQMn5eE60qeq6Wdtfl+RhGhOrZvX7j8vLLVfH3xz+Jo0OWe/jtbq/Zr+7eTc0QILSOQT1Y4BfBALD2Bn+IL6f4Kuf7A8NLsVGO67DfNJzgAe3A56k5JJr6K/aU+GOs+GfhfZfFjSItG0KW68RC0k1DRvLhafETzKFkhCMvmR4LM6AlztZwY3A+YPFnwu8WnxSdH0PxPd+IbJnKNfvZeXhwxAwodzgjBGcMTu4wAzd6xEYUrz3evyNVG706G5+yn4tvPDn7R/hfxjeaFDqdjaa0kF4bjBWBJUkQzgH+ONd0iHH30XuQD+iHxl+LmkeGPhDqnjXw9Akzx6PMdKhFu8iz3BXESeWoXzFaQKhIxkBumCa+IPgR8GL/AMLaXbXeqRyNdxpJPdLIqYjfHX7wx93rkEbc4wc175onjrXbqym0q1FlFNqd0UtxNbrJJME++6FDKcqsJfcdu5AcbcuD5FeccRVUu34mvI0rHyZ8QvGH7R/xEawHiu71SdGt2exfVppZFUsE3AIm9YWY7TtIXG5ei4xn6FrT/DDxVZ2snii4mvvJm+1lZyttDOyBm2DA/uIhbq3bGdteqftZeNvEXhNtFuLnUllW9tntI2dYopbaS22RvHNCjNiXLiQNIqTBmKt90ivJfBf7Pfxu+L3gfxP8bPh/BDFpfhe3SPVnudet7NghVpgmyaVDM8gtnZI0DuxhIC5IDd31mnCheo7fhYiSUVduyPoX9lLWPFtl8db7X7Dx1GJtS8HNZeIry818aO89m15au9v5sVtdEb7lYFACqZFLJ/y22V8Of8FGF8KJ+2d42i8F+H4tKskns0k02FpGW2uRY24uY8yIhOJxKMhVUn7ihdor61/Yj+EGrfF3xFYXni34S3HiKfQtXs7jxDIbG5t/7D0hLy3Mt5FfR6naxR3EsN1cgLJHOYxYFwACzL8jf8FB5dMuv2tPEeo6Pq/iO+tr3T9Hu47jxZdGfUP32k2cpSWUxx+btLlFcIAyKpGQQT5/tsNVzKXsl0/y/rVemjOSnP8A21w8tfw+/wBbbbHi9FFFdh2hXt3/AATm8FX3xB/bF8KeGNN1G3tJ2ttWuY5rqIumYNLu59pCkEFvK2hhnaWB2tjafEa9K/ZB+LvhT4D/ALRHh/4r+N11M6bpK3hnGj2cVxcbpLOeGMrHLJGjDfIm4Fx8u7GTgHOrGUqUoxdm07Pe3nYUk3FpH7V3Ol6RqHhrSvCfjQvdHRpLU3L7/L88pvUF5iERgfLkwUPComBtyRyfi3xL4K1vwnaQ63qjahpdq39oaHbTSyTy6zdSj91BbEP5kkbNIvCK0bGRG3BYTu+XfB3/AAV8/ZJtvF1h4n8afDzx9L5McUc8NhpGnbECNG5fBuVeckodqvIqoSGUBtzNr6h/wWd/Y4l1VtTs/hP8Qw4LtDJJBaFgzLOrZL3jsN6NEj/NhlUZB2YkhQcJc27dr9CouUkovQ+sfD/gi7+I7xzeNvCVlHcyW1kksdzbjUpbFJY33vEYmLAmY7WkIV1MNyUEzyHPmus/DbRb7xPcwaduFrYXUsdxqMVyJXmbYSsbRi3EaKwyPPd0+6BsQgmX53+J/wDwV5/ZR8U6vdJ4G+EXjDRtLkg2+QbGzLTqVKPbhVuQtsuzaqSrvaPYvyvg7tvw7/wWh/ZJ8PLpF7cfA/xFqmo6fJb20N7e+H7NXsrMAq+xlvszFUZwkZ8sbmB8xQuxsqsKkmbQ9nFaHrVtbaFe6H9k03SbjU47iCe8g1nSbLz4L+0EZniaIsw3vLFtjMf3w7fKGTLLoyHRvCkIh1Xw3/a+n2FrHOVs7eOG2iVJCm0zO0hkcBF/eOcMu9ghKsT8zX//AAVQ/ZabVX17SdC+Jy3t/ey3OsTXoil86Vi22RFXUEjDeWsUbFkZmV3y+Vy8+rf8FgvgxLDp2i6T4X8VppOiaWtvpNifD1hEsDC58wJCEucWyL5k8qn9585wUZnMyx7OotEgjyJntnxO+FXhjxN9lsvCml6rshja7givtPdLOxhECgXMBlMaqyK8aAKDlY943Nhj7t+yv4Q8JfCz4UWh+EOkXI8X2lpPNdQ6ebZ724ee2tg889pvaS5tkUMqQSQSCJpJzDIQ5mPwGv8AwV68JaZNp8vhPSfE+kjSbZ00qGx060jhs2IIXyohNsQAFlDAblWQgEYUjr/Cn/Baz4TeFL+6v9N8M+LbWXULfdfXGm6cbeS5uvJthuuCNVJuYvNSdmiJQP5jM2WcGLysyw+MxFHkjB/f+DOHN6brYZ0qavs9H+D8v6sfTnxK/ZI+Iem+IdS/aO1D4j6VJqh1ATCw068iiVlZJHn+xIPPkjmDhI/NlYSSGZ1mWPkTfmP/AMFY77+0v2/vHl4niy012J00kW+rWW3y7iEaTZiM5VmBYIFDHJJYMTyTX1N4u/4Li/Bq41iPxt4Q+DGprr1rdQTw3N1pUVqLiaKOT97K1peoR5kjxExqu1WtxICd6xw/Cv7WXx7vf2nPj7rnxv1GBo59Zislm326RM7QWcFsXKRkqpbydxxxlq0ymlj4Vb142STXTysvwZwYCGO9opYhbJrt20/A85ooor6A9YKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD//Z",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [56,22,76,68] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [36,43,54,66] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAor374Ef8ABLz9ur9pn4e6f8Vfgh8C21vQNUEhsdRHiTTLcSbJ5IGys9yjriSGRfmA+7noQTr3X/BIH/govZzLBcfs4zBniEkYXxNpTb1O37uLr5j868DJ59jTScnZbnO8XhYycXUjdeaPmqivdh/wTP8A23m0661ZPgbK1vaTTxSyrr2nkNJC5SVI8XGZWUhiQm4hVZvuqSOCn/Zr+NtprjeGL3wLJb6ikrRSWFzewRzI6sUZSjSAghhg5HHHqKv2VV/Zf3Fwr0J/DJP0aOGor0LUP2Vfj/pkJnuvh1MUVgpMF7by/MQCFGyQ5bDD5evIGOayfiJ8C/iz8JtC0nxJ8R/BVzpFprs1zFpTXckYedoBCZf3YYuqgTxYZgA275SdrYlwnFXaLU4Sdkzk6KKKkoKKKKACiiigAooooA/fX/gjJaaZ4c/4Jh/C/wAT6ro081lqFpro1e+SJ5DbJb67em2CqG5yZLs8A8BwQCQ6e8fGrxUy/DPVbG38Uy6VDpiXxmeK3VtRS0jhZZ3WSR5BmON5GUK2z9wimRQZCnyn/wAEivA3ju//AOCevwn8XaX4nafTdNk1m5g8OWkkiNLcNq1/C8s3ms6yRiINiOFF3FslS67m2/2mPEXin4waTH4Evvh1Z2mqanrF3Z21loqiCV0kZIoUKuUjyWeUxq+4s+GkXdGC3rywdajGE5xaTSadt76q3fS3XQ8LD4ahi8XVbaaTeiet+t+q19Bni39tD4T21zefBr4efBfWNcktnv7+TxCmrRRWMEUtxNM1wklvLcRSyPyhlSR4pgGdVwwUQeFfFfhDWZ18RT/D/So28Qhbfw5pFldqbqK8a1ysxuMYXEIV3l2AvsZmGQK+bfB3hv44+AfFHiDwR8Mdbu7PTNR01bbXNTv7OKKZ32FQiSRCRY5GSUAohxkr3zX018HfgNp+jeE9H+KHxV8dJq8fh3xDNEstn4sRoLho7R5IbmAxAtKYobuGKTzXCxRxSxlvMkQW3TWx+X4Gk5Qp3k/19f0PQoZbWqSVOLUYrtp/w50uueC/BmoWVvaaj4Es4Zr+waaRYrT+0JZFdA4EeyLzHEaIoJaNvMHyLmNlkX87/wDgtv4Q1DwdqfgDSdT062iuLW81+zuZ7G6MsMssclmSpPKCVUeNXCNj7vyqMFv201Vvio/w5TxdrEGoRW2hWSi58m0ttYi102dzFPfukVnLbsZI7repVxFEFEkRYCZDF+Zv/B0rYeGrKw+BCeHteS82T+KongS2tYxaIBo7xptt/uK4kM8cZCeXDPCmwMHkl+UjnFSvWVGS+K/4anu1cthRouqun/DH5HUUUV1nnhRRRQAUUUUAFFFFAH2/+wl/wV91L9j34RaL8IdU0TU9b0nTJbln05baBVQS3Mkx8mbcGUkvzvWQckAL1P1Dq/8AwX4/YX8ZMg+IHwL+IOoNDD5UN2mj2CTqrBd4VxfblBKj5dxBCjPpX4/0V9HR4pzalhFhW4ygkklKKdktLf8AA2PIqZJgZ4h10nGTd7ptav0P1Ok/4LW/sVeGfF+leJvDHwr+JuvWtpqgu7nTPEFnpkDlgnyFblZ52QCSO3ZkiWIyLHtaToa09H/4ODPg54U8P2ngnwJ4F8X6Jocck4vLWDw/YyzTynTE0+LUPOa8BW5CCSRgoAMj5LsvyV+T1FfO4pU8XV56kF+h7VCrVw8OWMn89z9e/Cf/AAcJ/s7Hwtr1v47T4zLquo+HoNPtDolrYwWvmw+a0NxJHFfwr50bmBVl2ttihKokbtFLb/H/APwVZ/4KGfCb9vfUfBt38Lfhprnh4eG59XfUZNbmt5Gv3u3tisy+UMxEiAlodxijLfugoLZ+RKKwWHoqamlqjWeKrTg4N6MKKKK2OcKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//2Q==",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAor0T4E/AGb44aZ4ju7LxHJZT+Hra3uXgXT/OEsDyGN3LeYvl7CY+WGw7sFlbYr/Q3xQ/4JL6T8PLHwv4g0/8Aai0/V9H8UeFb/V4dTj8OeQttNb6Wt8lo6yXIw8jt5IJIxjcAxISupYLFOhGty+7J2Tut7N2+6L37ehi69JVHC+q1/L/NHxrRX2J8Yf8AgkF8QPg7+yNZ/tS6r8RnuvtPig6XPpKeHvKhgg3XCR3ZuJLgNske3KrmEL82C6sNh9Z/Z1/4N+bj9pvwNo3xH+Hf7Ul0NO1fUzELG6+H6jUIrQSlHuTEuotH8itDI2ZVjAaVRK0kMkY5KrVGhKtP4U7PrrtstTVu0lHq/I/OKivuH4//APBFjxV8HfG3h/wd4e+Lmpao/iCx1maL+2vBQ0u4tptPsVu3t5bc3kskcjJJFywChZkYM/zKvV3v/Bvz8QrD4Z23iKL9pbw9qfi+6imKeAdGsoXvIZFZVjjlkuLuFELGa3kZBukiimVmj3tHFJlDEUKlNTUlZ7dOtuvmTKpCO7Pzzor76h/4IZ654V8OaLr/AMX/AIyeJbB9enlitLTwv8L21JbfYzJuuLq4vrSziVnX5cTsWT94AVZC6fDv/gkT+yZ8RoNSvLP/AIKJ65p9vam2lsrrUvgZOkM9q9tbyzzyzLqTRW/kyTPCyM5JaIEf6xRVymkrpNryTf5JmUsVQju/wf8AkfA1Ffpzp/8Awb0fDLVbKbxFpP7flzfaJJE8mi6ppvwla6GqIjOsrRLFqbA7GjcEBiSduAckj87fjb8O4fhD8Z/F3wmt9Xn1CPwv4nv9IS/ubH7LJci2uZIRK8O9/JZtm4x722k43NjJiniKVWTjG913TX5pDpYmjXk1B3a8mvzOYooorY3CiiigD65/4JX6lpP2T4o+DNT8IaVq0nifw3Dpdh/aDtA9pdOtw0E8dysqGLZMsTsgDGZVMf3Syt9veBNVvYvgv4N+AetfGLwfq0Gi6xe30GkeJNI/tDT4pxb6lawpJ50KoDNHc+YhLyxbnBD2ksSxzfH/APwR0XVzc/EOfw/pjXl/AujSWVuunSXHmSmW4jVWKsBEGMm0OQT5jRKoLMAfruLSLyaW20/U1ljstY1PLK9tsuLmQc4S8eCNCY4riOVgCgI7oHhkrX67Olh3Q6N3807Wun0OvD4OM5Kr12/4c3/iPN4m1H4L6v8ABpPAukavY3OnaZp/h7xyXj0+50aaZGlMu9vMubmB/Ke2kDRvutZCkss8nltJ6Z8APH/gH4dx3/gjxvrXgyeOLx7rWsaHoesXljez6dJcvbIIjbb12GGdrweZHEVLRRyb5447TZ5jD/wldx4MuNZvtQvLq0S3lu5l0d8RLGZVVbqRxIgCh7offBIkmjU8uoXAvhrF+by/0GxutXkt7Rp5dGt7y6lEyRwmS4LbdrQgtGcheBKZADgrGeOdeVak6bejd++un+X5ndPCc0lPqtFdf13O1+Nd/e+M/ix8K9Q8Crb3dzo+sX9mdJ03X5b2KK3vp9LtolMcjSLFNJ9rmjkBllQmJYvmWAvL3X7ZX7WekfB2ztvFuu+D10/RNUPm3epaBptvHLfzxy+bZ2BusbmiIDSLKWZog0xWIyi2ki+a9M+EfhuS8ufEOupBcapYSxSG9AZJdwMciltrMygOrup81XLRs3znDDi/2rdFtPFHw10jWfGvjjU7pPBe7+xdEv8AWJHsHaRc7RHmTbLN5ESgptaQbATLtBXPD4WiqlK7uo3/ABbfT1PJqZe7Nta3v2Pc/C3/AAUZ+Ffiv4WeJ5vhfBdaf4sufDOpizt55IVto5JY4gkhhfaZ7hI48FolZXbdIwjUFW9cTxl8ENV0A6lF4H8PW2swafPd6Lrd3ogiaCSDzWS7NsyzfZIYcG2j4RpnGACDcSv+Rw8U6DpGox3+u6PfWAu7ppp7Sa0MckUYbBiiZ8jjBUEqccZHFen+Bvix4IiuLKHVvF84SXUY1lldX3LiQiOedQ22VQh+dGJOCQDjgerVymNRXoVHHrY8fEwxFR+7Jo+89c8G6T8Pra3vvBXi200mfV47az0+7+2lrwNOzTtPe3o2X6MyhYlt4bgQqSrnIabP4zftWW09n+1F8SbO6kV5YvH2sJI6XTThmF7MCRI3zSDP8Z5bqetfrDJ4Z1Xxn4Ai+G2l/EFdSspbC33G5mtp2vrNJ2CKzIySs0gt4TBtdgAsbYA2yN+Rvx+0geH/AI7eNdBVJVFj4t1K3CzqQ42XUi4YNyDxyDzmuGHtY+7OfNbua4GnKF23c5KiiitD0AooooA/RT/ggppenatpHxjW5v7dLmxg0W/sobmxlulZootU3SGJEO0IrsTOHSSBS0q5CuV/Vbwz8Jvh62o2F34AWTU4YLzTrZ2igsAjpEojukeWVnicARy7o4ZY0c+cJcyR7ZfzR/4NwLjRo2+M9hrUMkUGow+H7a71HaZIre2U6jcypNG8UkBjf7OoJl25KrGjKZS6fsefGHjzwtqWteKPEeq2GoaPqJZdPu724ksofOmvLSTyGMtizRF4L0hJPtDREjckSDmP4XPsZiaeOlCD0VtNt0j7XJKNKWCi3vr+bPLdd/YU+GlrpV7caP8AEDSbjR9Nv59R0NZdWuLe8tLqRiXZLuWGbzLeREtI3YDYFxgSb0Mvzn8Q/Alh4f1LxNYa1Jc3txDZnX9Q1a10611a0a1eezt5LlpY5mn8+JvNh8u7V98scTSSRFhj6/1WDQPCXwidtHOvaA02jXOp3WoaVpSTDULSK5e7aJJJrfMM0FskczxeTEsMhiSDILonjXxz+OPwe+GviXRNK+I/xt8cX+oz6hFearFrdnZrqejRMtjJE8mnQ29tIzvby3qE3aRSyhmEYmi3CfjyvH4t4jlbcnrpv+lvxPRxVGkqV0ref9f5HyX8Q9atvM1rX7hJIP7cvryWLSn1yVZpLRTKbcSLLbSR3aSyPDFE/mTMjRSNKMsHPzl8XtD13xTNHr0tvPAtteLFFb2AZXj1IbnfKRkOhUcZVVVRHnYrO1fcHxJ0vwb8YbTVPiRr3ia00zw/c6nc3iWbeJLdr+5smkuAlnBbmylcS5M8vlfaVRTKikqJLdm+WviVa6rY6/NosS6Vp93BaPEuo6YBHFqNzZzmYyW4igRrWUKIAzMke8wh3cmQ7vu8LW59z5XE0rNo+cPEXhzX5PEsmmeJp1vLbTryUrDqtqrKWWNwEZQV+YgkjntntWP4Y+HCaV4si+Ilve2v2Oy1WBotDvVlkkcvcRRRKuIikoDSFmWTywVhdcliFPp/ifR9TtrC102bw8xVNSgeaVbOWFkWWASRRAyKiCMpJuQhHJIJVgGcslpb6BfXEdze6PczwQmQzStdM0rTCJysiB2j6vtznbsEfRmyT6sKs47HlVKSe6PYPg5+0HdeGdJ/4QLXLKC00KCxmuJbG+limFsLdAF+zO3+oTMsg5OXV9qhsKtfmj8SNUutc+Imv63fBRNea1dTzBAQoZ5mY4yTxk19qm2aS4aM27oI0QwxNAW8yLfkBgyhSpK4wQMHbjjp8XfFTyf+Fn+JPs6xLH/b155awKAgXz3xtAJAHoAcYrOryyXNbVnN7JQldGDRRRWJQUUUUAe4fshft8fF79i/w1438JfDXwt4Z1Sx8f21nb69F4itLmQiO2M5QRGC4hK5+0PnOei4xjn6N03/AIOLf2yLW7gvNU+DPwt1NrK8e40tb6314DTjI0TzJbiLVk8iOR4QzomAd7rwjFK+AqK5KuBwlablOCbZ1UsbiqMeWE2kfoTJ/wAHKP7dkMMsfh/4YfCnRHmjijmm0LQtStGljjklkWNxHqAWVN0z/K4YY+X7pZTjfEP/AIOFv20viXDcafr3gLwNDp15bR295pFjeeIorOeNDbFcw/2uVDD7MMOAGBkZwQ6xvH8H0VzrJsrU1NUlddeps81zFqzqux9N33/BVv8AaJv9Gj0p/CPhCOaJpEj1CC0vo5ktZC5ls0C3flxW7tJKWREUnzWGcbQKPhz/AIKa/Gjw58S7n4oW/wAM/AEl1c6oNQawTRbi2toZxOk++AWtzE9sd0aKDC6EIuwEKzBvnKiu+NKnHZHM8TXlvI9n8bft2/G/4ixWcXjKHRr06fYGzsJZbOTzIImnluJAr+Zu+eWeR2yTkt7Csi3/AGsviNbTyzxaLog82bzGiS1lSJTlz8qLKFUfP2AxtGP4s+X0VrzSSMnOT3Z7Cf23Pi21mLNtG8PkfIC/2CTJCxhMEebt5wrE4zuUEEZYHyvxJr194p8RX/ifUwgudSvZbq4Eedu+Ry7YyScZJ6kn3qlRQ22JtsKKKKQgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/9k=",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [44,49,63,63] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [43,35,65,56] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+ivTv8Ahif9sz/o0f4nf+EFqP8A8Zo/4Ym/bNPT9kf4nf8AhA6j/wDGaAPMaK9O/wCGJf2zf+jRvif/AOEDqP8A8ZpR+xH+2gen7InxP/8ACB1H/wCM0AeYUV6MP2Pv2tjq/wDwj4/Zb+I32/yfO+xf8IRf+d5ecb9nlbtueM4xVk/sSftnDr+yL8Tx9fAOo/8AxmgDzCivT/8AhiT9s7/o0X4n/wDhA6j/APGaUfsRftoEZH7IfxQ/8IDUf/jNAHl9Fenn9iP9s8cH9kT4nj6+AdR/+M0v/DEH7aR6fshfFD/wgNR/+M0AeX0V6h/wxB+2l/0aF8Uf/CA1H/4zR/wxB+2l/wBGhfFH/wAIDUf/AIzQB5fRXUfEn4H/ABp+DX2L/hb/AMIPFHhT+0vM/s7/AISXw/c2P2ry9vmeX56Lv2703bc43rnqK5egD+k/w78S/Avixgnh7xjp9zIRnyUuVEg+qH5h+VbyyMMZOa5LW/APhbxOEfXPD9rPJGT5crR4dCQQSrDBB56g1lt4C8YaFGn/AAgvxKvbFYUKpZ6nAt7bvzwDuKyL9Q/anZg7HoolYjIAonv4LSB7m6nEUUaFpZGOAqgZJPsBXBw+OfihoVvnxN8Oo9UCsM3Hhu+UnbxkmKfYcjnhWbOOOtcz8X/jh4f8S+FYPhr4dvbjTtZ8T3i6a9vrFvJYy2lu+fOmIlQAjYGC4OGLDBPGUBv/AAFjHi7Uda+Ol0rBteuDDpSMPuWMRIQgjghiC2fpXoU9yZSIvs5cMeTnp71T0bT9N0TR7TRNIVVtrS3SK3VCMBFUAdParP2gRjJz75oAswIu0Krnp/EanhJ8vB/SqNvIsjF1OV9qtROEPyscdxigB8gy2/YTjtipI5ARkZxUZmU5B4HrQhRVBElAFjcPWjPGf51F5i4Jz0pyyBhxjFPcD8wP+Dkcg/8ACmcH/oYv/cZX5e1+oP8Awcj/APNGf+5i/wDcZX5fUgP6W8bh1601/L+47EemKAcGgqGGQO/etBICkYjMjTYCjJzXlnwl8J+H/jJ448VfFbxXoNpqOmzzHStHhvrdZU8mE4dwHB2kvkcehrb/AGgvFWqeGvhzLp3h3cdW1y5j0zSlHeaY7c9DgBdxzg4rtPAng2w8BeB9M8GafjytPtUj3gYLsB8zH3JyfxqZaspaI5qT4FW+jv5nwz8ba14ZwBttrW5+0WmB28ifco+q7TjjNWTcfG7wzCw1PSdI8TwL/wAtdOkayuivOSYpN0bH6SLn0FdmrOq4xSAys2cHNSI4qy+O/gmykWw8WC98MTscCPxDZtbIT6CY5iY+wc9q7bTtTsdVtkvNPvYbiJxlJYJAysPUEdaq3ltDfQva3trFMjqQ0c0YZWHpg1wd78APBENzJfeEW1Dw1dPJ5hl8P3z2ys+CMtGvyN9CpFLUeh6fnjBzSqyjgkV5laWvx/8AC0qxaZ4w0bxPapGxaHW7VrO5Y54UTQhk6dzH1PSrVv8AGv8AsuMj4m/D7W/DzKQHuxbG9sz7ie33BVHcuEx3phZnom4YzT4JVySxPPrWJ4W8aeEfGFp9u8KeKLDUoMkeZZXaSgEdQdpOCO47VrK69VFNCPzK/wCDkMgj4Mkf9TF/7jK/L+v08/4OPZN4+DQ9P+Ei/wDcZX5h0mB/SvuOPc0oyTtyKaOOpHFYfxJ8ZW3w/wDBGpeL7sj/AES1ZokJ+9JjCL+LEVo3ZBa5x+nLP8Tv2lZruVN+j+A7QxrnJV9RmAyR2yiZB4yDXrazvcBgUOB2rg/2a/A1/wCCPhZbSeIUdtX1meTUtXeVcM08zbsH/dG1fwrvVHlk9ge9ZK9rsb3G28kzMU8oqoxgg1aX5lzvHH51BLN5SbwPrzUMN4hy0jnDdF9KYi06Bj1+uKqtfQR6hHpuwmV0ZwARwqkAk/iRWH4m8c2Pha8ll1vWLOy0+DT2uZru7uBGsYDYJZmICjBByfX8/lzTv+CoH7OvhDVLjxDrF/r3iDXdUcpPbaRZAQ2cSOwjhUzvGuMEsXXO4knPQBOSjuawpTnsj6/ubaaWQsoA+lU1E0ku1mIwa8Q/Zp/b48IftCeJW8Kf8I0dKu3Y/ZFN8JjIAO+EG38yB0zXvSWbLJ5rNyemO1Z0q1Osm4O9tB1aNShPlmrHNa78KPAfiy6/tTWvC9qbxW+XUbdDBcr9Joisg/BqoTfD34qeH5nufAPxgvPJIwml+I7Vb6FPTZICky8Ej5ncdOOOfQI2ATy3U8e1O+zK2G/nWuxlc/Kv/gv/AKv491A/Ca18deHrC0e3/t77Pc6dfNLHcA/2du+V0VkIwODn73BODX5y1+m//BxpEIz8HMd/+Eh/9xlfmRQI/pWCMcBjya82+JSR/Ez4teHvg3G5a1sT/bWvgDgxRnbFGeD95yOvYGvQr2/tdI0+fVb+cJBbQtJM56BVBJP5CuG/ZdsrnxJa658dNXhZbnxdeg2CyLgxWMWUhUZ5wfmb3yDVS1VhrQ9Rl2uyKh2hTwBUd8ykDg8HtUzq27cX69qgM1uCQ2Qe+RUiESfzASVyoGeT1rL1m5EcRntmCtgkK7bQfxwcVqW00MuQqkAcAHvVS70OO6DlXG9gdoIHFA1bqfl3+3N4r+Pfx6+ImpWs+mXOlWFpq62Wh6DFIxlu9pdPOdFyGfGWYglVU9cAsfJvhx+yR8X/ABrq0B1fztKsWujDe6hcWrsLfbgtuVQT374HByR1r9X9Y+CYv/FlnrY0xNllDMq7UXlpCvt6Kc/h71bsvgB4dur06vcWT2dznme0laJ2/wB7aQH+jZFZ8snc6Y1YxSPN/wBiT9nf9n74O6csHw/8R2Wu62yD7fqUt3FLck4wQFUkxLnPy9exJr6RgtoS29cEgdRWTpvgTQLfTxY6hp0F78u2R7m3Ri4/2hjB/LHtWxY2Nlptqllp9pHBDGoWOKJAqqB0AA4Aq6cIxWiMalSVSV2ShQvQU5cA4OKAcdhTNg379x6YxVNGZ+Y//Bx1j/izYA/6GL/3GV+Ytfp1/wAHHP8AzRv/ALmH/wBxlfmLSA/oI/aX1S91fR9H+DmhzlL7xjqaWcjJgtFaL808n0Cjn2Jr1jRtH0zwtodn4e0m1WG1srZILeJAMIiKFUfkBzXk/wAIIV+Jnx28Q/F6fMmn6JGdF0BjnaSMNcSDs2WwAeeMj1r2NsSMGNPd3DVCffXpjPSo2t+ct0FWAqDo1NYgc5zRuBEljGsglAIx2FSPBEQGI57Gh5CSFVSe1OXI+Uk8nvRoAqoAAc9qUbWGAfyp2F2/0pqqFGBQtgFUlehpwf1phUn+L9KUU0A7zMnaBz2pN5U4Y0DKc4pHUnrQ7gfmR/wccEH/AIU3g/8AQw/+4yvzGr9OP+DjYk/8Kcyf+hh/9xlfmPUgfq78Jf8AguL+xh8Mfh3pngmP4cfEl5LO3H2qaLRdPxLMx3SPzfZ5Yk810q/8HA37GqjB+GnxN/8ABNp3/wAn1+PtFF7AfsGf+Dgf9jTHHwz+J2f+wNp3/wAn03/iIE/Y2/6Jp8Tf/BNp3/yfX4/UUXA/YRP+Dgf9jNeD8M/id/4JtO/+T6cP+Dgv9jT/AKJl8Tv/AATad/8AJ9fjzRQB+w3/ABEFfsZ/9Ez+J3/gm07/AOT6Rv8Ag4K/Y1x8vwz+J3/gm07/AOT6/HqigD9hv+Igv9jTGP8AhWfxO/8ABNp3/wAn0f8AEQX+xoOnwz+J3/gm07/5Pr8eaKd2B+xH/EQZ+xlgf8Wz+J2R/wBQXTv/AJPpD/wcGfsaN1+GfxO/8E2nf/J9fjxRRdgfYf8AwVi/4KC/Bn9u3/hAf+FR+GfE+nf8Ir/av9of8JHZW8Pmfafsfl+X5M8ucfZ33Z24yuM5OPjyiikB/9k=",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3A5I60eWy8l80yJ93Bb8Kl3R9ARz2qkiegoKkdOKTykJyP0NDNsGEwcmhGdjyuKokQLtbBNKUz0pWG4YpodlbBBpId9QZdo56UwoGHHFPZtwxijOBtAphuVTp67/M3nNPWPaeTn61IDJvI28dqa/BOKAFRFJzSNgZpq5bkmo9QvLXTLGbU724WKGCMvLI54VQMkmgdzmfjD8T9O+E/gm58UXu6Scjy9PtU5aeZuFUDvyQT7ZrI/Z4+Gmo+H9IuPiH42zL4l8QN9ovpH6wxnBSEegA6j1+lYHw90Sb9oX4kn4sa7G7eHtGn8nw7at9yeQE7rggnntjj+Ve1OFjm8pF+UDjArK/MykjNiuMHD8VYSQ5GKoIV4BNTrJGOFbFaIhlwPk81KMY4NUVnRWAJzz2qeORTnFA7aE7EgZFRu53HgUpuIwSrSDOKassbHCtzTE1qKpJGTS0EgD+dJvX1oE9BajfvzSmRW4FJjJ60FcoidPxryL4uaxq/wAY/HsHwI8GzN9hjIk8V3kLgeTCDkRZ/vNjGPUjtXRfHr4rzfDrw9Fo/h23+1eItZl+z6LZIQWeQ4yxGeABnmtX4BfCaD4UeB47fUX8/Wb9/tOtXrHJnnPf6DOAKmT6DStqdXoXh7SvCvh+28P6JarBa2kKxwxqOgH9al3leTVgsJlKr+tVZCyHCrk1IzCGVOWNTwFT97HTjNREA9aceE44qk0hJ3Hs5LDkZHpT45sDDtVU+YDu5zSRXaElGJB7ZoTQy0kuZCzY4XtUyXMarktz61nh8csa5L4ufGXwv8JfC19rmtalDHLbWnmxQyyBdxLBVyT0BYgE020g5XJ2R00Piq0v/HLeHLW7Lvaaf511Go4XzHwmT6/I/Fb52kArXxR4O/4KM/AP4cf2lPr+sTalqt5qLLcy2cJVXjiHlRlc5wCqhscD5ifatzwd/wAFT/h1reu/2W/h25itJJH8q5mlG4KT8pYdhj2P9ayqV6dKPNJm6wdacrRR9cL941T8SeJdG8IaDd+I9fvFgtbSEySyMew7D1J7CofB/irSvGPh628SaTcB7e6iDo+eK8q155/2lPizD4R0u7kPhHw3P5mrSRqDHf3OMLHnrtHPQ9+lXzpwUl1MeRxlZmr8APCGrfEnxdd/tB/EOwIlmbyfDFnKvFragn58H+JsD8B717Hdhy/B49M020gh0+COwtIQsUSBURRgACp2jVgCwzSEyFI5QAQO3rUbxtvwRVoAAYFIY0Y5IoA5lRuOM0rj5cUyPJUYU0tUkKyQpwAMCmtGrgblBx+lIZAM8GoJvNm+R5ii5/g6/nTshnM/EXxNf/D3wtqGu6ajX/2WykmisTITK5VScKxyTnB4Pc9e1fmX+1n4/wDir+0Baal4m8W6pNbvFqQTStAWAr5du5ysfGNxXAJJHPWv0+8S6S1zAbSG3JjcYc7c5FebeK/gXpXiHxDp2pzaBA4t/N8xmtwMgrgAkDJ5PAz61nO8kaU5qJ+R+m/DDx9fXYtrHQroy46BDk19Pfsg/sSQ+Kbm38VfFPXvs9tGdz6axZDIR0DHIPXqOn15z9sQfszeEdSmS4/4R23hZP8AltEmx/zqz408L/Dz4GeC5PFGu4kVW2RW7Ku+5lbhY1IAOc4+gFZTo+0Wp0wxCgvd3KvxH8fRaZ4d0v4CfBu6gOtazGLaIWjcWNt0aQ4PHTHPv3r2X4S/DrRvhX4KtfCeikOIlBmuNuGmkx8ztyeSeeteZ/s0fACPRre8+KnjbTo017xA5maJS3+iQsSywqeMYzyP8K9pt0W1t0gQ8KMZrSKskjmm7vzLAZgdwPNPMxwGC9feolbcM1LC4HBPXpVGZIDkA+oo4x1oBz2pcDGSaAOVjlXFLmoFfZzSlyOSRVgOYjdg0m3LZxTdwZgRTxnqO1K7uA8KCckY9qR40kUqygg+1IJDng0+MgkE+tUBDKLLTrWW8uZlhhhjaSSRyAqqBkkn6CvHvh/YzftO/FGT4i6nZufBvh6doNFtrlTtv7gcNMynsDyOnb0qf43eINa+LvjaD9nL4f3Lqr7ZvFl/E3Ftagg+XuHRn6djz7V7N4R8LaJ4J8NWfhXw5Ypb2VjAsVvDGMAKBj8+596htPQexpLkDA6CkYjoTTWJJ5pKQiZHIGB/OpYyw5z9DmqySKflcnjpUkbkfxfnQBOZGHVz+dOjmGAG/OoS2QKcv3RQBys4kKfu2wc9xTsMVwx5rhbT4i+J/Ct3HpXxL8Py2wJCJqMUWYJDk856Dt/9bIrsNP1rTdViE9heRzK4yrRtkH8aaswLO4RdenXNKLuM8Lz9KY20napqLEcUg9TVagW4vmORXG/HH4nz/Dfwwlt4fhN14g1iUWmgWMa5aS4bhWwP4VJBJrpdc8RaR4V0S68Qa1ciG2tYjJK7enoPcnge5rzj4G+Hb/40eOH/AGhfGFnLFZxZi8J2E2cQw9DNz3fkgjg5zSk7IaR1nwA+Ej/DTwnJqOtN9o8Qa1KbzXL5x80krc7Rnoq9AOgru4bqbJV0xjpxU+B90dBxUcsTE5jwPXNQK4sc6ykjoRxSu7q20LVQ6dm8ivHnYNEWwqnhsjHNWwwOMjmmAu0Mcn06VMq7u9QlgDg1IrAnI7UASgYGKB1pkMYQuwcne+7ntwBj9KeDg5oA/LbU/wDg4X03WrJtP1b9i6O4hcYZJfH4I/8ATfXHJ/wXDTRtT/tDwV+zLcaWjPl7VvHnnREemDYg+vUnrXwLRQO5+kFp/wAHB91En+l/smpI2OSnjoqP1sTUh/4OEQW3H9kT8/H3/wBwV+bdFO7Jsj7z+Ln/AAW9u/i22n6TqH7OD2mhwTiTU9Ki8aZa/wAHIUyfYxtXjptPeu80v/g4gtNH06LTLH9jRY4oIkiiRPiBgKqgKoA/s/oAAK/NCikM/TUf8HGJByf2O/8AzIX/AN76X/iIy/6s6/8AMhf/AHvr8yaKAP01/wCIjBe/7HP/AJkP/wC99H/ERgo/5s5/8yF/976/MqigD9NW/wCDjDcc/wDDHf8A5kL/AO99KP8Ag4zI6fsdf+ZC/wDvfX5k0UAfpwP+Djcj/mzn/wAyF/8Ae+nD/g45Pf8AY4/8yH/976/MWigD/9k=",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [48,52,74,77] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [38,32,72,62] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD6K+M+reAfGOt3118HviLbXBEkSQRQW7273YHys5WRVw8hAYhem7HY15FqXjzxIbhrK68TXifZ3KfZprtisZHBAycdsZHpXnMHj/8At5zYC5lkLKdyDIXbjqR+Brm/HXijUo5g2n6k0oyWmlEm/BPY88V3KhK+5y+05mep6/4zg1VVS5nM6KOJ8/dPpj/PWvNfiVeLp+NQtQ32csSzKhY5Pt1rF8O+PY4tJd7y/SOEzkHdMCScL0P5UzWPiCviiOTTNMeNFjjCFvLDZxxu9ya1pxlGRRi6n48vbQwTRTtK0chJiVODkbf61ux+N763soZr6ENvQfu8Y2nFcRZvN4c1Vl123R1PywySSAgkc556VsXFyLmJbsSeYsvzKu7IGaupK5pBWZq3Go2TqXMhyBx8pqGOI3EyqsbfvT8hIIBrmbvxHPM+6UKvGMI20fkK3/DetT60ItP+2oTFGGjVGywI49c968+c7Hq0UpFm88Q2WmW0um3I2tuBaUnhenH6frXL6v4ys5pGtre083Y/3w2AR610nifwjpkkpurqeUpsG9JJDhjnqc/h+VYg8K6LE4NkqFpGCqmA2c9AB61mp3Ov2bO51bULix+GenQRTFPK0xHOOoZ3Ynn6NXlkOrXc0Ad5t2STkjk8mvTfijcQWOhS6bBsSIeXbwbSBtVNpx79D+deZFYkXy441wD2FU1YU3JvVmbfatK3MknGB/D71m3WrN0SXv8A3aNU3GURGQplB396y5g6yFd5bB61a2OOrKSeh7bb399b2i3EbMruw8tkHLBsKBx9aowa5A8c1neXGEYYOUOePWvQJvC+h69p0V34aEoaIZEcLBQGHO3IGQRwev4Vx1n8NNT1LxDNb6pqo0aEozxXcq72aYn5YgGBBJ7kg4x0rv8AaKTseNGnZmN400rR/D/hSGLT74TTSES7lbIycD8OBn8RXER61f2zsVuCmeMqOtfSP7SvwE8TN4Btvinqvji+1LVJZYIb2HVEQG4jWIKZo2CLkhggKBeFOS7EEH5pvrPypniaVcq5Bxz3q4NJXZ1V8LUw0+Sas7J/eWrvXJ7+IR3dyX2tlcjmvR/gR+y9+0H+0rDfn4LeFf7Qg0cRjUry71q0sLa3LruRDNdSxx7iOQobOO1cBZ+E7m/tzLZSxyAPtzxnPHHX3qb4hXuv+A/Adp4FtfFgjN7I14dCtlY7p8/LK6ggbsEgHBPPWpk4yY6dOTLHjXw34o8F6zc+HfEVvDFd2r7Jkhuop1BBxw8TMrfUEisrStX1XTrwXVvMUZfukYrstM0v/ha3wevfiTJ4xsIbPw4WGo3t4spuZXKxCK38tEcgE79rOypweVyM+Y/24roJIyMHuJgf1GRXDW5W9D0KKdPc6e9+IOoTuJJi5AXBhLZ3e+f89K2/h9rZ1nxdpNvefLbteI8qgcqi5Y8/QV5hLqgLhjKOneSuo+FGpyTeI2ZGbMNo7IQ/QnC5Hp96svZs6VVd9D0P4uaxv0+ziMo33EzTY29RgDP544rhPt7J/wAtB/3zWl8YtYNpr0OmGXcLSxjXPm45Yljx2PIH4CuIvNcYxgoT97tLVVNWkSpWjc0dXjEknnqM7UAz+JrMZV8wl+lNfxFmIxvFuz3Mv/1qrNq0TuSdo9vMoimjkqy5nc+v9N+Gnw5n3JqGsazod2snMOp2gljUHA4eFw5HXjySeM5wfld498J+HPCGiHXbzx1pF7plht2XNvfMjrP0RTFMkcuDz/CffFfpx4l+E3wm8d2U1t4l8H6XdpPxIDbREscg5yVPOf5V86ftQ/8ABPPwB4o+Dev6V8PtKMF8lpNcaXBBCERJUUsg+XA7bQO+ePSvWlhXFuSZyQtfVHzd4i+LXhb4vfCyDwhZ3Uk7reKllexOGj81Y2Z4mPUHZ83oePQ14D4s+AXjqK+Mmg6HLdqzEuUkTg+uc8ivrj/gnppf7IvwD8U+JfiF8dfiP4cim06+mjsdFuNOW4u0tZreRCyBmyhDOANynJAwxICjQNx4Qmi2+O/AmsPG37yz1G80nENxGfuyiSzAbDDDYdCeeSTXl1sS4dD2MXhfrNSMlO7sr+T7fJHwouha5okM91cJdLDaMDcyLCyiInhdwxwCRgHocEDoa6Lwrr37O3xZtW8C6/8ADC8utbbSJJZfF2p+Ir6SaOdY95S2t4JII1jUggLKWGO5PNex/tN/ATVfjCNG0T4DazBIjXRbWjdapbzyW8XBEitEiTlOoZWjIyBlucL4alpoP7MXxw1zwVqdlF4itrWaIf2pBaqhYGFQ4jWUq21ixBXep4OR1FaYWtGo9TH6rKktztrfSvh78Cvg9bxnwJJexeJjdW17rR1i7guUjjERjMkayy25j3yRtsEJOVOCpII8C8UaqNSnheCyWMRxBGlTAEhHcj1PrXrPxU/aC8LeNPhnH8MNB8Mz26xGMpf3MHllBvDMMNI5JYpHyGH3enevItW0TU9Mwl9bTx9wJYWXj157VvWVOLHGM+pgXdxKrYjxjHpXofwE0q7vrmbUDDndGYUIYDJypx+lef3tvLCNz27AgD5SuO9e9fsy+G4brwraXs2yEbriaR2hHIU8ZPHHBGfrXJKrGJtSheRwfxbvRe+NL9ncH51XgY4AAH8q465kVfkVuh9K1fFd7JqviG7vRISJZdw+fdj8e9c3qN01vMy8nDY+9is5O7uZzScdCWWSUIQlQkzk5IFQrqJK/Mn5tTReNI52Kfwai7aONq0j+hTS9bQDaJV5Y/wH0qDxhBqPiSwSxttVktlBJZoeCw7VwWkeLpXkH7xh8x/5ePaulsvEQkjXfL/COs1fSNzSsNQjN3R4Xe/sIaxd/FTTfilD8QZpp7DUGuTa3dnFsm+QjZJsxvU5xjp61719g8G6lbw6f8TPhzFHGyhGuvDoRJFAHQowKfguB6cVs2mpQMh2ohO7s4pbieOXGIVHPNeTUw/MerTm72Z8y/8ABQ/4My+Dv2aNW+LXwS1O3vf7IubV7jVNLCpPaW0kmxjJHw0QyRlgCOQC55A/Me8sdc8QSXHijVE1K+Mhja8vvJeRYyw+TewUhC2cgMRnrX6+/HHwLJ458Ba94NWdo49Y0GezmCpwyurAgjIz16V8xfAqz8d3/wALrH9m/QtKjSz0bTjfX+lQxbDeXbYe4ebvIytkKDnaOABXm4iP1eLnLZHXToyrVFCOrZ8u/A/w14ql+Ieiz6N8P76VkvUlSaTTzOEx3KnAbGM4P4gjivqPxdY/C34kXMvhX4qfCrSL+4CMZJfBCrpWrCFeu21dXSRs8kpET6HGa+hv2dvhl4f179knWfHVl4g0zSvEOj6izXVl/ZwJhAlZRGZC+7lUJBwByOOOeB+N3wt8GeI5bGz1X+ztRK2YLSWR+eKQuz5LjBVxu24/2evavKwmZYPM6cqmHlzcumzX5peZ62Lyyvl83CqutuzTsnrfpZr/ADPkD4g/sS/DvW9ZRvhL+0Pp5ZzhvDvji1bSL+LrhRKQ9vJz3Z4yeAAW4rpl+DvxO+CPgpPD3izwPPZ2q6ZLHb6isfnQTEljxOnyNy59McV3/iD4Za9b2h0+zv7bXLZIQtvpfiK1DrGA2TsnBEkZxnByeeMcmqPw/wDHPjj4UR3Vn4Z1bUvDMMkmyXTdRunvNOm/4EYiO3BaNuMiipUq3s0cawlpOS6nyNr3wh8feH7SLVbvwpqKWUxKx3k9m8cZYDJG5gB0x+def63Zu11IHQ/6z1Ffon4l8VfBzxd4cWH42fCG0WOQmKXxF4Fkht28wc7tgb7K3YEfK+D90fKT474l/YO+Hvxeu1b9l748aTqV5OPMXw14mtf7Mv5D0KxtJIYZsZHRlJ6gYBrohiddTzK2EqQj7qPj6eExxkYOfrSWkiRNlmwcc8V6V8Y/2Z/jb8DtXfQvix8MNW0K4ABQ6hYskTgkjKyY2NyDypI4rzu/02e2zuTBDYOwZHT1rtpyUtUeXUU4uzR+z+j3iCQEMPvHsfStyLXViUKjrkDByprhdC1Q7fmf+M8mT2rXttQ8xjgZx/t19S3cxhLXQ9K0jxQiHa0iZ3H+A+la6+J7NUUvcKCR/wA82rzb+03hQsjkH1EmKyr3x9q0UrQLIuEcqCW9K5+XU7fbez3PRfEfiPTkt3lnvogPLCnnsTj+tfGHx8u9f+E/xYbxL4E8Q2QtrmaS6nkup5FdCxaRlDRDlcA/LjPvXpfxA8Qa1cWpRL+ZSsW4mGQqDyeMA/jXzH8UvGcujajJL4r8OPr1hLE4e1muZIpQ7AgSJKMgEZPDK6kEgiuDH0Pa0HDub4bMPZ14z7H6h/sV/HD9jXwR+zaml/F/xLoumavfXEkmsaZrlszTSgvuiJjMZLgLgE4IDhxweB89eLNR8P8AjT4y61B8HtM1DWtIvLnUby2v9N0kpb2UMbLIiyJneiFZECsVXOeF+VsfmF8Yfjr4x+Knia2bW9QvpI4E2wre6g1xKBkEb3IG7G0YGBgAelfc/wCx3+1LrXgTQLDxN4N1CDSruGxWC5gto18u4BA3CRcAMpPJBHWvCwOWvCxa5FG7/r8bnq1MZXqV6lWU23J9Xc7q90y3nG+NiwwMFWGDzWFregWl5BJa3tkk0TnG2XBx7j3r6Mi0j4VftY6c3iP4bSWnh7xrNEGufD4mP2PUJFUbjAWGVJyOMdifXPiPifR9Y8OarPoHiXR5LG9tpSlxbzrhkYZBH/1+9d08GplQxllZnh2ofA6Lwreza98PtfvdLnn3ebbQXJAYFiSPTbk42nNczq3hrT7hhbeNvCpt7pz+8vdKjiRHGD8zwbWjkb8EJ/vLzn3LVYIiDkKflHUe9YWq2FtOoMoRsNgbkBwK4KuBnDVM1danVdrHEeE/jb+0b8M7K28P+AfGOm+KPDzxkJ4S8ToZoJCflZBaXTMhlA2k+RKxA2/jmeJdK/Ym+NupLpvxX+Ed58K9Y63upfD64LWiy8gGfTroeYmeSTFx8pxknFT694CjLyz2OWD4IgePI69M+3PasbX9TvordNO8Y6JZazaxyBBFqNuTLEuPuxTqQ8fTsce3THPzVYKyZhVwdObvZH0nYa4scR+Zfvf3T6V0Gka6ix7iy8oP4TXmlpqkknALDn+/W7Yau8cKgk/cH/LSvvHE+ThJ3O/PiBJl2qydf7hrntbupjM0iouGlYj86z7XV5A2N56/89Kn/tCOU/vYw3+82alJ3HV99FDVUvry1dYIVYlduM47+5rzPxX8Pv7Uus3unzP5TFVHykcd69kS4tFjI+zR9fb/AArH1i5G792No8w4ANVN6WM6VFX1Pm/xN+ynoV1dPeQ2sUUjAHeAuFOfzrR8B/D64+H8otIpVkgI2OeOB6j8q9g1iCKWIsFUfKP4feubvrOPzG4H3v7tY8t0erSp06bumW/D3jLWdBvI9S0jVZbS4hkLwy27srI2OGBHcf0r6h+Gvxh8Dftc6NbfCr40X6af4sERXTfFYhX/AEnC4RJMgZIz+PXNfJE0Xl/dOOOwqNb2aFtqu3HHDYqeRlVaibPWfi/8OPF3wl8WXHhHxlY+W6Hdb3CK3l3ERJ2upI7gdPauHvZI2JVGz83pXvfwO/aS8MfHLwa3wE/aBjilcRr/AGRrsjl7gFQcqztyrYBw2TnB6bRnzD4+/Ajxd8C9fMGoRS3OkXTj+ydUX7sykfdfk7XHpk55PtUcia8zBV2lY4O4CspUk5xWNq2k2t4CLiHeN+drY64q5PdlmwGPT+9Vae4JGCe/96uaphYzep1UswlBWVvxN2wuBHMFyOp7e1aqaioQDI6ehrmLO7Z3BGep53e1WBfS7iu5uP8Aar2NOp4adjp11BlO8bePY1at7+OQZLDOOcA1zq6hgYwT/wACqxaXxyeo4/vUlYHJs6oXapCSCM59DVC9uVPJI5b0qo185+Teef8AaqG5nZlHznr/AHqmS1LjUshJ7kSDZkcj0rH1FNrk+r1PJdMswbBwB0zVe/lDRh/VumaVkdUKraKNw2RgelVZwMZ96WW4JOMdvWoXmJJBPfuamQ5z0Kk801rMJYJCjBflcHlScjIr6i/Zm/aa8L/FnQ1/Z++PlpFeJcx+XaaldscHaAq5JztcAkhuB8vvg/LN43zZzniqM0skD+dC7I27gqcEVHLroc85HsX7SX7OHiv4AeJZdpOoaBLIRp+rrjDf9M3APDjIz2OePbyqXUEJ5YZz6Gvqf9lb9oTw78dfCv8Awz98bbVLu5e2K29zdPn7eijJXcwJ8xBkhid3IbO7mvHf2q/2atb+BHiJNU0dprzwvc8RaiYwTbPz+6lI6EAcH+MAk4IOUotuxCkz/9k=",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDy79qPx98UbH9pDVPin4q8DSeENe1ieLWTpjWrQq4mjSVZjE7yAiVsyn5ipZztC42jN+B37dXxq+DPxlsvin4c8VafpuoQq9tqtwLARrqVpJcyXM8E7QxtMyySSNnaQQdmCuxWGnoX7IdlrFpp/wAQtQ8aXD+B4tWGk6hq9prQv7vUPLhlkkn04PbwRG3xBIEMzq6ptYqw2h9b9lj9l39mL9oLwj4tsPFnjLxF4X8QaPqqR+GdclsjfaZqJkDLDaXYiUPaSu6EB9zArvIDlCx0G4zR+pvwt8H/AAG/bK+Bvhj9rH4I/BXwvoFkNQkvvF9hpvh7TbnVNWMZInspZpEAZn3yOfNyXwjZQuJF8fuPh9qf7SfxottB/YI/Z98JeB/Aehub3xvqniHRNLt7VtSdpEKNHZrJJKywyyALIcOBuXy1ZJn8Q/Yz+H/7S37NHxl174M+C7vx1o+hXM5/4SC5+G/h2HVb8jfGq27Rpct/Zsm4SbZZWLhWUyRjeCv6+/A/4e+FfA3w+0zR/D3w9h8PiW0SS6sXCvOZDk7riTGZZjuJdmySzNzQVbufjv8A8FKf2A7vRddsfHf7Rv7a2l/2v8Qdcje4ifwfHaRjTLWJoknQJdYiZYFUrbkqrSNtMu8Bj+SmqxqZDMsJVSR8mD1xyOea/fn/AIOF/FviTT/CPg3wlqXwY1fU/DJmlvLjXdL1ZIV85SokgcGNxFtgDESuCqiYsB8hr8OdWvfCSknUvtU4nmEsNlHKoDwEtuDTKcpIDsGPLwQxOVxtIrEcqPPmt4ZjuePZ6A1reHbfwpbWWoy69b3skv2aIad9kCbBJ9oi3+YS4ZQYfOwVVvm2g4zkVb2zDSAxvgBRnjqcDJ9snJx2zV6zk8FQJLHrx1fyzpcqxfYpYlJvDGfKYlkOIlkwWGCzDgEZJqtBWR9HePov2V/Cv7AGp6dbaNFpfjXxP4n0vV/BdjdXBu7i60j7M1pcz+eQmx/t1lfO0SghBOq4ACY+O576OfVooLq6VVZADIx4Xk1cv9ce2t2t7a7ZtnyoXyR19DWJobabcakJ9XYssYBEZJ+f8fSs5Md7HWJqzWckd1ayqSsgKnIIyDnvXTeIPjj4iufGOoeL/DNtFpMt/avZmGxb93FatCITFgjDAxjaSeScnqa4yfVNJu2aS4ZyAuUCZHzDpn2qlb+I9Ka5FjqjPBAAcTW1uHcEjjOSuR+NSQpO57b8Cf22fjr+z/8AD3XfhT8ONdgg0bxXIDrVrNBvE/7qSA7h0bMUu3kHGxCMFRXp3/BSX/gqHqP7V/hzwt8NvBvgiy8NadpPhFdM8TwWMCCHUZhdzyoqBgxEMSOojOQ255Sc7ga+RNIu1czX77nEaN5W+fYoOCR14LYUkL1ODjNYWt6peSXomljYiRyATLnvwP1oL57o+8NL/aM17/hEPD37M/iTxWml+CNN8S/bNQu9LgMwklZfJN88bk+YVgCRqikLsXorMzmz8E/i/qfwrk1SfwZeeGXub+d7Zb3VtEE8kCCWKVLlJQpwCVZNh3rgPlGDIa5L4r+G7HTfBPgu7svFfh66n1TRY7h7KwjhW6heWWYkS+XGpYBEQgsWGSw3EhgvqP7Bn7HXi79pSz1zx7pfww1DxnovhBoJ/EmgaD4mtbC+khYyBBC0iyl3LIzeXtVyIyq5Z1KrmaNm/esfq9+xR/wUp8Aza5qXgD42/tHeHtT0631G+ttH8Y6hp62dtetbCDzU+2bIYJj/AKTHsIhiJVH3ZHll/ff2oP2k9E8B/szXPxq8GeNL7SrRr/TreHV1toLaRYri5hj86KPUoxHJGEl8zIX5owxQkgV4b8Lf2ddO+NHgL4e6j8Fvjh4b0zw43hW1jj+H+o+F9PkubSOKSN54t3lDDrKF8zMC5khhLliuT8c/8Fc/2sfiv8PvDNt+yb8QrbR9fmtbl9Sl1m2MkcUVwA8EUdrGk7C3hWNzlOCXHARMLQpvqOSTPlr/AIKGftP/ABE/aV8MWXxA+J3xR8GeK7/Wb6ZLSK21CebW9GtI5C0KvbpHFaWu5CsbCIKZHjLthunxXe2V1aSyKYDE4GWHQ5xnmvoj4j/EnVPHkCPe23h7QvsWkRW8un6Jpht0upoVkjjubrcztPMFlYHcSoUhFCqi48l+IWqaH4g8RXGq6ZaTQQyCNUjN0Zj8saoW3sASSVJxjAzgcAUlUi5WJ5bI4Jb+ZJWjuG9MZyar39yZ12buAT0r0HR9C+HR0OGTxV4q1Gya7vmjMJ0KIqqtNZRq8d07kOWja8PlN5QR7dSCfNdhBpXg2x8c2F+JdU8O6KljYpetcS3pzdhlgVYkdPMDufMEpTAPEpO0ACtOYjlPJ7mKaWd0K8bj396px3jabc7E0sXAKZwqAsOf5cVpaukNnehLa/juAyBnKoVKMc5UjJ5H8iKk8O3EK3jxyBs+XlduPXn+lJ6kS3M1He7lZd5Qbc/uzimNpETkyGWU8cEsP8K3DbifzLSI4Ug7C3XB6Z/OuZnH2V3hTnYSOaRAvl6gkxSBSVQ8EvyOMevuap3cl01wqTKOGOMnOMfjVzTteayn+a3D+gyRzz3BBH4Vc+JviLw1rniO6vfBmjyWOnOwNvaz4LRjjIJBOec89xigD6M11tFtvDjT3c8q6g8oNqoIKyIcA8YBGPxzntTvAXx2+Jfwmivf+Ff/ABL1/wAO/wBp2wt7/wDsXVpbQ3UQOfLk8t13rnscjr61ha/qqX1jbO9kTJBGQGD+ntiuX1i5up0RmhYDnHHXp7Vo4XKU0d3F4+1TVo2gfxBdzeYzNIZ7kuXdgNzEkkliABnrgD0qW48V3ek2kNpD5CRRDdFAIURQTwSMD9fasj4C6h4Js/E15J8RvCF3rdm2lzx2dpaap9jMV0yFYZmcRuWVGO4pgbsfeAzmjrd3JdSfZGQSPGoRpI2yAQTkcUnTtuOMnN6Gtp/jOa21eLVV0exmMakKbhWlVTg4bZkBiCQRk4B5wcYPN+I9K1C3ddSuJ1keRFkEqsT6jnI6jbz6ZFU311LKePTC5SeVfMjVgBvXpkZ61623whv4PFlt4b8S+NNF0VLO/ER1ee4eW0iUurCeWRI2CQqJELsqykbvlD5UHm9nasl1aO6lBum3JaLqeNa7q3iR9N/s+e9nNsU5hGdhCksuR0OCzEem4+tc5HqF35U0auQCRkFRzzX0z+0Z+zdqnw8+GekfED4j/Emwv9Y8Tai8OjS2NldNFe6YlrbMl08kqIyzYcgrIqlsAlmbfj5w13w/qGgapdaVd2s6Pb3DxSLNAyMGViCCp5U56jtXROLg7M5+R7o47xFJO96ZVfoME475NSrqMVjb7mYgl+ox6e9T6rpxmaYIrMy4Z1CklQW4J9M1TuNGvNSssWqZIk5LcDp6/jUmclZmzpviLRzbeSFcnBwMj1+tUr6f7YzHfgEdG47Vm+Q9g2H07Y46lZCwx9aQ308hKpAzMRgbef6UGbQ+W0sGxu2bh1/eGqt1bxDgY2/71SRWWpzzYa0mGT1MR4/SkfT9QLujwSsFbH+qNK9ib2PoXw3q2ja7psd9p0kc4P8AcwxBz7Z/A9+tXD4Zvtdl8q20F3bPBEOc5/D2r2D9mDwnpHjf4cL4t8Q2sdzqb6jMt5cPAgMrqQ29gAASQwJwME17p4X+DevX8XnaX4aFpbpgG6lgWJEA784z+FddWj7N+8/xOaMK1SVkfLXwm/ZM8U+P/GthZ6lpGrWtnMwDrpFg0t1Kp5wiLlunJIVgoySMAmvaP2XvhN8E7zW/FnhbxJ8DGlhs7qE2LeI9QzcyW7xoySyukUSDcwkf7qhVKqVypZvTtQ0/x98JZYvHHwI8f3Nl4w02Uz6VqcNtE0Ub7WUoyTcOGV2XPGMg84xXmXwU8M/G+zutY1z4wXUN3qWrXUUstylwu9tqtwwX5SASMYIxkYHFEVKSa6HfTUKNNJ35r/K2n43uW/ij4A/Z78H+K9D8X+APh40Gp6VcLFHaWyyXVod8yvN9qa5kdjHsD7fKDMHPQBmNc9+0dDr/AMWPAA0WzgUf2e0lzY2FvEsKypHb4FsNuAiYiTk5z5aly2GavTbrw/HPcGaWMbmHJwOT61h+JrbT4tPuLS4VLeKSMxtOqDKBlxnqOmfUfUVCw7U+Y71j5zpezfw72t1PKNc+FH7bGp6ToHi345eF9RvfDNk8y2Z1fVIpoISiKGEQDt8yBkPrnb0yK5nxr4WfUg1xYxiMsBiGVVkQHIzgMMD8vSvppv26Phb4+/Z+sP2PPG/h3XbvxRpF5favf+PdCv7a1jms9hcw/Z5BIgOwRI+1fmEQKsHevOV0XwzrC7WtQpHOxVxtz2J79PWsEq+IcvaJJ36O+n4a/wBa7jqTw9OMfZttdbrqfOnijwdFd6THpmueD9PkS3klf7bZo8Vw5kaMElkbaeI1AyhAAHYVwKeG/Ad7fnS/7S1LSbZU8wukdvcTO2cZCyy2o2ke+cr3zx9iP8O/DUkmfsZyenzVm6v8GfBGrwGHVPCdncDGFNxEr7D6j0NCpTgYOVKZ8rax+zSktm8kfxp0PTwxMar4jtL7T5WYg42loGhP4yj+eN7x7+yJ4i0fxRLdfBjw3P4j0Oa3hnsYtN1yz1q8iyoMisLP53CNn5/LXC43cgk+2N8A9O8PWbQeBfP0hCmyL7BetGY88nAzgjI6cZrCvPBXjLRpzBq9lomuwKBj+0NEFrNkAHPn2rq+c92Zsdfah6bmcqTkvdPC7b4SfEkWs2o3nw01+2toJNklxNoc6orDqpJQAH2p0Hh/Uf7PN1bWzyRKvzyCPAXFfQWk/GDR/h1Azaz4T8XaJBvRHu9N1d7iLIzjbuKhQM+rd+DTj+0FrHiTzdDuofAfxFsXXCWOrD+zNUA6qpkURmQkDjhixXqSc0uSMjGWFq7ns/8AwT3fRfCnwLuZNb8OWE+r3XiC4ljjmPnR2kRjiATBX5mGDzwOnFex634w1HVZd+oXbykDCK2cKB2Arwb9nfwBr3wy8DweHpbidQX81xOxJYsxJycknrj6AV6bblpMGQjPfFevDC0VP2lrvfVt79uxjXr1HHlT0NO4uFk+6o+mKrbAScKOtACqwb2pxdRXUop6HPGbUSvcIokwB2rKvbC2uUZJogyn7wI68Vo3F1ltp64qhM6s560nFMqM3Y9k/YB+CPgjxh4p8f7vAWkXN1ceCJ7dbiewikkUSFUO1nU4PTn2FeCHQdPhPmQWSwl+WVFx+GO1fU3/AAS81qCx+P8AqGiz7SupeGriNUdc72R45Nv/AHwrn8K8U+PPhuLwV8Y/FXhFSAun6/dRRqBz5Xmkxn8VI/WsVTSZcakmzz+bTYYm3ICTjviunTxt4U1DwXdeG/EXgWyF+SG07WdOt4opYSARiQFGEi8k54bPfAFYzRxNyScnpzVGWVo+KToqWpftWZ81uojPy1RNvA6PHcoGUqRtI4Nas7CX5TXQeFPgf4t8eeFdW8YeGoY5YdHVTdxSy7Mg9wx4GByckDHeqhSUBOq2jzLVvCmlXiHyrbysqQ3lkDIP1zXB+JfgH4Q1aUuNLhEpZiJxkMuTk+xz9K9Y8Q6NrPhy7/s3W9NmtZygby5oyCVPQj1B7EZB9ay5k3qd2ameGpz3LjiqsWeqTXEELbYAFX0UDFCXKldxf61RMhcbiaPNwhGa7Dz2aKX0JPXgdsjmnJdI7b84A45rK87BAXnPoamEr7PLQ9ec0ncAv53cBVeoN2EGPWpZU+bGM8VA5KjIqDSFz2H9hLxPH4Z/ak8LyyOg+3TT2R39P3sEijp33bce+PWuq/4Kd/Du48L/AB6TxrHZ7LbxLpMMqTKCFaaALFIvpkL5RP8A10Georxn4L+Jm8KfFbwz4kYqF0/xFZXL7yACEmUkE9hjIP1r7X/4Kn+BJNc+Blh47tIm83w5qirOHQ58i4KxtkfwnzFh/UdxStqEpNM/PSRnG4E96q3e4EFTirDSZJLDqfWql2+cEGmWnoVpJCYyVcgkcMOo969h+HHxu8HeDoNN1bwzFFpU4txbeING+yK0F8oJBnDsQd7IxypypPsSK8aLosOOM59aryS7fu8UA3Y9c+Lvx30TxLrUH+iw6pDps3lWEtxGFM1izDMT/MdjAcjYBg9CBkni7zxT8NtVsJ7HVtFeIzrutruIIJrRhkhdyoolUnCkOCcDKlT142eQO2W5PrmqOpXB2BQw46UA3ZXPRvPIG0D9aFdmBOM496rC9tccmTP/AFxb/ChtQhwAgf3/AHLf4VoYFu3jdmLZ7/lU6OI+SM471DY6nZKy+Zv6c5gb0+laniLxLo+r3MM1ro8NmI7SOJ0t7VlDsowXPX5m6k9zUt2drFqKcb3KLTCQ4HBqOYjJP6VMl3pr8gOD7QN/hWnp+jWmobAkUrMx4Ai6847inyt7C5+VGErFc4cIf4XK5x7471+o2paFbftFfsnyaJqMLSv4k8GxSIJW3NHcmBZY2JPUrKEbjqV45xX5z3/w41JdJk1GHR7kokLuWVAcAA9cDPavvr/gnr4s1bxj+zJoouBdS3GlTzWbSMrF1RHzED3GEKgZ7AD+E1cIu+plOaZ+Yd+1xaStFeRlZVOJEMewhs4I2/w89u1UZ5DgHnr6169+3d4Ltvhj+014m0d7dYIr27Oo2yMAMpOzSHAHQBy644xtxXjNzqliVAM6DnsKzkrSsWpNojuZArHaKrSzFiTt/Wknv7ZiQJ1P41Rur6BWyt0APZqk05kyWaXkgfjWfqAeZcISMdwfentqVoeGuV/Oq0+r6bnyku1Lk/d5oNFsf//Z",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [32,32,61,81] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [43,43,56,64] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9gdDu/Fmilo0uWidYPKEepwyxLGcjjKF/mGMY6defWzeS+GU0ny/E9tY3EzuFF2rxSOucgnL4YcHtk/1xPH/7WGu+GLK2iTwZY3Eh2iRp7psE7Tk7fLOPzNcXfftGfC34glfDi+GbjRpJUbbdzRKY0OPvNtduF6449vbza+TYWoo++427Pc+cp4ajh9KUrfM0/ij+yX+yv8aNNvr6++EWlXc8qGMXNgXtHPCkqxiID8/MSRz0PSvz7/aA/wCDYz9mX403Nz4s+DXxv8ZeENfvp3mv9O1dotWslPILIuIJFydrcyH7xHpj7k0W3+IdpqaweGNQsr1JmLWTadrHkNJwcsV35XgH8q6jQrD4vQ6sJ5ZLKXUbiMo1pqmrRStjIwRghicAY5PBrmqZdWpUnGlUc5va/fsVOONnLmjVv8v+CfgT8a/+Dc79sD9lr4sR+I9B8Q6H4/0iwnW6jfw3ObfU2DEkD7HcMu4+ojllIwcBup94+EvhyTxKU8P/ABr+HGvW1xFM0EdvPaS29xEgwgYK+3DYB/Eda/V/xj4p8UeEbu61Pxv4Pc4kKvdWNyGhjUHIBJGEHJIBJ6mvmnxboWv+MNQ13XtQlinsrayTU445EBLXEbNKTD/d6AYXrjBrwa6zDDzvjIWts1r+mhxYvF18OoxqQ5n3T27dGfmN+294P1L4T3el/BDW723spHuorzTHuJn/ANLtI5C3mo6AxNmUqDg8Fc9RisP4ZS/FfwFrr/GnwJaW9pdaPeSvaJPPmMlmYkBlBXByTg4JySV616/8VP2HLD4kaxpnj7wt4ycXV4suoR+HvEVyWtncO0zRQsNzWyM4YBdu0s3OM7h8WfGW7+N3wa1u/wBB8aX+qaK8dzEsOmXDyQi6ErAq0atguiockrwBg9KyxFKnmFOMaM/e3aeh04bGRzKjyt2lHc+2v24/H/7Vv7VP7OXhbxt49061Tw9bBNQ1nSrDRAWtLsRBfNmuVCmWJyweNGjjeMOVbfgNXyPq9t4O0/wOdT0Dw7ef2zZz5uVDRmG4ibYqhSwHlMpEjE5O4FRjPXsbT/goL8cPhd4Xu/hd4a1zTr7w7r/h+zt78SxmVXQW8ccskbK4AZ3SVs8j5hxXlMuvazfQFohCVkBaKHzNoYEk/MSeDnP5CuOeXSjJRq2SZo4tGVrPxa0G0j83Q7SK+nRgLwHcnkjHPUAnHHt9eDWr8J/j5r2jag158PfHMOmajOtzDGyHY8aSjbII3PKkqSpIxkEg9a5LX0s9Ss92t6kul39xKySqiK42gALggZORg9cce1cu/wAIdYhvI9Y0jU7e/gjJ3xmURTDPQkN1z7DtW7yjAqk1F2fcTp8z1Psv9nj9tf4//s+PrC6d8SNf1qx1jRDptxpmsa3PNDCikNE8IZj5bL8w44wcVtfE/wDa68d/E74Y3PgPwt4evdZ1m5jhFtdrfKTDL5yOWbzSpVeCodS3zYHFfG+g33xMiv7eVvG8uV2xCMxlgy7s8kcDrXoXhn4qeKPAs+wadZTzMQYpVgLMG9WIORzXjYjL6dCpzJqXyMnSUXuf1c/ELwx4H1K6ca55NtDHK8sLqifvEQnK5PHI/GvJfiH46+GV39mv/C3g2MPp8Ty30c9uoRrZ1wcgfeJ24A5681mav8aviPq1uujS3VncxQ5TP9kRrIE6E5Bxk9+AOa5rxBqXiDQ5ItSRrBLudNhjjtIjEVUggHB7E8ZFfb1sHm85u7T/AK9R4rK8VN3pta3Oa8G+I/Bsl/J4gawhuts80lxZxRRskYBZGBAGRt2k4HpnvWrrPi/4fal4j02++F+qaVJqDwvIv2abZJbr8q79i4K4ORyOc59K8z8c2HiawS81KMaRbfa3Z3W0s0+cs2WLbeMnJzXnGifFfxR4W8UT61pHh/w8L2S1S1mkbT5V2xKxIK7JVG7kfwjp3rhllWdNXjUtLoeXDJc4pSUHUun1R9N+G7bxhpWqatJ4g+LN/dWxkgbN3qUjosjId6GNiRsQgAMRjB5NeJz+LtU1vxPqOl23i+0t3Vrh7CfUNHtpRc20YGY1zGQM+aDg4PyH+9z0ugaS/wAVvCP9ra5q99DdTSiTdY3bwIWx3UE9OxJJPevKfjF4h1TxB440Twxonh3TRJaOsdkgilU3LtJ+7WTEvOXC564wMVhDK+Joz5p1FPyehrVybM1TsqjKfxe+FF+dUvbvU7PTs6RLBPHJDYxQxLaRxtJOq+WAgbzFAA6kkcEZrwr9qfRvhx8f/CJ0LxJYaeyWGr+a2q3tti4sS0e+F4N4BEZURkg/wk5APFex/ELVfE3i6fU/D/iZLK3ng1JxfLp8srI7SDy5FyZCrBCF28Efe6cV8m/8Fat/wy8IaLd2vih7fV/GNo8NtpFqVQLa26xxGRtrZw0cgVeOSpzjAzlDJc1hXdepFRtrvcxo5ZjcK+bm1fbc+GYLrRf7EtLGa2N3JBZ+VazKzIGjDMqjHH8QYc1s+GdX02YJa63YzQsNyxlXBQKFyM45znP6Vyln4V8YXvgpNa0SxmnW1lSMyQhmC7mYqrEAiPJ3EB9u7nbnBx7R+wJ+wv8AtL/t4+PdT8I/C/RraG10OJZvEniHVp3h0/SLbcN7yy45cJvYRplyEOMda78UqUoqVR2Po6kXZNnnmqWdl4jQ6aul75IWz52duVPPBOPUdPSq+n6ZqWlBrdYiqqAqZcE4HHrX0P8AFL9nr9kHwj49uPB3wv8A28p9Ss7PQJXj8Qan8P5UgvL9CGNlDGJWlVGByly0ZB4DE53V4p4r8OfEr4da2PDPxC8E3ulXrIGiXVrJ4vOQgESK5UJIrAghkJU54ryZulflg7o5nLmdkNXTdLTxHaaPqsy2ks08aCTy2dUDPjdhAd2PbJOK7S9+FGqwCcWVvHq9hbyc6npw3Iy7vlZgPmjyccMAc8Yrz/xHZ3WqRW19b6rFOIwrJOsez92CTgY/H862Phx8WPEPg7UToWnXFzZx3QYXMyvsjuhtJAbB+fHA5HBFYTpXV0Z1KcmtEf0MX00SzOy3CgGQ4YN1qxrumaDd6e1ofEcThxyEhYk+w+tcVZeJ/wC0wLeQoNqbvljYe3f61evNdBtnCSqD5ZwQDkcV+ncykz6GE6U1eLucv4vjs7C3uNPs7eRI9md0qlcnPUA/SvItN0h9R8QG3t5gZZ3EcUePvMWAx/X8K9S8T3b3kLrc3DOTDgFuuMmvPvBdpInjWyvIFLfZrwSrk8cHv7c1T2DRPU90uIv+FPeDRoWo2UZmFvH5s32gKpIHXocfTNfNV/4hn0/XW13SWU3Xl/6PMrbvKySGGO5I+mK9b/aA+IUep6dfRXaO0jY2KhwucnOM9BXkGl+GLm4MclvZ3UlsTvlmhhL+WgZQzHA4A3Dk+tKKbInK8rId4Gxql3qW+VfPiKSyR8FmyQScdR161+en/BYD4jaZ4v8A207/AMHW436Z4R0Sx0JLsKsgS8QG7myjKV+Wa5dSpzymD6D7W/aa+HvxT+H/AIlf4gfs82U2o6jp3D2ckqxvexhhhTudU5XPU4x71+SfxW+Lut/HD46eKvHPi+GSHU/Eev3mrXcEQ/dLNLINwT73Hpye/JoxcU8M4rdnNKlOb0LVv4s1DXPidZeLNOtLTw7OjCS7vdC0QyP8ruz3JgVgruBIDsQIp2ABRur6G+L3/BTDxfZ/CZf2Uvgb8ItM+GPw+vb3+0tY+wzSzan4jZ1/1t3fFg06MwZl24UZC/MEAr5y0K8vNIabU7OM74otu9ZNjKG44YH5c8c9utT+LZtR+KenaJaazFPax+C9KktPtX2r7RCbV7gvGsUbHMW15mU7MAjaSuQWPx1elTlT5arVt/uOT2jatJljSPEPha/eW3s7u3iNu37lJXVQg7fdXnAOOgz1JzXqvxB/aY/bD+NHwV074E+JPj3FrvhDTrCOystHvIIZo7a2QARQqXiYqFAxwQeBnpXndt8OtK8LXH/COmzhlu2SOVpFmWUsHQOvzrhfusvHUdDyDWn4XW58Kz6i+oadNZw71VDImUbBbJXH4fpXgVakY1bYde90uc94xmc/4c8Napa2pg1OGWEGXk+UTtXA57e9Wl0v+ydYFzPcB44uc7eMFfr79K2df+IfhrRtKjuNWvyLi4LKtpHES0YJIUuc/L6kVhWfi3T9R1JJY1jks5Ijgt18zO0D6d+lOnHFrWpobKXMj+ifTdG0fUrGG4tZg7yRK5ibAKgjuVrZg+Derf2Gl/eWO5yjnajN+8x29vw9a5vwraQ6Te21wkkjOVC7S/yHjPI7jjpXvXgb4qaHqEX9i+JtBeGILiO9tCzmJj0JBOOuODwcV+hxo1VK/MXLA4iD5qXztofO/jrwFe2Nkb2XwzLaRLHh5yXZD7ZyTnkdsciuA8I6Ba2edSaIFy7eU4ZuBuPY/Sv0P0TwfZeJNOZ72OwuY7oYeezRZEKgZHmRMNqHgcdM8jB5ry74tfsr+FH1UDRb22sZ7qNmi8qxZowwX7pXfkE4z1PfGBwN3U5XqFLHRWs7nw74/vo9a8WLo+o3UiwylhI0cakjBHSn+CPDvivxKl54f+Hskt/NHpjPNaRXTQkowy0fykBmAjJKsduEIJ5wdD4y/Bv4i+Ftbn1u604tbh2xfD93Ehzzk5OwenX9K4r4W/EYaX40htNG1prSLV8pcrCxXdHMwSVGwRuVgBuB4Pen7VW0PSocmIXPB6M9Z/aTvdC+CPwJ1j4nXungRaT8OrzUYZ5s4eaG0cxM2TxllQY6c96/ADwr4s0q88Wp/bVnGI0RlRwoBz/COMe35V+3/wDwWN8dwW3/AATj8e+TetO91othpiK7E7I5r+BJCPYpvGP9qvwP0+y1jWbxrLRNIuLy5iBdltoi77VOGfgEgAZOf8a5cXObgrMmvCUNmfTvwm/ZUPiXwtP8VtU1lrXw3b2ck1xdXhjiSWNPmdFLkKzkLwucnBxX2H/wT71D9k7UbC/8ZaJ8LfCGtJY6Ns1pfGNhbSSWlorMTOEkZkUbhyyjfj8BX5ZfFf44+LviX4c8N+BRd3tjo3h/SxaWukRX0ssDTl2aS68vp5r7gpwCdsaKOABWx42fxn4Y03RfEXhe50Jxq9qtlNaaLfCRtuMkXCBiY3PdWC8BeM18XUyipipx56rv6s8qVGb1TPpv476Z8EPFP7ROveJvgT4Y0fTPC1xeNLpdlod7JJbCMkEuobldxOdvT6VyHxC8Q6bZ250i2snkc5wJWJVR2xkmuJ+COnab4N8DS+N9f0270i+vLiW3sYoyk325Y2IkZUYoIkVgi5ycnPoao+MfFXjDxHfLd6U1lEqggpdoqvjjGcZBPrivJll86OOtGo7Lu/8AgnPJOMdSlN4XtE1c+JLbTobq4yDJFeTOUkYHOW5Oc9PpXPeLbbUdZ8bSz2+g2Oko8McggtbzFvGFVVLBpGBBLDOD3bgYrpfC3iIeJvDmratpNmZX0dPN1GDfzFEZVi35x/fdB/wKu4s/EvgTWfhPfaH4p8bnR2SeG50zRlsIGivpyVRnmuDIHh2oWIAUg7RwSc16Malam+Savb7xxk0f0NWOnaVbWMM8bIsrRKJDuGenP61oWuptAG2bDnHeuF0zxleeN9bvoPDtxBCtiktz9luoykl5AjcmFWAJJBDem0E9q3brTvFei+E7bxzfTIbO9uGRVIQGGNivlyEdf7wx155FfavPMDFLUdLirA1G0oSduyOg/wCE68R+GHXUPDurvY3LHDTW77WCjn8jyD7Zqp4z/bLSWBtI+ImixahEMBLzTnEEu7b95jnEgAyCAM5x6GsfQUutbW4HjsT6JE8TNpV5IYtt8qKWcKCc5GVPTvx3ry34l+FdEtr220fUNSuhqInmEunTbY9igHa3mKjKc9ceje1Opn2V8rjd3fbYyxGf5dUi4tteujPQvGXxB+H/AMVPAemeH/Des2k1tAs4vYL1/LkjZ5N6qVY54BxuPUg4r4y+K3gfWtD+KLabpix2QhuYvLujlVWFnyqgnjdz09a9Ou/APh6TwMvi2HxBLNPbzRpqdvtOLcSMFL5UDIVuOnzZyBwcczr/AIC8X/8ACMeJPG/xJ8RQW95pejh4LZlx5ojVpE5Pc9M15dXPcvpS+LUvLeJcuwjdO0nfyPLv+Co2pyal/wAE69a0qFfNiuNSSO8mHLRrBOpV+OBuJXk8HcMdRX48+HZNYYTarod3cRTG2Ls1oM8ZBKng8d/wr9NP21vGXh7Uf2X/ABV4I0Tx7barqF14NfUjAs2C8a39jH5u1sBMSkR9skHrzX5heGPFk3hC+t76wnZUhlDgJwxx0Ga1q4h4inGSWj1PcWL+tLnSsnqhniHxNqeswz392wudRmuklmvCMFgqqpUquFXhR0Azk5zxi34UaO+8Y6JG1vBcrHdx3E9tKTskVWy6Pg52kDB6HB6ir3xE+MN98UdV0/UfEunWebNBFL/Z+nwWrTx5HDGJFBbAPzEE81z9lq9toGvNrelQzIFTEEdxIrsNxwRkKB09R+Nc924vuc0tUfQXjLxbd/EXxfc6y9tFCjYitbKzgCR28acLGij+EDpnJIGSSSSYLwaXoPhkeKLy+V4CxRo4pFLgrjOR2615lf8AjvW1CaqsTWUMUOy2lQDE8xySWA6kA4BPbpWN4g1/Vp/DuneHTeyPHe7nfIxvkZvug9sY+leLTyxOfO29Wcv1dNc1zZ8e6ppF3dWut6MEilnKpMqt3LHK/kf1rW+DPwZ8QftGfEjSvhH4YeygutZu1tGuNVuHgt0dwdgLojsCThQArMzEKBkiucsvD3jGXxInhHTNEludRnuktIrKKESu8zkKqKBnLEsAMdyK6Tw/rnivwF4DvfGVjrd9pIXT457WXTUcNc3BuQqLIyBjFhMyI7eWD5eASRivQhDlioR6C9m47an9GfiTVNF8Q3EeqaL4cktLsDDGKQHKkcngDnp0Ar0uTxRpVxp2l6ZqenXK21p5T3YFzFMXMeSNoUKOCc8/0p2p/APxXoLNfvslgIO+aKPKoeuCe344rJ8UW8Oj2JaOVJHII2AAH+tevWyDK8Q/3kL/ADY6WWZW17i/M5X4wXEXjfW4bu9j8yxsLKWKxt5xn5pflLMvIHAUce9ch4m+GieNtC0uw8JXUGl6jbMRNIxhjjuAS24lpHXD5IwwycZ461u+IdXZLdlNoeVH8f8AtfSvPviP4/1vTbe3t9LgUNASyORuMR5O4ehGevvRS4ayqnFqlBr5szr5Jlri1KP4nn/in4P+IvBfjue/u9Xkmt7NhHeR2t2ZYH24AViPlfDKSMZ9e9RfELw14J8H/C3xl8e/2jPHGqN4b0LSLi61XT/tXlRSCJcLDGobILsVjQgZ3OvStCw8ReIvG1wvhefxRe4ubz7ZqlzLMBGiAliScckljwBXyD/wcC/HjRPAf7Ofg/8AZ00vUprW+8VXc2sa3YMu77VYW7eXaoehi3SmWQ5zkwKMHaa0XDOWxaqyp+93vqLB5bgqE1GEdF3PjO28Z/ET4m+Dfif8bvGGk3UOn+MPCkC6BbpZyxQWFuuuRxrFGZFVHiUxFN0JcbvvYbcBw/w/+Gfw6+JHhqXRY/iVYaF4z1DxfpumeHdN1qER2P2K5t53mvLi5IIhSOVIFyeFV2J6V1/wl1Txd4t/Y58SWPiHxJfajpvhrwPaaT4ft5bgSR6U154ge5MEaKMxhzDcSlWOWZiw4OK4H4EeBvCnjv4lpYeP7/WLHSbe0ub2+u9D0xry8t0ijLkxRDAZuNo3MijdksAKzxPLTlZHt8kIxSRt/tF/sm+Iv2cfiHc/DjVvi54B8Q6jp1z5N6PBmujUYTLhSIll2KpJDDlSRkkZypA4DX9F1Pw5cz6Xregta3Vvdm3kW6UYSVSA8ZwSQynKkdmGK/SLT/2P/wBhf9orwF4W8D/AvXvjHL4n16LRj4fT4gaJaaTp1zBdzlLy5E6o7yySNObiIZbAZfLL/Pt+K/2ov2f/ABp8BvE938LPjVp9pBqNrLFfQW1rq1ndSNDPEjQyST27OTmPb+7cqwIJKjPPBGak7M56kGiDxZ8GPhXpfwKuvH7fFi5vPFKa8lla+G7TTZFghgXPmXbzuAJVkjA8sJkgqNwXPHBWMj38emS3bGRLOIFVfnaSB939awtQ1WSyt1s1RpERsK+/gjHT+n4VZsNfKwgLZZ+UdJOnH0rVp8tjlnOUY6Hs+o/EDwBd+D7W1svhYmg+Rc4g1nS7u5jui6nAIaWR0fkZBCgZ/Gk/4WD8NIf2VfFnw/i8SatYazFpNmltYPDbeVq08l3uuMyRwrMIooY4Nkcssi7ndgAQceXnxHeXKCG7BdE+WBS3+rX09+ST+NZ+pagszPB5Y5xzurKEeWdzKNWSZ/bJ4c/4RjxDY/avCeoD7O0QR7Z49wxxwVIJz05rzP4s/ssS69cSa7ol5tnkVt1tGAsa8dgef1rg4z4z8I6pJqlnq0qRWylzdwXAUJgjhkyGB9itXrn9s3xnp88ljPLZXZhHLtGFZ89hhQAePQ19ZVpuGgQrYSur06lrdup4v8S/h14p8L39xFqM1sYLdFDiMFnJ34xwcDsc8/TvXiXxQ2w6zDp8/h5L6S+XyrFZZGXy5CMiQbTk4AbgjoSe1fQ/i34h6N4h1R7u102S3F7KZb43Eu/5z6dgOBwMV5z8WPDVtrNsL/w5KialcRmOC8KErbJ0YjB+VuOuM4JHetMIny3l3Oerj7aSueb+DtI0m2gW2v7hLux0+VTrBhYA312CSsCnHMQ5BIPzZyCOlfkX/wAHBPjrUPF37es3hi/jVU8NeBdGskjXIAeS3N456n+O6cD2A6nJP63PpN7oPiDTfDBsg2maRybq3BCzOedx+hzgelflZ/wXN+Cq3n7W3i74vXfxL0C2vLzTtJa28MTfaReG1XSLciYN5JhKkoyBfM3k5yBxW+Kko0Lm+ArqrVT9Tx74d6/ZeFP2KV0+6u1+0+I/iXpqRRlSpS1s7S9dmyMBgZLxeucEdsVkfB34t6Z8Afj/AKL4xvvCn/CS2FnqUUuq+Gpb4wJq0UcyTfZncIw8tnjTcCCCFIPWqvxkutO0f9mr4H6NG1yLy70nV9TnUKoi+e/niRs43FtsJHPTIxWX4G+Hlz460678RaZIXudA0z+0tRmMqqlpZq8cRmdnIHDyxrjkkuAAWIB+XxNnK7PZqyUYpn03+0B+0bJ/wUB+OWs618H4PGHhvSLT4dx2Gk+Eobn7etjBHOks1skk0ix2VknlrKoRNkWG2qoJ2/Nf7QusazLrNt4b1qfw7Dd+EdIj02caTHFCJljk8tVfy1VZpVUA78s23HJAAFSXxf5F9JF4PvL6wS4XypCtyImZTwV3qVwD3ycY68ZqH4uaF4s8N+MdMsvGem2+pXuu6fFf2bx3Ud4ZhNkqA0ZYeZuJQoDuVwyEBgRXHRir7HL7RVDN13wl9jsdKimW5Se/IYwvFj5Tkgg+4weR3qhd6fPo13LZJG37uRkO88/Kcdq7vSrzU9T10J41kK6jpkQSC1dPmUIfLKsCAVKldpB5BFT3+heGdYurnUrqKE3DytJLEs7BizEk4APrW6g5ROeo4wi0zjrK0mu1uA0Z3W2PPx0QEEjJ7Z2tj1Ix1qnd28fzPExLcYyeK9H1Dw14h8PaBPH4N1KT7Pqvy3jvEpLAqyEYIOPlY9MdfpXMfET4bDSfB9/fwa9i609Y5LiAwnZLGZFj+WT++GOSmB8oJ3/wUlRbZlTUJvRH/9k=",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD7B+Ibax4r1iHWh4FsBcW1sIUugHTbGDkLnIB578k15v4u8Walo+ozXGr+FNNvllt2gHnzShY1K44w2Ryc8V6lqb+J7CNn1O+dYH+7DKMYB6dfSvJPi7GN5WAFgcYxz6V58cqwd/hPKq5XgZxtyJFrwH8e9c8H+FYPA3hfwLotukQAS/iuJ8mTOQSrHnBweRg16KPBc3jDwPpklv4mv7Oe3uTdrDb7NnnH+IbgSR1+Vsj2rw/wVpEuo6naWhhfMt6i/dPTK5P4V9K6Jb6f4d8JKl3qturoAIw0yjA79TWcsly5yu4I1jl2FjSUeU8N/aE8d2UPha28GaX4PgWSK7EkeoxXrI5x77Ace3f3rE0r4n6zoehaBaXfw/jt7C282OwnOonFyGJTzwoXPy4Jxj2x0ql4+a48Ta3DHczoIUYu0nABUYyoPqe1Q+M/EjeNbjQ7Sx0uWCy0azFrY2/lEFEJySfVieSe5rOXDuU1dZUzmqZbg+bmtqVdM8N3+v6zqe/bc317YSabG8pLArI/LgADllI4AzntX5nf8FIdd8SfDf4l6j8APEPiAXa2Ew/tERjAgmRf3aHAz6ZHQd6/V3wlJZeD59R8eapBKlvoVpJqVzKSVEYt4TNkk8LjZ1Nfhprfip/ih8ZNT+KPxc1LVNYsNfvZbzXLuxmiacib5/MUykA7VbOB6Cs6uTYHL8NejC2pyywdFVE1oVdYHiD/AIRaHWrWzuiqxrGJVtmOQoAGBjkYxzUPhTxDq/iLUBE1vLtV0UoI+WZ22qoGMkk9hW3r/wAQbDwbrMHw/wBI8YWfjDwwkkTf2jHojwOQ0KMUUyoJowjEqRkLuDEda+9v2F/hd+xh+xlqK/t//tvfETwnLqo059T+FPwmspln1K6OHSK4uo2OIdzgEBhgYPpXmYmcqVFyirtHfOMXszyuH/gmj+0/4S/Z7uP2lvi3eeGPh7ojNt0nRvGusJaanrUGDmS3gY5xkAgnGQCQCOa8y+J/wI+J3wQ8DeHfG3ifxD4W1jTfEdsZrB/DXiO3vmjUBCTMkfz24HmJy+ASeCea6b9sn9tz4ufts/Hi7+OPjS8trIT2UNroWl6USE062TcQi5Awx3fMRwxGewrL/Zd/aIs/2ZPjDB4/8ceAbPxno15FJa+IfDeqIrQ3trKoVo5CfukFUYHg5T3rxJ4qvU0lGx58pyfQ860fUbnWWP2TS0BU/NPI+1B7g5AYfTNM8YWus3zw3ExiknhVVV4DtAjBJ7+5NdT+1v8AGv8AZl+LXii6v/2b/wBlSD4ZBrovO2na1I8U0eBhRGUKqMejc+1cFoeu6xqemhZ/nMZ8pSI+SMA/ieav3Ur3NYxUkf0KeNNQt9Td5pdQmkuEkIdGxtJzyeleVfEqZhcrHgY4/kK7zWrrPmPs6ynv71wvj9vOeJcYzX6Wtj23ornQ/ssWunXvxAafVbZZY7K2aZUboTjnP5V1Hxy8SW1jZ3N5osCYD8xuDtX6Yrifg5G9hdT6hHJlgCFGOhABzWX8W/FOrz2N1Z+fje+d3p+FS1dinK0Dz6XXrvUQFlhjG3kbQf8AGum0LQ4JI4Lx5JAzRK+OMZwKi8H+GLrxdfWlhZ3tvA93LsDXUoRF4JyWP0rstCkk1nwxp2nERB9Fmlhu3t5vNQyFuArYGQQpIPcCtacdUc7jzK54x/wUA8dX3wn/AOCf/wAWviBBOYZLnTotKtHTqWuZIoZPx8uRse/XNfizdwM2pSaXp0jRwGdoYY1PGzdtUfkAPwr9Wv8Agup4q8RxfszeAvh/okEkq+I/HNzPNaxMMslpZ8tzgH5pl9Mbe+a/LlvCfiHR5YtV17S5bKAyDyWliZjIwP3cqCo+u6uHNJ88PZfM5aq5WO8I/D6C615LPxDczQ2mzcZLcjfu/EEfpWv8ZrXUNa+FelfFrxB4n1rVNcn1+TT7432mZhW32L5BNyNu2TCFfKZBgKAO9TaVCdUsLua2b9/bR71twPvj69vyq/ofgb4r6qsHgXSr29m0fxDdRedo5ia6N3MhOJVgT5pGXfxgfLu96+bnKhh2vaS3MU+Q8+0qbxd4glt7DRrplkjKsTgj5QMdM8dRxXeW134/0iRftFzHKIRh45YwQeMc10mv+C7j4WaRqWmeKPDetaRr9nerFYaNqejy2Yv4cHMw8wfIQQOME8npUmneEL/xTp0iaffpbzkAqHXIHIJ5yO2a8HF4y0Vp1MqktCfQ7HRfGmgR3y6fG1xIrC7fbjaAxXK/gBTX8DJYHfpOfKUb23EdR9PbFLdaD4k8J6bFp8ojnm+YfafM2oMkkHPPQH9K5XxB8Y4tPs4PDnhrS42lt02Xd5IuWaTcchRjpgjBz1JrnWB9qvac2+pUJX0P6Ndb8FeJ0ins4fDAnjjYqhhhBbaDwxzj8a8i8aeH501SHTJWjWYOco6MMd/7vpX31Z6BFdXv9myaZ51jBlrTV7RN6up6LLtySwGOTxmsz4h/s9aD8QrA366NZXMwH7i6iZo5SRwdwUYkxgjDEYA9q/TeflSLp4pRdmnofE8McWn2BEcSoyxHcYxjPFebalcabqniwWesee1u2d4TBP6mvpH4vfs++LfD/h+61Twto8F5FbzmO7cagqvCO/yg84HOK+WvEen67ZeJXtWs7hLkk7FCEsR7Y601Wj2PQp16VZKKevYv2Wlrf3Frp/hm9hWeeNpJIrtjmEDrkKDg89BnrWiqeLvhN4W1uDVdFey1CGQG/tJQMRjAaPaASM7D+HIrhLXxUvh/xnDrmgx3EcjXImWZ5wSJF6MMHg16J4sl8QeIfhVrGs61JJPc6jcm4aWaUM0jSEnJOepyOtP2iudSov2Z+dP/AAWh/aJtPi78RPAHgPRriaB/DHg6Se+hkwgM93cO25QrHPyQoCSAfrXxV8PHsNaE+j+JoZrphdpJZym4ZvLYMOcE8c+leoft3i8vv2qfE8kbM8trHaWiMW5jCQgsgz2BY+3NeP6QL/Q9Vhu1gYBJleRVPDAEEg1w4y85X8jkqYaT1ufUvwB/ZT1nx2sOsWmnukF5uEM8hKo2P4M4xnvj0NfU/wCw38VPAJ8XWdh8GNJSXU9K1Jhay6rFCglEWN7xncWIORjIBPpXwh8UPiDqfjOW10vRPGV/aeHNPt4BpOnJPIixOsSq8jYwC7OGJPoRWV4muvFngHT9K+KHw7s72yn0dfOl1VGuGivJuMMhZRgpg5PfePSviMXk31tT55b7eR51ShJ21P0v/wCCxH7TegfFvwZpXw+8b6N4TGv2F19p1H7aPM1CKGRW8uSEjY0ak5G05HuOAfjLw9BaaVorTyxrIjxqyMqgkjjr0r550Tx5Y/tCfEiXXvih4wuoNb1QFvtc6TSSXs5ZcRl8Hg8nk4G2vcfEN/J8MdFj0DUdb0XVbxIFRbaz1HfNbkYykqjK7gOvPFefj8l+qtU4S1/AwUHF6mH468WnWGbT7CHbApwRIoBxjnpnvmuRGli3vYtW022tftMbrtFzCGj4ORle/wBOM+tZ+peOtdfV5Bd+GjDbFx5k6pkIuOTkZrV0XVdO1WxNzZ3HnKUaQbM52jqfboa6aFLEYWnGUWrpEX94/p+0L4j+JfCcYi8P+IXhhV8yQrtZSvfhgRXdeGf2pvBd7DJpXiSG400RjCalaKp3k8k7cYXk46V4lPfxx2xlhljZmGCN2ev0rifGWtrZ2bafBdRBJMhn3/Mpzng59eK/V4wo1NLo9urHC2unG79D3/4majHd6Pd6r4D17TLvTZ4i168ciM5YZJDL2bbt/MV43+054P0r7JY6fpMEFjfyaRBL54jAkWRgS/J5GeOK8J134k+KdA1V9R0TWmt5bYDE8ch4IJIBBO39KvH9q7xRq0Ub+NdFh1S4RMJeIrB3X/byxB9sAV59ZQjJpNfeeTCEI4vni0te588ePLFvhxq0kUkhlawci5wScH0Oele0/CzW1+KPwotj9nKRG282S3PBkUfcPr1HbriuP+P0ngnxL4msb3SLhX/tCybeglUhpFGctj60fCz4weFfA1tHBql3EyW+ieTcWljGQYmVSwY5J43AjPoa5/rFGKs3qfWPE4N0Lxktj8uf2vvB8uu/tGeMPEFsjRpJdpPg9kMKYb6HBIryXQNe8J/2TNLr2jzywx3SiU27ESPBn95szxnbnBPevZf+Ch/xIj8IfGfVvAWlaR+9fS7Am+Lgh0aFGBOMfwuR9RXk3gfTNO8Zaf8A8Ijaarp1reTQlUkuflRExhmdywVTznJIA71y168ZS0ZwOrGa0Mz4ga5oy+B4JfD2pILWTUpQ0bDEsUWcIshPfGORgHNZs3xg8ZWvw7l+G83iK7m0UqBBpPmZhT1wvQZ4/Kqnxg+FOtfDbxMfCXiPWILg+SsqSadewTQSqc4YNFJIO2OSDx07nmJXmZtk0e1l7EYNca5Xscbsz6K+G+ifD7wL8EdB+Jlre2t/4nuoZYrCxW2R/wCyY9/PmbgQ8hwCpx8qkjrWbKn2u4aZxvaRizuBguTySSOv41k6O0knhy2+yNF9nsbMST/vQAqcZbnqckDA9avWHivwgkNvdRa+khbaUhaMqzZI45r5rHRxNXEOau0cEqc5bF6Pw1NrNubFEkWOdShcudoB4J64rz+6sNR+FGryWWi6oFSWMqz4Ei7WJBX584/+vXSfGz4n26arY6foc6QB4QZRAcbWAGAeeM9fxridY1PVfFMccbvbq8YBLMSNyg5zyevWu3C0KqinPZolUZp3Z/TVbeD/ABcNMj+Jia1DpWnaZAtzLbXsG77WoAOF+YfeHQ4P0pfHXxL+FXiBYL7QbjTo3so4Z7vTrm0Mck5kydqnBBwcHOeR6VrfFjxZN4j8NyeE9CQw2MsYhuVuBglOhxjNcT4VmXwt4nS6gQMsVkLeMYycbcfyqIYLiWo7VYaeTPnpZNmUf4acX63/ADZwnibxDp/iK61G4GlDTlku4XTT4mRo5xu/iygPzY2n2FYHizxT8P8AxV4Cj1HQhY2+o6Tfxx3dhG2JJUZ9pQDHI757Yxjmu58U/s8S+MtXm8SeFblks0b7RfQXl1FHEsiq5aQZbdnBXtj5a8PT4SReDfFTawZobh7KVw8trJvRdxyBnv0rSeXZ3OnyU1aXnsckMpzWpX5K1+Xvp+ho+HvhT8Ofh/4hW98S3qXqtYNLEhn3YODke31r5z+KX7Q3wx+EPgXx34v1jSpA0ct8LRbeTe88TMEgt1GB8wK5+jg19Q+F/wBnbRPiD4ql8U+NZru5nsZtt2zsqqqgElxk9ABzX5Gf8FM/jNov7S/7WPifwF8ELhLDwZ4BRk06G1hkePVbiKaKO6uGMattZ5TwzYTCDkZAO2XZNmkK/tMW9u2x9Dl+SOjKE3Juz7s5v/goNq2n65+0D/bdnOfMn8LaO89sRzAzWcTFSe5BfHQdK8PtPEmoaPJINOcxmRNshB+8pHSvW/2y7u4b4469ENDazubXS9Pi+ysMbJIrJPm+mcMK7T4afseaD+2R8X/B/wAE/wBlD446JBq134JtbzXbnxtqa6dZtft5jT26zMCC5Z1VU+8x7V7FSEVufSOHJokfNV1q91qEgmuTllGAc1Y1PVb7UUibUbya4lXO6WVl5zjoAox+td38dP2atZ+C/jW+8G6l8X/DV/Ppk7291L4f1JpYPORirqGZF3EEEZAwexNcvq2l6n4bvZrDU9MuElgjje5jkt3jaEOMqGVwCMjmufRL3TCSsRaDdahq2lf2O/iBLKOebY0koyMAE7eo9P0qez1BNX8TWNvBZrKIpgqhJch8dCDj8a739nn4UfC74m6zpFj8XfjNbeFdL1a7uIrjWIbSa4ezWIBwGSPB/eDIU5wMHPocH46eFfhz4L+Pmt6D8Jor1PD9ncj+yvt8qvKY9hV2ZlVQSz4YYA47DpTpwjFt2MoqKepy8+lnWPiDNoOt6mlkHdnmvJVLLEoPGQOTxithPB2p6hqEVjH8sIkWGK6ljZFkXP8ArAGAO3n9DS+E7+30bxIuuX0EM0QkVmiuE3IwAHDDuOOlen+IPjjpvjXwnb+Hte+Hvh8aa8fmxzadoi2Uo5IwJVYsW44OPSsqt29CJShe1z+hPU9StWLsWO0yEgbfesCXV7W31gzpGH2jO1k4Py1f8VXen6HEyaiWhbzdoBjY859hXMazMVjmv7VuNgKvj2A719dTfM7I751ION00cf4w+MV8txe22iQIJpYHt5JJ03IqEEYCnoeTzWNqPijxj4m07S/BdjqNtPLd3ALRRWwLBQOcj0rH8SxpYRv4gnuIPKa8MZiVXaYtwc4AI28j361ufD/wlrWiXUdnZPjWNSGbyXKl7G2PIfnhc+g+b2rphh4N3ZwzqXbVzi/2+vjfffsx/sLeMfHGh62U1/X1OhaBPLMRIl3MjkzBs5CqiNk98ivxH/ZZ+MPxA+Glp8SrXwRq9tBH4s8CyaJrqX1p9oe4tJruCUpGcfJMZI4iJeoAYfxV99/8HIPxNh0vR/hP8C9G1MiNbK+1S8t0B+4WFvEWJGTnZMRznn6V8BfsSaM3ij46aD4GWScReIfEOnafcxQ9J4jfW7NGx6hSEOSMHjrXLi0oRkkduG/hqx3n7c+nPoX7SWvadBNIAlpp0WWb5t62ce8N784J74pP2Vf2ZH+MrXvi24+N3hXwFp2j3VvFe+IPFF0YbeNpJAFhxtxJIwywwflUE5GKl/azvrb4g/Hfx34osrSBiPG2oQQG1ysYhjlZFwOP4VB6Zr1z/gmF+yJ8K/26vEl58AfGniLTNAttPMms6prOq68IXlkjMYhs7eJpVA8xfMDuAXxnHYV85Wb5jabu9T2r9pP/AIJH6P4C+FzeMvCf7TPwy8Ww6LrlloVlongaNp7rU1uFijhupSjlvMDvuZe4IJr4j8eaDrNhdeIvBGrWdrJrFlMtvqOqSXl0JQybkAMTsM42lRvHQYHevrL9pL4+eGP2Uf2ofG/w7/Z4/Z6tfCl34X8NNYNa6VrDa8637yQyLK91ckySwOmG3xYmi6I5OQPLP27v22/Hv7V3w28F+N/HXi/R38Q6E1/puo+GtM0FLU2ySTCZJfPd3muyQXyXO5fL77uOOHtOxhUjHSx8t6T9q8FyMLLWrkRuMM8bshLfQHpjd+dRSeI0vdXa6u7uaWVsgySEsxHpk80W4utfWSS2RriJMuSi9B6+ves1dNumuJbmK3OyJyGJ/h7dDXZa+5yNXOjtNbsMojO/XrtrSufFtxq8CW9+zLHbr5UEQJK7ASQcduSa5e0MChBLw+efzq/EpkUtCMgHr71k4o5pJ8zP66Pjx4U8C2fiU6PpWnCYbXMzOFYKwPPQDHNeA+KvCJaK6lTKwY4A6jp/Wur1P4u+JdR0prG6lWZWx5U7DDhe2T34rF03xHpska6XqspZju3k9+Sw/pX0+Gjao/Q46mL5H7q0PAJdPu/C+p3nibULOd5kdY9J054STPLuzvC4zgZU8dcYHStiC/u9IifRL+JW17XGU6hLbKd8EWDt4yShwe9dh438NaRqfiWLxjremmJdOgYWUaSna7DLKx/Ej8q4ODQ9Y8OatN49165M0bPlHYYyvYfhXqQZlDGSnO1j8qv+Dh67k1D9uHRNHs5zPHY/DrSII4423FZHMzspA/iJOcda8B/4J0XUvh/44j4jxG02+D7G41qT7b/q/wB1gJnkfxMCOexr7Q/4LeeCfgReftKT+NvjDpniVtX8TeA9Kk8OXmizQRWsDx3MkE5mSQEyMiB22r6dea+R/wBiG+s/BmlfHXxhpNkl9baX8PZba1S6QDcJb2FFY4HBC5NePj5XqyXofR4KXNQRwWifECHV7bUri6YtNqWo3F5C7HqzyMzbvwJx+FY3huS4u9ZuJpNSksZoP3llNDJ5TCUcqQ3U8471keFbtJGt3vnCqNwZlXHAyBx+FewL4W8Np8OdP+Lemanp1zeSarPbxeHbNzLcwx20SStdXAA/cxEnaMg7j3FeLWvGVkaVp2kdB8DviNpOm694o1X44fFXxHZ6b4j0V4NVj8OkPc3pjjQQxtk5dWxjkkLgnHNcp8dPEnhq58cwXngDwnpl1olrcyXkViS5eZ5lUujyfKdqnIUA5HOSa5HUvEd7rN697eIg3HCIi4CL6VofGbw34d8KeBPDXirwx8QY9SvdRjlGsaZHalDp0oYYTfuKygqQQ68Z3DqDXPTTcjD2nMS/DnR7ex8N6rrV/qC6VdvP5dnpyTLkxsC3BbO7GAPWotG8G6heeFNU1i6MrT+YhWIL8zZkUHjGe+azYtLvdI8N6f4w1zxNprw3sDzWtpBerJMCkgjKyIOYnP3gG6qymu6TVrddLhvER7eAxKZEcfM2cYz6HOK6FHmlqQ/c1PP08NX4vFNxp90ke4bnaIgAfUit3wn4UivtO1abU9ZsbFrJ18mC+vRDK4IJYhGUlxwBwRgmuit/EejNIk9nP5jwsGnjdRhQDn8eK2vF2kT/ABDsnn0a5l+dN8lmhCw8Dklcctgdc9h6UnSV9zklVbm9D//Z",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [48,37,65,52] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [47,36,66,59] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAoor2/9gj9jY/twfGDUvhQPiN/wjH9neGptW+3/wBj/bfM8u4t4fK2edFjP2jdu3HGzGOchpXdiKlSFKDnJ2SPEKK/SY/8G9WDj/hrsZ9/AP8A930j/wDBvYoOE/a9z/3IP/3fVezn2OF5tl6+3+D/AMj82qK/SGL/AIN8mlkKf8Nb4A7jwFn/ANv66m1/4Nnde8SeGW174fftbSaxLZwK+tWp+HXk/YmZpAo3f2g3mArGW3AcAgHB4pOMk7McM0wFSXLGd36P/I/LWiv0H8T/APBArx14WZvtnx2ldU+86eCmwPzuqztI/wCCI1pqNtcSXf7UEttLaxGSaF/AuTtGckf6cCeB6d6uVCrGPM1oVPMsFTV5S/B/5HwTRX6D6D/wQfuNf0KDXLb9qHy1mUny5fBGCCCQeftvIyODSXP/AAQimtbWe6f9qF5BAhYxweBC7vgHhVF7ljxwB1rFySbT6GH9t5XzcvtNfSX+R+fNFfaOvf8ABIe38LfCCT4ta7+0YqxrBuis7bwqsu+RpNiR+Z9sAyTgtwSvzfKSuK0fBP8AwRP8aeJdDg1jW/jQdNe4jEi2i+E3lkjUqCA4a4Ta/JyvbHXPFUlePN0N55lgqablO1m113W/Q+HaK/QD/hxdLb24uNT/AGnHtxnv4I3ds/8AP9n9Krv/AMEPG8kSQ/tPB2ZsKo8FHnr3+2e1RzxfUz/tjLv+fn4P/I+B6+4v+CA8fmfti+JV/wCqaXn/AKcNOr4dr7Z/4INagNN/a98Rzkjn4b3i8/8AYQ0//Cri+WVzTMtMDU9D9gzaE8uoPHaojp0Qy6x+2Rmsv/hLIxzlemfvVGfF8fqPzrqVdNWPzurUqLSxqm2WIfugFOOoFW/DPiLxB4O1628TeHNbmtL60lEkM8WOCOxBGGU9CrAggkEEGucbxdAeGI/Ouu8GeCxrumW/i3xf4jsPDugzSMqalqE4Mk+11VxDADvkPLYY7Yy0br5gZSKTqUuX3jlpvFVaqjSTv/X3HqXhz9qPw1rUSaZ8YfhXYaqjhI5tS0pvs1xjo8jR/wCrdiMfKPLGQeeRiTxZ8Fv2HvjbZQT6Br6aHqkyykW+po1q6MMkb5eYeQuR+853AdTiuMf47fsDfDSxkt7nSb7xXe+QivcanqzwIJAPmaOK3MZQMTna7yYAAz1Jx5/+CkvwTs47fwf8Mv2avCaWzybJtS1iyScRF2C72nuBJIEDNyScAdB2rBxle9FSX4L8WfS4eWNhBLE1INed2/vS/VmV49+GPj3wHq0v/CUeG7p7BkNxp+t2wEltcW5YCN965UZDLjnDYOPSuG1SO2kuBNAgXa2WIbkkgj/Irf8AiL8ffih8UdVuJfiR8Rr3VrZJ86fYzZSG0A3D5Y84B2kDOAQBjua5WTVLCU7hMB69K1jQpv3nufJZhicOsXL2Ldv16nifj/4JfFzxZ4t8P/D2HQdOufAdp4r/ALYu5WnjQRwn5vspi++AMzqNoKkTLuK4+X6DvI7u3gVLKENIxG07lCDpnOefyFZtrrVohw0qkD0qf+3oGmXbIuMHqayr0IzaVthVs2q4px5+n4+b8+76kGoaM10YjqEqNhsyBlVhgc4BwP8AJNLeW9leYWWLcEOQOmD9ar63q9o9hd3hvCTaxs6LFJjaVTdz1BP14xjjrnDuPEk1oDNbanBqLkH/AEWK1kVxxw3y7yPxAHv64fVHJLU3pVKk1ofgDX2J/wAES7+20z9qPxNf3lwkUMXw4vGllkcKqKL6wJJJ4AAHWvjuvrr/AIIzWtlcftK+In1aaJLFPBSrfGaby1McmtaVCAzHACb5U354Me8d6VefJSbP1TGx58LOPkfpn4P1681O/wBX1Gd7iVZNQEVpIzOsMkCxoUMMbdBl2BcE+Yyls7SiJsvqcyhg0ZGPQ/zqTX9GfSb2TSrjTI7O7gUbrcXEZfaFyz43scABjk8YGaxZtN1G4sWv7ZElEXzO0xChB/tDrjOOenP0z5P9oRkrrY+Ir0XKT0Ei+Ier2viOOxsvBkd4sE6SSy6lLItrLGAdyERMjkkleVcEYbjnK4vxAn8UePNVk1XXvF91JM+Fjht9iRQIoCrHHEAoRFXChV4AAFNttUuIzKJNG+1gvg/ZbzbsxyQVKMDwV6n34zVqx8WeGZ2GlaxoXlzWzBvMkkaRBjJyUwqpgH3yR0Oa0+vzg7pf195xuNanG1PT9TlbD4ceH2/e6lqF5OysM4XaGPp3/nXVT+AtJvfD39gR2clpbTbSzwOA/DBuc5znGOe1S3t5pcupPY2FllSwZrm4LJsyMg4woAwRxg/h0pNJv7yW5ezt9VUpG8oj8otN52wfMqqvO4AqdpwcHNc881rSV1JnBW+szd22acWgG1s47PTLo7YUVESR+QoGB79qqyT31s0iGUgJjf1//V6/lVVvFN3dPeSWcLRwQOUeWYGPyTuICyMQBkAEk4GCG4G2s+8+Iug2dtNdX08kk3lptdIW2kZJGDIAo+UjnODjPfFa0sfiW7PU4fq1S7Oo01zcLtS4jkPTCyAnP+e1SSfaYbzyZYpFQr8rlflz6e1cknxe8P26xPBo25WRmby0cFCNo6bMHqv3SQM8nnJ39M+I+hX0KtHetajacrd2hj52g8MSBjHr6iqljMXH3nF2JWFmndos3cdm225lcuOCpALDrkHj0I4Pb8ahmu52IFpeIzHjaZMU+y1ayvbueG4uo0ATzIeNvyj73zZKkDvgjGDxjmi6vNEZnjEr7txQSJAWCk8feCkZHPXuKccxmtGdEaMj8C6+lf8AgldDrA/aQv8AVNDl8ufTvClxdq4lhXYUubXa2JXQOQ5RgFYOCAwI25HzVX2f/wAELLPS779r/XLfVdN+1L/wry+MUawtI6uLuyO5Qqk7gM9B0yDwSK7cdU9jhJzteyP2OUedcp+knhT4u/FzxnpluvhOztL3VLcNDPp2vWJtzNt/fti4mvZGJ3hUVJDtzGoLJgM3XWPxF+HsltdeHLnXLHTteu7oE6HqGjeXPNIJmTEWXZZ0LJw0ReNgcKSzUnxF+Dfw58NPF4j8KXt3pMpv7fT9cLaYjoLSbrJFHI6GK6jeSPbcxOqqXKn7uE734qfsoaDeeClttP1O7vopLMwDSrgNe3DShYxBPJGkY81UuQzu5LyBPkVm+ct+f1cVhm03dJvpv0+/8PU4a2Av01OAPwrtdfeC78UajHYxyxF4rWF95IKbVJlR2x94DgZ6NuYgqeJ1XSPhBoWvahaaPj7VbX7G4huoJF43IQVxMU2qgZmJC7sqQPlr0j4NfCD4lXXw+0nRLOw02202wkki8Q3FleJHClzb3H2W4t2V1IiTMcufIjCkusikl5Kh8e/sYXdtJLrlnDdahqcyG7sZrWUIixfKADOQwD/3clRkHaF2llmOLhCvy1KjS8vXr/w55FXA9keQ+IIvB2rarYXHh+yvJLS6UvcpZ2BjliCyhG2NJtbG4YCiTcQ2Dj5krS1P4NePxYpex+EJLzZePNLcJB5SMuMHCBnl3DBAJUg7sqGXDHvfB3w58B6NcGw1DSb+3n09FiWysd8sts+4MxAcmVyWIwyLjbgdMGuxsdC+ON42kXPw88daHeWF1MEt7e8SSKbzgZMHILAsuw/Iy71Eb5JK4qqmYSpzSpvTzOKWC8jxKL4NeOs28gvU85L947c2l8heJ45GjXcHwN7OqKAozweCBuNX/hE/Hep6f58Pg3TooLa5MesanuglERXIBkaJi+9iM4AHyuD9wqa911nwL8WZbObSNY8BaBa2omdLH7VrkqKqqvlBnjigZRGQQQrEFQ5XA5z5l4l8BTeGNN1vWvEGrT6v5TvGlxZX8Bs9NknyJITsIkmRSwVy8IRysYMYwVXWjmFSTSk1/Xz/ADMngbnkPiey8Q+dZPp8qg+SQHgkRt645YqEXJPUAEgZIzwTUOmeIPEmk2wa1uFlgUsbu3urJMGMMG8zoGUFlXkkYzjJD4PV+HvCmhXssser+JxFqUUchnsL65d4IEh80vIjtAVCY+zx7RwQxYMOjdX/AMJl4c8P+JEVfAVjqM1uI4Rf2ULW4DFJDJGFA5jZyWUEEdVOcqq+ssc4rlUb2I+op6HCjx7Pq2uJJa6rbMtu0pJuQoaQnAAMiEK54GDx78DNaen2nh+UxQ3WrzxbUY3Gy0aUxPkEElJMbWAYAAZzjOa0PGuuaBd+H57O3+FcmlzecGtZ7W2c7uSp3su3jlj0IO4kjPNZnwz1Lw9e+FJ7fxZZyW8ljeosrs4l8wumY1Vvl3MNrk+iqPvA5q3WTp81rfcH1HTY/DqvX/2Kf2sLr9jn4sXfxRtfBr699s0OTTZNPXWHsgyvPBKSzqjll/cgFMDO7OeOfIKK+pqU4VqbhNXTPvE2ndH33rP/AAXN1bxHot/4e1v4Cas9pqEEkU0cPxKmT5XyCObUgjDPlSCrFzuDDitj4U/8HCnxU+EXnR+G/gofJubZEurT/hKUSKSVU2Gc7bIP5jKBkliWKgtu5z+dlFee8my1qzp/i/8AMblKW5+oPw+/4OXfHHgHT7uyT9lyK9Nxq19fDzvGaJGWuriW6cOiaeM7Z5nK7DGAgRcEgu3Yr/wdUalBcyzWn7DFsvnShpGl+Iu93X5Mhj/ZwUn5Tg7eN3IbnP5G0VjU4eyerJylS19Zf5mbhFn6q+LP+DlXwd431e31rX/+Cf4jntplMcmn/E8ROYggDR720t2AZt2dpHytgANmQ1Jv+Dkjw6Uu7K3/AGEgbK7naSSyu/iUJ0O7OcltMyevXPbFflrRU/6u5Na3sv8AyaX+ZDoUn0P1Qf8A4OWdHutaTxHqn7BNjd3wQj7RcfEAOY2y21ow2nHyyFkkRsZLKw5GOee1L/g4L8AeIdWTX/FH7Bxvb+C32Wl4nxMEEkEgfcsivHpgfOMqw3bW64GW3fmhRVR4fyiO1P8A8ml/mT9Wodj9Lf8AiIN8HppSaRbfsLxwQo2THB8QlRWGwIBxpu7hVVfvfdUL0FY11/wXc8DXsfk3X7EsjR5R/JHxMk2eagCh/wDjw3fcVAQGGduepJP510VccjyuO0P/ACaX+YfVqH8p9+wf8F0LzSNUm1Hw5+zS1vHdkteWV144aeCR/mO4L9jXDHdhmyWZRt3DAIzW/wCC1KJFq8Fp+zP5KapfwXKLH42YGHy1IK7vsm5tzFmJyOT3xXwpRWyyrAL7H4v/ADF9VodvzCiiivQOgKKKKACiiigAooooAKKKKACiiigAooooA//Z",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+ivSv8AhjP9sH/o1L4lf+ELqH/xmk/4Yz/bA/6NS+JP/hC6h/8AGadmZe2o/wAy+9Hm1FemwfsVftk3Ugitv2SvibIx6LH4D1Ek/lDWrb/8E8P2/wC7ANp+wz8YpQ3Ty/hlqrZ/K3pPTcaq0ntJfeeO0V7W/wDwTX/4KLxx+dJ+wJ8a1QDlm+Fergfn9nqhN+wB+3hb5+0fsT/FxMdd/wAN9UGPzgpJplc8O55HRXqM37D37alsu+4/ZA+KMajqX+H+pAfrDVOb9j79ra3XdcfsufEWMZxl/BF+P5xVSTewueHdHnVFd3/wy3+03v8AK/4Z08d7s42/8Ije5/8ARVWoP2P/ANrW5Z1tv2XPiLIY4y7hPBN+dqgZLHEXAABJPoKbjJboPa0/5l9551RXe2n7K37T9/M1tYfs4ePZ5FUs0cPg+9ZgPUgRdORVpf2Of2un+5+yv8RznpjwPf8A/wAZqXpuT7egvtL70ecUV6K37H37WyHD/st/EYfXwRf/APxqk/4ZB/azPT9l74i9M/8AIk3/AP8AGqV0Ht6H86+9H9BKLK6ZMRHrmkKPu2qv41e2Z6ACgRgDg9+a9R97H5g6+omiy3em3cd5FJteOQMrkdCOh5r2PwL8d7a0tlXxJcQxyByqGONwuMHBYjceuBwD3OO1ePGMjIIIqNoSy/60g56Vz1aEa/xFUsdUov3T1Xx9+0BqWu63Y3VhPeWEVgxEkml61Mv2gcjK7kUIdpYZMecMQcjArtfht+1D8LPEMs2i/F/TPsoaSRrTU/J88LHglUlEahmfGBuVcMf4Vr5yNrkfNIT7ULbxKmQvzgjB7Y78flULBUVG1zenm9aFTmep9ja18CPBvxF0pNU8AX9lfWxLAy2l2rxlh/DlTgEdwe/pXnHir9jfW5raQHTHRMlSyqrf5HvXkngr4o/EHwBLCfCfi/ULGGO6W4a1hunEEkg28vHna+dqg7gcgAHpXt/gX/goF4q0nSl0/wAZ+DLPWZlc7rmK6+zGRe25Qjrkc8qAMY4yCThy4vDv3XzHr0M5wNbSquX8T5l+LP7JHjXRbl5NP0V5tg5eJVHP59Kz9ZlvfC3wfbw6bSHT9ZmmS3luCwDNB0IJwT6ZwRwMdMg/ar/tL/s5fEG1aPWrG90i5eElze2fmRbjjKK0JZvoSo6c44B8V/ab/ZvGuacPE3hKNLiykiMsN1aSiSN0xkMGBOa6KeLdRqFVWOlxw9SnKWHkpaHz54W+FGmeDHF1/av2vUJI5Yb2SBj5AHmfKY9yqxyFU5IH3sYGK25Y0tgqxZ49qy/D+sXtnraeDNUhQSRwkRui4wV42kdOgPPHT3roLiy81P8AWbcdRXPiYVPa3kz5DFVKkK7UzHu7OaSB5GTHyAhsdeazooJoriO62FkT7wxXUGBFQjerYA6Gs/UriGCJogFVWGDisUnsYRrHUWzQQTiWWGOYKeY5CwU/XaQfyNROVLFhwPSqX9pxsfv9+tJ/aUR5ZuO1emqgpTZdLgDA4B9+tRyMCeucVWF/E3AcfgaDcIRneB75qlUizLnsiZpB0BpBMAOagMqkbtwpyYbgGrUoGUqktiXzUbr/ADpEMKtuPY1p+E/BHi7xvqJ0nwb4X1DVrsRGU22m2bzyBAQC+1ATgEgZxjkV6d4e/YN/aW12K1vbnwEul2l0wzcatqEMJhUnG54i3mjHXGwnHQGplUox+J2N6OHxWIX7qDfojyOO6KdH75HNdT4C+NHjP4bJLB4a1VPstxIHurG6tklgnweQVYHbkcEqVbHfgV7haf8ABPbw34dsbbUviL8b7YSxSb9S03SNNLh4w3KRXEkikMV/iMJCk/dYDnhPin8Vv2YvgTv0nwF8NbO81GODyDqGtlL8uw/5aFJ1eFXzzuSMDPbHFckq2GqvliuY9nDZNmdJ88pez829fw/U5zxr8R/hH4v0a+1Q+EJtK1x7WBLeytIxJZeZwryIxkVoFCr8ibJf7pbjdXm1xqUGCu4YIwa6DVv2vfGXxc0jWvA97ptpDpiLDb2duGVxawLIrxRwbYx5ar5W3G4DDABT1Xi5SSpDNn+tdFOjzR95W+dzzs4qtYiKlNSaW6Vh32iNWYiUAH0FVbl0uHXzU3oufl3Y5p2IupTNMkjzzhh9K0VGCdzy1VRENWPbPvzSjVQMDnrWObgoMtjHuataNC+r6jBp1vJGj3Eqosk0gRFycZLHgAdyeleUq6PUlC7satteSTMFiViScAAZJrpJvht8S7ezmv7n4fa1HDbKzTytpkoWJVBLMx28AAEkngYr2P4H+HP2c/h3Zi/1v4u+E7jV4AftUz61AzwsVwUVQ+VGCecAkMc8HA0fi9/wUA+Efw8RdF+GM1jqFx5WZb+3k8xFOOAnJGfesJYupKfLTjc9OllEHTvVlY8y+Fn7N/xK+J1mmvpFbaRorAsNY1eUxxyAMARGoBeQ9cEDblSCwOM+8eEPht+yX8G4I7vXNNuPFOpwmJzca7MFtlkXOdlunylGyCVlMpG0Ad8/KPjT9vnxHr6zXt3qjhyT5YDknOK8S8Z/tQeMNfdxLqcuwk4AbGc9a6oUsVW3fKvI7KGFy/Cq6XNLz/yP0g8Qft6eHfA1gvh7wWlhp2m2yv5Ntp0CwQwgsSQqr8o5JJPXOa8e+KH/AAVcvYrSWw0O/NxKesm4nH0J4/KvgDV/iLreqBhLeSHP+1xis+2k1DUZhFGkkjscKqAkk/StY5fh4azdzslmdWMbQ0R9V6b+2f8AFX4w+NLbwbZawkf2+VlSS4DMgAUtyo5PA6A+2R1rJ+NPhqzh+Lt3oN9eB10+C3nniklO6YTwrMjAcEqFkTJwOWAxzXi+n+G/EPg7RpvGEV/LZ31rHvt/s8u14x0J3DocE9DUl1+0Zq13r2n+L/sQkvBZNY60JQpj1CAY2iTjJfBwHJLL5URUqyA1pCMFK9Hb9TgrYuWMoSip69z2Kwu7PTovJsLaKGPcWKQoFBJ6nAqb+34+c/jXJR386xrJFOSjKCpPGQfapvt8i/MHx34NCqtdT4qUZSm7nT/20inp2oGsxtwwJ9xXJnUi5LeZuJPfOad/aeGxk1pGr3I5CZp5QPmbg+2M1A+qXNuyqsRdT6NjFU1luWVhHc3LKp+YAEj8apXN1PHc7ROrsCQY944+uelfORnfc+mlT00N97tbriVip7qTWZq2h2d+xWdCw7MMf40tpfXSQvcm282FTgyhCQO3X60qWgvivmX8sxPIjXKjHpjr1qFiJQejMXGcXozltW+H9jeSNFZ37K+3IRiOK5+X4a36Et5oYD26frXoGqaJqV5b7dO0iaFkP7qVQQx9eTjjmmaZod3Db58R6k1s5GUhNu25vfJFdMcxlCF+Yv29aMdzgrTwBp/2hU1HVJEVSNyCIA4zyAc8flXZ6RZ+HtDj3aNpJBYYMigsx/4EfpnFT2ukhrp2s9OSbaM7lXLfryfwpQqWsxMbrtzgBQQPrzWdbG+06nPVrVqm7NnVI7rxdpj22oabBFHLZG3xBEkR2kEbiFGC3JO45PQdAAOd8O/B3wxodh9j1KA3haRZJWkJAZhnGACMDk8c5zzkcV0th4htEiSG7TOOMqn+FXJLyzmDSxbm2r0Ugkfh1rjjjq9Jcq0RzOrWjez3HpZwXK5aPntg8/WobzQZD80Kqw7hsipSyNb+bA2CQDnOCafYzyY8uS5bcW+VXOTSji6kdbnK4O90ZVxo8kBDkmNhn3FUokkuIxKk6HJwQz9K6K5ntr6drZJH3qCWyOcf0Nc6rWcWsvbtDnGfmDc120cZOUXcI0yzd6L4gvpnVrOdmXgIsDEofoCOuP0rnb+O80pZ0McYdOd4D4Q4H3l3Hbkc5Hpz7es6p4O1q20eGybT1y8buhjAUISMDeATgkJg7sAFuTwa4jxL4bvLG2t9T/eLFdzMvnWcKlCR/C/mYyCOQRwwIIJ614tHGczs2j7CVF9jndN8c+O9Nt2kstQtJYWyxUxt36EHHX656Ac0lz471+6vFuTHYxXCkiRioLNzk8rkEf5680+e7hS4a9is5dqHeieZgZHOA24jPXGTnjHPAOJqvicxI9xb+HH8gNnIR1bOcEEbdpOO9dScZy0iYyoXex3mg/GfS5YFh1nTYIQEx5kd3nc3f5GA7e55x65F/wAP6jpl/DNLNeRx72DFLoqY+ckjbn5QMnHrgY9vIdP1XTdakkZLbYkkiq7CEKVz2LDgZ4HXv05xXSxXa2eowzFWuUQIVAlYsw+XcpKNnbzt98cYI45a1CEX7ujMZYfsdJ4j12XQpVNnElp524q0D43juwRcjAyvPoVzjIFQ6Lc+IPEUZtInacEZZyue+B8xPqQO3JrKPjO5uLlpLAXYa3jnEUelwO5hjlH7xHZCNw2bxh9xC9yM5bYeMrIbfsdp5JWHcbi6tHBlXaCC33SRgg4U/hjNQvaRjtqc8qDRtX2nadpX7xdYt2mmmCRwSgErztPK7sc9vUHn1v2+g64kbXGnGwlTJK3LykDA+8ACcjv27cHoa5CDxPftfKb3S01SOHJmaC1lhaMZHzBycKAxXqenHcEaGneLEtkbT/FI1BGm8yUmyUsUY7VEY3A4wB0z69CSapqvy6amMqEn0L+taprmhn7H9ntJCQrFobgOjg85DBvTB4/Kq1r4ta4Yu+nbGJ6xuCw/TrWTdaXDP5Vv4e8RXc6OS9y91YFDAN2ACASzdecducdhqC68C6P4eNtPrDRasG2zNJGoiBwST0PU8HcenStHOEIJPV/MTwzSvYkgu5r11VbKZ2Ul2DwhsAccc8/X14rUsr7SbS7uZ4rZ7dywDCXCsfqDwMccD19s1zdxrmtaXC8ur2j6b5izPa3sVlK0U2yNmCYGDktsAbdhVJODjnkrnxXrN9vubnxHO8mRujs7DP1+bsa6adOdVb2X9difqzZ9c/EnwZfWkcHiixm8+WGQI00dskchQAr8xB6NkkAFcAnOScV5BqNze6zezado1ibjUoZNslsYvLCtwGZjwqgH2Hbk9a53Wvj38T/DbCP4zfCbxFpNok0cV9rP9nyXVnAWU5EZL7XPynA845GRwQTXpfwp+LPwC8T26aP4J8R2d/qUtoXlhkCxXTBtg6TgDPmOq+Xkg5yCcbT8xGliMLT5qiuu61X3o+5q0OZ6HOaB8Ida1i6MPjPxb9lOxwIbCISIGIKgfOV3EDLAEMp2kFTgg9hD8DfBFpb+Vb2UFwPM+WWKNrdUwV3qzJJn5mMjcjK8KSABW5Np97bzHU9LiQWYJSG3ZsvJtzvGMYVsr93OFKtkcEjh/i3rlzr/AIMuNKjIlnMbStPIDGFUEthsdWwAFX3z/vQsRXrVElKy8jklQUeg7xL4S+Hvh+0W0s9D0m+eJh9uXTo3lfdhstjLFFHKnv0I5IWuY0/7NDNJp8mlR3huECQ6euUkilztYeW4DKyqqr90FegJOM8N4T+KN9o0z6Xc3CRSzELd2ykfv8nChTkc8nhSPzqXUPGOseFyNX8N2aTFJWFxez6hJsYsSSuwMNx+8OjDHHGK9FUK0Jcrd+zbMHSTOz16wtNK0260bxBpWpQFXVJxsGIxyQina2CQRyQR8ykDgBuItPh5qkusyarpfhA6w1hH5iQXMxt7myQHoIShMmM4Kqhxw3ArVn+IXxRHhVseKre23WxQW9vNuuccfu3dEJUkA4weM84Iqz4O+HWn6re2tw2n6hqDujMZ4tQ8w3BGzfgCVVChiANwXiTnBwKcJSoxbkzN0iPwzLrejl7u60HyYpJY0aKQx3JkDjBODhkxwR1PUfeNc5falePdXTaZcQRM7Bp570+RHHGduCEZA7g7e2eOSScEfRemfBjwxqnh50vvD7rqD2xhheG8lizGG+RwlvtxJuYBiNnGdzEYrO1H9l2EaRJaXUrs3nAqJC0g8tRtbejrhmIyBgtk45GARhTzCjGo3Il0NTxC0l1m2sp9RaeR7V2AkltQwBcglCr/AC7gBnnj6jOapTaBrcyvP4d1C3aSRyABKiIAM5zhiRyBxg5BPPGD7nofwasNNa2j0rSNR02K2VjczWDyiSfO4hQ8KQpIgdYm2MBIChA3soeqcvwz8Nf2qpvPF2rpa3dsUS6tmSVo2yx2v5iygON2Q3HLkgAHjoWYU7+6TyPY838L6j4r029W416zguvIKrLbyuNrKRjcrMME89MDaQCe5q9rHiHwtpl9a6nZ+HtPXdFKyiePBIPAKjftcjbjd15OMd+p+I3wA0DU9Esb/wAM+LJrl1BaaT7SjLNn5FZCD8zeYUXau4kuoHLCsPU/2XvixrGj3EGieK7F7CKVR5u8pcbgSHjlCglGQ71Zd55H5XSxGGqNSlK34EOi0f/Z",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [33,40,69,54] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [14,39,85,68] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigD+gW5/4IZ/8EyJ9EuDonwR0yW9juv9HZvGOrkTwqPmdYm1ON1G4FQPmb0U97nh3/ghn/wTCv49U1O8/Zh8y1s1gSSVPG+sRwrIw3N5TSX6uxwR8pRznjjFfXdrb+BNF1O9ufiD4dEIDhNL17R4ZgTEASY4YYiRuOT88ihl2jrkVkePtc8K2lnJb6joHiXVY44xNp8OrRQ2qSj7wMj3MEXYKPMMbEZJ7A1857WtdPnf3s9lUqbVuVfcfNfi7/ghz/wSlhsm8S+G/wBkea100yfZ0i1D4k6w9yJUGCzRfaUdVY85wQM8Z6Vkab/wR4/4JB2t59p8UfsrRNDb3A+1WOkfELXLmZEjUNIrhLwkOT8u0hCMk4GMV9RfAnWL/wCJviSXU7TTPBehX+npJJY6bP4xt5CTtXE32o+dsLdB8vI/Kl1fXdL8HWOhPr+kaLA2qXUqXk2kaiNWkkkB+bzJBAxI3MPmwq5IHAqvrFa+sn97D6vTtt+B82eMv+CGX/BLLWry5Pwx/ZoiW0tYIjPcN451t/s7bS0vmK16WOBgjZnn24qrN/wQv/4Jp+Fvh7BfeJv2YbN55LREt9Yn8c6zGbqcsfmMS6iBGCGXghQBjqc19Rf8I74h8O+G7nV9AsbZRbXUTi/1XVpI7cBlkdUby1EhBJXK4CuowSM0nw3+K0lneT+FPFnjJPN1YBEuJPDq2MnJysiPNtdFOWB3l/lUEsAc0LEVX9p/eHsaSjsvuPlkf8EWv+CXkupLoGifsJeItZmuHaC3ubHxVr0cazYIDtI92UMQI6rk9yVAJHongf8A4IEf8Ef/AA7YahY/E79muGXWZc+VZ3PxD1tvsUioqsqpbXqu0e/J3PnuNx4r1PVvGEFp4mn8OeHPjVf6b4hsrJ7y1ey0ZobO6tmkEZ2yRq6zsikZSJizN1Qc57XRfHd1aeFLSNr6yutNNtt1bxVcWNxZSb3Yt8yyw732jnICAnnPer9vUUb8z+8h0qctLI+Rrz/ggR/wTYnafRNG/ZnMtzFavPNet451aNIUMjJGQGvGDkjB2g5+U/UR6L/wQf8A+CVF1e2rp+zxq11HC3kakT43vxDLIud7IxvU8lsgDEjY9ATX2jpWiabZS2HxM0q1gv4JEdrKa+0x3t75iMK0cRm2yBeG5C/NnJB5oYaP4i8OX2rjR9AsLae4M2orq1oomvCGUME8p8l3fbgEnC87DgEKOIrX+J6+bB0qaXwo+WPDf/BBX/gkvNdpLd/skLeoscnn26fEjWgIgg3+Y8kd8VX5SM5KjPQeuNZf8EO/+CSXiLQWuLL9lX7JtvGhu9Rt/GXiGdbRVbBOw33ztgEheOeDt619W3EXw8+INmmlanBc21mnnXH7myu4I70thY4ljCIkjAsWyx2nGR6jm/D+h69ouh2nhCe6kfTrW4nkl07TLLyIZYi5ZQFbzyrcgthgCxzleVqpVqtl7z+8mNOF37p84eMP+CH3/BI/QpH8P+G/2ZG1uKG+iluvEdr4w1xJLeIhn8h7U6ifvIB8ylnXG7aQwFc7qH/BBr/gmlc69FH4I+Fdtq0NzHPPBB/wk+tL5uwtiKLF3uIAABPzklSRtHFfYljoniTTNci0PQNDtv7Hv5Z2ZfD+pW9m8ZlThBHEm7zFOQDCwIUZbIBFXPiL4d8beA9JtNBtfG9xpOq3g/s61u9L0ePVligcJhZDI0cikuuCwj2ZXJb0l4iv0b+8tUaa3SOT8J2nxm+F+uL8QYtAtdQ0Y2KXNrLfXl018ZGGRmEOyRFuW2RqABxtGcDpNBufA3xJ8IXPiz4watey3+swyrF4d1DVZbMRwkuX+V8XKyMW3EF8YAOAK4TTdB1yOWb4haZ8DPibYWeszk2FlFbfZ7SR5WHmXJlS6KnCLgLK65B2gHnHX3vim7t/Dqap4vsb2K/N3sgt9VtDdwrbttAASOSSTduJARSORnByK5VyxZvzSlsZPww/ZD8K/Bfwknw7+Bng200y68Q3TX9vNfK95PKp6OzsuFUD7qEn1wepzda+Cfwu8LX3iO61v4qStqd5AZ9W1XTJYYtRtDHuxHBCiKiPnd9z5sYyOla+n+Nfh94og8TeFfAfxSh0t5tSj06+Sz0m4gutQhADNJbS/Z2kVFYkgMQ25TkYANYqeCvD1hbxSa14d1C4uLaGG2smstYlt7i7t4du1ri5FuTEuOu5vmIwACKqTSe24KTaG+BPCvwF8K/C1ta8V6H4g024GoM1lLrkhtL++UMESa6MlxOzvjJBLKEUA7UHTU8L6rdX8NxDo3w71R1WLfHr5ke7e5tmZNsgn2jaQMLjKBVGd5zxyvh3wl4d8TRaf4S8PWWof2Zp2qvb6jN/aGoyws24TNHAHkUu2WRS+0qxJYqSAK9Ik0rV9A0a20TQZtc0w2JlfWdX1iMy20qiTdtDggxlY3zxGPlUhnB+87JohSexmaJ8QdLW+vtMhu5bttMu0j8SW+n2l4scszJ5qQSDeqOPLQ5USyblVjtAPD9Qi0f4zaZJ4jutFltp9OtJJ47WS0a0dYGxHtYncQgCACIGUFW+Yg4xL4T8Q3nhvUo/E2o+II5dJlk36bLbfvRZRMMSFYcPM4O0biyoo3kb9qnOjrWt/Cz4h6zeJ4Q0m01rTrRHSLVVWRRPtAYuXiiVI9u5lALyKTzx0DsrWY2r7HP+H/iB4jvreHSJPDt/c6fYSi0vtQ06+u4YdNMkY2RmZCijP3M7l4lGV5GOqj8U2vgi2jm1jw5fTxW0G2HRptTt4YHiyxWSSSYSE9wHdZMljheuXeJfB/jDS/CGmW8nxVl8S6NO0c8kM10r21gdu6SOJ7WeFN4GFLS4xtK92qh44vPC1l4h0y8XVluGS3t7ue7ubmKccqxhjeZnkIbaw2pvH3hjG7LCSQdbG3Np2oaz4S/ty20aK8murfH9oWuq29rbxSgbRsaQRmRkyxH7pc7eF4JOJ4Q8K/FSz8Fed4h8e2L2VlPOt7PrN4glkR+EIuDhCMowBTcAPvYJ5eniaz1XSH1u41ayuLW8n8qwbTNWtp5pSODlftEsvlKASy+WVAYDnmuWm8G6F4x+I6+C7S68R2loLdJoLjzf9C2BmIuLiW7uIRtWR5WWBU3BUzswDTcW2uUUeVpp6Hct40j8Kx2epf8ACP64tlp4WSx0PTlXU3nUsAH3pMmFbcWA2KpCjGc1pxaiNRmTVrjxDZre3MfmSXLyrPLpcJCsY2Uy5jBJAKjadxHUAVk2lwE8awLJZ+JNSnltYNFstbh1W4ihniLsyTMigbjuY4EabN0u3IAyM9vg7r3h7SWub3w9dQQvqU32u78TSxyNeBHJEeyGVWKAg4WReNqg5JFNqSumJNS1RzPw2+IIspb1JPiZq17pVjqbRabFHdXsdujg/uiksuHlf+LerSYYlVbgVs+NfEXgXR9Vf4n+K9auNOsJIBDfTeIEkiuTOxyqJN5hQRYDH92gZupPGB5p4f8AiYfEGka2dU8bXdo1nOI7fwvrfg0ILE/6xyggfdPkZYM7hQeW9G6v4U+KdU+LOr29j8MND03W9IhUCZLvwMbplYEjcskyxpuwFIXIQHj5sBjlKaTNIxbV0XNagvLDw1Lf+N/F+s6np0ii70doLu6ii1FTjch8hUZIgGCkSSyN/F04rGt/Enhf4ieGbm71Lxxo9jeLZFtO8OWWvG4ZomTag814oycEg71HYYJB5veIvCuieG9ai8XeGba/0aC3s5ILiW18I219NJK7q7SYSKVjEXQHamACRhhirVunxL8SabcDwZrXw+kjS1zfavfaik10pwAobTYWZd0agZDuGBYHb8uKT5Zuy2E04ptu7KOn21r8LpLK08SeJ9E0W11GH7SZL/WJrZkmA2bpXllTd87biMjLKc5BK1J4S8YX3/CQ6tf658atd1GxtNKnudKtNc1N5NOscbFmuC0fy/MASGkdwqngDJFavgTwR4C+Gc8HxhN2uqT31iYP7AtobwvqUkWVM5hmCwQIXcEEqvU8EYB+Sv8AgsZr+q67+zD4r0zw34l8FavrGj2SC/1XSdQtpNStYXmUNAIrVFWJDvKmQnL7SMdN2sYu6iyHJWeh9AeA/wBpr9n34pRLobeOvC3jC5EbC50DS/sok+0szBz5z3sQkUA8yOiDapznIB9C1Dx947+Evw+t/D3gf9lrwv8A2FfFZI49C8SW0KXmGAlf9xGkj/KOVRnLAFckc1/Nb+zlqHxo+H3xD0v4ofDG7ezvdIvknt7iRcoSjZKkEEMDggg5HPNfv5+z/wDtq/Bf9qTwVp/irxS19o/jCfTP+JsPBvhJbq4t5lAQsECyLICAdpMbYL5wDzWVavhaNf2KqLm7XVzvpYHH/VPrMqMuTvZ2+89ZsPAXj/4gfDK98Y+HvDmoeEdBmsxP4iXxdrcbW1opTMbWTtM20nBAQgPl9pWsb4oy/HTwv4P0vwh8HfAFtfxLdWkstpcaZZh7uzY8zM8aeaXHyk7yFBbG35TXeab8JHg8RWfjfxjoV/qP2a8jVNM1Uz2Z2GEFC6qMvJuJY7PJAJHXbgWk8V6ZP4knvrTW7Kwj8PXsgjs7yBpysrDDqZ2mEjkAgruXdkYy+QV1a92/U4lK1RGHJ4S+F73V34S0XwZ4clNgY01m1ttBjiL7ipLXIIMKunDBRETtBZgx5arH4s8Bv4xMGj/FPTW8QQYtFuoIYJrlJWcvEkcMTK5TadrFIV4yOWXJt6340hv9Pub/AOMHjK1u4ZLKV7vQ72Sws4tRwyiONoZodk6kYGzIfnG9sHNz4X2Wi+ILS18OeEPhjLoWnWllPBa+HtFuYLf7TcCYySGGSzuGcR/MSSB5YZiOnFOKulqRN8rtYxvGV1a2/wAVZNb+J/gPw2b+1tPIh8Rr4rEd+PlDvbpatHDJDjJfkyuQ2MuQoXuXm8LeJmhsvC3iOKG7ieWSQyyxWw3biBtRvLYs6qMuCynBPWuJsfCPwOtFvvh/4T+Gd9p90guWJk1J5HUiRss0qDaehKhp0YkruVSQa1/C/hT4h+CvAA1Pwz4Gh1y5lnFusV1AttAh2l2DySFWm52n7xJIx0O5Rybd2KMdEkcf4l1j4YeHfAA8M698MdJ0+zup/O1C8XTby2jOPmZy0sa7kQdGXGTztA5NPRPFHwgstT/4RbwRqUF7FCsbX2n6VPLMr28ozGrPBIYkjJ5ILjATkdz2XxRsvB8viu7vPjP4/wDEN9faeiW1hPb6VFIZFVip2TSSMqws5UDCszYzj15Xwj8L9W8Na9Ne6X4gl02xubeW6S0tdP0yYCzZejNcSQ/6TIeWww2qMc9ay15mmtTWMdNzj/EMCxfEbVJvh7aeE9J0q1s9mn3el6eYDLdhVdA1w7NCqj5hyGHJO0447PwxrvhjU/hZp5i0iDWPEf2RYtYfV/EZuLQ38rF5CjKnlXIXGN0nzZ5VQBXRauPBOp6cPBvhD4f2WstDbbYUtP8ASDmXhZCjyMqyDGQodkXO7I+7XOWHh+y+EvhxD4Ba7urZtZa41eIXbyEXZUR/aHErMkgRCc7V2qo+VTzUta3HoSSeMvGXifwbqHxK8IeIvDuqeGYZWtNTuLZbqXT2ZZE+aPzHhkBj29UUfPnDHCk+JftKfF/4EfGD9n3xV4c0G/0jQ9Qk0Z7XS/7X0+OzTULmQkNG93IHjBc5bCmPKoTvbkH03wdrviPwHpPiTSv2gvFuuJqGqa4l34Zge9fS4pon2MsKPbpKxR5A+S8cQKk9A6k994j/AGY/HGueFr7VviKnh3QbkXlvqF1pWoXrXUzyxSb4njhkMToUUjDsyLuRd29VNXzNxutxRXLLU/A7VNZ+Hvhr4L6vrekTF9S0dSk0MJXAm4zk5IZCxOGUnOK8Q+Cn7dXx9/Z5+Ldr8WPhL40vdKu7VziNJ8o6NjcrAjBBx0Ir9R/+Ct//AATr1DxP8Mb39oXwR8Lbnw7HGoj1K6gvbfbq8RyyS+XApSSWRm6oVJVBlGw0h/Hu/wDhV4otfEU2i/YzvhYZwRnHBHQ4zg9BmscnyTCUFVqVffc3e73Xl/wdz2M54nzGvRoUKUuSEI2stn699Oj08j+kP9nT9rXUfjJ8FfAfxqsvEUgVoV1G7vtSlGRdQFW8gEgedIS+/GyRVyu4gDj0Twn8RNL+M/hHVPifoMOoeLpBIosF8PeK4ry7sLiaU5Eg2RsDgEHfGhxzkgA18q/8EofhX4d8Pfs3+ELv4e/GTWNbvLCzI1bTNUvFOmaXdHd8j2pzLIroVB2YBwMYP3fsGPwR428JwhPE/wAR/D1tBbWokluNBtVhiM7NghXSLAj5bJZZZWYgEv1O0VKm2tzx21KCaVmRfDDx/wDFS2gt4fFsOuWOnSzCSK0fRkGoFmC5DyraSMrADkYKgqWY4zWp4k1/Shay2Og+JbnWtdh8qLUNC1rxrbi8Zp26bJLcRnjc21FVSVXK524qTr8LdMt7r4b67rLWFxreoxytp/iGaCWScsymSC2jt28+Z3jDHAiQszfMCeKn8VaSLXxzoPiLw14BXUpph9l0qzjtpYJbeEfIXC3Q3B23ndtCqerY25pqEoe8+pHMpPlRU8M2njvRo7mx0/U9Vhe0slbw9JZWsUYs5vN2qoVJ7aIsp2YKF3GSdqjFZ/hD4aar4NmPjPxV49m1G5hDwJpfhy98uLAOGluhN5kqylt333kIyDls8dRrFxa6xLIdV8NxaVaPZwTk2et6fLJcRKjNKq75lRyrZyF3SZwNo5akl8O+G7LwBD4vggTSbR12Layw3M0UQVgzBoEEiSHAkjPlgxkZHIGKSblqUlZ3MPVJNEGvXnivVLq5tNGn/wBHu5dGubQXDksfLdWaeG5KbiQWjUkBuQOSOvhuodZs0Sz8B6foUEMOxrm7upgAqrvaMk2bB9xOd25F6ZD8VX0nwRo2nfDu7u9c8JJf3U8ome2itJ0uYgzZRIrlGWNmOMk445DHHFZXgXWfEby3nhbxJ4O1Tw/okDi7EWreELWZPlJwzXEcxmlLLyFVmAPYcU1Bt3FKTTsQQXGu+HL/AFTxd4y0DwbdWeuSJa6VA1kN6weX80wSOJ5ZSW2ncQqLgA4HNQyaZ4v8VaVB4M0q007UdN0iWWdorW8nOoKrAP5NvCwKRxh8sTvjlP0r0v4rfFPw/q+kabP8OtXtVsgQ/wBhvPChs4GnQZCvPOksu7d/dAK7QSQME+U+Kfirofh7RFHxO+INrazJJC8ltZ2SQQXBLbdhnvxHFOxYEFoyc5OQMkGZR9/3Soyi47HXaZ4W1PQoGXwpZ+JLsm0jkuNT1a1lvodHO8b/ANzOJVwMuxKTRrtAAztJpPiRqVudC0mTWvF0N7st21RdRtLlbWHWH8uNY53Ry80u0khNzMhzna3DVy3hfwr4Y8YePrnxtonx2tLglYIr5JZp7o7iz7EBkuRHBGNp3CO3YkE4RzlK9Bs5PBnh3Qk0W4+L2gXFzDai1hstEV9NljiJdh9kZmFyIgAQcOAoMYGA3N76E6J3ueWano+jXd/H4Hhubh9a1FpdR0PVtR0iKAW6mJFKBRKJA6iRdx+RcqigsNxT5l/aA/4JM/s4+J9NufEHwj12z0BLO7abXda1jxJA1naQOxdd8TD5SFBCuZ8PuXOMFq+xhFa3WrJocHihdQaC3lWxknae5urMvGypCJbg+YsJ37dn+r2l+Qp2njvGvxItPAeoWw0fWvFNzY22myQadpureAb3EoMsod4nUARAbdwZ4dpO0s4HTanUqU3oROMJbo8m/Zo/ZO+Cv7MfheB1+MUOot4hnjFtrtrNZQ2r7VfDQTSsQrLk4UTAsVO0dMe86D4S+H0GZtLudS1vV4LiO2NxrAcsYdzk+dDMsmehbCLgA/Nweb/wm8XwfHf4ZaXPpuk6rbPq6RSW1+9jGZYYwu9mQLbs8yIoG8M21irAMGG1eej8ceGtFsx4p8bJ4q1G4uXt7eC5ttDjNo7KwKs6NKTHkEEJKPlZTyoxWU23Vuy42UbHNRfCK4s7jUo/+FJ+EYNPhdrq01KW5kEt/K87sSIxEI9kK4UozhizKVK/wxaV4zvfhpeXer+H5tdvLK6UWryzQ2og00MhV5ELsFhjXKnaXJXYSi5JI7zW/Amq+P8Awzd6cvhDWvDmmalCbqzistJSP7SMcSXUDRhEjBXftCybgABk4FGj+EdObSovDiSSatbOIpjN4iuBPBbzD70iqIvKj2rmQs2CCOCvDLK09BtlR9Wa0u10fUPA8utzSWYXQbyS6RTJJ5o3FpfLJUc7gY2Yrw5KDar934Zh1yXQtEUeHrmyufsQOofarxfJsxOcOshiI82RUOzewKybUAK5GOD8F6V4c8A+PLhp/EN74gaW9O28u7lCdyp88CK5fKLkruL5AwBg/MvYavbWdhon9sJdaWjMIYI9Hh1GNbm4Uru3gANIzfKoOACduEIIFCaaHuiDU28R3dlHJoOktMu+OVYrPUGnku0LYDTGNsDYOcFimeTngC7ZfFjxr4W8LQSap4cPiW71LUCknmWgcWoLYO3ajGXaeMqo55PAGf5xLj/gvZ/wVdu7aSzuv2n7WSKUKJUf4deHiGx0z/xL+cdfrg9RSW3/AAXs/wCCsNnFFFa/tURxiCUSRFfAOgAqwGAc/YM/49TXofUKyVk1/XyOL61Svdp/18z+jXxdb+J9Vun02yksxL5cM1za2MQMEZRidp2bJFIyQRlhz90c1V8W6f4x8TW9lp00zXMraYgsJbnVmC2gA6RwvKdgYEB3jbJ7qQCa/nMs/wDgu1/wVYsNWutbt/2rZftF8CLoyeDdFdJMkk5RrIqOTngdQPQYntv+C9X/AAVhtW3j9qsSnyzGPtXgXQZtqk5IHmWJwM+nToOKj+zqt7pr8f8AIpY2n1T/AK+Z/Qjqdp4m1vS9Mv8AWzpv9pxF1U3lgt2bmQMCqATgGYAkAJ6AbRWvd+C9Xs/D+mXvi2/msHguVttR1fTdWnDXZKhyXt2jZVtwzrhCw4UBGwCD/O3Yf8F8v+Cs2mwR2tt+1YrRxEmNJ/AWgShSSxP37A9dzfgcdKz4v+C5f/BU+31yXxFZ/tUy293NatbSta+D9GiRomIO0xpZhOCBg4yuBjGKUctrKV21+P8AkKWMpy2TP6FrbSvDHhxX12+8TWF5PHcRrbXWp3Cy/aLxg7S4SKOQRhSCd7qsjIct/drStdS8davplxp/j/4m6xfWWtyQCeza2ktIreFY1McaGO2XCggny/kwqBcLnJ/ne07/AILuf8FWdKtoLSy/aqYR2yusCSeCtDcJvk81j81kfmLgHd14HNLo/wDwXh/4Kw6JqH9p2f7W1zLNhv8Aj+8I6NcrkqVztms2XIBIBxle2MCtHgK7Vrr+vkT9apcydmf0Y33hC+0TVtP+x2lqumtpsaLb2kv2f7RZY4iVJ4xtG6MFnYlWGdgBGDx3xk8R/GHUbSwX4P8Ag2x1q/ntlNtbS2KmLG/aQWUMEcAZzLGU6AnjYPwI03/gvt/wVl0ppmt/2preTz43jcXnw88PXACsMMFEtg2zP+zj1qhqn/BdD/gqZrGnDTL/APadjaNZDJC8fgTQo5IJCMeZFItiHifHAdCrAEgHBOT6hWtuh/W6fmf0N/CDSPG/gO31I/EvfazSxiSVbLUPs6xrtUyszp5boD0BjUKecBeBXT+JvDeieCb+zsPAT/Yrt7dJpfsDSG0wQxZFKyqskjFsbyWJyeSoFfzl6R/wX0/4K06JK01h+1iSzRqjm48C6DNuCjAz5li2T79c89aL3/gvr/wVq1Ast3+1iWicoZLVfAugrBJtzt3RCxCNjOeQeQD1UEJ5fXktWvx/yGsXSXRn9D2veLbrw6PsXh6HS7dby9t3122u9Mlu3ggywKrchw0GSVBciQPkhcDLGHxBqGnRDTr3w/qV/GxkDyKjyWkJYDeJN0i4ZyrNhgSCByCPlP8AOvrX/Bcn/gqH4i+zjXP2krS5W1l8yBJPh9oG1WzkfL9gwQOwIwBwBjirlz/wXo/4Kr3OonVz+0xYxXTQ+V9ptfht4chcJx8oZNPBA4HSj+z6vdf18g+t0r6p/wBfM//Z",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD6W+Hngrxhe266l8Ivj1Nfqkzz3zWGnQukMIxtjblQoPXnLEtglmBNX9T8a+I/A3i++0Xw14msPHniAQGe70Wx8UxLPBEF3+W8UaEM5Yqdu4FWIz14qR+HNA+Icq+HfjT4b162eBUm1u18KzpZ2ewgmPzJzOkrqWYMB5QHHIwCa1/BPw9+HmmeM7i2+Evhi0ewaUJrGpPI0xKhfuCZHCTSHJySz46nmvl4cs+t/Q92UnF6LQ5vwBpXxL8a+HLjxP4z+Jlv4V02KN5fEOj32i2t/PKC+75VBLhQccr9DzkVqaH4Z1TRvGOm+L/BvjjTNQ8MGyeO41C9kntJJEB+ZoIWmjCNlcHdn2469t491jxFo+tQeH7DwxN4d8EQ3jOLbSmFzPqMcIEhDTN8kYZzwM5ySc4GB442reBvHnxDGv2/7O3jpdVQk2P/AAk+txvYXyMxwsawxYt2QAn5mO7BHrjRLkdiHzSR6T4n1G48YXsngj4deFofEF/Ox+0XTOZYrVgq7FePkbiQOmcADPatb4V/Cvxf8OrXUIfFmq+FbK7nh8y8hu/Dj2P9qODkoZWhZnG3rgkEtkcGvNNH0C28PeG9Y1u4uPH3g+8N06pp3hO6AnR9+WlYhW3dcjPJDkkdq7PwN8YfDNzpUPw2+DU1t4u8VKsbyQahr6+c5Yn/AFqOeZOG+XAO7jA5pN9epSbWhz/xG8DeB7m8Nt8U/h9ozWV/cLHpsmieDjOS+/OBLGN8UfKjzGKr8pHY16L4W+Jl78OtUfwN8HPgV4U03Vd62Vt4hutISeSydvlD+V8gQKpDFmbGCBj1zvCt3+2K2qHwt4q8K+BtFtBcquoJ4jt5IbiEN1dCo3uQATx8pINdPf8AhrwX4I8HXEOm+MbO1tRepeGfTS9qLhs7TIxQqzhj2PBAAxSitboJy0s9UO1fwf8A8If4bl8N/Ea4iS8Wd79/EEk0M1xPM6lT5flgxxFhkBFIYDsM5GRpfh34OeHvCNzrFrNc+FLzxUn2dNQ0PSzK/mKGCMRvYkjDHlSMH15rU+I/hrxz4U1yxl8RRMdLisxfXLaq6MFXgrsiZsITg87Sff1xbvWX8dXNq+h6P5UKXJk81ogHu3CgCOONQGYMe4wDinUik1qRTbkmZtkfE7+Df+FdfB3VNfXVLJjNP4t8YaPPFYSSsMPMRCziV2xwhK4BztGKybT4P/EvTprceL/jNqGp654jsjNe6HocNtFbkRllj8mTym2AgqG3MNpHJ5rtfEnh34xpoEvgbRvht4j0v+0b8SX97aajBbIkR5MiW80hQvwACdoABOHOFNTwdpN/4LNpa/EPU7fUrkvNHbx6rqNjMthA7Bi87rBvJ+XAVQeTgH1rljLciTlGRRvNM/aesNWtfB/gTwPb6DoenwBl1S43ald3TFGVgwdm5GSQU54XgDiuQ1G48f8AgnxJZ6R4p8VPcXGowJ9i1DVNckeVYVGWdUiw/YfLwOMbgMmu68SXXiK41e88PfDTUdWntdPtPKlTU1FtZM7MhV0BKySFACoG5Eyefu1Lrkf2LwpB4h+JXxVs7+ZdQaMwSsJBd3WMZFu0jSSEIQoYsw4OAMnA+Z+qKS8jhf2eZdH8GeDdW0H4xeA9Mj8Z6v4ikNrFc6yk9j9kjjjdZbiX5keV/mGGPG0YA6VpeNPiT8QH87WfFOq+FdK064mhisdLu78SvcqPl8m2WEYk544wMc5xyeb+Gfwt1T4Xaze/Fm4driyhspU07SU8v7PEZAy+dIWGZ5AWJA5GR0BwK5z48fEqw8M+EdI13wF8KNI8R6xY3W9Ly5t2kMEob5mUrtWP73I3HkD8cFo7GiV9DsNcv/ib8JYI0+IniLPh95HvHsJ9DjhlRAFPlRl3O1QFPOAcEnODSaJ+1X8OviNb6i158RI7Hy7Qz6Vpt3qP2GMbTt8s3MYAZmIyN20ce9dN8SdYS98K6LrvxW8QaU9o1qY73RpNCkmZ7k4xGrMrIQuTkEjkjrya4Lx18BvA3iz4f6z4Ytvh8mqW+rLBc3MX2EQ3FuY3ODFh4lXuAGwBz2zWjtbQF0udn8Gviz4K0Hx/PdfFHxDD48S6skMWj2WsRBdLwuNskcf324+9Jz8pIHPGrqHw/wBGTx6fiF8CvhD4b8Lw6jdSM8Wn6hGst2HQfvJ1j5VlJICZXg9ecV5v8OPAvwe+FF4dL0jRPCGgarqpiN9FBaiW5hhG4nzXWQAPgggKHBYngDmvRbSLSPDGkx3Gh6/rGpXZ3vp8NxPbRIXYhjKEhhiYA/7b8DdgHOamFWTXKzScY7xMb9pn4Hm/v9BvfHGua3PPbwpHv1+R0M4d2JdIw5Cg54MvQKx9qzvFHiqKLQ7HwL4d1KzNnAircX0siG1iWNNyRb2YbyAAQqAnk474p+L/ABT4z+H+u6h4++N3xQ8L6Rd3qB7AJqFrG8duDnar3MhLuSD9zBK8YOSK4Lwx8TviJ8VPEsN5J8fPhvrPhyfUBPpnh/ybRbpmWQqd62siqrhc/PtOMYIGaqdOUlpoZwnFas9W+H/jVPil4iutP0m5sr+5sJILXULeLWDLJcOeRNIj4TcxHCgsV+6Say/jNqniS78dXz6H8GL7QnaR7Q3EdvKtvPIiZIklVl3oxwD8uCQMHIGHaHo3w7vvFF58T/CP7KX2a+07UNttrS2Rub6RiVy9sQgjUFiQJmbedpwFUV2l5YfFLxRa31pN4mj0ydirWy3xljEErYZUJYbchQSSx65zjkBqdo8qWvmKSfPzIp+FdYEMWm2HxTstQ1ibULRrSK1vZ7yW3ljQBUhQRBREi56s4bjHzdK6e907wfo3h/8A4Rbwn4Yt9Mm0a0jlk0Vdblfz9quI/MjlliWY5BYB2crsyCMkhfEXgXUfFmmaZ4ej8R6jcyzutvrOreHdRBG6NdxNw4U5T5R8vGc9eTnmfi94L+Glt4nbxprOlXumaTC6LJbT3AQXrKxIdo0RWkBP8LlgBwB3KpxqUtX1JlPmtY57UfDXje70q21zVVfTL2JkllsrdZNShZScMAPO4IABBywznj02/HngXxH8TJrjxB4N1fXvD0kEMEaXWpx6almyvkujG2MrRdVJAfcdoVmwBXU6n4q+GMOiRf2f4wXzbq4W3ksbPcnlgLn5nDAei7cZ+Y46VR1u10zVL1dR8X+Mz9slvmS30qHWGmmLfdAePftcjgASK23+EZom5PVaFLRFnwdodxrseu/aJUto9N0/fp2l2cg+xRRo3zSTPLtxtA6KgLFhzxz5ppWifD3U7Z9O8U/C7U9e0lZmlgh0y1H2eV3JzLJ5hAZVz8oPfBANdrqHgK81y8HhzxLp+qxWe3ddrablJI5xLLx0z90YJGTj16nSdMtPCf22407VNDvtKit1RRcy7UgIA2B5HJORgZBPfPB4rNVOZao0lHld0zk/Bfw0sNI8RaJ4x+JXxE1tfDVu/wDxL/CCPGRtJUZVPLIjxwWOTxwMcGvVvEnxY1TwJ4UGk+DNO09ZPEE8p0/TNCt0dktlbIlu5pA5Xgqc5BwenINcJINA07QYPF2sXOneNIjI0aWFpfNfyF3bGYY0GOOM4JwPTGK2vFlvqVxqEOi6fo73US2ckv2OPd9nt/kGE3Kw7nBB6VpZx22Moty3OGsNT8L3euxwXvw+0rVdZkSVo7y4hjtCjkEBIysfyozHlirHC8HnnmvCF7qPhzUNZtZtOabWNXRjHeWUypb6dAT5awxGQOy72DDeFBwCcBgK6LVrb4m6T4Gi8XabDoEOow3ckTxaeYzdeWBkxK7PnO4A5y5AY8Ark6HhvXpfD2lWupw+G9SOu6z5Ukg0/TlZmI+VBtUbkAxwAT6mqjyJXaHL2rTSZ/P3/wAFdvFnxjv/ANqHxD4Y+IVrJp8Wk3iw2emoWESw8lHUN13Lgg8ZB6V4N8IJfil4c8TWXiTwp4jvNGubKbzLW7juGiaNhzlcc/45r7m/4LE/DZfEH7Wuo+JvFN1qF1/aBaS5n1YOrRSRlh5LM/3vQc+wwBXyve6BLodx9ujs2SBDkvj5FH8qwx2ZLDRVKC95rqe/w3kNLMqjqYmXuprRH7K/8E5f2+PjP+0D8JtO+Het+GLfxFr2lxBI7uGUW7SD5QZ5SS5Z+u4qASOOM19J/EbX/iaumvJYS2V5N9sNpDpN7cOsEDSMqBjGqENLwRt35xnAABNfit/wTw/bYsP2cfjnpt2PFn2aO5lWCdFAOVJ6AFhn1A6Ejmv2ksNS8MfFz4dQ+JJvFmoeXqC+cl/FMUeAyAfvQ6jEXHTA47HPFeVl2ZYiriJYfExaktU7WTX/AAGd/EuRYXLXGtg5c1J6PVOz7Oxzem6t+0N4f1aRNa8R6aNDgtnW70nRbj7KkVyMFS00RL5XncuR1APcV2Nv4p8G/FPWLfwYmo6mbbSYVe81HVLeQmR3zx8xf5chsZIbHGBmucn+F3wt+EHgPS9GMl9qM0N7IImF9LetqF3KwZpHRjtO0BVTCAjByWyTVDxN4M+Kl/4MuvFXh+/h0cM4e61B7Dz5o9uBlIEGGYZGOoX+6ele45upHlkfIRUY6o9V1u/8MXlpPpnhPw7o8MaXMbWVvLZRN84XJkZSGkOW5BdgDg+lOMfje41a2uNduYZTEqr5iJHbRoHwSxRYU2KcjGDnaOp5J4Hw5cWtz8P7WTxHr15Z3sSlLOz1u0e2vbycFQZHt1YSAAANtYj+HdgV1vhfTfE/iLxBD8Q/EnjPUX8q6LNFcXW2C5wMASRgEMQxyPm67cY6VKbbNNOg+IeI5WluPiN44tNPt7jc6aXbztNd3zY+8A3GOQCBgADqBxWPrugeDfibok/hTUREdLt32vHrl6EWeTcCxKROrYBAGScE9zyK6jWbjwxqXg5dGuNJ02y82TzNR1yS2K3cq4ISKOV+nLHhMt9K868D+Bvh9oOpyeHR4ZEC3MjmJ3sTNsRV4AeUksTySexbAx1MJReo7tna/Dj4A3Xh+M2nhrxr4dsYY7bbbMLX7NaW4ZSZWfBJboQAoOScn0Po7eGLDQNE83U/iJBqsCxKjxLuhhlb0iUkM2SMngD14rxbVdVsfCEl7dPoV3fxovkQW0kpcIDwN+0jPQHap7Yzjmtm7uLe/MF74I13TbnU7obLtp4GMdtkLkYG7n1POME5706UlL3SZOy1J59K8KeF/Elxrfh6x0i3lmtyg8qH95twSoJCnaC3OMgYAPHWrfiO18M6ZpCeJNf8ezaVvbbH5UjnzpGBG0bOSACRwcAHAPNcnfeHfGWr3yHXfL07TxffZ4ZQ4d5SMMzRxAgOST95yApzwwrXu/Glz8M9RW20LwTF4m1pkkKQa1L9oS0Lhcv5YXa8mPu7hxknHIxqorZbE88bW6n55/8ABVzwF4E+I3wx/t7wj8R49U1nTHkuZbR7Bo8Lk7Y41A3YPLFmxnOTjNfmF8SfH1xp/wAPZ9IcN9s87a8uzOBgggHPTI9K/o3+L/wj0j49+ELTwBrXgTSPDdrNa51mC2sWea4yFG12X5jwTnLE5Axng1+Tv/BV3/gl/p3w3uf+E2+C2l3f9l3EG2bR5oGE0RByJCFUrGuDwC5fAJIHFJ4TDYqpH2n2Xc7MNmOLwEJqm2uZWPy71TxXrGoX0VzNcJG9uFEbQRLGfl6ElQMtx1PPev2K/wCCAf7eHjfxN4YvPgP4xu73Xbm1w+kwSzMwVQACWzwoHy/N25wOa/H3xZ4L1PRdSljW0OxGwdrE4NfbP/BELxt4m+D/AMb7jxTo3iGbTLqWwMcUkYUsyllyoDDuAB29jXpYylSlSUrao8rDV6vO4Sbs/wAz9xtc+HWl+K4V1rV31e01NozHKdHjaK1soepUOAXYnpgAF93TgitnR9NtPAjNY+E9PIe4tozLcXV1K85cAnEZJOw5Y/dC9STzit3w1r3jXxV8PbOGfxAmnrrKpJeTzBprtwVPyop4ViehI45+Worvwrr3w4tI9Xgku5kjEcsEF2gMt05b5Rub5UGTn7pJ/n5clyJM6ranHeKPg14a8L31t4n1eWPUfEOVeXS7BxHDFLjJDvyeOcscn5RkA13mj63Lr5tb7wnpjyy2+/ZNeLti3AYLBQ52g/NhcntnODjNuZdI8R6hB4h124eGY4OqW9ud7Rs2TjA+87DJGSM8bgBxUfhjXfD/AI5e4vdB8I6joFgmoSW9rp14U84RxtjfuXK/MQxyDyKLa3AvPcvqVimi6TpK3V9LcAYdPlUM3zNk5K4GTxjpVnxFoOn2OqQXHia0jtIoP+Pm7dAgjXYBgEKWA6AAdTgdyat2WiXPg2HyZrKVbhv30hjI2zZJ4VipJHGMnHXOKxvGereI/iSyaVqGnT6iqzJLdSwzGC2gy2z94wVvu8kAbicYA4pODa3Dm5dx/wDwjUKXLalPHZC3JZ7K1l3RvjkfPnnO05G3J57ciorbx/4U8RWUHgqDw6miGyZpVv0GEupAR12g8AZABz16dapePtBfSUt9O8HvbtFG0knmTSOr3A6M7BDuC56DcBgZP92vO9M+NWiaFr15eaT46t3u7NmtpLLTzHH9jj6O8sjEshIJ4xuJb0oh+7epLfMj0TTNVmh1K48Q+JIwzWxSPR/tls2+Y5JJWNslF6EkjnI61L9k1zw2yarqmpald3MoZ44REu53JPzSEd+fugn1PXFTeBvEWu+ORHF4F8PWlo87ZW6iIeR8jLFnIJLnHOOAD16iuxitG8PanqFrplzbX1/E728usXUe3yRt+dYlZSF4+Xdnnb0x11emr2M1y3utzlLDSdevJpPEM+uXSqmEVZX2yzuTkhIwM4A7kAAYHXin+KPBHhj4s3U/hHWNPsrWynsHW5GqzAsw2kMxB+fafoFyMZzzWrpcumWWtWNnPDc26XTYa4hibdIFzvlc4JYDtz16AZ4rfF6wTwwsHiHQF1C6s7y4Hn3TyCIzFUxtUuC3tkDGD2OKnSLujbmk1qflz+07/wAES/E+s+NtX1v4KWmn6jBcTzTLZJEY1iTcWCq7knpgAdyQByQK82/ZX/Ya+Jvws+NcCeJvhlqGnjT5QNSuFi/cxnIIjeVAVVz3XORkZFfsKW8K61qVhLLrTrDbiNr3T7CISSEHooZmyznJ6d+pGeGWfgi/utTuR4o0Cew0uSRprbTr64QT267soZgmVSbB5G5tpPVuDXT9Zk4crOX2VndM0Ph14Vkt/BdnqCy2un3LRRtNI0gMksY2hYox985HVsg4HTjNWfHulnxFq51u91G+ur7SrbOnWNtaB4S5wvIyFQYI5PQLxuOFPO+HfDN5b3tzcaak8UZlCtLEwJRm44kbJz2znaABgDrV/S/iBYT+ObnwtZXN0tnZRiRJ47eV45JgMbpGJAAySASecEjPQ80rs6Foypr2hatoVn9nlvxpd5burXSQQ7mDOCSBggBzksWJJ9ec4yvhf4G8T+II73VLfUbXSbCAsLWB7p5JpGIOW64OD79f1s32ieMPH/iK31G6+IG+zgEgg0izhUR+YSuASowScEk7snjtwOq0jSbbwqGmkaJ5Y4Cr+YwwxPOQAcA9h/jRGSeliupBb+KfDWrX8irpeoXhYKdXJm2u47RBlAEYwCMKxbjOcVJ4k0nwxqXia41awhmstMfCxadZXRKwv1Zm8vgE/KMAnoM+1jwh4d8O3Vs/iOLSEtLK6kaG2mfUFYuysdz4ZsgH+8Bt7AmuU8F6/rHhXWr65We6kM+6Vr6fRykNvEN2Ej3AO5wASdvQ9ecU7wauiXom2bN5pjPp0lnoFxdtDcOu+ztIfLdiBkGQqC7EADAJwB0Ffmd+2f8AsWfFDxNrmt33w6+A+qadC0/z6q+qbBKS4IVYIyWkJYk8556Duf1Un1PVfhx4Vt7mLxV4g02914eb51tbrbTm3Y4Aiyu5AxDEOeSTxxwMmDQfA+gajZrb2OoXHl3InnuL7UfOklnYDzJJJSxdyQMk8jJwAO1e5o2iItn5weBL/wDbY/Y/+FGk6JDB4itroGFo7G5uDdrIgywLxrkLgnhW5BOSAeK9Y8Eftf8A7ak+saTP8SvhteXd9rsEos7PR9Hee50xWIUTSLtEcTH7wJYyDbzsr7PvrfV226voqxxlAf8AiZz2wjibIw3lAliQBxvcnknAwOed1f43eHfg9ZX2s+JdTktGiVVuLyLT/tG0t90JgHc3PRQfoeM5yba0Z00nFatHP/A39t3RfiTE3ww8Ia9q48UabpuzUby9hINmASoR2wAGY5Py43DPXbx0umeGtRv/ABLZWXiaabUnmKSSTve7N5LdGYH5F/izkYB5xyB8X+NP21fhJffGTSLL4b3V4L/XdYgtJL3VdPeD7NG0yruMSruZn7g5OOApJ4+1rbw5YLfx6lH4sbU5bm1EZ+0Wyoq5Gd+CcADjA9ckheAZTkrJkT5ebQm106V4R127stDuhGqXPlNc290ZBEAPlijVPkVB16nkkkE1kfELxK/grwutj4n1KKOxe3FwsKbPtLk/cG0tuLtyfmwMDJ4xXZ2qaQYo9LJt4GkmMYdmztTrn5QSV7AAc9s1h+KPhl8N78QapqGh6fd6n/rzEYQX8s5GHOMqWwMjrjI9apNt6kcqepx3hz4oQXek2Hhi20LUczoZzAtgXRT1Jdz2/AA9q3tH8a2+ppFFa6PJZ6a6/wDExuL6ENwCQCUHAB4O3OPmCnFaU3264ifVL42wuJg8NtZ2dwsB8pThVJOAg45biuN8bWF14qkh0/WvC9nqFraM4WwjAc3DHKgx7iPbkKeCaqy6gtzd1/Sk1mX+y9I8S6jcrdSRux063S3kdVb5YUWMZVTjHBBI4yBWlqevS3GsW1pZ+HkiuNhKzXkyN5ODkcDjd1GAeCOpwccr4fPiiPXftvjeG08OrEEht7a2vBNMqbSpLEHAIHGARjg7qPiD41+H/gnUG+JXiXxTbJDCqLHaTussrhQFZ9qqN5ySAFXAyM9KLJK4zzTTv+Cgn7Dt14smXVv2/vhRFoWnW6W9tK/xF0uSe6nJxIyr5zFIkA4IwGONq4JI61f+Con7Ct5ewXFj+2p8JLpUm+S2vfijpFvnZnaWY3AAXAGBnJOBtHWv5R6K9JZdBbSOD642rOJ/WV4k/wCCln7BXj5rjxB4q/by+B9xjAltbj4kaUzHBIACm4y+CMgjPGOeRnk9T/4KGf8ABPDUC813+2J8GCzRobW2i+JGmbUwxIdybjGc/NsHTIzzkD+WGiqeAg/tMSxbXQ/qpP8AwU8/Yh1+WDT/ABn+3z8K2tYThoB8QNKdNhxtIZJ88Y5UYOVGTjgwfEv/AIKbf8E47D4Talq3wi/aU+GE3iGOzkitI7v4r6RA8jshBKgXG8DBwcsCckdDmv5XaKP7Pp23GsZNbI/YL9hH4v8AwV8R/tiD4lftBftV/DXw9aaBdS3sF3qHj/T0Sa5Q7YykgnxJ8zZGGI2qSTiv0p/4bt/4J5yhtS1P9vr4OFLZDJ5KfFDSzJePnPO24yo7bR8xzzmv5VKKP7Pptbh9cle9j+qWw/4KFfsAxRTajYftyfB+MM7lbeT4m6UCBjp89wW/z0HSri/8FDP2ALmT+ybT9vn4O2cLhpr68f4k6U3mqvSNV8/gksTxz8tfynUVP9nQX2g+uS7H9RHi3/goD+wQbrydH/bg+EZt7a5WSF4/H+lPJIwPDEtPjvnGABjpmpoP29P2DZJIdRb9tj4RLelcedcfFXR8Yz/Hi4baoGTtUE89Mmv5caKr6hC1rh9cl2P6m9I/b3/4J53kpjj/AG5Pg19mifDyXfxE0uN8kfwhpstngE9PXpWJ8Sf2sv8Agmr408V2cmp/ttfB28tbUoLjy/iVpEbSfMBkyifc2M5G04GMkHAI/l/opf2fD+YPrkux/9k=",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [45,54,65,78] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [48,30,76,64] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKK6b4O/CnxH8bviPp3ww8JXVpDqGp+d9mkvndYh5cLykExo7crGQMKeSOg5HvD/8EoP2hkk+z/8ACa+DWmABeCO6v2deVyMLZnJAYMducDOemKTaQnJLc+YaK+n1/wCCTn7RLabd6r/wmvgryrBC12P7RvC0Q2kjKi1yM4wPU8VV/wCHWvx6aS3gt/HvgaWW4sUulhj1a53hWXcFwbYbiPukruVWyCwIOGTzw7nzVRX1Jof/AASW/aB16R1tPiR4BjRLtrZZptTvQjyBlUAH7Gepbp1GDkDFaNv/AMEcP2j7iPzj8UPhzEgiWVnn1m9QKjDIJzZ8cBuOp2NgHFS5xjuylKL2PkqivrGP/gjf+1Y3igeDpte8JRX5sVu/Lkub/HlNGJFYEWZ3KVZCGXKkOpBIOaytP/4JQ/tGapfnT7LxV4SZ1jV3JnvxtBbkYNnkkRgynAP7sZ5PFO6tcXPB9T5jor6eu/8AglB+0FZald6ZN8QfAQazhaSST+2LoIxUhSqk23OWyob7rFWwxAJqhff8ExPjhbXX2ey8f+Cb1APnmtNRvNsbf3WV7VXB6c7cfMozk4pr3the0gup84UV9I2X/BMH443+lHW7b4g+CTbbpFEn2+9yTGAWGPsmeAR2/QjM+kf8Eq/2g9at7maz8Z+DQ9tMsTwyX14G3sSAv/HrhTkY+Yjr7HA9FdhzwvufM9FfR8H/AAS/+P8ANpB1x/Fvg6K3Nu80Bk1O43zorBcogtyxyxwAQCTj+8u75woGpRlsz1j9hyaW3/al8LSQymNt14DIM/KDZTgnjngEmv0Z1fxvB4f0+3t2u7i4hljNmplj8qJiEikyXDHEhVZ9ykkfOQuTkt8Pf8EjfCHhrx5/wUN+HfhXxfFM+nXUmpm5EEUzvhNLu3BCwujnDKDhXXp1Ar9l3+Cdj4auNR03T9EsdR0jUJZJ5La40iaGLqdsRiFuw2BQBksx9c45GsU1elRc15f56mdSEZSu5perS/A+M9a8Y2sP7230S5vUlRhc+cgAVnU4yCvzqSGXPQlTjklBoeFrDxZ47mguSLacBkLXlxd+WyqFQJEXlYAGNEwVyTuGMZQlPrLUvhfomuanY2lpoHhO0060C/arPUXjaV3UsysiyWwRVCkBdyuQRjgMAOX+IX7EPwkkv4U8JePBFpN1qPm3Wn+HDa7xLK5MkpklkgKRJlQVAdtoXaMAINr1kkpUZR87N/kjCWHlJ3jJP5r/ADPCfDfjBrHxPbaDolqY7S6uhFBpsWryGaRXYxkb5cDzCiAeYRnOMYHFWdf+J+i3uh3k+s6zeXdtb2CSiRYUnbAKK0gQoSJWtol2IokB8x0ZwQc+06L+xLpWk3t3qp+Mc8pubIW8Zll0wHLRHJDPelgBja/3dzPkcEssXwx/Zh1P4EfFjw18fPD3xA0tr3QfEMF9/wATWxsYraaZbhWjVJIr2QK8jLGiR4Yu8pVRucKucJYedZJxknovhe/3fiaujiVH4dPkdJ8XrZLf4af2b4O0i7lEWgWsmgX/AIy1V1votIsyJbeeW4JYXEi21vPGm/dFI0jquGKMvi2reJvEOmI+r6NbLeT3CmQWLxTElAybC20PmQbEUFicKyhSAVr6Dj8EvN4bQXqSPPDqEcf2ExAwT2ZyJiz71bfg4EYXDgnMiV8xeN/gl+1BoNta2c3ws8S3k9k0n2q6XQ9QlXIldShkSIK4YkAEsVZcMAMg17WaYanKvGVlt+R5+C9pKm1bqc3PdahfzaV4eaaxnkSS3E4tI3ixBF54zHFynlx+U4zgbfMiIU78hnhMaHeXMtzpmlu2pxXbeVK1wii2dNwKF5HBQgru/uqUJ+UgV2vgn9nf4+2fi7wzZ6/BJYaHdX8Nta2RjuZAbm5WBngjt3UyNPItr5XluA7PZspO3az5HjT4TeN/g58TNU+GGj6L9gXRXE+oDxDqkdm9pCyiXMpaSFhK672WNyD5ZDHCsHXh9ph5R5YyWx2/V6q1cX9xyfj/AFCx0DwuX03W4ZZrnVTGsc158yJtJIaKOP8AdyYWMYzk5GTjaa1PB2pRpZwFxM0OZEvIpkkPmj91gfMhweEZV3Ana2AAATnXXhP4d6H4+j8PR6TPe3niCQ3Fpps1y6vbwOCYWDZiYu527Q8YBTa2NrA1ftvC3iy2mfSdZ8MSTXizpKlpcXEZTDGMRSIXIjXPnO+TIGWOOQsFA+ZTlRUVF+uuhMacua9hnjo6laXF5cXiXMonheC5X7MUklTzD8hZlJZud/zE7cMADg1+TFfqt438KeNvEVhp3i7RvDWqWdrqupNKl1PqiOZGlZREEEcmQhjJIyC3yFc4Bz+VNc8/Y8i5JJ73s0/yNqKs2fQP/BLO9m0/9vHwHdwWkM7q2pBYp4w6tnTLscg8HrkA98V+zen/ABd1+ztJbO20PT9o3bltPkbeMcYQfKenXB/p+MP/AAS9he4/bo8DxRrkn+08DcRn/iWXZ6giv14hkeEeS9usRVNoicA+YQeu4MexA59BgdTX2/C8Iyy+Ta+0/wAonzGf1asMbFRenKvzZ08Pxx8bxQPY/wDCO3sLxqUmE2pXRx34BKk/Qe3tUo+M+tRwLNDp9w0rkJKDrFwR/tcMSAM9sEYxzXM/bbvS4knkuLSSJiwYOj5iyw4y5C8542gnAxkd2W+oxXyLqVrZYjV2YFycE9+eBwO+PyPFfSqlRva34HivE4i25uXnxWh1a/ia70aJ5pN6yJJdQs4PAGFaMnsOpHbrWr4I8V6h4t8caF4a+EtxcWfizVdasdIhhit7eKI213OtpdCVgqhgbSaYEkMRvBHIBrj/ALZFcMks1tC4C/upQTuYDk4ycYwOo6jHoM3IbbxR4ztIH+HOheLr2C0urG98RS+CJBHqX/COxXkDal5Lb02brLz1LM6qwk2s21znnxUKUMPOVls9zfC1608TCLbSur/11PWdW0m41/wXbTJ4QuGsNM1VheataWssq3UyGOdYpmO6NTGDFIPLWNlBVyejVyPxOuPC2leJJNLuNLmuna3t5X8u6W4RXlt1lK4887Cu8jYSCu37qjAHffE7V/hP4L8NaTJ8OfGsl7pjR2uo6D4deyWIwWjCWKHz4vLMXmtawWvnO+JczqHjmzIV8f8AGni1vGniW58bavbkT6le/aPLVt6MzHj/AFjs0jYXGZGZm2ksWJJPPhVDEJVHFONvPrb+r2N8XUnheaCk+a/l+S/K4WXiTw1pMj3Wmy3toFUORbWYj2HA7hzz179utas3xcs7PTV02y8aa/8AbHlka4Ms2+N49qCNEQDfG4O8lw53B0AClSW5VbTTXMcbaGYYfKYSokWSCMD7oYhcnk5PfgdQIPscMkkcdnJ5cShPKU2gl8zg5YsDk/w8EdQfmreWBwU171NHLHMsbB2U2dQvxIe3jLzePvEQR4SiK99cOGzxjac46nnrnPc1W0P4reKfCOopfeEPixd2XOJYI7y+Xap4ACooT+JhnB+8euTXM6rDpstuLiUTbmQEPApDKyvnrkBGwBg5J9MYzUMiaSltEWtEZ5D97zpF5Hfbht34kDjoc5ESyzLHp7JfcawzfMY6qb+87zTPito2m2d1az+ItJR9Qu47i+SDw6CLmdQRHLIV8vc6hmCsRkAnnk1/O7X7w3kmg3tpFvjCy52uSM7SVXAzj1z04wB05r8Hq+R4jwmEwvsnQilfmvbysfRZJjsTjfae2le1rfO/+R7h/wAE4L7+zf20PBl75EsojOoEpAyhyP7OuQdpbjPpnj2PSv1PbXbvWbm5TSbNrZIYiU33SO6Sn5tjEZOOuM5JBAyc5H5V/wDBO1IJP2x/ByXVibmMtf74FtxKXH9n3PGwqwP5H1r9Ul0Xa4ubrS/sluAslvD5KIYSQNqmQKvG7PBQEZxknk+hwzJfUpK32n+SOLPV/tUX/dX5s0tOXXJI7e7F3M09zbAxWkDETeXlkc7d2GDKCSQMYPI7VmP4g8Q2F5cWQuYlTT1R28ufy2TGGUlQCYhlNwyB0B7A1GdDuLKdpJYyl5dhmuJrK5iiBwQFEjLG5wDgn+LLnkbuNa70zxmYms73XIJJJLh2vbe41hLhkfeAWjkU4LOADuxk565r6DSWljxbWIrLxDp+r2lutpqcs0ysZJ5Y7mVFQcnYWQEZHBwc5HQDk103gP4qfE74c3Vv4o8KeJbwW73Ci4tlmkS01SNHWUwXUZG24ibZhoXypUEdN2eIn0q207QrS+SS4DyXOVjuLlkaRwTjbucFgcnJ5ByOBgCrEKeI45f7TvfMltn/AH7Qz3bJhioBO0jGwAcKOgJ29KxlCnVjy1Y3X4FR5oNSg7M9W/4bl+LjS31r4jbQdWjubBLS40648L2Qt44VgWGPylt4YzAUjiRA0YVgEwc4wOJ0/wCJRvLi5Go6ZFFPdI6Rx20zp5LHlSA2VJBI68EKMBazY9P1ILd23iGa2VXgCRbDKDywzwwKgYAIIwMdcjioI/D729sI9N8OhbWHKxs0DSW7SSKVBAOVGWBbGUBb7pxyqjhqdJ+47LsrlTr1austX5nSXN6n9lXE2uavdWaPhIlRF2yZODkKAynJI4zxg9eapX08t4L658J+Jt/2e6K/Y9QgmEpV9xRfNMe2Vh8qnbtySDgAgVj6TqiaUtvPaiJpbuNFkv2iWGUgplSpX72flAHPHPNMle5s7jybq6uZYrhz9nPnlHDncrrneuOEHO7cQBxnbWjjG1lJ/ezDVPVfgdD9m12a3NrbX+lJeLuSW3vLkwSbhjlBKgP8QHUgFTg1Q+y+P7C9ls72XSZoSoEc3mRjc3AYE7jggsOM5OTxxxzkVrZRXMeriSaPMjgXM0y+VDjaMqdxzwASecn6CrljqtxJd32pareWEjyReXmGzhmV4iq4LKvyqwKKu4DI3MBnc2WmnZKTXzIaXY0/7R8Sw6HHqZ0eHynjc3AgV5CzbiBlFJ39DjGcc9MV+F1ftteWV1c3ME9p4h1i8uTIJYGW7IWEDaV3AglSPcZ9h3/EmvlOJr/ur3+1/wC2n0vD1n7W3939Tuv2avjLafs/fGvRfi7feEjrsWki5D6WL/7KZvNtpYOJdj7Npk3fdOduOM5H1xd/8Ft3urAaf/wzbLtQnyd/jYMIgc/dBssZ75OenOcDHwbRXh4bMsbhKbp0ZWT12T/NHtV8DhcTNTqRu9t3+jPuef8A4LSvcTBz+zUir8uVi8YGPJXBBwloFzuAbgAZA4qWL/gtlfRxJDJ+zhHLtODLJ4rBdlyeM/Y8dDjp2B6818J0Vv8A23ml/wCJ+Ef8jL+y8B/J+L/zPvaw/wCC3UFtHLb3f7L5uI3GIfM8ZoTAuP4M2BGfcg9OmMg1h/wWps1URn9luKVUBWL7R4tQlF52gbbFRkDjOOcDpivhKin/AG5mn/Pz8I/5C/srAfyfi/8AM+5rz/gtHcXlslrL+zszop5jl8XIyY54C/YQB1+ntUsX/Ba2STTJNO1T9mlJyygRzR+MTG0fOSVItMjt0I44OcmvhSip/tnM739p+C/yG8qwDXwfi/8AM+5IP+CzcMRQP+zU0qqQf3vjQs3Ho32TOPb+dXx/wW/1BJTMv7OIkJXb5dz4tSWNemGVWsvlbjlgQScnjNfBlFNZ3mkdqn4R/wAiXlGXveH4v/M+6Lf/AILVXVvd/bI/2arZWEgKsvigFtoGNu57RmHHTaQB6UzUP+CzNnq9wZdW/ZsuJo43V7S3/wCE6KxxMB3QWW1geeAF6nmvhqij+280St7T8I/5B/ZOX/yfi/8AM+6l/wCC1l2g2L+zodiowihPi8bUJP8A157sAZAGen0FfCtFFcuKx2KxtvbSvbbbr6eh04fB4bCX9lG199+nqf/Z",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACipbCwvtVvodM0yylubm5lWK3t4Iy7yuxwqKo5ZiSAAOSTXR2nwR+M9/M1tY/CLxRNIgJeOLQLlmUAZOQE4wOTQK6Ry9FdZD8BPjpclRb/BbxZJvAK7PDl0cg9xiPnqPzpE+A3xykOI/gz4sbgnjw7cngY5+57j8xQHMu5ylFden7Pvx6kmW3j+CPi9pHHyIvhq6JbnHA8vnkgfWrml/st/tN63qthoOi/s6eO7y+1S48jTLK18I3skt5Lhm8uJFiJkbCMcKCcKfQ0LV2QXRwlFeqePf2Fv23PhWQPif+xz8VPDeXRR/b3w91Kz+ZgSo/ewLyQrYHfafSuatv2e/j5eTta2nwP8Xyyp9+OPw1dMy845AjyOeKbTW4c0e5yFFdwf2Y/2k1kETfs9+OAxUsFPhO8zgYyf9X0GRn60f8Mx/tJm4jtB+z34482U4ii/4RO83OcgYA8vJ5IH1NK6bC6OHorvT+yv+0+HWM/s4ePdzqWRf+EPvcsozkj91yBg/kain/Zl/aRti4uP2fPHEZjba4fwneDafQ5j4NK6C6OHooopjOr+A1pqN/8AHLwZY6PaefdzeLNOjtYMf6yQ3MYVeo6kgdR1r9JNWhvNO0b7NoMcF3a6b5ttdaik/wBnigwj7WO9VIyuHBByVToTX53/ALJ922n/ALUvw1v0aQGDx/o0gMT7WBF9CeD2PHBr9lUvPA8sK6Ze/DTSrqAqSIL7RrW5Ay+9iPMiYDMnzkd2+Y5PNezlmW4jHU5Sp20fVnm47G4bCzUat9V2ufP2j39rpej3qJf2d0unKLadm1EQh3KOcK/H3yCQTg4Q43FsHNste0y4jl1mx1lrkQoIwy2bIzqwJjIZAzA43Hb0yjYwVAP1t/wn+hvamxvfCpmVxtEM2g20qx5zho/lUxMATtdSGXnaRWX4k8beEfFHi+28X+IdGS5uLMXH2ewfQ4UtN0pkZ3aBZFjZt0rsrMpKliV2muz+wsxTd4xf/b3/AADlWaZdJJc7+7/gnzXprX6iK3OqS3UMMbOIZ4VjjRgAu5DgEnapIbKECRcjGK91/ZSvvEmmTeIfFg1+7WPUYINOthFpKGx1KJ5Bczobxo93nQS29kwVNzeXd5cjdh+gaX4E6lcw6pqvwzsFmjIMUlrNcW5DA7t5VJSrHPOWBzXrWl/Dv4e6H8MPC9vp0Mtjp+qm612xsra9mkWFpZzaSFxMCd7/AGBDlCqbPLwu7ezXgsoxtLGRdWGnk0yMTjcJPDy9nNX+Z5/+13e+HtQ/ZwvrrRPE1w/iS11ixnk0mbRWIa1xNC7W9wk5VmWSaIlHhDnCGNvldT8s3njDVNF02HTTaW/2m4nS4to4Z8kl9oZdsjjcjMFzlTgqOW3cfavinwf8PfEvh7WvBd5JJdyXukCS8s4vmZrSCeK5lZ49rMU2wEb12GNismSIyjeSaT+zt+yp/Z5trfxTrsMqT+YkmoahA4yx+ZVLRBgMdw3oTnaMPM8txdXFOUKbe3b/ADJweIw1PDxUqiT26/5Hhuo/FLxdJeM95rSrKjRDyY4TtVSQY0kYgbTkoSSCDgfWtTT/ABZNfaUsl/FczhYUDXFykaxMeiSOrHcUJdVA+UEZwwJyvoviT9nX4dXaaddw+PLe3ufszLfXNldKBc5lOxo4JPkX5F8sgsykqW9VqtZ/s0aPqGqXotvjw9vZ3BMWm2beGVlexVpM/LIl4wdzzncNpLNhR8oXx/7Mx6vF0JK3l+R3/WMM/wDl5F/NHkOr/GG4fVr/AFeSxNza2kCiZLWEsUl2lgcNnGwBot3KjGR/C1SeGfGXiW4ubnTtW1JLRtPCrNbyQMZEcqY0iUtnfIpRSuCQMgBScmvdrj9gb4MWGkz6lbeI9Z1Cea0lkMF/cQ2sF3cbFKsF8l2iDSoCfmkADv8AKTiuek/Y1a019B4T8XQ2en7I0le51yZru4ZNy+YUWMxgkCM7Q33hnOAEE1cFXUbewn68oRq0pa+0j96PxUooorgPSO6/ZfMq/tL/AA7MC5ceOtI2DOMn7bFiv2KOv38lvJ5ZkyJAJoI1LPEMAgcK24/MenB59K/HT9mG2mvP2lfh5aW65kl8c6SkY45JvIgOvFfsBcWx8MaafDt1oU2oO0jCIRtIwhbd97ltqgKoHXAXn0Nfa8LNfV6l+6/I+V4hjevT9P1NGe6vZUjU2txskQODM6kxDHQ5HJ56jPX3pLa5uEnSeG3k2sFQn7MAFBz/AHQc8nn2IJxUUt7qTWk4uYrIXDOXijk0wbYBweiYLYGVJOQQSOazybOXUYLTU4bb7I7SF97lpDnJH+rj3bc8cjI4AwACPpnJaNM+eUG3Y3Yp9Qt1LQvcpKkiq+IPl59cdO3bsa9V+CfxV8OeOvhVaWy+GtLmuNI1DUdJmvjczNMskF5KpBCSiIHBDABBw435fca8Rm06BGNvNZWLxzyoJNsJmEseT8oj5JUksMAA4OOwx9K/8E9fDXiTwf8Ase/DTxP+zZq+n6tqXgrR7/T/AB74vuPCNvp89vrE95c3dxp8zXkKz3UawmAR+du80LEwijd1iXjxOIdKtDlt13dl+T/I7sLh4VaM+a99Nlzf5dbdTa8G+JvE/jCbRP2ebizsta0DWfEduG8PX+mQGK6mmlSMh3CrJ8y4jLbw2wldwXivnLxn4W1nwT4k1Pwb4n0C2stT0q+ktr+1JSQW8sbFGQOm9GG4FdysQeoJ619dal+2V4t/Z41yfWrnxct94mnW7d/D1rYRWH9nXvmqtzHeW8LCG1EtyspeZAb2ZLVB/ogn8yvivUDpcMsqGZ4JXjE/k2UUVvEzZA2rGrbEQDA+UKowFwoxhUqs6tSU7JRtvrr+C/IjE0oU6cY3bf5L5Nj98Plsk2nZYOUVmX7vAxyE6c8Ek9OtVI73RrkBLUGWRJSjMin72e2Rkj3A5HSo7C80iKE2514XSSRFpY1JIjyNoR1EajA5zklWB6cE1Ym1e0e6s7TULmYLAAYftGCHA6srLkIM7ueMc/U9ScXrdHDyvaxKLK0S/dby0fdChRdrYG/jPzBumCDnOOn1FR5YV+eGORML99m+X+eT/nFRDXtG1G8EMunTXFu0jKxMRZZFyQGRkSRVGQSd/XtjrU2mTXF9eBZo5re6imaMQpIzKYyoIPyxlSSewOTtA+ibk9mHLqfiRRRRX5Qfpx3X7L8sEP7S3w7muS3lp460hpNhwdovIs498V+10OnaTLHHoumapaSvPGZIVEyF2QpuDEfKM7MZJIVTweTX4rfsnxef+1N8NIcqN/j/AEZcsCRzfQ9QOtftxp2iedbXV9HZLp9lO6km3VI3d1G4hyMEpjIyq7ju5PSvt+FF+4qPzX5HyvEP8aC8n+ZR0fw/aXMax6w7iC4DRy31nC9qGz8m5CDtypxk5YZzkiov7Om0IPpb3QYo+VafXBvGSBtBAJmc5zgY68cYq+B4dlvf+Em1jV5YpZA8UUjWqlA/O/O7anHQqAWHBweKhiS8jQ/a9ZIhuXcQ3QIWMKqk7ZCpJ4+6Nq9SAQoGa+rcZXWh88pI6D4T6p4B+G/iC68T/Ej4Zab400yeEJHpt/4kvLSO2bzAzSebHscsI1ZQG+QswPUVu/Dy8+F3w5+GJ+FPg341+OtBs76a9bVrKLR0hsL7dAI/LSP+0ZXijeHEcheZxOfm2j7g4TT9SGpQta3LRLN5rYmt79Jo3IXeQ2wFowcZZiuRgseMVUm1/TrHWftUGoahFb28SFriW3lQFgPmQKozjIGPUDB6/L5OIy5VayrJu/3ra2ieh6OGxs6VKVLdP79+6IdT8L6TLdzWvhTUNIvLeCXdC95epBM8Zb5SseSGyCPkDyHCkkkAsYLvRH1Kxjt72COIeaPOnjmkMbHaAyK0a5Y56ZZQQV6E4G2tnd3F5Jc6bojyxGNpo72e3SVnlVhtMYDgsCN4LN8oxjGeQ3TrzxGINl5dTSBlEkkieVAwTkKriRVyCwJwScZ6dQN6dOvGXvO69Dnqulb3V+Jjv4Pj8Pm4k1NMq8arGlq5UBucMQU/TIPXOKy7m00aK5MOl2bzTyMQpmkmaN+ckFiqKcAdQfX2FdhYavqWnv8A2Tqt/cLaIpZ7lnE0MT7V3BSjqpYblA2k5JA7AmzqD6c6yz2fh15XSeCOWaRoHWZWK87UaU8Aq2B8oDFiwX5h18kZrT8jkuzh9Q0bVltVuI0WAXbloDNLFIhUDaQSyiQfwnI455GTmrSeGJ7RYbm+sLVoSxVPstzvAZSeu1C2ckcZHT8a6Sz0zSfE2p2lhZTh7eF1N2tzZp5cTHBO5kuY/LAAP05wQamtPBOizayLe0V5I4pWfybe4kggJxwZIwdz/McnLEHoevM+yXRCdTS5+A1FFFfkZ+nGj4Q8V6/4D8WaX448KX/2XVNG1GC+026MKSeTcQyLJG+1wVbDKDhgQcYIIr22D/gqF+3PaWI0y0+NqQwL0jh8LaWg7HJxa8ngc+1eA0VvRxWKw6apTcb9m1+RjUw9Cs71IJ+qTPoTT/8Agql+3ppKsumfHYQbs5aLwvpYbnGefsuRnA/IUuo/8FVv2+NX+zjU/j484tFK26yeGtMIRSSSMfZuQSSSD1zXz1RW39pZj/z+n/4E/wDMz+o4L/n1H/wFf5H0Mn/BVX9vNLgXR+OMTyKcxtN4R0l9nT7u60O3oOmOlRy/8FTP2659QGqz/Gq3e4ERj8x/CGkElSQec2mCeOp57Z5r59ooeY5g/wDl9P8A8Cf+Y/qWD/59x+5f5H0Hcf8ABVL9vW7aNrv49vL5RGwS+G9MYcdAQbbkex4qnP8A8FMf23LiS3lf414NqJBbeX4b01PK3jDbdtsMZGR+Jrwiip/tDH/8/Zf+BP8AzD6lg/8An3H7l/kfQC/8FSP260uDdL8cFDlt2R4W0vAOMZA+y4HB7VGf+Cnv7cv2mK8T44bJoE2QTReGtMR413FtqlbYEDJ6DivA6Kf9o5h/z+l/4E/8xfUcF/z6j/4Cv8j3uP8A4Ke/tzxyxTH46ySPCQY2m8PabIRg5A+a3OR7dMYHQVHL/wAFNP245vL8z48XP7oARgaLYALjPQCD3P1rwiij+0cw/wCf0v8AwJ/5h9RwX/PqP/gK/wAj/9k=",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [44,46,58,82] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [52,47,73,84] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD847W8txOkskLeSzAvHGQrOueQCQcE9M4OPQ19nf8ABOb9llb220v9pTxmuLG21ebTrWzkshKjytHs2DcwRZG3uAZR5YAJBLjCfNv7OPgO6/4WnZ23jPw8mp2KSx299pkUkDyyR3Ei2oMXmK6eYskyEcbgRkYALL+mn7U+i6F8Cv2fINQ8N3sen3Gp6jbW26W0MtuILUfvLW3cL5KSL5jKwZd724j3qpAQfD8ZZ28Ph1gqLtOqtGu2z6Pv2ODAUaapSrS6bHKftYePdH0AQ65qOseHJbjVfD8Ni2l6VOZF04qBIrTBGDxNhFX92Ecq7Kxw6s/xvrsdmpujLqMMNrp6/IGaQteuRCv7lSvV8mQE7RtzkjAB3vEnjHUvGHhSaxudRW6nEsLQ3klmscYZItgQP1BKKoCAHO0ZxgV5tfeJooYLLwpPdzARtc3kVq90/khiELyou0rv2R7WPy5Cx+nPxeQZXVhFrmcqjsn521222NW3iHsU5726H2jT2RGEuFil7xuTkEAE5OARg9M1R1q+u5L2PV/AuIibd3+y6hcvJHJ5cO24jdoyrNHJtfAwCoYLuYqZD2B1e38Wa6fA3gnTrewsZtdsJ0uNUmtFuPJhDrh73y48RyPLIzxghW2QBjIYY3rmPD9tc2d/LG8IGdNlQEjGFKk4/M5/E1+i4PJOePPW+7yCMadNWRzHjXw9rOpalp3iQhUsdWEOzTbe4bbZTzQq8ao27LbSQQzdkGcnmur8MX4Tw/FZ6tpVqtv9omFwsEa+bcyW0CvH+9K7o1dpPmVcDBAOSimtm5EWpwz+H7aUxRjUNFuFtkGEZ4IHXd2wQrv0/vMKqabp82nW+nXN1bHyJ792UupwweNUyPUZjYZHHykdq9iWXYd03Tkrrp/X6gpO0WzB8Q6Xqv8Awk9rZxvAlhCiCAQMSJJprdJS2XyxUpEACMKAg4DMS3W6Rrfwv8e2/imw8a6lNp3iFtEjk8Mw2RkKX2oRy2rTm5ZxI2GtPtsu4Fc3AjAKodtaPxX0LRL/AMT2t94VgSa1s/DHhWed4Jo2Ec8unafa3AJGek9xKpX7wYYYAqRXnmj6VZJ4g0nUwHWS/wBZtoyQeSrnySM9uD+tFXK8HLllKC0fTzHHSWutkyfRviz4i+C+veEfiR4HvpRqOiCa3bM0qo7rPLIhbYys+xzFImeN0aEg1o/Ef4weNP2h9N17xL8TPEl3dXurRNqsVnCwW0sd1yzSRwxY2wo8tx5hVcZOTnGQ0HxC+GtzoXwp8K+JJIgE121ur2Flbhkiu3t88998D/kKy/A8o1LQrzSoIomFr4caSU7RuJW7tiB07Kr/AJe2ap0YSqXS1sac1qbfaxB8KrbRIfC/2e6eNXSfErfe8tMADO3JwCR8vbd0yTXUW2iHw74ym8M+D/E2n6nFNbWSm/ttpj8y4tYJpoVfko0TyNbu3HMcq8qeeE8CW89nfa1p4hYhreO5iOOMGeGNvxyUP0zXVahb6j4M0XUPFPh683XsUdtepPDkLYsfKTYwOCzYXzfk3ACQZIIYDysZlyr4WVSHxS77FrldZ3Ox/wCCfq2k/wC0FYeJ/GHh7UL7RZTJZ3MllYbszT7YkjWd4pUtnLSKBIY5GG4BVDOrL7j+1n8WPiD4smbVvEnimG4tVuIhpel2emCG3EiNNudVdUyVidS5ILP5q+Z0FcH+xr4w+GXgb4OalrbXM2oz3UubK3tdbeyk0u6jjT55pNqlmjLmVERCJlbYJg8bos3iXx94L8Y+JtQ1zUdJ1B/DcniT7bJo8epeRJLZiUhLdH2TJFKsLBFlKuFwchs4PxnENSpieIfaqGlNcm1+qd9rp6/cjkp02qCg3uearqkLWs9xJciG5WJmjhG9vnLKFCCNSS+GOOMZ5yB0l8V23ha68KaVqPhbWJL2GaaOe98yZSy3ctoIpQRklSrhgAxyQxYAb+aJsNObxBqmj3ujXNtdWt/mFmuR+6QBi0cilMlwWj5yuNjAqcjFjwTpdhpWnQW09mGE2vXYWLZkhxYz7W9tpwfYDPvX12SZY6MfrUla+3o7G0ZJe75FXRLKFftt+ZORDaqpHGCJnOPyCn6CpdX062sbnRrhAEFzcTWd2RnMjrIDk+nySRjA9Pc0lhYyX1rffZX2/Pvkw3LrFDux/wCPr+lbmv21rcaDoLWs4lu/+Ew1X7XA0+RHH5OntE3l87M4m+bHz7AM/JX1cUnBmM7+0TOV1C6XR1tLtleQ3N3ZzbQ3zn/SmQhccnjjAHSrs8OpWlvd29zrAmhg1u0GnxvkeSpa7MgHou4o3HdjWNHb6n4k8eeE9Ht7ISzyeJbSztYVcHcftIwgzwCXYDnjnng1D4m1O4uPEPiEtOwhtYDcshXavEwUHHOMecfwPtUprm1JtJxTX9bHZ+GvFn2LQbu5lmg267oGkrMJofuKutWUpAYDGQbcAt1wG9QDhaCUGqaZbb/ltvEFiPlAGP8ASepz6dce1c9q2rTad8J9LNsoLNpKI8ZIP3L1pACB24Xg+la2sXEOl3F5bM8eRraASSMUAKzg5Yc4BGR+PpmoqS/cX9Damkp/eeq/HbS9Ntv2QfgnqdrPbTiDRtVtb2OOZnljmXXdTdo3ycJ+7MDBRg4fcR8wJ8G+C4kS51OzuXKlvDl5HllJDMGEgye3Cnsc/qPVdYSKb9k3w4HvN1xe67qF7JaMMeUvnywbx/vGPGcc+X14wPPfhJaSxeP7rQbhyqm1uopIhjLERyKP/HsfnXPCbbj6sc1aE15FfwNZ3ceueIbqbLw/2EyKyjAQ/a7WQD3ztbn2Nbej+IoNX8EazY6vBE8005ghkX98beKOFTuWJfvOoR5ASVG8DcVUEiDQ0mhvpooPMUXek3JJQkZVYpGPTqMRnIqfwL4c0W8+H+u2NxaM06aldTQXKACTatqjhQx5xliCB1GRRVX+ztPuXTd61/JGT8C/iX4lHwq1nwDHfRNpR1qzu3ikQFhKI7lcxEjKAg/Pg/NiPP3RXaaB4t8U+DPC+oRaRqUMemeJol0vWIWELu8azw3QADKZIwJbeI+Ym3O0oWKs6nifgpYLN4DlbVtHeJoIjJYz2cKI8qmVgQ56uqlZcOcnOEztXC9p4I8D6z4lfS/D0N+1zFeX9taeeYjsSe5lbYCFHXk++FOOBXjLBUcTmlW6srpu3XQ5oRs0x9na2V5fXF5YWxjLQqSrPuO77PGzNkj+Jixx26ZPWtP4GzaH4i+Jr+HtevFjt7ey8RTK3TEn9iXBiHPcygge5H4pZxrHhLaNDEu7MxOCxaFVAxx08th+Fcl8P7y50L403mWCRtaXudxxgS2c0fTIySZOOvXOCAa+hqKKocsVoaUoNVfkaOnW8lrdzkM+yVrmJlHQHZbhVz3yWyfZR61b1JbiLRoLhZGXbcbgyOd3zQLkgd8bev59qw/CF/JqPxG062vISLfUNWgVy3AMZu1QsD3GxfoDn0qfxBqsw8LTzsSrWzoyqrf3Q0ZHvkgf55pUppwaRpOnazYzxA1v4c8VWWpqnkx6X46kuXkiyHCq8GCCMYwFyMY5yfSneKNJVpPFWpgRIkvhglAxyMme1bH1Az/nNT/Hexk07w7rXiKOWTzotW/dPGApVtzMW4OAeBwOOPYZisnOs+Hr1dWUS+dp908RX5WOy3kOz/dJUH6qMHAIKvyyBLmizE1y9t9c+FlrfxabbW6C2Frss0YKzQw24LkFm+YsS7nOCzMcDOBD4pvLLW7++15bm5Ftdsl3HGqLvLPh8YJwBlsA9hztONtRadLJbfB+HyGIj+336SZUHBeO2XvnqoI/wo1ey+w6dY2Rl+dtCsZDuAGSbWJ+B+NZ1ZXoP5fmgpx/fJeZ9BfEX4d6dpf7HXw18XwySxXWreEdRZbZbYiN1i8TX0QmZ8lS/wAzqBwcD64+dvhYrRfFuwlu3b9/emGR+eWZ1Pr7/rX17rutJ4w/YA8JaBZmPHh/wysDB0A/eTeIvEdyxVhyxEcUe4HgBkI6tXyNpcsvh34g2uotGgjgvYnnwOOPLf8APAB/P0NYUpPlTf8AM/xNJxXM/NHa+BNDm1PTotVmkihS2tL+GeORsNIXtW2xrgenmnJwBtPO4qDleE/ts0OpWG5RFG1w4AYgv/obMWyPRY/06V6T4OvbuD4R+KvBVtaieVvH1heOmTuWODTdehchR1AFwP04Oa87+GVu17fXlpLN5MTWVzM77AxAW0kO3055XPbdmuvFJOmzCho1fsfsl8D/ANjb4B/Bz4Z2ngjwppVxff2BHcRadqmtTW7zSSuRKyJtQKGcSSRgru3K5JLkMV4Txb+x/wDBvwd4pmGl+E3064WJNXtmRFVLOMRy20RdNu3af3YDOCuZudxZcfV2i+F7CbU4r/UZ9Rs7k+W8NveOgVPLRpJJiOSigpD8xAwqOcHJI5DxB4L0u0v2kttOtbeGCCGS5+1q7SDOyNl3KpcbSu9mcbsiAlSGXP4vhc5zF1ZTnNpvTzZ6E6PI7HxF47/4JgabeQ3WsfDP4qi4h0/T477+z7lSluih7mSeISNJkKodduFLb55FAIG4ea/Ef9gP4ZfDvW7bxprfirWLWKR5PtflCK7uLnyojEyQRhUEYBEjb2dhgKG2lWNfoXdmxtfEcegXHw8uptIJltopjsQajCjJM7KS2GLNK2CQXQRBeMADl7+V/G2r6NZalpnmyXtpJcancHRnn8qKJGhLMAq7sRlUK5bcykZB5PqriHM3yrnbS7WuRFRjK7R8U6P+yB8AfGvhDSrZpdS0DxJGwi0m/a5S5imurdQZbb5AiiNpbhXZ3j80NGBiMOwX0LxR+yt+zbrXw1+FnwR8LafF4h8YW3xFj0ry4I0+0a7pFxf/AGi8NzKnyyCCSWOBCuDCBcl8crD7F8Qvg/4DubTToPDngjTbV4naTVgmn21xBfQRyxsjeUCnzkxKJJpdyMxbKs2SfL/DX7WS/s3/ALRUei6v8MtB06y0jw7Pc208GhI13LCYJ1lFsZHZ0eclItiuQ+35mIO6uzK85xmLx/JRbaSbs2rPz2ubU3Sq1UtkfNv7c/wNtbPUPH+vfDD4eto3gW+8YQPpqoF8jS/tJlaTd5bMsEKyuyoWKgquFA2lV+dPiroviPwHPq3w71LR7uwvre/a1FvNG0cygFo2Vg4yA6lsggDkHGMCv12+Mvi74bQXGqeGNSvdEk0670+xvI01XVMTLbyRQ30IEe1hMqs2BnzHK7ZQkjuQfl39s34AeE/2ptb03xJ4W8RQadqSPbRa7Je3SzvbWC/ajI0G2Uo8gdk8yGZo5jLPbooVWLPeU8UZri8b7LFYfljG6cle2jXR/Pa5j7Oq6soqOi6nxH8JfCOu/FjSJ/APhu2Q6hqPiTT7DTLcOqiS4nRokT5iqje8ajJIGW5PetH406M/hnxJFok2nC11HT7L7JqMSalBdRpLDmMKrwDZxGkasAW+ZWOVzsX27Wf2Ffih8HfhZqni3xLEYpoJbDVnfSHS7itY9skDLcFlQAedLGBPCZoh5EjKZVxJXIftC/C288baz4R1Pwbf6Xqmr+K9NM1vouiasbkiWaQiKCaeZ8G+l4d4VkdjNc+WEiYrAPppZlCVa0JJ07Wemz3ve+3TbfqDgk0+tztf2RLCfxV+yt8R4dQtIfL06GYW09wFbYxewVRH3SRmunUknBUEDBzu+Zr+Ce18TCefL7nLlXz02MuPfjH5D0r6g/Zd0Ky0b4A6nYXlpbJqmqeLr61u7PVBJEqxwTaCoDMpUrKr3TMiudpkjVCrGQo3z58SLK4sNXhSSHi38yBXxwxDOxH/AI+K66E6fs5KLu00380rW+QSi/ar0PTfBvhr7d4m8XyIfOttOvLa6u3eLLrHLqdtbBl9D5l1Fzz8pb6jy+xfWJpo/B2kwRw3WqRS2UsjShRmVRGFJYgKM5BJIGG7V6/8B9ehHxA1lb6OSSz1TwuJbuERtJvCR216hbYQQFlgjfd0BQM2V3V55ok66B8YrCN/LdYPEaBi23a4S6U/xYGMoOpAx14r0MZK2HbRw0V+8j8z9mvhX8TfF/xE8MS65q2vqpvPEF4I4Jd6NOESNIkHlrg7HMrYYgt9p3HIbB6P4isdH0i38Yaj4iuLbTbqGJYJrq5QPcESK7cBsquJrVmfgiMMzKrIdnsnw9+CPw102yk0yK1tbbQIoYYbS1+0NmFsLGAxAUAnafuEFnKjAIOc/wAb/B/w9f8AiHRUsru4trNroSzwzzP5dqCVWTKqmR5sUrYCsNp+YOoAcfhFaEXXbitD1nQna55vZ+JZrLwpYXN6sE/kLcW17BE7ztvIjK4DHcc+QxOShLK+eoNSeMvHvhCw0qwg1j4X6ks+o6bplp4OvpZo4Y74tm1kulhjZ5ZBko5IjkkdZYmVZFSPdi2/wv0Lwn4Vh8KTWVhYz3muRWYaO0SM3KIkkxYrGqq8jfajGGzg4cs68yRvistE8V6XeQeB9M0yEW8MOpWdwiyAyEeaJbdWKb7eRWjljyUcPCYygTcgl68I/ZqUZK6ZlZrcx/HWi6w2n21xYWCafdzSlGjuLCS0cxyy3EStcs6/u33W8x8vAJCAMTvAj8U8HfsyRfF/9o/UPiJ8TPBr6XovgjwjoemRwXOnyE6jHdalcwvebZCMxorDa25iUETYbczr9I+KPhH9jj8L6/p9tY6BZ2Si8fRPPPmX8DafuSxby5TLIQEMeZZFABQDafMkn6GK8ufh9e6hrfiL4W3xvbZLm0fSkaRobezzZz2UUmSIC6SQMRLncA7FQPMKn0cPKGX4r2kHZ2a89UVT5YVVNnyt8c/gF8I/Hejv8QZ/AkGk+I49M8P22naPo8Ia2ikttP02MQIHR5FtkXbsUymTdtDKF8tpeb8GfCBJ5NK8S/8AC27JNZsmnuSmqWxsbqQuyJG0QuwzTpMkMvzN5Uh8uKMDLiNPatD+GDabrjQaT46uLgam9xDp6tq8ckk9r9otoIY3RZcxTEKcrKYd6LtCMIXz5l8Wvhzq/jdr7TPg34ZhuJrqyvptYvtbu2tzJYRy+cxYTbFQCSSZi1zKp/0lzHgiBX7cPja+OhKnOST7+TXZnbGp7aMraEXxO/aKbw9YaVYeKfCPiPxS91pkNx5ENhblVaCR5hc/uJJSwUIpAlVVV5YCsaAsyeXx/Hrwz8RR4i0nxX8Ttd0vS1jlj1CFvDcem6hp8gZnIlneXyI7iZUni2OFE0SNy0sLg7Pgn4eal4Wg1HWfiLeT+L723g066fTbmO1k1CJ7s7nhs/NjkEcZinkyVaNS1uCgdWhNZHjDW/AOjeGNB+L58GT6fpk3iCe4GuXfg/TtQXWo7Z4ENssaQxQGxMc5RQ8ksqgbPMkVNqdcMvwbj7CMHJae90Xnq+nkgVGMY2sYHwl/Zl1bwvp958QbbxLrWryXek6jcyeHJLRVN5q8srTSzxZjRIoP9GsoWYPIZJbebPlR8V5Pqf7NFxqnxdm8NfGfwvr2haWs15Ms0toLR2MpiVHQzAb8JNHOqoHLLtbb5ZZx9EfsofEz4m6DfaB4k1DwZLZRSvf6lpuqar4ajt9M02BnMjx/Zra4jkmslMQQSAME+0Srtm8swN6FdXHw+8Q6xF4S8W65fXWraJp1tbzWMFwLW7uZ43kBuAbcnzEubeJJXEW9YnlVpUQFYx5mb51mGT82Gpy53La1uaNtFovP9TgxTjRVou9z4O+Jfgy8+BHxN8T6BPpEgtU8EaxbaRLqG+2W4hhsrq1S4RlVtxUwEgDId49pZQS6+c6rbvD8ZUgkRIj/AMJVIiGVsIp+0kAtg8IDgnGOPSvv79tL4Nah4a+BOtytHp+qvp2niPT9GsZC5s7lhcW8gbzEjjjEUIZREgLuyAIGUBj8JfGqz1DRPiobmyRVn/ttrhWjxjLsssZGfZhX1OQcQxz/ACVzcfei+R67tdfK+9unmceHpvmR+9Hwd8a3ME0y69MIEF9FLPb3toYzI0tzEsCtkA4zP5m3I/dxgkfKK7zxB4w0zxAd3h7Vi17bmGOKB4JJRFEjxo8bNhxKfNlRNw5Zd2GbmvGvhz4d1bWNHguPHc6C5Np5umWsDSXKlt8dwJ1UNvwgbHllmBZs52sS3sXhvUfELvZ6vJcOYYnaxuLS1URyS3UShEdt+/A2OSPlHz4barEV8HilCEnT+9/12PUg521KGqfCzRbXRofBuuWsrW+oy3CTXMX70W0SFXVJQw5PmE4xniMvldoReX/4Z/0q7t9R0jRfF09nexahZ3f9qRxr8l0knnSojHKrGojQlmBXMsQY9RTj8SYZsWlxpIsJLfUY7Ka5iYvLCDcugE0pcGRhlkduCxkRw21lNXNc+KGqafHq58LvFpd1rF3Pcu88oPlMsflzNMgP7x/s4tXVeHOPlHQDh5pQrtPa2n4EzUXuQ6rN4M8H2mmeBbwQTNZQq1nqupW8ptbVEnt7X7RKWKxf8tGl3EIGKxbd3C1zXja21m28Saj4g0a9thoEGq2upajJLZSG9it7i3ZEjV5CBE0kCSJIwAdJFjG1ggaTzLW9RvvjDaaqmpWUtpealpMkVpLaOqpDJIz7FaR3zCrmFZN4bG8ucMqba6iwZ9c8d3/hDUfFOoaxJqlpNe6tciKMJpj4kLhCJfN3s81sRASE82SdWG7BHbDFRq0nf4vz02/AxTR5z42ttbfw1qvijQfD+meJ7G00SDUtKsv7UJMSRzSuuZYwJGQSQzI7hF374ypDGON834Q698Ul+Beu2uq6Zao+peETpUEtzpqyC/CqscqwKYpGmV0/dFPLnLswGxJbgLL1Y8OeIPhe2p3dro11OdQ1S3GqrdJClzFD58mYA6ugUzkIWjJADQxglCoweHvh9fQfCZPi14ut5FvP7Xt0jJ0WJrC3tluFlMUKzjfKCrTlpYWWWUTTgsuCoxp1qNZzjO6UbX7prbbtcdOUFKz/AK7Hl2r/AA+8afEPwKnhb4k+DtBv7KK5n1S18kpcw3jRXLxz+d9julkkt7lp4tkUsiBRCFL+Uu1/Oddi0PVvgHpfgLT/AIheEk11/F2oXGsW1rrdteW0emx2VlFLqF5biGS4tZI5PODO8USuLSdxGwuQT9leN/Eb/wDCU3viPw7e2VpJJewWkGk2umPImqC4WGGFblw+CqLtWMqdiebmMmAlZPF/Grx+BfC/iLUvAfiLQxeWElvc3MtnbJBdx6ghH2e6VpkiM42ztM+2eBpZjJJGgA8uX38nxPs6c4ynzR3XTt57fPqd2GlBJxbucmngfxEvxZuvCll4YtNW8BrocUNjPrloqDTlgvU8jUZClzCryOLmC5wsTxy+fajz3UtMee8YfGG98B+NPD2radpnjt9bj1G2g1LxVa6u2t2F/ekokMflJHMJLtRNbTSKibmLFVbz0JeL4Z+DfhReWfhf4jfE2y8QXaapdhb7w1beJsLeSh1klt9ivFHAk89xDDArzxlDIzlY4xAz+RalqPxVv/iH4i+HHh678L3GqppsStPBpUks9tcxwiCNYZo7iSeZzPNGOHbNxBbytC+0uvYskw+LxirVkmkttUu93rq9f6YfV4Tlzy26Hu934zvfilF408EabrXhoR2ptNL8UWs8g0iWztJ/MifUIbreba3WYGUQsnmxQfaI1V5VKNL5L8ef2SfD/wAadR0/xd8Ib9b3VFu9RHiXUrTXLTUGvb2GQW1tDaQCVHvJJJViEggU7PMLJGweNXueCvEGm23iDwZ4sbxHpVqbiwtn8TaXr3g6XUbrWp4ZW03ZJDbxOAIXht1DXDRM7mcuJZUaOfqNR1D4a/D/AEqT4vX9nBbeHdYbTdBPhjVPDRi1HRtLETM91axX7oLyR3t2lmnjabb55w0TQxSx9cMohg5f7M3COrtHZyta77+V/K5vLC4e11pY+2/DU3w00jxJZ+DfDXhC28Otd2t7FpkCPtVj5dgm4Stu81ENtuwWYtKNpJzXq/giDw/oum2mgeGgVij0lomW9tWAh+ySNGEypMUQVlhztY42REcAY+LdT+NGu2fhi3v4rgX8Wo3V7FpGt6cCkSMGEksPlhNrKrwRsVK749ysFRcCvSvhz8XNJ8M29/LpOnaRcf2Tp1ve6bqYhkVCSYwVAdVkV1laEsduZBHIoADhh8viKVWKfNq/+CcKqK56l8T/AIh6DeeFZbqySx0SDU4/OtL29tlgMBWRT9qmV1O3PkQqXwPmWJm6KV4jVfG/jGx0LWYNa8Q+XbRafez3FxHaWu+4iD+XB5e7HnMBJG4G7BERbeAfmy/CmvXvjPSbLXdTTUZLezea3glhdCkMdrE80IdWEREf+jlCVG8FzIrKGArqNMt7XStak0260iLUr5obmRZ4J4rKVpmDKJ8FW2KqLKwiXf5Usm8KyyOF8eqpwVnv+hlUlKWyPHPhuIV8YvLrM+oafYQFLc/YWaS6FskPN0diJv3z7DEG3BcSDax2A9JKbfxFrq/E/SLC90XU3t54tMvdFhmuJi8ckQZcbtjmZBEGjctmTCkxI+yTX8R+CtI8QvYXuv8AigWi3dvujFpMmbWT/SJOUgbDo+4eVlcMGDea7MSxrGtaRFo+kxWXxEmhZtRR5ZtTYRedD5H2f7xkCpb4Y748KGkVdpaQoDWGnyYiMkjFK6J/Hvi+K61tGD219PqutahYeZbyrKhxe21y0nnwxxx+WLgwjzHWORlifjbEc4dh4l8daprDQS6dc6vFdveXqx6Tb2ymxMlxP9nZbgCU2oWSMxtCk/KOjCQ/LK1iTxxqNz4Ai1ZNJaee10yNL2NWjnea1t4cjDu6hoSgMQ8ncZEic4Bj3Nl6pLd6LqF14Ns5LDSGiVLDVdQ06OF5oEF3Fb5ERgLqRLE3llWIdfLVw6KTXpTrVHOUo09123Gvda0Dwm3hv4a3Gs6dpfwutrqZ7aG/1o2sS6htkvYprlxeSS/aJJNp2S/vXiQy3Al4lbyh4z8SFuzrt5Gnw/1C3s9bvdPu4tf0i2a7Gl6dby7RA7wGSR4FHmPuGwyJp4OG8w+X2vxj8e+GfgF8JNc+I+oW8F5PE+m2+oWF5qyi7We4leJikEaHyg/kTTCSWVJXU7RGBKJR3nxK+Jfwy0r4l6LoPw/+GuuaheXMTC3vJ9Ot7nTraa4k85Ll52j/AHLMtyyiV1SMrcATBo4/MX1aFPESh7Xk0d/yuejShKqrtWPniDUdW1fwNpt18YPCDatY6JpAsfElpp+rRjULGAu0RuLdvJuLWVkS5cxLK6So0cMTqEit/M579oL4S+BYfjPpXiP4T3mqa14N+H3iIvq5tp7XVYTE89lcOkl3NMkVwtvLeW8bws7+RNcnzJxDcRBPrPTPB0Pj7RYLPR/iFYQ2FhdQ20MunrDeSjY11GzTmVIGR44rhpJAkvnGJoAsm9HeT53+OH7P/itPhfpXxZsHhXxZ4fvptFuLDRtOmuLTWLe4iMLWYTzHVQts9yk6FhHJHNcDywI38z2svxak+Wej/wAzup0p+xvY47wx4cute8D618UvhrbT2viX7THea5431fz7DRI7aTabmyl82d5Eui0U4UxKLrLtHseVHB3f2TvFPhfUPAb6Vr/hDwRcMkMFvYanDZ2kN7c3VzNAVtYbWT7MLcxpcrG00zxw3O5hH5kZk3cr4a0bxR4z+FWva78X7HxHZah4UeW2TR5NJ+3WBsbywaSSSZ7uWVrQLDZLIXgWORoI98bMUeSPU+IPwyj0mHxP4xvNK8G+LfB2gzC1uU8Maebu20m6Fy0drMr2c0N5bMVXykaUJHIsl0f3nzRr0VMFRnSdCq3JXTvfbayTVvz9TONJuN3qf//Z",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDwjw5pXgTUtEiuby4/0nW/if4TNqs1xJNGiat4d1GTUVcsSwYytaZAfO2QjPAKdb8D/id4p8B+BLq38XaM0Gs/EmfwVeeGL+XSF3jT/tdql60RcIEjY6dEoRAV2yfKVVF3eba58GvEUlzHpt9fagZPDkOjanrMFtF5YWEto1iDK52GMKdTu4/O+ZvljU4GWHrH7GkXh34++Ifh1qN9bz20Hwx+Gc+s3djI0hWW3i8QXU0ccLBHcyBpkRckMpMIGFVXHyzhFyc18W35npKPmfNlz4C8ReGNCl8Yw6cPs0FksU7yQ7fLmF/tRME8Emxl98AjGOR6b8e/HOuJ+yp8H/geNGbT9R+H0uvk6xGhjuLnzPEcaozMMFCk29QSThs456JrT6LrXwq8VR63rRglvdYuLy3sRYrEY3hgvrxECKdkeWuSuAMBHIXJwRx/7Q/iK4+Jnwyj8exWHkW0niPU7GxiW5Q+TEdVF/IDtb5mH25TuIGeABleeqjKMqafnf8AAwlHoz1nw4rT/BL4g+P9Ve/1i+PiK00SS2imKO9tPoerWoIlRSYyotkHOFAIACnJrF8J/EaDwB8WNV17QtCgN9oPh+7ubo3Go3Ns8VlbNY3EUEEsTh4/MEF3DiMq+2eQbuQR1fw+udS0zwdrPhzRdNifWtW+NXhW2s9OiuGkhmM+l6lC3OPuiW5Qg9F3lXYg5rg77wvrniPx94j0/wAP6XPfz6t4UFlCEgi3IrNeq0avgBdr28XAwuI2wB0rgxNOMq0k1o1/l+hUVeNj9Xf2e/EXgXxB8N9ZfxRpni608R3vh2w1zxT4iQRrF4it3ks3tUSR9qC6DXTrDDGq20Ls0eMIyLxX/BQiEftB/sdeMNH8A6TpGvPocOoanfXKaxg3Lwyebf8AnzFIli3Nb5KI3zwJgHEoki8m/Yu/aY8ea18a9Y8CfCbRNPu7xfBKJftPFGxt49NsrB5/MKJ5RuftEeoYdxIryW0Cs3k/MPrHS/h38OvCHiu10lfAmjR6xr817q+vWGl6g8GlwxbkRobtRJIohljW1ZlPmkoszFIo45Gf8v4iwdTLcVSrwjrB7vqlK+vfpt5sxnBrU/nO8UaHB4X1d9LmvbOZnEUymznMqRCRFk8rdk/MgYKwySGVgTkGqni7wjf+HJpYL27tZ4HYeRNa3G9ZVKhlcdwCDnBww6MFPFfTX7an7FPjyw+PHiXx3omm3r6Nrer6pq6DU5LiWe3gDR3JkZ5sz3MZgu7aYXG0l1m3NgpKU+ZPFEcWmaPFDPcLIY5GVAkgYj64PH/1q/bsBj6ePoU6lKSd0r/NX+R4uJpToz0W5lyJYXKRWNlEYSU2u0kudzAZLEngZJOABwMDk5J0NQXRbG3Qf2fHFPHEqu4l3hm5ycduwwOmPeuaXUXZ8mPGeB6itWwltWiVp2CgOf8AWda9Q5ZykncvaZcW3lvI82Pl+RAvUnvQ8lxezlmhdlUDDduKqy3tk10tuI/3e8Fm6FhnmpZteSx0l7SG/Zl87dFGSflGPrjnjPHb6gy1qRFX3P0k0HU/Cll+074o0f4WeG5tW0HxF4Q1KTSobmaUTXlvprR62JH80KFUw6PH5SkFmUJv+csF8z/ZJvvGVr8BvhnpXwqtrq88Z6x401jw/cW1szeYuitaWV0dq7cOiF7+R2LfuzGQVG7dXongvxPpHw/8aeAPG+seI1Gs+KbHxgsw1oiEW/8Aafha3W2ffIQZYxJqLiPC738rZGruVSvPf2fNdtfhZ461T4lz+GrX+z/Dnj7VbB3a1Xy4f7Vd7NXWSaMK0SxQvtt5mkXiZtqh5wPlaceSevl+Df8AmfaW5tUWP2l/hyPDX7QHi34Y6SFW08P/ABD1XTbx5ZB5dmlrp8dtLKqYAIlbcgGMfKxAAC5z/GPgzQNH+AnhzS/EMUj2t1ceK9QtbVQqyQTjwd4b1SOQnDBomlaPAxuCIcEE5Hf6d4g1X4u/GXxx478aw6XCdQ1a61W9tLyZkjktrpprl027TiN1lQ/KWYsynJYZPifxN+KMepfBmy8GtbQp/wAIpqN2bjz3zK7ah4X0uyKj/pmp0pxnOFLgECtcO4xpcvYzrKz9T0L4c+HJtd+O/gnWbFdUtbu9+InhXS9RmwCtm7y2EiSxOANr7IkVQ27PzNuOMltr4uvdIvLbxTpCRrP/AGdNcGzumAimS2W+n28cjeEQrhyMswO4kgVfhnr0Xw0+Jmm+L9fhvbyz0Px94OaRLYtK0qyCxueWYcM0Vi4XdhwSFIzuFY3jizHhLQtO06aFknsfD97YXME24SxMba8iw78MDG6uNuBjGNo5Wueq1OovX/I0pq0HY9dktR8EPjz8SPi14B1G7+yr4n1q+ttZMkZcwWniOZIoIA+eGj05/nIIDlDkE4r2f9jn9oqbxJ48fxx4Ntl8P3WgeIW8Pza/B4YtpF1izjubspHMryBFZTdW0YQJujt0AjdpBGlfOnjzV0+IPhe9j1Fp2jv9W8SIxlvWVZYBfaw0SyRhRgiadRtPscfIQNn9kDxX4I8P/Fjxj4U+KOu6hpvhzUfEurW+o6boMrSxtPLCIoyiEfNtLN+8GGdeOoFeXmeW/WqM2tZJe7fb7vyMK0bo+4/Fvwh8JftIfBvxjqMeiz6veaPq1/aT6l4a06+m1MJLJIkz2cuqyxLJudszRxysjyGMsAFDN/P7rk0VrcS2V7byI6XDblccryeD71/St+yX8U3+Lng2z8Y6x4C17wX4r0uKZLTwxq9xcw29q0rzHzooGiDeXFO0ltkcLG4VifkJ/n7/AGu/APio/tL+O7jX/DOoadqV14xu7qbTZ47uRlS6leaErJdM08odGDK8pZ3UqxZixNfO+GeLxcczx2Er/DFpxv8AczhxtpUYLqrnk0NtFcxGeEYReRkVu6V4P8P6n4Kv/Ec3jFYdVsryNI9FmtcC4t2HMscob7ytgGMqPlO4MeVptv4ceKK4kngkMMW9Y28tl3DGA+DggZaM8gZ3isK4tryQK8bgZ4AOa/Y7qS0Z4LTi9Rxu7XcsMIB5yznrVK/uLRiCIicnJPtTxYvGzNK4A77RU0Oi3V+8NhZW26WaQImTySTgD9aocUj9M9F+D/wzuvGej2Pw5uIIrPwT+0BoXhyIPqLXELW39q3dqZGYjP737PDKcncQWPzcGsTxh40h+Lnjib9nzwvp1nptlceIfCWoP5SE21tdoukWEt2/llXlJk1GaJkPA8skHe2Rj/HDxD8Mfhl4l+IXw3/ZyvdY0TStU1jQPGHg+JtTb7SllN4ffWoprlhnMokMBG1kaJ7hsMyghuw/aovfDMfj3Ufh/wDs7aRc6vc+JvC/iLw34YutO86Oee9svGa3dtcxzEBpZTFp6p5QChTG4TOQT8hX5oYlcm2r+9X/AEPtor93co+Pbqy0H9p/WdI8KeHbbV9L03wclvZTQWJgt7ie3KWjbNp2zNGxYNJuLMUZh5e8BPOtZ+A3j/4o+ENaPwy8KXl1bza5pj3/APaGli1jSSJdWdw+cK+6O4tMHG0+eEAwpx638Cv2ddQ1u80XUfFZ1mwvJ78Sf2omkieC6vBfwSXYBURvlEsIgsci8mSRoyWR44/oD4c/Arwt8NdShv8AwBfwvbS2mLudLa3S3nvRciTAIdThFlePJOwRxhOBGstfKZxxNSyaMox1qaLuvw6nNia9KnG3U+X/AIbfAX4keOtOuW8BeEb3zjrmj39vql9prbdOW2t49kxfJEsRmihQyA4/ekBRkKbOi/sifEzxJ8PfDngf/hHv7PY6bMHvHvbCdEVhcw20mbedjJEIbhGLIpZpGK+WAgc/T3hnTNG8CT6tY2t1a6HNrl3BNYJbaZstJZRbFdvAidsRsh2xkKhi82PY7NKdPVvE2m+HrHV4dNvZ5xbPJcRxWVraytbXKMkJIJbzT5kQt3UJIiMyO5MbtKG8inxdPGySoe6tPiV9deqeid19wUMTSrPR2R8zw/sseOLTw1D4R8La9bXGjeHUkklvrovE93dM7XEmA/yCR0k3oN/70AKmZHRH800Lw9rSazrUH/COq1yviUzQ/ardZjPO6SKsLxnO9W8yMEEEHOD9/B+uNF+MunaVDZeJINf0/R41vIZQlrFGXhu7S6iu0jMdw0QLyXEbIzvuKRXB2r+7jabldSbUNfuTceCfDMGjk3vkW+p6paCQXMUhM8hBYDC7w3EY2LgupTele5TzLH4aFq7Ur9V/VrGla1N2bufRvwN+I/h5P2cvBV7r99JBrGieHrUeI7C31HesMKRupMFwsmUdwYgu05jEjAFypavnL9qDQPhz4m/aH1z42QSzX9x4nsYU8QSRxIUmSKFY1AARSGLQuCV2htudiKwjXX8YeFdb0fRRDJrFmmlxG3kv4ETzN0y/fgRRIAF2ykbgSgL4SRlUy1xviuPX7fToNOtj5v8AoTabcp5xkmMPnSOirtPAUsiYY5Ajz9fm6NGnhsZPFQbUp3vZu1mcb16HjnxD+Enw78bpLbWvh+WxnuYcMiQljgbWYsCcDO2POCB8gAA2kVytl/wT9+DKeHZNW1v4hahNdMoFrHFZxpmRiodcGQnC4wDjkvnnAFe++D9J0L+wpL1ZNLnNg6zyRXE0UUht1dsqhZz5m0sAyAhtrD5cYNTJ4C8JXl7Pf/D9LqW7FtC9vZzyFTGZfk+boThkc4ODl0U88n63C5ji6FLljNpGEqcZSu0meHWn7Ev7N9rbW9r5mq3d15bmdxImGYKo+7jHDbj06d+DXtHwY/Yq/Zf0Nk1nXPAs2rNI4WaSeUuyjKgFQgUfK205xjOM5ziuh8GeF/DOh3L2HiPV7a31iWOWO1FvMXjgmD5JZsYUYVQW2qdryAgHFer/AAp+Inww8N6ANQtLmyvftrlru3KhsnYjIwxngtubBH8HTlqwxGcYupF8tRv5m1LD0uyPzw+GtjqGpaZpvjLWfh3eagukeH9T0LxNZDUvIuM2d1GkznO5/LhsdTtbdVwWxbsv3QcfSvhv9n7xL8NvEmjaIbTWbFYEgvtIvtK08XtvFqDaAvmeayq5OJ768UxEEDY3mRqJVduo+BH7MVp8E/jTruu+Er6a50fWtDR5SZkndniWWKQu7AyQpMxaR/NiKu8AQuRICvult8S/h5qPiMf23oGiJpuhXY1TQtEfU7ezvIRtMlsIA0L+bMgMcIiKxqxkLfKGCtyYniKnj5cmFdk46u2qf5aPVd16nXRr+0fLF/Nlu00XwX4C0VPGi+EYdOs5EhudS0zSDFFb20haWNtrsP8AWo8ZijRt4Czbt8YC78F/Fnh7xdpc3iTV/wC1ZLKSaYxaxKMJLJJcMYLOI755rpiZGRinz7tpTeWZk7y7+JK2F0ln4XkVorTUxLZ2mmWEkMcss1yjxSpOjgl8TRQ+eVTMpiIidsTPz3jj4dL4f8GLpNx4XttPgdxp+n6WsQtzdym6ZFt47eRtswSSOR1VUIjaDOVBj2fnVXBYqFRwrRdV3vdatR01d+qb030OKrhKqk1bmsefeNX07RPiVbPY6tc341Ly7Kb/AI8pksp2SPZJufBchGuAY0IkWIAnzUVZEr+Jvgzo/wAVzbXGi2OqR3l6ktkskNy0f2KUiNZCIgYpZ1/cyCN2ilUmdQJJmidqzVW+8GWbaX4V17Rbltb1eS1jtvEGsXFxvsZE33eyG2jJjYyuAWcOhSEyMGdM10fw31vTvEQttM16C7vNXh2zWrfYRAb5irJEv2naqPIplhZyAxH2dsPwDJ9XhsKsuwfPhop1GrPq/utbS/kdihToUVypNta+RwN98BNTutOvdfv9c0bxNdWl0YrzUL6aMQWoaRIfIP2e1bceIjIdy4CqDFtY7ZfhZe+HdT8Cf2V4E8RReK9S8PTudYv9OW1tgLgTfNhZ5I4ZQA2wMrOBEFUSPgYj/a71O0+Bvwq8UeHvhd4b0RtZ1S2SO3Qai1vHGZoALm+jUyN5bsiO5QO3+p+bcYlC/Inw+8VwfAzQtSk+H/jO68QWk/huKPW5buylj/4mcsqH/QcYfdFKI2DSbVkVJMgqdp+lyfK/rGDlOrN6tWvb56LZdrWIpQ5pan2Jpf7RHwz+JUNtZ6PrMFwumTOLvS792W4DkK8pZXWMlfMRk+VQieZgAY54D4z+LfFUHw4HijTtJ07+2/7f1bSIbCGYqbqZJ5Y4hvQ7Q7gxvsb51SWNsbWjJ+RINV1rSNYi8Q2UzLdRqrhkfaDKS5yMD5SPl5AGMfhXpfwf+IHiG6+MWk+NfFOlGWzN47vI1vmN7o2ot4ySq8gBo2P+02cHt6n+r2HpScozunrbrpuvn+BCtK6SPoTTfg742vvFmszweGymkRWN7Kf7YmMe+4hiuRA429TujJUjchdTkjOayG8CfFy32wXFsyWUiSvNbwoC6Qxn5ywOMBSrk5IA2licYavSNb/aZ+IeuyDWrvwnHoatLOlqLWz2JMvm7inG0IVinAOOcsG6muL8Sa38cPiN4v1fWZZv7N/tW1khvre3geGOJT5QmjAIby8FFXBzwp7ZA8umq9TRJWOeUY7pkWk/DzXWnk1u+8Ry3gmhuZLxF3TSoFUnzm3YLljyAeWxgkbhn1LRfhPbC/stemuLu/gj0aWa484CSIutvGJVGMK+DLGFQE4G4nnp5xpOj+PdCnmT+1xcvLEUltHtDiFQ6M0WMYwWdmDAkkNknPT0zRfB/wASPHMUN1rni+5ttOeYtBBYx7UtpFMefLtwACArKGZuixockLlsalGfJqkXBRa8za0OHVb7xU/hbUIJBHFFMLm805neG6m22syREIsrSeV/pdy0kZI/eOrHenMfxD8N2esAaJ4nSx1rUb2GPUNLNjpxup7pJUSK2ezupFMsceWUAhiuHDxoWjCnb0v4keDvix/Yur22g2a2HiC7jtb68u9fiEE6nMkdteMIooZD5pjBV/LUYdt67ty8r4j+Knhfxj8ULjQNOtF1DTtW1CGJdP0nxDZS3081sFJEbMBvRlSJCockmAuTGsiQJ8theH6VubDT5mk4vXlSa8u+50xy1RXPSnfpbb8DrbvWJfg78P4f7I8OLFdalGTPHrNi966WzzeUbmK7JeQksHidTCJFeDaVlmR2rj/jz8Ydb1vwrc/DnSfDP9nSWNtPaNLZWYvNPnjkRSQ80/yzvJkb1hleHNpAgVHRI1yvD/7Rt/4asoPhb8U/DFs897aafOvh5ra31A2t00ew3CuhknhSWOJlkgcmJWkWM7gGVl+OHxY+G6aSJ9Z8SWmo2lhMrxaFFJLZg3RY5AX96t0+4RszE427RvEeC30dXB8tBUacWvz09NzrrVqkML7NKyOH+H2l+Nf7bvND8Mafb35020gh0m4mt1s1tLmCWJk3xSXMiyLGpjIDQhWUMpEQLJJt6N43+ON5G+q/EPw3qniHVbGyjhe4srm4AELxq8kYeWIYIjS3HMsimNlG1grK/Oaz8f8ARtPk0jRNU8SWqS3egi6vLy2uW8yWWR0AjlEkjNMQpCYQYYqGD4DqO1+FXj6P4r6Lr2l+AdT1PQLmKzYtu06X9/fZZ5BI8cTiZhHJv8nkNEFMjjdsrkpU8ZTqu9K0Hu/1R5UJNaI84+LllrOoaXF4rtL6S8vm0ySzt7HTEkd7hljutpZSz5DSRSyswIBcyqIwqK1YOn6HofgqPVrWLw8914eutPkctfxxA2+oHzIS7EZbgZXIblLlgSPmQesazB8JvAdvc634a1ITzW9xZrdNKEWa0kk2CbAWXb5X2hSpDKWOJUKxbwtefeL/ABZcQCXw7eeF7SQ2mivDEsOpeabKIgZQvlshZhPJsX5S7tIDufdXRHFujQ5Il+0cbtM8s8a/ClbDSP7c0rw/awWrzCKGBGUt5seEOT1UgyNuj4wQvFez/CjQ/B9/4X0BviDBqNpbaBp7voNhpKxqtzd+apa9lJSTzo5USPbjacR5VgMAYXgjwl4Y8Vxxa7rutwxyNmC5g05I0urgrukmlMQIzIcwxouxsiItnELtX0Rf+IvB9jYapoFrpdvBrCFLeeGRo5LqyEZdEi3srFVKRlHI5wwLhu/pLHzdOMFGTfR9kVCrUinbqcVN4p1LxJbyxX0McUFjAXS5ht8qkyiR2dj0Rd/7sEDBaRcZ3AUtnd3Vuluk9g0llPJELu6kkMAaLzTGZBwBtIYncBkKQcr8wOVb6noz6rPdalby3ssi4vArlZjHKyl16YX5jtO7IxgEHOa39T+JXjK+8NaZLomhRS6Zp9qbTTJb4PKxG64dlDLgnllY4OCHDMMFSvTCCjDQyepma742WDTYzcaeftDXLT/vAV835RtDDGByoUeh4/i47jwN8V9cs/GEsul2ulrfXqSSWiTRg29gJlQQuQoKRq7XccYG7I3ADJ+74teXurwSLqc+qNDJHZeXJ5j5YEMrFlYH5emcgLgO4wfvt6F4H0VLbTk07xHd6Zc3b6uunS2s9xJH9maEx/vRheMSlOV2kNAhOVVQIqNKm7oqMmnob0F/eeI7dhdpBJrWmQxefY6lqENu+oTy7rdrGeWTfG03kW80UUqttmEManhnljo6V8Qvhza/AyPx5rd4vhrxRYX76LbaD4x0F5ZtVi+xytBcacU8oqYLO5KFhskGesny2kuS2s/E/Sdae7u9VutD1qafT4dAvZ2s4bTU7Ixt+7vEGoRiWOWGWCYyQrhQ0hkdoQoPE+J4fC3xB8CaL4SiuvFVrpuo6+wuyr3esaXpubyMH94LZ3hH3VMys5lVHVRKsEZbXAYOnhqXsraX73/PfT/gn0cPZUIWpmzrFho/xA8LyeL/AIUeHdMhv7O5tryygs7ZYNQhvvKto5lZ0ePyk2whS5+Zt43qzMgt2aj4Z8AeDfEd1ZSeDo9MtbzWbR4PF15rqsY1kimtXt4oYkffG5eKb5uFjKeXuWaMNxF58HPG3iuK6XSvi9Cmp3bnVfEFvdXzX1pe7pnjaWRHjjaGUF7mUF1KyCCVkaM7EPW3fwJl1Cys/GWhePLrztV12y1K/wBOivBd3h1COWMf2miZ8lizSLcCIyEFgfKmmRxFWOJq5Y6qVaraN7Jar8fyueZUrUZybmrnn/xi8BfshaDeaTeeGPjbbXGsxXBtZl0jV4rixtfs8uwyICwZYXjXJVzFgrvVtuFaz8P/AI/eMdV8NT+GPg7YyT7rCTTbHVU05pBZ2+8uXWaRQYGGDtmCpL5SiMsECxK1f2K/AnhDU9es4pNZ1nR9O/dWGsHT3gRIo1JzAzFxPGxjlUScu6h2VEZGWOxrN78MPhhr2o+F9It7bQo4FaJorDz0/eFZPNLF1aQNGJJFx6M6oStc9fH4Ry9jRUp2Vr3TVmv028tTzq1SLqaKxseKfhXFoPgy1trnXfOsLGZH8R6kkL7bybDm4jjI3H91MY0BjCn5432Zd1aj8QfD66rql34lg1KFbiPVo7mW2tbGGKE2pmnSfBUj7nyBF2EuJck/uhne8KfHaPQdF8TaZ8QrmK4km8q28M/6FI7tYrcQ3UlxuXZ5ZKW1ttfOWVnX5+FHleu3niDxVo0V9azuZNWnZkvrqWNmtVjMz3ShIZM7EwjK5ij/ANfNnJ2O3jzwWIqVFJy0v8tSHqj03SPD1v4c0W81S0ubmTVjCIZZdPeKJTCrx3HmNtj/AHsrgtGqk7zliWYLXmyfF3xzpNrNe6dDcSvAkMlxfzMWMakARMzEdDnIJOSW69KueFPFeheItCtdbvdQms3tY4xbRXcInEH+kRhTEzMqq6k5Tam4smGwP3lYWl+JNUnfW73S7yCyQQSRvZX92okZ5JVSQRqqANI0JEUnGCgYHggH3MMq2GhyyV1GyFJpJJaHZ+GPG0un+JdE8S6nNZ3o1aVxeWcLL8iJNAHEgU5iwWkxnBKsrjg4HUeOvjDYWun3Nn4J04w2wnuYoSroz+UsuyNkbYu1WjGAFC7tgyPlK14QnjHXYYUmsbWz8q4gLQorhnC70385YqMxqeTltpPPBOxH4s8Sv5l7DpFxFpyW5+ywTHawUyR/MFyWKlZSQT8nzNhiQM62lN66ERqI7DUrqG+sYbq3uTIskj+ZZXbEeYWMaqEbBByhAYsQdyOcY25zXTxufCaahPrbmGK9k8iOK4+SS4PlrNt5yrYYEnjO3AzjFctr2h/FnTdGm1rU9Bu47CWcfYbxGLxsr53AMpILKkZVxgbMbWCsDt0NE0nxNdTvYXd7NpBupIVMmoWXlpJA4EsUgV12uGR45AMfOHjKkgg1pFxiuZSTt8x3uz7e0LTvFTweKdPvJrXw0up3dxq93FdQXN5p2o2saofskcUkMkkEwjLRxXBiDRCScr5ryLK/hmo/B3wPb+GobazGt63pSzvDo1jqNwJ4NH/cT28McIX96Nn2hGWRyd0lur7SRItfibZftwftp6bdrf6d+198UbedCCk0Hj/UUdcKUGCJsjCsy/RiOhqG6/bQ/bEvr5tUvf2sfiXNcuCHuJfHeoNIwPUFjNk5wM17E8ix7vy1kl6HfVxjqbKx+13gubS/hToeu3us/Ce5kupNIj022v47eSebSJ5JYwt+0dxtldI5XCAKUUtw4kjklt3zB8Vvi94t1afXba88NRx3TvNYW0U87GCfyrWSMeXHIocRNcqiGVSrHauBtIh/Fw/tdftYNpt3ox/ae+IZs9QuUuL+1PjW/wDLuZkDhZJF83DsBLIAxyR5j/3jmlon7S37RvhrUX1fw58f/G2n3ckDwyXVl4rvIpGjYEMhZZASpDEEdDk+tZPhmVSk1UcXKz1s931ORzP2WvfFnxJu7gaJea0NXE2rylI7GX7Jd6eIpZNq5RiZEaN92/ZKySlAHBDI/JwTQHUo/Gmu+HZrrW7cuI7e61GaNXuI4tyOqxyi4ViIlRF3Eg5y5+XP5ON+1V+1A97FqL/tIePTcQweTDOfGF7vjjyTsVvNyF+ZuBxyfWqTftCfH17lbx/jh4wMyRlElPiW63KpG0qD5mQCDjHpxRHhmceW01p1tb8v+HJlaR+vugRXGkf2h4XvYka71O2udOinldU23E1veQiRLopEq28bzKkqqxRmjmPzBY86w+DfjTwb4Nn8d/EjxHbDwrrF6dPsrrSLuG7cBym+UI00O5ZWsWQSFireQ6PtZRX482v7Vf7UNiGFl+0j4+hD3Czv5XjC9XdKuSshxLywycN1GT602T9qT9pqacXM37Rfjt5BIriRvF16W3K24NnzeobkHsealcNYqMtKit6Mm2p+nmr+NPD13JEmmaVJcwGxe2lvJ7YxSTyJdSSxvlifLcQ+SrKv+2u4ry1G3uzff2jNdaPC0su6QPbQrGsTFwuFSPCKNzLxt4wAMcg/mDN8efjlcZFx8ZvFj5dnO/xFcnLMcseX6k8k9zT1/aA+PKElPjb4uG4AHHiS65A6D/Wew/Ku5ZHNK3MjCdGU5Xufq34X/su0nu54dDS7uLiKFtPkuYVVFk81N2Ilyso3KVZXG3aCNoLqyTf8I3JolxPYa9b37GeKOeEXcBhKxyIsqybSQFVkfzAxDAhlIyG3V+U0P7S37RtvMtzb/H/xtHIjo6SJ4qvAyspUqQRJwQVUg9to9Kkb9qH9pholgb9onx0UWPYqHxde4C5Y7QPN6fO3H+0fU1H9gz/mX4mipqx+t+p6PfXcTNJdCCKeRnkS3dWQgqexJbgHbzk4bHrm3YeA7cQWmv6rrM1zbqsCzwDcgYosshTewx9yPAYBsHaBnkD8fn/aO/aGkz5nx58Ztk5O7xRdnJznP+s9eaf/AMNK/tG7PL/4X94225U7f+EqvMZUYU/6zsCQPTNKeQ12rRml8i0rO5//2Q==",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [40,47,51,77] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [51,49,80,77] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK9J0n9jX9r7X9avvDmhfsqfEm91HS226lYWngbUJJrQ5IxKiwlozkEfMB0NAHm1Fera1+wj+3B4b0ufXPEX7GvxWsLK1iMlzeXvw71OKKFB1ZnaABR7k1leE/2S/2qvHzFPAv7M3xB1ojGRpPgy+ucZ6f6uI9aLpOw0m1c8+or2CX/AIJ5/t+QMFm/Yc+MCFvuhvhnqoz/AOS9Qaf+wR+3Rq1zcWWlfsXfFm5mtHVLqK3+HOpu0LFQ4DgQZUlWVgD1BB6GnZiujyaivV9R/YP/AG4tHhmudW/Yz+K9rHbyxxTyXPw71NFjeQgRqxaAYLEgAHkkjHWqHgv9jj9rv4kW8938O/2V/iRr8VrMIrmXRfA+oXSxSFQwRjFCwVtpDYPOCDS62HZ2ueb0UUUCCiiigAooooAK/r+m0qOXFmbUiKRDtZFKYxjglT7n/PNfyA1/V5Y/s0NoVt4gvfB3xZ8TtPq1mTp51jUZL7+z5wkwTDO2+SJTNvEbksWGS7cbdqTavZXJkk+p5H+318Lv2itb+E03w6/Z6utS8QS61dvLfx6hqtnAYIo0TZbI0jQ+YrsGPzl2XaTuGFI+Of2Uf+CsfxK8N+C9Gsx4B8D30ul/Z7XUr+S2lh1C7t1kCLCWhZIxIql8OVbKyRllZlkdvtHwfqfxQ+Bfw01vQ/2rJtTnuZ57q/tfFlvYNPYx2wjjRUnnhjZrd1IzumTlRnLHKj86PGn7KU3xB/aOv9U+HPijxHF4Y8VmG217XtU01TLb61dwvI8ckZCASuvkyGRMx7rkFco2BzTm5xvDSXZ7o7aKirxqax7rqfd+h/8ABWTUvEesWWi3/wAH7XSrTVJooRqUupPcRaf5ixBWkUxIZwrM5YKE+XAHIy3zT+0d+0H49/Zp07xr4Esfi7Ol5rfxDtptfvvD9giyxuLPdds10UjJcwmyWNFRXH2U4CqQXoXX7Anjnw9quj/DLw1441u+u9YsmTTtX1W/idINTh3OsM1rFboywSxRkfaFkfytzMwJVFkl/ak/Zw0b9obwFB4t+EvgO1svHVzpFofE1vrDyo9teQ3P2a5YOZo40lWWC7SRjDMHNu+NjsHkyTxcnao/0/I1/wBki06a0/q256DP8ah8fP2YtP8ABsPx2afxP/alvZ65e3l5ODrFvDDMLV2LuEjjRmLymQfM+JGkDbC9f9oPwnrfwXuX+EHhFNO1O11ZtN8Qzm+1qxhvLS9j8yNIVhaU+awSRHMsPm8Ehgqpvb4J8OfHXxJ8L/DyaZrfhW9insLwwXsE2YnEYVhI7BsAHcAACQW7AjkfYv7I/hL4IfHL9lvXPip8btXuNNGmaxcaX4Eu9Miub3V7KUwG5mtZLYHZJbBcuqHaFkNwyurSsTxypVJN8+9rXb/P1OxujCKcXpe9rf1sfipRRRXqHhhRRRQAUUUUAFf2Iarr2kaFdIHmtjLckqg83ZwCucKTzwQCR1+X2r+O+v1M+LX/AAUq/Zf1nQdOvfBX7SF6NY0eyWLRyljrMa2TIZUXyj5C+X+7kbIUjIJTIU7RMsTLD7Rbv2NKdGNbeSVu5+5fg/xPoPjCa+htrq1eW3nEcsMc6s8YKhlDqOVJVlbnqHWsa4+DXhs6hqGnT+DIJLHV2aTUbk7WinZoxGfMRiSfkjRAMFdoAJ7V+X//AAT+/wCCov8AwS8/ZQ+Feo+OfiB+1je+JPiXrNmz6jNqHhXW57gIo/c2S3D2jDgKis27aSq44Ra6LQf+DjH9nCa31DTPEnxikgN5qAubK/svD2oP9kjLRhrUo9ucrsVyJBkhm+6RxXT9YgornTu+2v3mfsLyfK1Zd9D9IofA3wqbxI0unWtnNqdrbCOQElpIYnIIIUDgEgcjrjrxU8fwa8E6l4eudGuNHP2e7uJZ3ibIKyOxZmXPIy2W9yc18J+Cf+C6X/BKLwf4o8feKvD/AO0CYNS1m5W4s7jUPDGumG/lS0iRAoSxdoE3IFYlc53MFKhQfIvih/wcRfAT4swf2FpXxDufCVkzD7RNDY6k8s6Yb5C0MQKc4zgHPuCQHVr0qML2u+y1/wCGFTpSqStey82fWvjT/gi1+zFrfiq+8XaC+pWE1/LHJ9lWVGgt2SR3Iij2BVR9yK645EKYIJct1H7L37DN3+yv46TX/Cek6LJZXsGprra6dax2z3LzXUU1qTGkaR/uU+0oCBkC4KqAnA+IvgR/wXU/Za+E+sQWl3+0pcXmiJEI5dOv9B1eVYgWADQk2zFGXcTjhWRXH3iuO5+IX/ByZ+zjaX2pp8N/iX4cuLVbVf7Je+8N62ZTMCMmQfZUVgQG+UFMEg7jjBxpV6EqfO4OL7Wd/wAjedOrzcimmvVH4DUUUVJiFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//2Q==",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACivSPgx+yL+0V+0LoF54p+Dvw1m1nT7C6+zXd0l/bQrHLtVtn76RCTtdTxnrXW3X/BNP9tyzj82f4HTY2bhs13T2yPYC4OaxlicPCXLKaT9UbRw9eUeZQbXozwqivrrwl/wQg/4Kv8AjnR4Nf8AC/7JVzcWd0T9mmbxdo0Ql68qJLxSwODgjggZGa1x/wAG8v8AwWKPA/Y1uf8AwtdC/wDk6t1GUldIxbSdmfF1FfSfiD/gkF/wUa8LfENPhTr37NN5b6/IspFgdf01sCOLznJdbkooEfzjLDI5Ga7q1/4N8P8AgsFewpcW37HNyyyIGU/8JnoYyD7G+pR969tRyTja+lz4yor7Ob/g3u/4LBoJWf8AY6uFEK7pS3jXQxtHr/x/dKwfiH/wQ5/4KmfCiGzuviH+yrcaVb38jx213ceLdHMJkVC+xpFvCiOVBKqxBfaQoYg02nFXewl7zsj5Por3If8ABNv9tNtam8Op8Fy17boHmgTxDpxKqRkHi4xip0/4Jlftvvfx6X/wpIrcSorxxP4k01SwZtoPNz/e4+pHrXP9Zwy+2vvRt9XxH8j+5ng1FFFbmIUUUUAfr5/wbtfs6eOfjj+y94/ufA17YW81t42ME0urSSxwgNZQEbGjifc4IyRxtG085GP0j8A/8E0rrT5rfWvif4vgvPs0xkOj6ICI5zuUgvNInK4BDIIsnjDDv8s/8GlduZP2LPiRMoyV+KDfLnGf+JdZ1+hXxJ/aV/4Q/wAOat4h8I+GLfV49IR2zJqflrdeV/rlQoj424ZMnnerDbgAnnll+Bc/bVFq/wCtjqhjsZyexg9P66mt8W/ilafBT4c6345ubeFLXQ9GubuytriXyBJJDBJJ5RJHyKwjYB+ep9Odn4TfHXwR8TPhzpnxR0vXIRpGsQrNp19K4SO4idtsUiknBV8qVI4YMpGcivz8+Pf/AAUd8D/tmeDpvhh4f8TXXg+7DPbapbJ5N801lcQOrKqSrGrTBxEUJIUqJVbGc0/9qb9uT4LaN8JPD/wy+HUq6T4Y0q1tt1lDGbaaCOJNsVmkO0BkCmPIRgqlV2l8VU8yo01Jx1tsu7/yKjltefKpK13q+yP0R8cfEvwT4U8JP491PT5dU07yMvcaTafam8kqSGCplmQ56qCFD7m2oGdfHP26v2l5fgt4Dufh98N9Ym0zxnLZWt/oF2tvE8Tot2vmxBTuJbyY5sBk2ngA5OK+c/2U/wBqz9nv4meFbj4WfFzUH0/wb4btbSS30bVGuZhdTGJ2kiumkdxJGUVCLU/xtIrJ8sYHHeKbX4g/tB/GCX4haj4ss9Nt/EniCJluC8kdrHo4kjhZo3mMbMAscgPCh8P+7DOwrHF5hU9heGjlovLv/wAA0w2Ah7X39VHX17f8E+hf2Gf2/vFvxX/4SrwB8d4Jba+8I+Hl1q48SJEgeW2YvvDwRxbUeLaCOCWyRtJjLPm/Hv8Aal8W2nxLvPiH8OvjxpHirwDfWtzo6+HdI1OOBrOc2kbs0zxgTMpbLieEkqCUDxEq1fPfxG8S3n7EnxNa71CGV1+KngpbDw14ra/dYI447h5bqOQkGVH8ua32HZsLTriXapZOG8Gavotzc6l4Y07TJI7NrqYThIgqNHkKFjaMgsp2jtyVBPauHEZhiqGGhCXxdXfr09f1O2hgMPWrynD4ei/rYk8CXF94g8d+IGtL6DUxoGnLYXVzbovnTylZnAMcaHI2FF3KAAyYO3cobp7/AMKaR4zu9Nu9QZ444DIJjbu6eepIZVLKwI2NhhwTndVT4bWVp4A8Kanp9ndPb2lnqWrTzCYI37wyo0bltoOPKCt8244JIO0jKeDLu28XT2sSJl7NGnA2SEDcyhT1257DIPPQZ5HzVao1WXKfQUqKlTdz8B6KKK+/PggooooA/dn/AINW7y1h/Yu+JsUd3NbXbfEORUuYXOYw2m2oBIB5wRnn0r1r9oP4g+L/AIM/ss6p8OhrdzqM11qjaPq819K9xJaRTh2Eu4szBJAVVTnCmUKBkYHh3/BsN/acP7FvxCvLWRfJX4mMsi4GQTp1oAeT+FdT/wAFPtY8RjXrbwd8IvhTNqfi/wAR2E63WqW8B2mytR9rKM0mEMnyMUw24iN1AzsAnEwlKimnqdGFcVWtLY+ZdD8e/DzwL4yhtL63trO+u1yZJwpkuECY8ssB8wQBee4PsMO+JniODxOo8MeFr9J/9FVrC6gceZZ3C5aFSQDkEDJAXOAe9dzon/BNWX4zfC2z+MmiePLubxRqnhKx1Kz8N3sYRUla3hea3WVckncZto2r82xGI5evL/2Hv2b/ABx8ZfjVpPwC0DXf9IvNau31zVbU+bbxRxwXUoKAtHlpVtQqBinB5Zeo8ypg5xS7nt08fTaaeyOO+D2ieKvEnxa0jRP+ErY26SJLM018qR48xQ8wjY7TMduwPtJIwDuOCP0P+C3jnxd8K9StPGvhTxXpd7p0s5ggvfEWhmYWcqA5MgiZWUo4L7Yk8wqDyxYh/CvjN8AfGH7P3j7UfBdn4cmfVbBW0+WfTNEsrcXFjLHFcbNsUzlFKFAy5kw27Yx+8ep/Z70aDwpqQ1Lxv4Z1LxFpoYPH4QTUzpK3UrxzptaYykxhWkaRsFWDp823oeGrWlOrFR0a017kc0XTb3TPe/8Ago9rv7ZPww8Q6F+0l8DfiH/wkXhPxNpFlY3uq+FtGT7To81pDNPKRGXZhbXGJJnIDbBbbJWRVXzfmvXvjZ8QLvSbuz8SeHYNVtFtftEk9pbtBIu/l2Z/MKwcYOR1BG3JUgfoR8I/hFo/7Mum6n8f5P2lda13walzNNo3hrTdOghhkjCSxOlw8rubuTI3o8P2Yu8YG1w4jrkfgR8d/wBiwfGjxJ4i0r4PeFvBuq6Y8UGhalMEtZL5ZPM8x0tmCrC37oEug3MkiBiCNtehicN9ZcfayUW+jd/mjloYz2CfJHmt1St8mfFV9pf7ROr6dq+nfCL4Yar4q0PWAsVjq9+hgS0vDbJHJAJCojRvKYSgtt5dwOmT7X+zX+xN+01r3g2z168tobHUIZUhurK4u4xHZo8e5wzpvZ3IeJ/LwuCWDMMYb1DxZ+0P4s+Nf7Qlt4n0nRtRt7LwjbahpVz4a1Cy8qWK9aeDZdMwZo3SSEbo2BIaOYHrkDyf45ftIeKbD4sG10vxVfaNcajdyWE9vpl01oLgWylw0hjYbmXqCTlQSQB1HH9TwVGpaXvW/M7IY3GV1aNo3P54qKKK98+dCiiigD92P+DVa1OpfsefEaxFsXUfErMhaIFRusbRQQQcg9cjGORzwa+7Pjb+x1418a32m+L/AAVJpb6hoWopfaXFeGSPepBWeEHBVWlheWIOThTJuI4r40/4NK447f8AYl+J1+0aDd8TTG8uBuAGnWh5J6gZJx9a/Tbwh8YNL8V+K9Q8HaXZfaP7JEUct4s48xtwbdlCAQAVI3DKtzg5VgvTGHNTVyOZxldHhngT9kP4g6B4nvPCq6RFYaPukutG1CC9j8mGQy5ltmVcvksTIrYcZ80Foh5cdVfhT+wZ42+FX7ZWt/tFBtKXS9QuIrmO10lcNcSnT2tpHkXauGLvJISMhmctgs7EfVkNhFePFst/s627Ls2kqWVc4BxjK9eDkc1oXFzpFlZT6pf3tvDBFETcXEjhQiLkksx6AZJ9ua1VKPKL2kunU+ef2kP2IPC3xy0TUZrXxFqWna3cSvJpmoXzG8isvMVFlhjjkPyxSeWueT5eWMWzNeLaF/wTp8fab4/i0bxRot/caDLAq3eteHNdthOhZmxj7QqnCGViyiFdyqT8zDY/23oHxR+F3jKU6T4a+IGj39wIjMsFpqMUj7AQC+1WztyyjdjHzD1rWVSnyOuQOvHSuKrl2FxMlN6+mz9TWGJr0VynCwfDz4c/D/4TWvhC/hWPSdA0y3Z7m6lBlSGzYSxyyuAN2xk3nPyk5yMEiuE+K37FX7PXxAvbXxlqPw806SS2na4kfTo/sxu9wOVmMO3zkywba2Rx6Flb3qTTLO9hCzR7gR3PFVl8NaVb2DaUkUhhlB3o07seeoBJyB7CuuWHjJWaTRgqkk7p6n57/Gv9kKZfD1tpHhbVvE8Xh7S3VrHQdO1pjBdNHIzRTTPNuklkjcjG+XaywRqwdBtPz3+0j8D/ABb8Q/F194o13wHrd7M+nWcmmT6EsbO96FFu/wC5JMjHa6hlA4QMcjPP62w+BvA3hnTU8OaboVvbWsPzmJQS3zMx3ZOSSWLEseSSTnJqFfhF8PNS1RNQWwhaSRATly3mgdDjPbn1/CuWeEpz0aOyni503c/i4oooqTEKKKKAPef2VP8Agpt+3F+xJ4MvPh9+y/8AHOTwto+oaz/at7ZJ4f067E135Kw72a6t5GI8tVGzOzKg7c816F4d/wCC8H/BVnwlr174m8O/tTLa3moqgvHj8CaEUfaWIIQ2JRT87cgAkYB4Ax8iUU+aS6gfbC/8HFX/AAWRVty/titn/sQPD3/yvrn/ABx/wXZ/4KsfEezXTvGX7V013bLnNsvg7RYon5ByyR2Sq5BUEFgcY4xXyPRRJuceWWqBe67o+kbP/grr/wAFD9OdpNM/aIktWYYZrXwvpURI7jK2o4r0dv8Ag4q/4LJNEkJ/bKlAQoQR4E0AH5SCMkWGT05z1HByDivieiopwjR/hq3poVOcqnxO/qfbv/ERx/wWa27R+2SQD2Hw98O//K+kH/Bxp/wWYV/MH7ZLZxjn4f8Ah7/5X18R0Vrzz7sjlj2Ps/U/+DhP/gr/AKzqdprGpfteGW4slcWzHwFoAC78bsqLDax+UYJBI5xjJzdg/wCDjT/gstbDEH7YoUe3w88O/wDyvr4jopc0r3uFkFFFFSMKKKKACiiigAooooAKKKKACiiigAooooA//9k=",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [41,48,61,69] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [39,43,74,70] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK9S+FX7Fv7S3xt0bTPEPwx+HKalZ6zI8emznXLGATOsjRlMTTIVbehUBsEkrjO9c+W1+rf8AwTdg+I/gz9jX4c+Mfhz8GLCCx8Q3V/pGv+M/FF9LqGlXcw1G+mWGC0Xygt95EDr9lErlkijuCYUaVj4+e5jVynLZYqmk+XdN2066/wBdtzbD4eeKrxpQdm2fn1dfsO/tY2via48IH4IavLf2jlZ0tTFNGuPM+bzY3aMriKU7gxUiNjnCmuw0b/glN+374ihvJtD/AGfZro6dpSanqMEPiHTTNa2bozpNLH9p3xoyIzKWA3DBGcjP6/zeEtX8feM9U034XaNomjXd5a39zrOn/wBhrJDfW8EUKQXIs4w8IubmFLtrm3basq28iC4up7rYbc3wzuPiJ8PdM8Han4waeSy3jxTrPgsppl5NeXLCd7kyyBFvAj4+fDNGkYjWJi5WP4ap4lYOll8cZVjyRlfdc2q396DlBbqyck9Y6e8j2nw1j51nTpSi2u91+DSffo9nroz8TtT/AGDP2rdEFq2s/C+O0F3DNLEbnxBp8e1InjjlL7px5ex5Arb8bWSUHBil2QeI/wBhv9rDwn8Erz9pDXvgrqcPgbTzaLfeJEmhkt7c3LKsIfZIWUlnRSCMqzorbSyg/sppHh/4A6F4rb9mJfi5qlzpWraZcxLoXiCLTptLs5YGZbu7Wa9sfsNrdxvbTeZKZFlErzqELzuknx1+3f4U+Ji/skeMdG1Dx7qej23hG0sYdb8PaFrzN4f8StBq8GnpqIVQ0dxNI6i4ByDLukus7WRT7mQ8U1s+pxqU6UoRbj8dOULxet4pu7T2T2v3PExeW5lganJVq029/d12eq0lo7bJ7btPr+bFFFFfamQUUUUAFFFFABRRRQAV/QL/AMEj/AvhTxP/AMERfh/pll4ShOsf2tqmuJqPl3LubmDWNSt95jhVzMRaSTxIgR+ZW2qGcmv5+q+j/gH/AMFbv+ChP7MPwp0r4IfA39oI6H4X0Tz/AOy9L/4RXSrnyPOnkuJP3lxavI2ZZZG+ZjjdgYAAHHj8Dh8ywk8PXV4yTT6bpp2fo2a0K08PVVSG61+7U/Wf4l+Gvi58IvhHq3irwd8FPGPirX9clN94WsJNCu7x4J9sY/eExM2npGk5IjkMWQJEQb1kxm/AC7+L3gj4XeEfCfxg/Y4+KFhbva2kGvyaX4bsdbW8srd4454ZLWaVQrTpHLHidDhZ9wWRVAf83B/wXu/4KygEf8NXZB6g+BdCP/tjTX/4L1f8FYJF2P8AtVKR6f8ACCaD/wDINfI4Xw+yKjgI4WvzVeWoqicmr3jy2Wita0VdW11vuezPiHHOvKpTtG8eWyv1v576u3bS2x9o/EbxX8QNR0eyvvi54G1PQBqsEkurw+NbS9a+kuVVQhjmvInnutrLjezM7bY2J4INL9vnwZpHib/gkf4h+LHhn4kWOoy2Vrotprlhd6PJb3cDjUbECDft2SSJ5sO9lxGCJAjONpPxjP8A8F0P+Cp1yCJv2ogQfTwRoY/lZVxPx0/4Ki/t0/tK/De++Efxs+N6634e1FUW7sD4W0u3LBZ4JwFlgtUkQGW2gY7WG7ylByBivo8Bk9HLpSdKT1d9/O+vftfeySvocWNzGeOjGM4r3V/wPl6bXPAKKKK9c84KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//9k=",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD8ldE/4I/f8FEvEs3ie38Pfs/xXsng67itvEKWvjPRpDbySPIibQLz98pMMx3xb1CxOxIVWIgh/wCCSP8AwUHuSGtPgCs8Tact9HdQeLdIkgkgKb2KSrdlHZBkSIrFomR0kCMjKP0d1TVdb+EfijS9T0yfR0t5NNjstPk068W4mW4gEE7ugYZaeKS5Ku5IVi8mwugNezan8c9b8UahpiWV3b6VpM15c2ktjcWVnY28TSSojzFZhFBDk8OWKxqIYlLgkg+TPNIwdmrfkZe0dttT8p/h/wD8EIf+Cr3xS8MyeMfAf7Jdzf6aljDerdDxdo0QmtZGKieISXimaNWVg7oGWMqwcrg429f/AODdz/gsV4c8F2XxDu/2PjdaLqURl0+/0jx/4fv1uUEDz70FtfyFl8qN2BAwQOOSAf6Af2Sv2t/2VfA3w5h+HeifHTULfxRYw/2hNpfiebUNIjkWCSW5jt1iRFitLdbn5HWBbjzlEkX70NtPReLv+CiWq6h8GrzTtL0XQviRqx8Sata6noVtZSWMMdqbXzhEZXWVFZWufsyNj/ShGSpXLyL6tCdOpBTk1bumS6rUb9T+ZLVf+CS//BQzR9cu/Dlx+zdfTXdi+y4Ww1vT7pA26RMK8NwyP88UifKThl29SAXfDf8A4JM/t+fF3xn/AMK7+HfwQtNR10w+bHpS+NtGinlXeEIjWS8UyMGIyq5YDkgDmv2O/b7/AGyPjD8ZfD2n/F/Qfh3qnhzU5NN1PU47TThaTjRdOgnkgt/tU6WKySuD9pMDNIUj+UBE5kuMP/gnJ8d/iZ8DPFWv/HLx74as9U8Q6p4f1FrO31Npxc3BWGULG0MVu4iMsgiQEtDIVjAX5JWZxygq1m7RMXXrW2Px50r/AIJk/tua3qdpo+mfBmKS5vYo5LaM+KdLXcrlgCS10AuNrlskbAjFtoUkb+k/8Eev+Ci+u+BNO+I2j/s9Lc6dq2oR2GnwxeMNHN7NcvJJEsP2P7X9pDmSKRMGMHcu3rgV+jPx5+IHhO78DXXhjV/F1pqGqahPb6hYalp2qXqmWNPNkO79z9lLIt0Y8rFAwRGBkf7o7X9j3xbcv4A129vLw213pllaNoM9sr+ZBPHNFJHco4cyRxqInYqWH+vQxklQ0Pl1szjSfNG0o/d9z1T8u5jLG1UtEvuf+Z+bPjH/AIIM/wDBU/wDqN9oviz9nfRrXUNNGb/TB8VfDEl3B+6EoDQJqTSBijIQu3LGRAAS6g8HpH/BK39vTW/EJ8M2fwI8u4CB2mvPE+l29sqHJ3G4lulhAwpOS+MDPSv2g8VfFnU/ixHruiahrhtimmSX13q/2jU7u9vWaABJWFuJRDOPKSUuPLDJATPJII4Ix5t8Nfix8KvH2u+DfC3j/QdX0ix0lZNMvZNF8V3q/bt8ytBIftUkyQeVv3eY6lT5YG5CxYcH9pZpVqR9jGHLJ6NuXdbq26Xyv5HjTx3E8q1qMaPK3o253tfqkt0tezemm5+W3i3/AIJG/wDBQLwTAbnXfghYsgYqx0/x3ol5gh40ORb3r4+aUc+iSN92KQp1niH/AIIOf8FUvC+kXWvar+zZp7WtkyrcyWXxL8OXJRiyrt2w6gzFhuBZQMquWYBQSPu79qJ/gd4K+NerfD3wNpviyLTtD1a1sLG01DxHdtLrZjvI5W1C4YXMSwSSx7U8tI4hFGsYZmlRpB9SReLf2bviJoPhv4S6Vp8scltoiavrt3quuXZhuNYYqk88IVSyqr5hQrLEgJhaQoYU2931nH04P2rp3/xS1/8AJdP676XLEcVwS92i3/2+u1u9uve/lfT8Wtc/4Im/8FL/AA4zx6r+z5p4dLhYDFB8RfD8zmRnCBVWO/YsckE4BwnznCDdWsP+CCn/AAVYFuLqb9mjT4U8pJD9o+JfhyJlVtuNyvqAKkb0yCAV3pkDcM/qt4h8OeH9B1260uOTWBqdvezWs9reeIntobQwg3EiqGI34iSZVYqyyMgRFH3K+iPDOj/sHah8J38UePfB8uuNpSJBNFdapqWb54zbW0O1pZ0hndi8KMQBt2xhiuDjHAY/MK7qKtGCa1VpSba66OKvLsk9e5nSxnFWsa0KKbelnUenndR1v6J+R+bcoEegTapdi9t7YIVuYzcszGdQ7qTEZcgcxq2Vwrs4wMlTvabrdrfaZollrltDp0+6G+1XUdZeG5ilWR1BSSMpjY0aQjyf9axR03NuFcH8S5baw0o6UNUW4jtzcrKYw37544422F32hiCzAFSAd46EYroPEdgtzBpniCSIY8RWSSzy60iWzeY8nmNGhOG8tVcnCgqFIZCUANeXGHN5H1MVF7dijqHjTzNe8SeK/FMGlwa9JaebNDYXSG1zIGlRbaO0byotwK7U+UwqAsYjeJEHq/wS+NNz8I/BC+GdHvIIdX8Q6nLb/wBpPDbapJ56mCFoSVVpbqB0RgE+ZSZ5jAHUyRQ/OMfh661O+vdRgigt003ebVpZQkgXzU8tRznbwPmCEbiqZUyCvQvBcWr+JdKsrW+0jSlhs7e8FtqM2kWtzFc3MsUMkaySzRM0cjjcAFkQTKAoG9f3na0nSWv3GVOHtN9D2D4xfGjwf+0J+zKvwy0nxZrWsa14d1qYXGk3OrJa6bHaGIQxSWOBsug81rC5VHUqBIVhChinkes+OfAHw90rQPhuyz2ms6Taxw3Fxaa4J/36kzQyLdQzeSGVmj/eQFsblKgFPNk5a3+JvxL1TWbrxvYftAavoGl2j3UemCKZ45bQm1UG3tVQtsDF2hMmFVlkTdgk7s6Lw3rGo3Vx4j0jVdbury3fztRj1JnaR2+6wK2saByem0sXIDrt4JrbWKXO7qxrPCU4RtKWvax6947j+DvxH1vwZGYdT0Pw3Z+HyRf27adK8s3my2xup2EUMaSbIrPzFdsyFDNvjafzKpWtnJ4Mtre28NadeB7i+muVsNDSdtQ8u3cpHA8cqh7f5Jbibc0K7tgG7AzJw/irxvqgdfDFxJo/9lLLcxQtoNtDasJLa4CrP9nWBWjlQLdK0rLF5qxo2TIgumh07x54/wDH3hiHwvqfhKF5NUliitruwQwW5iA2CIIMbtqRmNpfvcy4LDGPOr315ZaPvscNWkrHqnwf+OXiTwP4i+I2sXfjWO3Gp+GdQ8MSaVot0VjuIbqJyrKZoXUxK1vvBi2SSPAdrKpZq4jTRoVj4xg8RaXdao13FHHNKYSPKH7mQPkGJyjZdMqvPyry2zNbnw7htkhvfAniK2gul1FZJbi5trfzmhuF2zGNA6lQX8japXcGK4+7wPO9W0zxd4RitDf3cKE20U7qssZk2ytIFeKPfukXCON+0AMACV3Ju5qcpVH7OLt2/r+vUyUJyvyM6rxt4fmvtRuPGtrfS3c7XDs0dzCGndG3sxbadpJUtwu7GDzjhe0/ZN+IkvhPWdE8YXHhxGsbLWrSV9L1iVZba8RSBMyKVyjFdxUDcNwk4kA2HE0n4rWOjeDLDw94lsbJNUtmns7m082OF4GhCm2dXVnkG6YuzKy7dySMNhCE4OhjXk1OO7GhSRojFNNtbe4VGIM1xJP5cksZGyIeYTyqkoQzYXBblWnRdOe/R7o1nKbpKLPQPj/8YNL13xCLga1rWoa/b3ckgs7L97DpkBldzjeFUqf3eIwxUFXyRu50fAXxv+Kum+BdT8P+A9egsdU8R6Y2n24uFikmhuMj7ixFw0u3ckUcqyRhyFaLALDz7T9S0/wmL3SbW+tpoopWWeWx1SK6SSURcFZYyylAzs6sCc8ryGNXJV8M3Xg7UtFWC1thI8c1xeTIHZYFbIjQYBRiT2LAjA25CEZykoQdNX1Vm3bVPe6fTy10HGjKslpseZa7DqfxC8Hahr+h3unvbaMs+o6kYZXWQI9zpdqEBBYFlmuYyQSuFYYAAwem8VvYnwh4K1aG5l0+IeHLmKG9kRFaIx3k0byB3/eMCxGApUHKlWKqK9p+Pn7MPwU/Za/Zi+IWp/Db4s6J4pv9ctLSCwspp7db2JG1fSZZCjxyt5wVLIZARcgZONpzx/ifw1Z/ET4ZeCYtAkhtW0nwzGbxLq7jgM80y+Y5jd/lDCSSbC71JRW4+XNeq50XRTg7q56rw86aat0POPh5p/gPUdZgtviXFcromk2uo6hdQ242S3MS2zyuDINjup8gbeSOm0jJ3fVf7OnxC/Yx1T4Zaprfjr9kHV9fsZZ1bRb3UPF+oaTLKjbi8gWKaVJkJYsHkjVsu2SwKhfDfiH8ONI1hdStdf1DUIDqFtawWEmpIwutyyKZbVSki5U2qSRNgABAT1CZ9t/Yi+MXhTUPHnhT4e/HbwrB4w+HVzcvp2peEPG8i3mm2ELkQRajGtwrpaOijzEnQI+2KSMOofNfG5tUlUzGkqeJnSd0tNYpO+ri2rt99bJPQ9/J8NSpYKTq01Pquj6aX3XofGvxK8JW/gzxnqup+BND1TW7Szh+1aVo1vHvlO69jRIScMZn2NHuKp8yxyHCZwfSv2dfj7YeCfD16PHn7CvxmTxDfy2Zm8Q6Pp81xZxxx3i3Fwf7O8qBf3sccaPicAtGHG0ZSvub9ur9jD9jP4V6K3x//Zj0y40fUbG9jh1nw/p0ga0l06SVVkZY0j3xtC7LL5m4KsSS7+ArJ5Baa3qB8Lf2Poup+Xqc915Fibe5a5VESSJZ5RhwWSPzZFJ3HAiB3FwcdWf57m3Dc6dKrBVU0vfbcb62ekU7W09TqwuCwWa/vY+7Z7b2+bLOrfCH4OzfD1PBvif4majeWJkURR6B8N9M0+IndvU77e9RjyzkE9QxU9SKz9d+AfhPxHoF/omj/HvRNHi8p7izl17T7222lyzTRi2sLCZdhjVQR52wNJNtTJ8w87458c6N8O/FWpXl94oMPhS0sF33usOm9ZdsXkJAVUPMWj8xpN24l2jCE/Oq+NfFf9sD9nWf4Xan4Q0z4l3Oq39zcQNDbalpl4yELLHKUYvEA0ZEeMDP3vy/Lcnz7jXGZqqao+0Upxi5KNWcIpvVv3kouKs7aXXVXPdx+SZBVwt6j5WldaxTfztqe43Xh/4N+EvC+leFh/YGp6jObdL7xLp0V/cHdbxsx/c3VvG1v5rlzviztKR92GK/xz8HeBbPV9B1X4TX66AnjDS1l1W+vbTMr29tebruZUgVmNxEX82SUTREx7gv3vk+StCu7D483H2PwN4dsGu5b5fLPnCyWfALFR5rIsanb+7jD7mI2DJOK7j4s614BhGjab4J8Wahd6aICLK21eKKBre3Ef7uNPIOZNq7Tvky/wAqjjHzftWCw+YxbeJ5dVayi1qtespad9N+tj43G4PLqFNujf5tNbvsluQW3w40TTdaste8L2Vrqtm5vEdtRhjleB1udqQzFtiS7Y3tmLKAv+kEfeytaHg6PxVpOvarcXz2Cwm3uJPEOnLqiWKC2nMa+W20NlZWlEaNtbDlGIYAxtF4C1ieTw5oWgR6U6XepeJ71xdnKLHDJZwqxXyyGPltHIGiAwQ67g6uEap4i8BeH0vbHw3pWgSi5066V9ShlY+ZqTzJbPHOxdyRjzEAYDbgGTJYuK6qkFKT59vxR5bwsHCVR2Ll/wCGH1vxVfaVb2C2+oRTC6to9Nuol2AuxRkiIOI2Ro9oAyoX7wLbau23inU1jTTtQ0BkvnIhnsHtFllZlyc7GByv8WcYHPPyk1teEdR8M23h7TL343eBG0qayV5b7TtTSCKdFKXC7jK5JuJVMN1bGMwyMnBDMJhHXf8A7R37Hniiw1XTvEXwnksljnhtI77Q5ovsU2k3IQxRuRcFQUeRJtuCSrHacnJHHPEYZxSq6JdWzGhNQbl0/M/QK8+H/hSS1xrHwj8OaneMDG1/ZadHDcSRk7jGHLBo0JC5AYZwBngMPKviX/wT0+EnxY1WTUvh1Nc+G9R82V7lWhmhtTcsqqZPKLLwCd2LcxDG5dxJDL9AmK1uNs1oxVsYYKeahlTU4h+5kV8HoRg19RVyvDVNrx9H+mx1fWaklaWp8DfHn9lbxx8Op7LXPEFzc30ena6kU85sbgYka0mUM7uhToMZWQk7gMdTXn/gi81611bV7HUdJsrFork2qSWEsoW8tjmSNpkL7WIEmxgAoJjBxwpr9HPito7+PfhvqngrWLCSVbi0byFiRGcSr8yMgdkUtuAxllB6FgCTX5tftP8AjFP2W5pYviLALPVNY09X0a0xl52G9FkC43bVILEMATtwQD0/OeJOHce8fH6qnJTSje2sbSu/TTr2uj6bKMdho4aSqNLlu7d9PxJPjz8fBqPw71+0trxXmGnzvAW2udwRijYcMpO4AjIIyOhpnwbmtF1GLW007yXksXjtrhVHmKsrRySKTkna3lgtyclRnOK+GfEvxHj1W9u11LWfEJ+2WohW5s7SN1QCTdtZG2blIMi43Lgvuy23Y3svgP8A4KEWWi/DK78EXvh7UYtUhSV9H1aW1ilZJlgaOBS+8NHHyMxgMqkDbj5t3tceZFjc5y6P1ZvnjfRJu97dnp6mPD2YYfBV5KqlaVtX0sS+P9bvf2k/jRqs1lqaDRdMkaO0XyzLHsc+UZTG6hS0oUtlgWUKowCsbr9H/sf+Ef2ZrTWB+zp8YfgT4P1fRNdnhi8N+IpvD0Ca14f1cqy2ghvY4TNNBPL5Vu8EzmKMyLMrQBJC3zb8C/EJufAviCHwzYXWk31zoS291e3Nzb3slxNsmMbxeZB/ocany1+Ri6ru+ZgQo7H4dfE+20T4R+HNb1bxnYWWpWF3u1xorO/OpSSRzBlcynfbxv8AMpjaJSo2ncoOFM4bC4rJVRo0JWhT5Y8vdaXb3u3r8ztrTwuYQqSkruV2n2tsvI9o8f8AwM8J/skfFa3v/h7pNpNoL6ukN/pLyGeGC5jlUxXELEkplgV3KQAWRlC4AHW/tB/snfDPx3/b/wAXvh7dWmmi406K6i0iKArZpcNdkyBIlBEMMpnj+SNUSIQEL99UX49+L37Y3jDx1G+m6fbhbeS9VLiW5KJJAUcMpVzcZcDCnzDEmTnCjBA9d/YV+Knxx/aX+L2mfs96VqfhG309LC2Ooxa9qvktq1nFJAJoLdgTvulUGYDco2wO5yqEV9TjVJYecoOytf0f/BPllB1VGLfvbeq0PZ9Z/Z98Eax4Gjk+G1izapYRMlpJa33mNcpOkkZUuY1DxiNw6k/JhdruSGDN+CXwUj0/xLrWs6zFBJciR49OsdWtln+wQCEFJULHYZgyDZhfkLKMb8Kv0bcfs9+Mb2NR4X8DSaXY2dobW/t5z580sm2SWLyVOfMR/Mtg0xxEpUnzEI45yy+BXjrQLOfxBFHO7adokly5jSGbzyMuIwzsxj2wxTShIiSGj5wSCfz+riK7hKD2f3mk8BXldPZ9TyGDwRYaR4y1Sz8P6Npl1ea2Lu2i0+8skZ3maaK8L78r5kxkhKAP8vQArjD9fb6lf+IPGCRatrlza3En+jajdaldrdz2s0IMe7zQXkCKZXijYfOiEpj5So1Yfg/B4st7/wCI9tqEE39l3l9bmNblHxI0iRean2eUngK7YwVOxmP7tZCrPh9qVkPEGvN4ouA1xd3Ut1NJPAEe482MlHxIzO8Zlhdt2CwBDKFYl14nTc4ckndnNDBJNxcvL9T6wjja1bctWYrmOVNjcHPfrTXkhlGUHOOhNV7hQV25Cn69q/Y99TAtNAHQq6h1PGD6VmeJfBnhnxZpc+i67plvc2d1GY7q0uoVlhmU/wALI2QwPoc05b6eA4DkrnGR1qRbtZ3AUn1yTjmk4jTseJ69+wR+yzfa6PEN98BtD8xNoRLSN4bf5QAMwRssWMeqcnrk1zXxZ/4J0fsY/FRS/iP4F6XYXS2xhgu9BDaeYs/xbYCsbsOxdW6YORxX0tFMq5cuTx0A71U1CzsL7KyoN3r3o1KR+dfxG/4JK618OIriX9lzxK17ZXFl/p2neItV2XMkqk48l44ljwVOMMUHqa+Vvjd8Cv2nvhFYXOj+Pfgnr8FsZU2XsNos1p5jruANxCzRlhgkBT1GDyK/ay78NtGu+zcNnouMYqlPZXlpHma2bZu2GTbxuxnGfXHNYSw9GdTnlHU3jiK0afInofz/AEXgP4k65er9o8JXzBjyXO0AfTHFfo//AMEwrz9i79n3+zfFnibwB4s07xw8MkF94k1aGK9soIpUQSeVGB+7B2HbiGSRQ7KZXViK+uX+EvwiE73I+GHh4SS7hNIdFg3Pu+9k7Oc989a0tC8KeE/CgceFvDmn6b5n3xYWaQ7vrsAzSr4eliKTpz28jOnVqU58yPRNI1zwZ4v8N2HivwV4vbUoZrcqlzrNrNA7AsVYhMLJjaIwH+U4i+U5IYJFazan4cuPDcptIftdpJb3d29kty8MbIsjSKrM6sfMCKQxKuc5AG8jk49WmTAYhh6E1NH4hEZwpI9cGvn6vDeHn8LaPRjmUmrTWgeFvgLrXgPw1baD4UvtP1W1fVZ2tbu602SKVo7lizQSk5AjVmBAcgOXfep8wofI9P8Ag74z8KeOL/xX4dFxqgtbu4tWnl1GJ0ktYfs5tjExdclWN0rlsDZFgqcssntKeNpvs5t3bfEZI5HhbDKWQqUYqeMjauPTaPSn6r4h8IeIrqCbxTp80xgvBdwywTuuyff5m7DHDHefmzweD1VWHn1eH61OXNDU0jXwlRrmVhF1NI03CQbQM5B4x9alk8QaNHEHvdTtogVzukmUfqTXzwn7Xn/BNS6laab9qL4IyFV2I9x430gkDJ4G6bkc1Pbftk/8E29PkV7P9qD4GwsDw0HjbR16dziUV9wmjxWe9xazoV6q/YdTt5vNJEXlTK27Azxg88U6SNlORx9K8gtf+CgH7A8SBF/bT+ECADjb8R9LGP8AyPT3/wCCg/7BhGF/ba+Eeff4kaX/APH6sR6yt1JBzOoZem70p8l1C0YEJ6j8a8fH/BQT9gxsq37a3wj+v/CyNL/+P1Vuf2+v2DlbfF+2v8JCc5wPiRpeP/R9LQauezC6mK8SHHoetRT3yyEI8ZO08Me1eMj/AIKFfsNQyYH7aPwmJx1HxF0zGP8Av/TR/wAFBf2FXOyT9s34TYI6/wDCxtM/+P1LQ07nr08NlM+AoBI9uKzrywlChoZDuBx17V5XJ+31+wwT8v7aXwm245B+Iumf/H6b/wAN/fsNEbR+2h8KB9fiLpn/AMfpDR6PcS30Cgyjiq76ipGGyuByQf8A69ecTft8/sMOCr/tl/CnI6H/AIWJph/9r1Quf25P2F5UP/GZPwpyf+qiab/8foDqennUXjm4OVIz8vJ/+vUv9pmEGN3HDEHkH8vWvHrv9t39iBWZ4P2zPhYePl/4uFpmR/5HqjL+3L+xgpIP7YfwtYDoP+Fg6af/AGtS6Be5/OHRRRTICiiigAooooAKKKKACiiigAooooAKKKKAP//Z",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [44,53,73,71] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [20,23,79,70] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr3f4HaBpx8LaHeap4M0CVLidmj1DV9LhkQqHlEnmNIMOdqnClsfKMAsVx4RX2p8DdL8F6X+yH4T8YWaWdxcDU5F8RW7yRySFRcTtGpiYbyh2IWwfLbYu4EqMedmNV0o00le8kvwZnUmqa5mesweD/AIL+J/CWt6vpX7Mnw+XUtFtLe4S91PRtPsRYRzXxSMSwbY472Vt0Plqsalh5u9XTZEeo0nwd+xzoX7X/AIaufi58CvA154OnsNatLqz0rwlDpsOs6zHo8gso0xbTC3S4vjbFJRCYEWbPlkRyE+P/ABN8daZqPiHXrTWdDtraBtbu3ltra22qJWmk3fNkyOnZd7N27CvXf2Nvhr+zx8b/AIZ+JND+IXhCaXxBreoyaVpOptIgTQQbBoYrqBWIaWUz3bOyOxX9zCyhXjG6MtyXEZnmPs1K0bystWtrLfUyeMw6m6lrL+tD339of4LfAP8AZ78A/Di2k/ZD+COsR+Nvh0dRi13S/hxpk2bi4kmkjky1vkHybi2CYJ4CsuSVI+avh14f/Zt8Y/s4eO/hnc/s6eCU1zSvHdlq+ka7D4QtGvZrb7HPDNY/aBasY4AlvJcbDIis2WIcqcdVpfw68YfBr466j+xjqviefWtDt5bLX/DmrG4a2iWeTR21GYwxhGjnglt41iKbyVmSMpIAZo3tftt2l38Cf2nPHXjv4W/Hi7034iX/AIsk1H4mxajqyWz2F1c3VhIkXkW+PtP+kXN3IXQPFFGiKxzhpd8HgMVS9tR5ryjpvro9Ou+mtvM65OhVk056PZlNfg98A9J0fVdD+IH7KXw50qLTNOvdQh3aRBLcSNCxj2xTWsEsjQu4EMUkuYmYlvOJBauzv/2ff+CffwT0e6uviX8JPBs0VuscFzeyeFIZxLI7pIEVow6OuQoSeHYs0Lq+QsjrXnvw6+K58d+DvHmtaFoivZaz8HLvw/ctp2p2trNpctlrFnrZjiszN5lxbs0KRF8DLXSbQTEUl47xbovjX423Op/swfCfw0virXtEjgvZdTlvJVstXtri40uCC7sLZrW0aJJJZxMHnVQLS5QsqmAyv2ZdhM0wmJg170aib5d/nHdq3brfY4fYxi9Zbbn1x+zt8IPhP8H/ABBZeFPCH7B3wm+J6atdRi2s/F3wW0m8uBIZWRbX54GlmDKyMJI2jctvUqVCEfd37a37N/8AwTx+Dv7NXjjXk/4Jd/suOun2y6TfeI9L8NaBYz6TcXMbQs7w/ZGaC6jlIKRRzyHClzIpXYfy7/Y0/bl+KHiD9qf4ReF/EPj670lvD3j+x07xJc2Vla6g16zSRm3RROQxjc2zoXjdfLRwQ4Plg/dH/Bbz9trwZ+2t+ytpn7JX7NfhaHxXq3i/w3oPiy48Sp4htYtK0Kya5lAxLOyPLPut5Y3TyomRGbcd4MVehOrTxOYrDQivaJJuPXr0/wC3ZW72dtjpio06bcn+J/MnRRRXAWFFFFABX2d+xx+xn+1f8dvhRoOufCr4Q+Jta0K7meEa3o1k11p1pI10Y2ju7hD5NiwJV2Fw8ZWJhK2IyHPxjX7D/wDBN/UtFX9jz9nyGLxX4lF4nxCsC+nXGhSy6fCE124kaW3llgMYn8oyAFJM5YgAMCa5cXNQpp2vqg+rU8T7s3a2uh5z4J/4Jjft0ftmfEDxlrv7PHwgPiCGz1E3N1/xOLCxVIpLq8gi2i5uI/MO+wuVwoJHlcgBlLZnxR/ZL/aZ/YsTwT4e+MvgTUPDcvxO01NT0i4n0W4hnUAXFnLbSC5gjkgurYXTu0a/Mhmt5lYkwuP1c+G37QTfs/eCvG9lr2tXHjbStbWXVzoPxJgvdTtNMu4zNcF4PMG0Es7bics7JG2cj5vgn9s34SeO/jtZ/syfDvwrqtraRX37N9hpXh9razZnttZtdEOp+XI2VjQ3Ykhg85mZgLYt8qx/N1ZZmccuxka9NJtX32u112McXkmGr4Z041Jp36JLRNdm7XV77203vpynwh/ZR/aw+JPwZtv2hvDnhHX5NMs/B8csky6HqW5/Ddi1vZzzRXAcR3D25+yusW1iUikciRY/m858Y/tKeD9V+L+peMPtMOs6ZBqkkOmap4y0iKbV9SsFjljjfUG8xjLcyKY5JWR9ocOACpGPZvgN8Y5rb9jfx54s8MeJvtlxYfs1+IdGutNntIIV0ue98Z6Ct5ahJEKpvF0ZVCnK+cBH5b4A8U+Pn7Msvh/9mX4ZfEjSdPXQfFV9o+satLAl3BJPquy90k2d0skTM8W+31ERrAxUo9m7bEMjO/rZRmmCwuPrYjF0lN1r9bJbvRdd+py47KK9WhCng68ouFtWlduy31dtb67vR9bLE1v9vvwf4P8AiZ4a8LeA/hzqPhe00PT7Oxm13w344uLG7W4lWOTUbqKQBhCkt9vuRDlokIVAWREYe2fBPx58KPgD4dv/AAj4K+I/hvXr9fFtyo166nsr1mgtNSis7TM6TR/IfIs5VywQRbpgoiDvXn+ofsjfDr/hgrxX4+vPhC8fjvRvFOl6zLd3NrPb3VjofMjSfZ7i2AkR7e4kfy0ZUeK1E584Ioi8+/at+Ffhb9nv9pT4heBfDnxM0+30nSFXVrCa2sABqZu0tpYLK2hi+QBTdJliyKsMEjqGYJE+mV47B/2rTlVk1TpppK19LK1npqtFfquZWvZqc0weaUsLzwtKc9XfzbT/ACZ638JPjGPhH8ZPEHxo8H+IvDOlaC9nNINMkhstHur2ykiguZEhgUwSTCO4iFtHu2iMoMGUPKrU/Bf7bf8AwxFr8fxg8EeCdN0vU9YubhNG8Owy22p28VgiyPbTwtPFPB5LvdzqWiYhZICVXOceLftjfs2L8H/Evhbw744+KX2rUNR8ARa5dRLoc0R0ieRbpzpTb8CZ1niKGZCUxJuHAxVn9qv9mHWfgp8GfhvrWseFLg2+o+GdPn/t/wC3NPBK2pxSalb2yZRFjkiik+eMFtrswLFgwXnxCwiz2eMwzi7ttPktJp20nK/vW15fdVk2urvGHw+OeFft0k+VXs+3ax8RUUUV5p6oUUUUAFfvV/wSe/bE/Yw+En/BLf4ffD/4kfCjWrvxU2g6qp1ycp9nSdtWvyjxRC6iMyKpjzkA7/MXOBg/grX2n+y94k1DT/2fvDtvBcHZGk5CmBGx/pMp4yOmetaU8HTxsvZz23/rfuH1j6s+Y/VT4vftefsjeNvhZd276X46votTsL3So7TTdet7LyS0SgukETzmLAlQo8iOhKsAG8tgK19+1z8C7v4J/Be+8G+BNPhvvhx4307S9N8O6z4q/wCJtc2kOhXOnfa5lNgsLRGK5GZenmLnZgFR8feFfit+zV4q8my8VfCC70q5stMhF3qmpeJ7lU1GZTEkqxpY2T+WzlppQpVUVcruZgBJ538TfFXgnU9dtrv4b+E7zRYbS1a2uHn1aS4F5N5sn7+IvGrxRtGY18tsn5CTjdtHXT4UwcP493FPpNX8tn+hxS4irVZv2MbPu4u34n0p8Utf+H3jn9ofx5aeGfgGvgTQ/jN8NdV0vxLb3V4Lm2t9YjMFza6jE0EdvFAj6jFpU10Vjdj9lLAFpZEk+n9f/wCCgf8AwTQvvjpoeqTfsGanceGvDPhK60HR9O1/S9Iitrn7RNpc0bSwSuRA1u2nbIh+8+SXcDGcpX5X2ev6/DqSarBf3CziNoxNBqE8T7GKsUJSRSwJRCQTg7B6Val8VeIJpmnfT45Hdy0rTSTSFie5LSEnnPenUyKhUcE18Ktu+vrfoejDNYQovlvzyb5r25UtOXlSSd07ttu2qstNf1F+K37ZH7MfxS+MEnxnsv2brS40VvhU/gv/AIQLWPEGnPpL26TSyRzeXBKr7ljnngUKdqpM21c5J+Ufid+zv4T1/wDY3u/hRq3wqXU/iJq3hq0mm+IljDp813cXK29lLa20lxu81LeP7JbxyR7FZWM+7LsWr5u0/wAS67ZusqW1qhU7sNaowz9GBBrobf43eN7F1mS408SIQYmfS4hgjOPuBT+RBqaWTOhJ+zSt6nTLOFicNGlWjeScUpfyxV9Lebd299D1rxt4O1/9rPwF4I8Q6v4NVdR174P6ha69d3sdkp1p/wCyhq9u9tKTmCVbqw3xpGEZ/OaIkI7o/rP/AAUC0/4hfGL4deKvAvwZ+D4u/wCzfEkV/wCE9ffxBbxsn2O8WWK6RXZHjLxI4Cna6rLg8givnFfiX8d/FE03i7SLEaLb3Gn21tcXdlLLZWckUSRIo82aUlgTGjbTI3OMDAAGefEeqeH3XXrTx3JqWo206vDaaZDJNCCpGA32h0R+/wAuxlIHfOK66WV1562Sb8znr4vL6NeUISlKmm1zcqu433Ub7ta8t99Ln5e0UUV4xkFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/9k=",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP0N03/gln+yPaWg8Q+KvF/xCXTrO4sl1JbXV7JWbzVuTJGkjWRVHxBlWYMME8Ecjq/BX/BLv/gmV4ytbm3g8d/GGC/tYnlmhuPEOmqEVWWPaAulsHZmyw2sQFYKeRlult77xNpPgDxj4akvFtJZPFvh23u4JZEkEcD2GsOc7QV3cg4ILK2BkFSRHoeg6R4d1jSNSvtZkXTbqSS51OZ55M+XGHcBDIhDk4UlgCGB+8uGA8SriXSw3tVUvdXVtfu9TFVJSex5/qH/AATl/wCCbs7LY6V4s+MFhctKFZtW8QaU0aYKK/MdhyMiQq2QDvRSBsLPz3xw/wCCW/7OHw++Hlt458IeOvHU0JmSOSfUVg2XXmRRNGY1W2UxgEyZLMyt91WLKd3rXhXwr4O+LPx98HfCvRvG9wkHxA8UW2i2txeQK7aa8skMKyMCyJs8yTjLZCDBJK7m+h/2oP2V7DwpBrXhHwv438M3994c1KaC1i0DUWurS6SJyVuVbeyxyr8wKZ4AMbAMo2ziMZiFGjWu0peVvvQKFX2Unf8AE/O3wT+w/wDsn6hqGm2Hjbxh48tUkuVTVLnT7mzk8uJt2ZURoAQUG1tjH59rDcmcj1X4Vf8ABKD9l34pW2jJomkfFS5EzO+vavb+LtMFnYxJNAHLl9N2wqsc8QaSSTAeZcgbCG+r/wBlr4I+AviQLbxR8V4NK1u9+yvBNb6lalGmlWNfJIEIVp3wsMS+aZAWWRgdkny+FfFDxnpPwt/aC1HwDBei30uwv7W3vInVokMckMZaQpA0e47ZFPqwA3EknPBUxmLxlaVDDNqS1vfT7tO/cwg8RGzlrc4v4p/8EbP2d9N0bU/Enwo+IHxBuJdNuZGvPCevwW8Op2VlHCZZLp8W43xgDdkxxnZuYArG7VzPwf8A+CT3wY+IE80ut+IvGcFv5YFr5F9aoXc9yWtiNoHbGTngjFfY37Rfgv43/s8fFzWf2Y/jDpGkalJpV1p9nrOpWWp3XkvBLFbXsFtKUljQERupG9GQSecQ0m0vXN638V/h7B4rvvC/grxJrH9naddNHZxpFbOCFOzPnQKQyls4cSMpBB3HIJ+g4cx03Rlh8ck5q9pO2ysrNq2vXXX1M60qyqXTdjyfVf8Aghb+z1FpDSWfxN8cwXTwl7d55rORMhSQCv2dCVY7RuDfKMnDcKcLwv8A8Ec/2aC3iDw14p8U/Ee+1XS9T0u3t9Y8PTwnSIo5oL6SYzyzaeCrymGFrdDsZkjud67lAH074BW8+Jmm3mpalo+qz/YE80R3g3FiF3EJswVfaV4PzZ4HINa37DvwE+Iv/BQH4aeJfjp+zrriWtx4Q8QwW3iPwDPrsYuLmNbS5Npfq0zBS2J54wJUXASbZK5LovvxeDqRbiv+HNoTqTmmj8I6KKK8w6wooooA/YH9nXxv49+P3xfs/gT8QNMs/wDhFNLM961tf+HTax3378gzzC1lxFKq3AQPbyRI4RXcCVpC2z/wUX034a+DPH6yfBDUNJPg3U7LT5tN03RnSW1spRYKLpED7ndXuTcO3OwGYnMhc7OY+Ecur+Dvgb4j8fs9/eafouj2OoalqdzYkR6JLbarY2iw29wplDQzfbCJIwiiSSO3fJ8go3Oft0/HHT/GHiSw0vwt4tstc0g6dbXUGp2dxbSiVtjqqgQNugVVby/InBnUxhnZy+4/HTxc8XVwmEw9GKpRu5tK210lfbs+9+tjzG3ShzHmOiS/FSzvtG+LXw18ELq9t4K8Uaf5koTeDcyytJa28kSMJHEjQzjcuCcBC4zGte26J4jtPj/8db34V/AfwPf+HtZ1W/u9P0PwH4uvIbZoL6C33NYLNsiVZTcJcW8MDxxgERIW3GvTP+CWXxJ+H/w4/ZzvPHHhnwRrb+INY8YtHr9/aXBDTjT5RJbrGolXEYS4YYAyzvKHUrjPU/tVfs6/Ce8+Fdz8RP2XvCGr2/xOuIp/iPNZWsskmuXusSeI7S3EEKxDz4rdrfVbyYxwSxky2MW1CY2YfomJyGjHJ6eJjr3XRb7fh+J2YbGYealQnHpo+t9Onpc+SfhR+2D4t8EahPHZ2lupigjjt47smUQsrA52PlWOQeoyD0x0rlPiDc6xr+oSavoGm6hqMKS/bdTczsxWBHgh+eQg7AfMijVyMbio7gVb/bX+Ffhj4N/E3w34l8GadaaTpPxE8Ead4y07w5Z/ImgxaghdtPCElo0hmSaOIMSz2y28pOZdq9x/wTV8WeBbH45alJ8RLif+zZ/Auq2OpQX9sl1bXEU8dkfLEToQ5KRXTMr7lZMDYcMa8rLsvw9TFJQ91y0vYwoS9nWbq3ajqteulj0v4GeH/jH+3p+0tb+PYfAyaDquheJ7DWNZ1DULRjpera5LaR3OnwX8rOgsxqF6zWsUpcl2vIj+8kJLZv7d1j4ksP2q/iD8RriOOSy1nxpeyWsdoir9hhlmke2t7i3Ds+nzeSo/0S42TIEZWUFGx678S/DXwQi8B/Ff4kafDPND41g0Ya3p0ltMLOyTT4GtdPS0jjEAhk89bKZ1IlBFusQVVc54T9r+y+A/wu+IfivWb39sWDxbpMujeGPDcuiaRplrPLrlhpmnQaXBr1jO8s6i8imskmaE+S09tNexLeQLckHuxmWPLp8i95br792dNSrQxtLmpqz6+p5RYftA+KPgh4bi8W6naanJpV+ZhY2wLpFdSoCjOjgfejI564wBjkVz3g74zfHH9kf4e3/gvxD8LdW8JeHvFXxL/tFby31Wa0vLr+xIru0l0tw4eK4tY5NVIkDwkSOjIWbYVT374B/BP/hNfhR4N1D446zq9j4f8K+PrmbQ49SiuYrXxBDe2KXdo+kmcESEtp8s7xNFGkkbocuzsgs/tVeHvi38ebHxJ4k8W6noeraTpfhjxDLotl4i8PSW7aPBd3kkssgaOKPzZRDDAwMiGSF4kf8AfN++mMkngc4wFerh5uUqcuR2d0pKMZW+6SenfXVMxVWGDrxi/ev1PxPooorjOsKKKKAP7RPjF/wTm/ZF8QWOq/AG78BT2+lfErRLmXXYtNu5IBNLZX1hextlHVo1M6l2CEb2eQn5nLV8+eL/APg2a/YBksbvxKninxvZwQpJcixfWo2t4woLBGZo/M2ADH3w23+LPNZnj/8A4KU+Efil470vUpfioLzS9J0jUV1RrLTbuLYk8lqiKwjQPIGKlSgyMZ3DFdB4g/b30zx14Zn0eWfxHrFjLbyQyRWvhLVHa4V0KmIyeUGYlTjLNxnqOteKstr0n+4pcse12tbt32OhLDtXm0/uZ+SP7U/g6+/YM/aR8X/syWmg+LRpmh+K76XQE16WW0jutKfUNOlilhUj50eLT7uDzwSJEvncBcFWyvCX7cVtpHhLX/h98UrNNW8O61oM9np+hx+ZNHa3C3l9f2a/6wMIxdXkUUpYsXtLcRbTIRKPWv8Agt9q83x28XeEf2kpdO8Y6Td2kJ8Pap/wkOhzW8F1FunuYDHI7cuC9wCpzlSmMBCD80fBD4aftBfFX4/fCq9+GFtNbtZlrrTNV0u0jheKDTrlJnkDRqq+ajgFZZmG52UM+cCv0SOYYDEcJyy7ExaqTi43UpK3ndNNO3azPj62AzV508RTn+6T2SWqta2x+u8P/Bun+xj8arLR/FP7QP7UHjU+L9F8K6Po/ia08M+INMksI7iy0y3tfIiDWJlSONYlRNxDsqqzgsWLfLn/AAUZ/Yb+BP8AwTF0H4c2nwR+J3irxEmqeLJNQu7PxNYQwy2Si1+yXJW4itYZJDJbzy+QCwWOS2DANulz9Z+Gf22P22Ne0oeJ/DXg+01PT9UkMqahaahbWsV46t5TSZTUpRJjy/LyDx5WO2B8Z/8ABVT4SfFH9o3xp4N+IEnhufV/Huq+IbDQrOW08Qefdak8sMtwunC0YfIlvKZYo5VIEgLMxlMiOPk8kf1LM6dTGT5oxfvJO34dNT38xoVauBn9V0m1o2v6ufJHxc+PHxY1L4NeIPC03jK8JbQ7aTUoZYkKvHDLFNvIZgY98ohdSAcAAA85biv2Fvjtq0/xh06PxT4msbI2eqWWoLqM2hx3EqRWtybshSo3586ODJCsfLMjMyxxsrdb8SvgV8RvE37LGjfHDwLo1rf6F4l8b3fgS+m0+7VrpdVWK2u4LSSLhj5yF2jI3ZNvJnblC/O+Pf2Rbn9i39qu2+A3xT8WWVjb6j4ci8Q6J4ssp5xPvFrcJGiSRxeZEsl0k0RTYM/uy7YXePoM/wAwwWeVrQhyRlHls3fTb57nl5XluOy6hKFWfO73vtv0sff/AO1z+0Z8avC/iq08XeIvA9jq2haXpV2ZtB1e2keG2lWW2it9UQNGiiSG6a3w6kyIs8sauY7hsfLPhP8AbN+Ing7WLXXdP1nSZdQttR00l723jmgvdOgtfJutPuoJMiaO6lVZ5CSNp3ogVSoT2n4m/Dv4A/GD9j/4d/Ce5/aCn1X4teHV0eJNXGoONOWXW7mwt5dNu5JY18x7aPy5SVb926XIPmAEx7Xx9/4Ntv2ubD4163ovwcEuseGbGy1C40LXWnjK3ckXnNZ2U0e+N1lkCwI8oXy0eVx8ypuOHB2Z5LwzllTDYjD04KUmrU06dNJaaQu0m9W2lrfqHEHDmefWKboVkouCkrJO6k9+6a2a6WPw7oooryD3QooooA/qI0n4H/tW/ErRNW8d+HdHvLa10oSpfvFMtjNGD99EVZI2B+XnA/g7ECvJr3UfGN0Rav8AG/xjaLk/u7PxvqMBbPHVLgHPuK9m8TftF/Ff/iYQ6d4zXS7PUpFa40/Qr9I0O1QoA2OXA45GcHJ4rh4fE2m22291O70a7yQQuoaouBg5x8kqsPz712zjQWkLmtP2rV3/AEz4h/4KY6x8QdetPBHgaT4z+MvE2j3Op3T3Gha545v9ShS6jjjjt3jguZ5FRws0yhgAcSEdDXmn7Hn7PnxS17xzpmkfEvwD4q8LR6p4dvbe08QyeHrsCCFiwa1ZthW38wmVsyBQy5AyZBu+mf2oNa0z44ftq/Cb4dG30t9M8NwXfiHU30+WP7NDGChiR5GYllaa1RCGY/64AHnFfQF3f6JLbiVde0+GFs5B1dEU9ehLY/yahJLoDp3fvM8e+D37M8viT4O+HbT9pTwddnW9Htn0yCGz8TalDHDbQSMIygtblIQGDeYQoUlpCzjczE3Pi7+xV8Er7wjeXvwu1C/0TxZawC98K67H4pvfNsdShO+B/mu5wg3ooLhS4VmKbWCtXW3nxH+EsTvZJ450VJk3ZMmvQcY69SB1qjF8XPhAkslq3iaW+ljhMp/smOW4UgZG0GGGQE8HjPTnpzVVJTqycuXfsjOGHo0oqLf4nx/+xZ8avhBofjeL9mv40eC5bzSvi1qFhZeKNLuC1nJo3ijTdQb7HqazFR9nJWcxToiszp5oLBpsp9FfFD9gT9j34neOfDvj6bw/rlpeaDbyW17Y2urztDqcDEsiSyTSySLscsR5ezPmNknC4u+Pf2WfgD8Sv2Zta/a1fSbazgtvGKaVaRQsltO9xcv5txcOZdpdjHER5YAYmUPnbEVbag/aF1DUfC1j/a3gLW9UsLMNa6VdaFZRM6RxRRb0lbG58bkYD5tpdjxurhhaU1bZ7H2GZ8M18uwU61R2dNRc49Y8yja/k29O1rPU+Vv+CiGk6L8EfDnjvwbofwwhPhH4o6fpd5p919jhc6P4isL5Gby5QgeGJ7FroeUWIZ53K4VCF/Q34Z/tZfFrxh8J/Dfi3TvHmrWQ8QeF9P1K6trLXLtYrea4tY5ZYkAkUFUdmQEryF5r5H+Pev8Ai39ob4PeIvhxpnwHu5DdWjrZXGs36WrxXCfMkipIq7iMdmA5wTjg+2/GXwF8U/2a9Wj+Dvwx+HUV5oXhzRrK10LU77xJAz3dslsgSR4vkcMQCCOOQRW/1WXteV63726HzKdRYf28U+Ta9nbva/ldfefzvUUUVkcgUUUUAfr7r/xJm1yH7c3gjUZFWQrcTPNbXKh8dA01hJt4B/iOa6XwR/wUw/bu+CHgay+FXwz8U2Fr4O0mWZ7K207VbKO98uSR5pVEkTq+4tJIB8vcAKeBX5A3Hxl+L93J5t38VvEkrf3pNduGP5l6I/jJ8XoUEUPxV8SIo6KuuXAA/wDH69yjmmFpSbdJS8nqebiMFWxFPl9o16H7X+Nf24f+CjfhX4TeFf2gfB9z4km8JwanHLoep6l4hgurm71cZa6km0+K8kuLa3V7dwiXCTI+15Cym5ZK8s1f47eM/wBpTxdL8Wvjh4dl1rxPqZR9V/s60s4jIY0WGLOzEgURRxg5IGR1HGPyssvj78dtNIOnfGrxbblWLKYfEl0mCep4kp8/7Qnx8urgXl18cPGEko6SyeJbot+Zkz2FKea0Jx5fYpemj9DKjlcqNTnVRvyex+oY+IHiez1A6ZH4K1OK3SQolrca15T7M4GBceep+UEcAe+ayPEl7qWr6wttocT6XN8qm3t7SzZw5OeXgtoBkk/3fQ59PzVf9or9oKSZLiT46+Mmkj/1bt4nuyV+h8zio7b9oD482V19us/jb4uhmJyZovEl0rZ9ciTNYvMKfSJ3xozj1P098FeIfFmlTR+HNV8T+N9Q0xJp5rnQYdUU2ZmkVVab7K0ckcZKxRbn4LeUmSQAB1vhv4jSWviKfT7fTtagtZA7Jp1s8KyB+PmOyGNSOFBGB069q/JLUfjz8ctYl87VvjN4run/AL9z4iuXP5s5qyv7SP7RCxrEvx78aBFGFUeKbvA+g8yuZ16HSB6U8djavN7SrKXNa923e217vW3Q/aT4XfHGD4f/ABP0nxr4m+H+pa9p1k4km0a+1GSEXJCnayP9p2oVfYTujkBGQApIde1+M/7Xfwq+NGvWXivxR8I7mK4sNLFhbQWOqRALGJZpgN5s5pM7pmAw3AAA6c/hVb/tN/tJWkwubX9oPxxFIpyJI/Fl4rD8RJU4/aw/alHT9pXx/wD+Flff/Ha5pKi6nOlqaSzHGTwkcLKb9nFtqPRN7u3fzOAoooqDhCiiigAooooAKKKKACiiigAooooAKKKKAP/Z",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [57,33,71,73] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [47,27,67,87] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD6cvf2UtL8SeGdE1M3LT3qxlrhRJhXYgcfNjgY79a9e+CPwD8PfC2yn12+u5ftk6nzE84+XAB2HOP8OK2vBFm+hWUdndPG2EJyDjGSTgZ+v6VjeP8A4izWwhjnt/sto8wEzSMRuG4dOx4r5NSuezZs6LS/2ffhT458VJ4l1Dw8t3cQKFV73DrjGOB26D07V1+q/BDwpDo39m6fodkkKFf3KxBR/Kqmk3d1LNZ63oGqKbAoMwquAwx9OMZHHtXTW2pXNxOsflyAOpJfJwKEyXc5zQfDtroNo2n6bB5QDfMoYkdMevtWlY2R+0q065Geoq3rtzDbOjyBSN3UY5qhba0NUZ0tpGiWD7w7nvxg+1VfQm2hymsfEXRY/iJL4DikmS8VQyjy/kbPYH/GvK/2ufiII7K08B6RqoinvJwt6UXdgEYwcHjrX0Bcad4avli1W7so/tSnatw6jeME9814v8dfgZpt14wl8UaoBdQ3Cg26RKwKMPUjipk2ty4anA/DD4N+MdN8LHWfE3iIQwWu6SwhsmxvjA/j98ivnvxV8Zf2w/D/AMS7zxB4Lt49d0GNXAsbiUnkH0HQ8A8A96+0vhbr+mt4eksNXhNtbWjCLzJwApGOTz715F+0T+z/AK1p0F78QfhFq6xh13yWEr/IQRyykcdhSUedmilys8j+BX/BQH4z6t40/su5+Hq6dehhFdr5jCOMN688kY6f1r6y8Ujxr8R9KTTZbyH7PcW+6aSAnaxYe/Xrn3r5Q+EnwR+OHiHR9Rub/wAJW9lbalMsj6hOwVn2scKMc9e3oa+lPh98ddF+EGnx6J4u1KJmW2CxoGAxjGTz75pypW6jdRPoeeeIP2ffG3h67GjQySrZzRku7rgDjnI4q58J/gJJ4cS4tx4ciVGcsL6QfeOQRgnnr/Pv1r0rS/2zvhb48um0uzt55plIWRkQOqA8jJFd4ba017ShaJIYreUCQMgx3yOtSocpDnpqcR8O/hl8QNKE0Wp+JxqMa7ShZMEdeBzVn4r/AAV8Ra7faddWVol0U5uHknKpGuckADOT+XaulktNW1LT1j0rV2s183cXj6uuTwfauh1XxHp2mWkNve3+1mTaGYH5jgD0p6dBczRzFp8Z/hN4VtYvD19q8az26hRaxIQSR7Y4J610vhv4zeENdnhsbKVkWYYi3jr6e9eV6/8ABXSPFvjmDxLFL5OEAmRU4Yjo3161S+Jvw81nS9Hj07wdqIt7ppkEdw/16deKafMTY96vV00uZpb9Am0kkkcVkjxR4VsrWfU11RHjtl3SlWyQMVw9tL4k8GeB401R/tU0agTBDkyZz09+R6/jWl4F+H3w716zXxJFZXcG/Lz2zuUVgQeGQ57Z4qrWRNkOh8RWfxhuxH4O1hxaQyAzzQr8ykA4HOME8+tdJ4m1ODw54enu9bUNDZws254s5AHYc89Pzq/4d8O+F/C8BTwnoVvaxSnL+REF3H1PrWd408WaGkZ0rVLYszKcAQ5XHTnn/OKVrjvroefa1a+HvE/hBI72Zoba7VZt65GOBjPGe/tWNott/wAJjqsWlTZk0TTAVV8cSsOmTwcHHbjj3rqFl8KeOl/svSNYjhCx4mgCfNjjoM8Yqfwf4MsvDd3JoUbSeU43qHYEnp3A+tKL5S3Y4zxP8Sm8FeM9P8I6ZpkIsXG3JBxj2wP896s+N/2cvhp8S7qPWvFGlzwyugOFncBhgV1/ib4Xafql0uqiyVmTAUu3T9PrW1e6eUggGqSBTGgUKnfj2HtQpXFoeS+HfhD8NfhNe/2P4M8Cky3GGkkxvB+pOemD0/xr1bwvb3DaRELjTzGgTCIBjA7CrqabYw2/m4GP4s81ynjD9oTwL8NddtvDuvvtEw/1vRI8nA3E9OcfnVXvuS9UV/GFgfCfh5fGsV1JbDyt9wJZSAqBc454HQda8Y8Uf8FDfhxeatH4M0zwdcXU6zbFuJEBUOOMg8enX9a+g7DRNU+I+ni38YaAYdPlQGNCciQdMEHtgZ6Cpbf9lb4Mh/tI8AaeJAPkkFmmR+QqF5mnu9Tz7R/jZqlx4WfxD/YDz3BiPkwxAZbPQY9efWvC/wBrb9sL4ufCr4dXPiG1+Ft5NdOEa0dbZ5YLMsyhXuHUAohLbRyCxO0EZyPqq9+G0ejSpp2laWfsqAFZCAoXvjnJxxXxF+0TonjL9o/xjDongrTdR102d7dWdz4f07UYYg18kwRHcJATLFCpBdtxYRyEheCzOGrsVTipSPlb4x/G/wDaY+Imlvq2s/tAePbWW9gA1LT9Oke0tIE2/OFjikAZdvB3AE5OTya8t+EPx7/aw+BGuWmrfBr9p/xBaTI0hntNb1F57S7Uu20yWzloHIT5chSwxwc19ceMf2Q/2nPj74Z8R/GbXvCejeFdO8q5jGmLfiFprdGMQNvJHCUkyDgFtu7G7GCK+GPjX8PfEPw7uE0XVHkXT/s5azurkKJZgCVaUFTtODxuUc4J71vTnTU+RnsRwtKrSUoo/aX/AIJuft83f7X3wq1m88XeD10bxN4Y1L7Fri2O86ZcysodZLWV93BGcxFmdOCSQysfafiB8ZPh/wDDvw5c694omiknhsjc/wBnQTRmeYDgBVJGckgAnAyetfgT+w7+2DoP7LHi/VP7a08eIbbWLGWC60mWTEbuGDxzrncFlXawWTBKrLIOjmvbbn9u3SPib4l07SLD4dRYiSSPVJ9M8RyI9pH5u6EBpBsjZzjzHkLqqKx252sFXo1VrTR5lShThWtJ6H6n/sz/ALQXwE/ac8L3nxD+G0FuuraTfTaZ4i0nOZ9LvI5GVoWPAdTjcjgAMrA4ByB6ZrOqWukRRaxLbq0iOFDHGeSe5r5L/Yp+MX7Mvh28h0r4BfDHU9J07x94gufO1m9aW4m1HW7a1R5BMyCSKNjbRCQjfGN+8xxuhac/Z2m2w1LTyNQhAaTI2kZxzwefpXPaaS5tzKpyRm+TYzDq3ivV4QsGhRxxlQVYSgFvrn/CnXWja9rqG48QQQRmJPkEYJz3ycGremabd6LfXGd7wuf3ZJ+7zn+taSSTPA6KuVYHcT9Kd9NTM5LSL+1m0ia2WRGdWIBLAnkA15b8a/hFpvi+0m1G8so55N4271Y9+mQeO1epappEOj36ajYxokJAUqzcbue5Oe/6VW1bZdWBd2GWIIUHrzTbdh27Gn4H8dyeMYVFjbkQRIp3sMbgcjpnjpXSi/vrdykkbkN9wKma8U0a+8VfDLVGudI23VpvCyWJJwVzn5epB5PT1r03T/jZ8P8AUrKOad5baUKBJHLbMSpx04FcdHG0asfedn5nr4vI8dh5+5ByT7K/32NbUhdyWO6VBgEmT6V+Xvx9vfHP7CP7VqePvDli39j3cF+Y0lumsUvHnuEka4DQLhnU4HzyE8kFBkE/o7r/AMdPAenx3Mckl1NCsOUmhs2KscdACAc+1fnj/wAFbf21vhx4j8BxfCzQfCOtQ6raa0rzXOqaPaNa3NqY3WRULu7xvlo2WQIHXawBG6tva0ZOykmycHluYKp71GVvQn8Y/wDBWTw/rXwb1G01HR57KWOB4bWwuZYJPMUodxVY9wI3cjnLAgsFORX5r/Fi707x9+yx4i/az8afF6z1Pxa3xMh8O6X4WnuIxdW9g9vPdS3rQI4Ma7lihT5fL5lXG4KV539qu/8AgT4z1W3uv2eLLxfoqIgN5D4hmtZd8+4lpEMO0BT2QqSP7xrkPDekeJrjT7W0s7uGRpLaWHUPMtIl86SVhllIGV+VUUkY3beepz34SjGm+eTud9fCVqK5Yq3e50P7JFoPFeuXEM2nQ3MerTRWF1AIy886SSKypAisGZt8a5VSC3yrnJFfQH/Cm/A/wz03R9WHizUbXwx4lsZ77StVttKEjypDcTwSmS1edRFLiHfsEh4ZBnBDV5H8NvBVppM73Gu6sbKfyD9lisLfDNOoURZZCoXOMFuSM5x3Hueg63r9v4Hs7zxToi22naLo1xaWVjp+lo4nRkctJJtkVvMll2gsSeGLdF2N3Ks09VZHk4jAyrVlCnK769l6s2/2QvFlpa+NfD/7LfxR85tD8W+Kv7Y8OeJNPit1l07V4JPLSW1a5ililLvbfZHjeIhxKwBwQH/Yf4KaB478A+HVtb34g+IvFjyuzvF4uvLZrrO92xDJFBCqkh9gjf8AdgQxKpiBdj+N/wCyTb6N8V/Hnw7n8Pi3/wCEj0/x+t7qPkXirHHBCLW6K+W5EouWdbh2kVRCwKbXeQTBP1x0TW/HNoI57ictCrkzR3MocsncAg8H0P6V52Ml7OeibOzLsjxmOwspwa0ez6+h7BD4i0jUbGPU4L8COXOBKhRlIOGVlYBkYEEFSAQQQRkVVsPHvhu7Y2NpqSs7HaDjjPTGa8h1jxnNF4h/tDQ90pnXZqOnIGDllC7JFOdpKqGBOCSNgJAQCul0ZdNlmjmtNEuLURlXcyjDMcjnrzXM3GSPNlgsVCq6bg+ZdLG/40u5rK9htZ0XbIBtJI5OR7/Sob+3lTSI7mG2aWTCgCME8fhWJ8Q9UfU91yJ5VaCL90+cbTx6H6VlWGt+P5dFX+yNQjK+WVV523bT0zjGaXNGK3OinlWY1GuWlL7i7AYbCFUvLsO5UZeQj5j+JqDVvEGm2cIAt0B7EAc15lf/ABa0bWNLZX1CBZUYoOfuuOCDxj3+lcRq/wAcolAtNSmjWRc7HA+Vse+K+ZlTl2P12NrnsGu+JYLmyaN4xuK8fMK+Hf8Agox8Ir3xqU8U6daBkiGJ9iDIwcg5PXIyPrXukPxiivXDvLCFPGQf/rVgfE/xLp3iLwxc2kFxGzPGd6q3JODjH40UOanUTMqs+XU/Iv4gfBTXItT8yHXrqEZYARhgOtV/Avg/W/DGsJfahrr3qICBBNG23ocHljyDX0/438P6cl28LghgzBl3HivPNY8MWsGZFDAKpI56/rX1dLFvkUUfLYjBUq9Xmkvxf+Zh2l14j8X67/amsate6ldQwhIHurpn8qNAAqKWPAUcAdB9ai8d/E/V7D4Xa74dW4mMd9bJbOiyZ3AyAjqcjHXjqAR0NXLfV4/DkDzxKu8yFTuboD/+quO120u/E+rrZ8w2CyB534JuDkcD+6Ac89ePfjSNT2lS8uhTw8KOHdKjGzkj6s/4JV6b4j8O6Ynxi8YO9/d6pPIdPubq4MskVs7ZJ3Fjt3bAevQ44O4V+heoftAW1zZk+UF4x8s49/8Aar88P2ZfiVceFvAt1ptt5ACSGCOIp/BtUjGOmD+g/L07wZ4k8XeLdQg0DSbZrq9vJilvaW8W6SQ46KvXsTx6E+tTXxKkrx6n1WS5YsNhIw7f0z6j+H3xiudZ+M+jaRYWnmSXWopb7vOztjdlDfxdACT6V9b3tjaWFwIwzSbgN4Qjjk9a+bv2S/2XdR+F+rn4n/Eq5tm10xFdO0u3uA4swy7Xd2X5WchmXCkqAc5JOF+gjrUUcM0MkKRvJEcOWODx7/WuWCSV5F4ijTqYm8NrWLqaZp17cSNNEgj2jCsgIPFcNoGtX2n65qXhIW6yPaykq7uQuGORj/I/Guj0GKXW9Kubae82BlIDqNpHGc57V4/4h8cp4Ca9vdX1CCa9tbkwXHzHlRxuPB5yAfxrKtUSs0b4bCe0c47+R8H+Lvir4i0zxVbavYahJ5N4XaVGz/rAowwGeO35VS8R/FjVtatAJL1t8Lb1JTndXJ/EDxbpp0X7Vay/vldXRd6/L+vpXJaz8QNNhRJXnAaWLIDSrn+fvXL7G6scjrRse1aT8WZBpQuJbuTJ3chD1/Oq8vxqiaN0n1RkXfgmQbR+ZNfPa/Eh0tH02KZtpbjbIO+KrXfiORrYZuGwWzw44JpfVtTjqVE3Y6jxf4gjuNYmuBIzBnOcr+H8hXKa/qUU1vJs4/dnGFrLutbuLqQbpW/Os3UdWtYkbz5gfl+7vGTXTCPLZGSw/OzE1G/aW5mtXww3AkEewq7pGjzX00dva24Z3ICKD1JPFVtPudC/tUXF+rNGzZZEYAkeme3T0r3/AOGHxI+HekWKW/gjwlFYS7N0l20u+Z8jafndiyg5+6MDnpWlSo4LY9HDZen7x7p+yX/wTV8eaz4Yg8XfF3xMNA0madLhrG0HmXs0OxSVIxtiJzjcSWUqcx9K+nvhF4N+Gfwj8fr4X+Ffh+NbiW0/f6jfRiW7aPbhj5rcoWA+ZI9qHJ+WvKfDv7R95d/DbQdH0a5llZtHt4CRKGbzFRVP1ORz1r2T4G+CtU8Oh/GviaOb+0r63EYV85t4jglCDxuOAT6Yx3NKrKKsonsRouOHcpvToj1ptTure3W480AjAzjkZ7H16VYh1h7i2kbUJsqBtjYJ8wOD6dulY9pctPLJDZWYkmZQcOQA3fjPAP8A9esPxJf32gWspiu/nIYMGPOQD65rNzcUZU6Kk7LRnpfg3VF/s+QOqgZbO1TnGK+afjUIbn4n+IdHuruT7JO29kJPG/oR6fxf1r0b4P8AjVNSvW0vXZpTC7bMNIBnIORz9axP2hv2QJfiXaXOt/Db4mtpV/JF+5j1GDz4iRkqpZWDKMnk4Y+3Y885OpFaHo4eEcHXlzP4l2PxL1r4k6jJq8kccrGIZ2jzGx27VkXWu6hrF9HI7kBflGGPc1XuJ9PW8EsnoQ36VU1PxDpVg+EmAb73lgZJx6CvajGKWiPz9VZM7DS7oR7RO4AB5OabrfjzStMBt/M86RDxDEcn8fTiuIGua/rxNvZK0ET/AClh8rn155x6V0HhfwKzhZbiJmZlyztJkk1DopO7KjUSeg9PEviTWABHA1umeVQZJHuT/TFXLHQLu8+eVJM564rqtL8IRQRgCHkgfxVvad4aERBWE5zxlqyk4Q2O2FWUkec6rokljZFwjZVhgsMda6f4c2l3aTeYUYDYuCf97NWvH1hFa2qwyRgEurHk+9fTf/BPL9i+/wDjFqkHxL8d6cyeGtLkTy7V8f8AEznBVhGQQf3QBy3TcdqjgsREpqVM78PzpOTPqT9hL9nLQfCnww0Lx141CXer3dmtzaRuT5dnFJl0wDwZCjAknOCxA5Ga+kovD1pdSSvbOQnl4wuOvHOP89K55LG8tyN0eEH939a09E1+70+TyQAUY42lckZxXPrJaGdbFVZz9DptP8JW4tI3lZlEaAqy4BOeOfzql4s8H2GrJEC5DYIDGPJ5rd0nV9LvLaKO/kbPlg/KMYNRzXULnyoZU46lweDUzdkKliqnNfqee2Pwe1aO+Wa1t5JE3BlMWAQR7fh710umfDvxZJceVKs0MKrgySYyOBgY3Cuu0m3uTL/oc8QbOFJPGefUVpPDrCxMt/c25HVthPrx0FZJJnf/AGnXWmh//9k=",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9JtN0rRNJ0xp7rTbUQxTqWlkQpkHgHfjnJxxnGT7CqvjLwppetaBHpOkakmnObhZJ7G2j2Rz4HR2Xaeyngg8Yrqbi3sDIbO9iH2UEZjkG5euRhcc1x/xitpCmnXfhTxHJpFlbXCx3+2L78PUbcqQG3BVyezN3xXyzZ7CM34d+C4b7XbTxR46km+1mwkik0yVlfMu5suGycKUPIPBJ46V1vijxX/wh3h9r280q3ttNtHADLMQ/l5xwERsnJwFA5z1rG8IRavHcWs2i+MbK+V1JvopoVEgGBja2MnvjAAJrG8Z/Fb4f674tt/hrpPjD7Tq84SR9MjiL4Utg5mBKKVKliM5IUjvU6iZ1eo/tBfBy00ZL2x8cWbyzjm1OVmBx0K9VYcg56EEVUtvGf2O8tIXgtbJtQZZDAV3BS443AFdzHqenX2rxvTr74E6r8fb34QfEUR3lxbEPaXNizCGKf5SvnGOMeVMzM42lyOcnlq6zxn8FvHfjT4xab8RNI+JM+g2ugXH2WXQJAl3bX8G4kyNH8jLIylQsm4hMcZ+YEvIajFvV2Op8VfA8fEXUjrWsQaO12ZfLe/0SI2VxPaB9wgdyzPtI+8AwBP0GLvgn4d+PNB1S80i/sYv7HuXPl29xf+fOEKhdqvuJAAHQ5JJPNbFvr1reRDTdTthpN0k0v2cgBiUU43K4GASBnGc4PI61k+LvGtzqNnqUOlaRqoutNh3Ri0jPmzY5BhIBEhJAyuQcE5xReKBc8tEbGj/Cfwx4OuvtPgKysbO4iwLxbSNBJtA4VsEHg5wD7+tYfxG+PUXw08MS6prGh3erf37ezuYvM2HHzYdw3HqAa8p8a/HH4j23gO1vvGni5/DWsaNfwpqgjmb/AEyFgduECt+8IMYZDkbi3YCvNNV8T+ONQWTxho2gf2tFDYyTtFrcQhhmQ8Iq5lChTzksARxjvSTvsPkfU+qfCfxS8IeOdFj8VXmhz2FuAFP22Pc6kYGD/ER7455699Cw+JXw6nmEenRWuofaPlEqRuq/L0A3DH418B6/4p/aLk+IXhn4mfDr4iQeGrmWCWJ/DM0TvBZxDH7pkCrHMjnLDPI6hjxj2X4afFz4lfZW07xvoenXOpPqBlhv9HYRlCxG793ICFzzkZI7j0q2+UFE+nZr3RLeUapLEruxLRwJHkqOoGT/APWql4f/AGhPBVwraRr0drYyGcwiOd0aRQMgnAzjB9+3WvLPhj8f/C/xH8Q3nhiynjv5IN8Wp26yiOS3YgsBnPIK9CPw5Fd/4X+CXgrwXFJcaRpsc8M9wJlkurj7Qyu/J+eTLc471SbZnKCSPLLX4teOZXi0W8uI5fEd5q1lbyajebgps/MHmeWo+VHAJ4AG7dnkgCvX9N134dePPEl74bsr60uNTsNqX9pLKGMZKhxujJIztZTyM4I9qwPil8ENI8R2rPb248wjIYMQQfwriPgDP4X+CviTXdH8U6OYdX8TamLqXxDNK8rX0pVUCSs5JUgKAuMKRxwR83jYPHc75Ku/c+tzfJqcYPEYVadY9vNeRufFD4eeJdCF3rsnxLtopTZ38t/qOmRhLkReSUhjhUuWGD8+AwBMfQHFcv4F+HXwm+F/hmw+IF1pqX+pabYrFFqEmGMrc7ZpPnOGO7kZ4LYAyBjrNE8F+MPi18RZfHfjC7t4PB+mwNHpNhJa/PqMxG17lwWYKikNsUdQ273OrpWnfDyDTNR0qPQNMWweEyvDb23ks/zgrJkFVKkKDx1Ock5Ir1NndHzDaaSZ2XhfwL8N20u4t7fwJYRy3k3nXF9DaovnFvmEr4Az178+/erdxbw39pd6ZY35tbiS3ZUu2h3iFv4X2n72CBkZHHcV5LqXi3x74IiTWT8YrSRJL9Ta2uoeX5MNqZApBCffIVsBgOuDXSeHfGmk/EnUZtO/4WBNbxpcqi2VgIv3wGMfMVJAOSGUgsPVetNbGLRynxP8B3Gs/FXTtb8Zy/bNBt9MCabNbNIIkdkJklkKttwSDweyJ6ZPgtv8Kv2ifA/xuhuvBfjfxTqejQzvqFy8WvRSWksUjghMSYmhJQtlEJyDxxk19f8AjLRneWzg0XS72CCENAGtTG8KltoDFd275duOnHPbNc9afC+KTTrGyu9cWKWy1ZbqQvcLF9qfJw7Y5wVOMdtvUYFCt1NVJ20PMvsP7OPxr8SHTrXUdTudaIV9UjaCR4jICMEsw25UqQu7rxwa6e28IeMNB8b2ml2/h7T7rRZY3EAMbukEvLeZIXQqCQMcZ9sdK7jWbfTLS3m1u6S4uPsLM6wQOQJOpUDB+bO3APNXvhX8UPD3xC8J/wDCRWlk9nHG7R3lvfkLLbyjGVYZ4Xng9+KSUY6oltnh3x6n8IaTpVxrWo+HNRk1G3T7LZ2T2RggnmBG2RbggoFA3dtxGR14PGfC7TPDqWsXhiaTV9T1TU7tre7aS+3QCeQHasTIm5EUY4OSd3Q9a+pfiN8MvDnxZ0saGBAbiCRjBK4YxqSu0g4PzcN07/nXz7r/AOzZ8b/BPijTtT0k2NxM1woV7dT9nhZW3BWU5IAI+8MZGB1ptXRUJLY634O/AjwN8MfEer+I5dS0fUtajhSG4srC3jM8LKTuXzn2yHOWXkAdPWvWbi5TXNL+x6XctbkAHCtyjc7Tx1x6VzGl2BmuYvEXiXSreLXL2PbeGKOTynYKclSpYKMLkAnk+h4ro21C00fwrc6ze+YsWnRu9w6QlgIgu75QOeAPTtWy2MpPU6rxBp/hjw3aXeteJviqmm6fpNnJe6lJLCr4giQu5AEZPQce/vxXJeIPCvhD4leHo50gEsN1CkkTsRyGGVP6iviOy8e/Ez9tv4qQfBH4f6heTeFmvoLjxrrEU7BUtEKnyzJt2hztby0AO5yGI2oWX7yPh3yVVo90W0AARnAAx+lfP472U5JUopWP1rFYRYBxUql5Pdaafd1f5WOGj1bxP4C0Kbwvr1n9t05bdltb8fNJCQPkVx/EvA5AzxyD1oufgR8LPjf4a00fFCRNTSxVWgTTbqW3iifkZPlsA7ccnpkkAevda1LpmkaBNq/ijULHTtMhkWO41HULhYokZjhV3MfmcnhUXLseFBPFc1pE1jpDz+I/Bth4pis9nm3l7LoMUOnNuIG6RLmeKeLlQC8kMZAHBI5KoY2dFJVdu58hmeAwlRudF8suqSbX4J2Zz/ir4F+F9Pu7BNJ0vTpRDcxBZb+JiUjUEKoxndwx4b5cnsa8n+P/AMZvg9+zN440XxxcXIhnvWmM9tZ28kjyR7DllCq0cbEocB9pfy327mUge9a98U/hS+tp4d8deONOsHgcs12dZ0+SPJJdYtkFxNLuCqclo1XgfNkgV8B/Hj45fs6+M/2ide8OfHDxpeWfhu4Unw94p8NW8FvJIPtNwgga4kikElq0CBDsVZBIWBbELCvVoYnDV7+zknbseDDB4jntODXyPrz4Q/tifs7/ALQPg+/8V/B/x1PrDaNdpa67bNZz2c9iz8o0sM6JJ5bfNtcKUco4Vjsfb7JYWejTWsHiWyaBw0AM8hjBSQbfvc9Mdvb8K/BX4UftCTfsx/tuP46+E/iO5svCWqw3MsV3r94ii60yWaQLPdJEJnOTD5oXy97hEkWMKUFfq1+wB491n43/AAO/4Wf448SX97NresXcq2t/c747WOMrCYo2VVR0DRsxYZUM7gbNvlJvVjOCTtozsw2VPFYl0oTPf/FV1pjajBeW0oka6URjyzlHAA544yOn4mua+F8cPhvxHrd5JDpklhqzpH9luEUvKQMMSGOWHbHTg8V1cUeg6fpSJBZQsYkICYUh+fu5xgY/zmuJ+JfjvQPh9rMcuoXS2Cz28W2KIghyzbVkwBlTnKn1ABz1FYTqezWp9Fh+DJVnZ1PuX/BOzi8TaVY+II7TR47eGykDeftPlrCckgqCcYPAGK5f4mePNIuL698LzeM4p11GMCyNlI3nRSDO9CRkDGOGGME844J8U8e/tX6Bo19qlst3C0treCMQSP8AeHlg5PHGc5Hsa+btR/ai11viXqd7HfRiyRYtp3nHl7SW2njjOfzIrD61NaJHXR4Hpyre/OXL8r/f/wAA/RXw98XtEuNPXTta0q7e5ijVS6BSpwMDJL8np+RrT07X9LuLe8kt9JvJEvMCMbo8RtjHRnGOh6d81+el3+2lBpl1DdNqnmRxqAFgd87cg4B6evtXReCP26b2/wBUv7TUvHupWtudMnm0230/SFucvDC8oSUqymNSN+ZgGMQXJ+XJS1iKp6FbgvLFBOKl9/8AwD1X9kvXfhv8KvCFr4I+GOnpZWSuZJcSBpLiU4DSyyHl3OAMnoAFACqAPopfiTo+lx6dJ4ijkuG1eZo9K021uEE96Ux5kmCQVt485km6DhAfMkjVvGfh9+y58Kfhxax2+jQ6hctGmPtN/qTlm5HJClVz9AK2/EOl+DbbUv8AhJLmZU1IWkVhHcrgN9mViywg5/1YYs23puJOMkmvHdam5aCr4HEYx2lUs3u938vPz6dDt/FGrWS6vB4z1S4tNa16MNDommpExtNHgbIYqFwEyQS5Uie4bYrtFF5bQ4upzf2ne2uu+LLeXUtQtwWt59RkWKK0bkZtoFBjt+GILKA7DG93OWPF+NPj3o3hyJ4bcokkeAd5UED1+nvXl/jH9qPTLi1aafUkABOCsq4rkmnOfvK56OBy3A4Kmla9v6/4d3u+p2/xM1X4ZWOoS+JPF9tpdxqMSGKC/aGNpo4wCdglb5wOTwDjrX5Xft//AA98D+MPjXc6x4RjZbXVI4PNtopjtMiscL8px1AP1J9a9n/an/aksjp93DpmpFnbcMxupxxweteR/sp/Cf4iftofHzR/h34dQKhc3WrapNEzRWNpFjzJX2D3CqMgM7ou5d2R6+AUqTU7WR24h4SpSdNR3OG+GH7O8lz4nsvDfgz4R6nrmqX0sggvLG4t2H2gq3liQTSI2N+0nAbCk/MSMV+in/BHTS/HNj+yBJ4n1WCSax1Lxzqc2gpLcxkRWSzRwSlHRennW8z7cDew3cK4x9D+CP2FfhB8LtBuPDPgqzvYn1CJ4tQ1YXzrf3EbAhkE8e14BgjmHy2ygOcjNejeH9CsvAOlWXhvQdIsrPS9OgjtLLTbKzEMNpCihEjijRQERVAUKowAABgV6NTG+2g4pHh/U8LhcbGvT6K1tP0X53KPiDVtW0bRJLqCzmkLx4RM/MrdeSBxyMj9D6eXftMeFfi38Uvhwuv/AAsXTbjxFb6XND/YmqN5LTdWHkykMpkyqqgcImXJLqBXuWoeJ9FkmSK8cRgABkdgP047eta2lXOhW1qLyzkt48xkGYWyKFHfLCvOk+eVm9D36GYKlFSjDX+vI/Drxh8Rfj0nx7vPgx8Sfhb4n0zxnMscg0ZLNppbs8qHg8rcs67UxuQsOMZODj1TSP2Gv2zvEJOsWHwmufKubUGQXWtWULICC20o84ZW55UjIPUCv01+KHwW+FfxB1C08UQGTT9ZsJ/M0/XtIUJeW8nGdsjhgVYABo3VkkX5WVlqHRLDxVpME1jqVpBPbwoqWc1kgEszZwWeNsKuAASVJ3ZOAuOd4fV5b6HmZnmmfUWp4SmpLzTuvkmj839Q/wCCcf7cdhpJ1u5+EyrbRIxZ18R6c3Cgk8C4JPCn611/ww/4JIftRfEGwt9f8TeLPDugWbOj3aS3r3F1DASdzIkKGOVgoJC+aM8AkZ4+9vE+v22jaVc2puJwsdlNs08h/MkAjYAKGwzt0wRk89eapfDL43J4b1a20WXQruCBhiGa8jMcEAGMglgCSe2AememCeuNKj3ufKYriziL4ZU1B/4Xf8Wzxbxh+13p1jYSOs8YIBO0xd8cd6+dfjB+3FFYxNEt6zNFEHVBDyXJwuOewr8QLv8Aaa/aRv8AP279oPxxNkYPm+LLxs/nJWdcfG34z3bF7r4u+J5Sepk1+5b+b1cOGnF3c0cv+uuHTvGk/vR+oHjn9rn4j6/DLBrmo5aFiq3AHzMgwcHnuD096881/wCPXiTWS8cF+TCygZ2cnIr8+rj4rfFG7YtdfEnX5S33jJrE7Z/NqYnxO+JUZBj+IWuKV+6V1aYY/wDHq7Fkaj1RD40py3pv70fecEF54hiludYc+SsZeTJxxjn9K+gP2DvGvir4QG5vvCF3JZ3mqgxTXdqcSGIMGCbuqrwCQDglVznaMfkm/wAYfi3JCbeT4peI2jPWM63cFT+G+r+kftF/tB+H5Em0H47eMrF0OUaz8T3cRX6FZBitFlElFpyRvHjfCxslRf3o/rR/ZXg8e6h4Fg8Q/EnVLi4vNQ2yWqzqAY4SowTwDk5J+mDXoPiDw3p+qSiG6k2sv3CG5Hp0r+SSH/gpF/wUSto1ht/29vjTGigBVT4pauAAOwAuKJv+Ckf/AAUSuGDT/t7/ABpcjoX+KWrn+dxXO8jq30mjlnxhh5z5vZP70f1e694JtdPtylvqTtOBlYlcFi3b8PrXMatq+tGVLS7mWG3SPAWFeSe+O/I4r+WZv+Cjn/BQxwQ/7ePxmORg5+KOrdP/AAIqvJ/wUF/b2lO6X9t34vMc9W+JWqH/ANr1Esgqy3mvxOjD8bYai7ypSfzR/VBojtcaubm5dl8tdqRkgKuQOR781a1D4neGPB1pd3F2yq8HyvJJyq5UNuPtg5r+VT/h4F+3n5gl/wCG2vi7uUYDf8LJ1TI/8j1Rv/22/wBs7VWkfVP2uvifcmYkzG48fai+8kY5zNzxxzWn9h1FGykjvl4gYCekqErW7o/pbsPjfH4x1+W683abiQOQwGFQH5FyeeAf0HoMZXxr/aIt/CWn2mm+GNalg1Jw7TGNEKLFtdccg4OSr7hhsqoBxuFfzX237YH7Wtng2n7UfxFi29PL8bX64/KWotQ/ax/am1ab7Rqv7S3xAuZMY33HjK+c4+plqI5BUS+NGNTjzBS+Gg180ef0UUV9MfmIUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/Z",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [23,32,70,77] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [40,37,59,58] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigD+o+L/AIJufsFm0Fnc/sXfCqTgbpj8O9MV2wc5ysAx74wO3Sq3/DvD9j7xP8ULXwToH7KfwU0SAaI97JczfBbSb0uVl8sgILM5Pzp95kX1YHGffn0m41Z7e4GoX+kSfL5liUhyW2ByhLK4YgHBMbEZBweDXj/7YGo+EbfTdS8M+M/FutaDCfAWrXGn3fhm6ura71K6ETEWM0sCupt2jikcpKvl5GSchRX13EdWWFyuVTD005Jr7N7edlq/RHyHD1OVXMVGrN2s+v8AnovmfN3hT4Q/8ERbbxxpnwZ8TeDfAniPxb4g8YQWukN4S+G+k29tLa3N1DBBFsukZxOWdw+MCPBKxyIgaT6R8ff8EjP+CTvwis7a+8afBfwPaW13qcbQv4q8P6LZvK/lyP8AYYRHaR+arKjMAP3xEZIbgg/Ln7DfhH4meIvE3w/g0j4ReDbDw3a/GKS5uNZ1rxhb/bICZtOluY0juYt7kRiJISrZVyTDtccfqR8XU8RaL4e1O18I2Oia1PdJKwhl1NxDc742ULIEjbIZwqtGcLtYsSMYr8RzrPcyoc6hVkvfe0Y6Ky0u5RaXlyvu3sfqeCwGGk4NxV+Xq3rrvZJ/fdeS6n4s+EPgX+yr+0F4oh+DnhD9hLQdBufEvxKurzW79PBttd3GjeGls5/MtLJraDLNbbftHm7Qz+X8zOq7W/QO8/4Ja/sKeBPhRfDxd+y38HLvwLpXw2aCfV4fg1YL4mMkVqofUmvuVaTylkcqtsshlKvu4KN8qeD9Z1CL4yeBPCvxl/acsPHyXXxCs9Ns/BUVi886Ty5Iu50lMayw7/LV8ndL5nlyGFGaVP0Zjigs/iPfx+C/hZFD4/XwCwtfGuo+G5I9KVlMflWLXSncEM2yRoIGJ2w5J3IteJn+NxlOUIe1dk5PRq6fNFXbvzRXTmfNFdIt3Z6WBo4eV2odt0+z8rP0Vn3ex8k/C79lT/gkjd/GHwToeq/8E17ewutU00L4d17xV4G0w6Lcwf2Ykkc1yIpDBJJLGVUGaJn+0P0WQ7q5/wDbJ/Yg/wCCfmn/ALC2t+Mvgx4C+B3igQeIrSK6+I8Pg3wzbx6UfMh227TaPZ2yLG8xt42U5kKXr/MBs2/WOieG/wBv3Tv2nNL8ReO/i54GX4XPpcCz+HLKylS/utQ/swfaFR5Lc/uxel5U2y7vJjXcCWYDy3/gpZ4r8aeMP2HtV8TeMfhdrHhS7g8WWzQ+EL3W7WebXoo4yQsk1nLNFEFGZwCznNiq8FkZYoY+rVzuinVvFuG9Vz6y6qMZ+qgnFac7ttM8PTjgp+7Z2f2bfy9G3H5yd+x8g/8ABN79j39jqb4zaDp3xu8I/BfxrBN4TubvSfD2ifDW01KWe4CKgadPsjtNH5ZnlV9zDzIeWU7VP6H+DP8AgnH/AME67Lw+JPHH7DHwS8S3Mcb+Zd+HfgLpGjfaHZ90e21vw7xhYyEbMrFmBZQobavwL/wR18Aabo/7Vnh7xNYfDWD+1rfw9cQ6zrtx4ZaOVZ2tdr3IlB2qZJNyA5Viksg2AbsfpF4++J3wY+IHwSXxn8RtP1abQ7/NtZJF4f1bT7kSjdHG5tpAJsnYSpnBiclXwwdM7ZhUrPNYKF5X5ek53v7XpBpO9lpu7K20iaUYLCScmla/WMduXur9d9tfNH4r/Gb9l7/gmN4X/aK0XR3m0/UdK+1atY+JNBtPD1nF9muHgvYI7hZLCZSVgkNvcxxgFX8rDAqxjr7j/Zb/AGXf+CbOh/8ABPLStXv/ANgz4U6zdppGvxN4v8SeE9PEl9MZ5ngngnvke8uGiTEQQ4G5SoYbBj5j+Hd38a5/2rtS8c/Dn4O6jrWoNfvbL4at9MS8s7XTp7K9tVt/KWNYVeSxjlzKsQd54p7iQSO7FffP2QtW8I/sr/A7x9aeKP2WfGtv4q8Z2fibTbWDwupuhpuh3lzO32F4Lm5iMUqXFvMSI4txVFKn5ii/ZYjE4j20oRjeSdN2VNSavf7MmuRdW7vpa+p4tPD0pUYu+j5tXOye3WKfN9y/I7rw3/wTn/YwgsbWLW/2I/hnHOLMi5juvhtpyusnnzYDBotwbZtPKLlSuGYcJcuv+CeP7DSQFrX9i74TPMAcRy/D3TUXPb5hAT6dq968HaxrPxB8J2HivxJqU11fXDOl5O0EKKiLLIsWxY0UnOJc7ieVGOpx6Hr3gD4MXGgteeHPFWrRXyQtI0d7brIkpA4QbQpTJ/iOR7V+s5TNQwFNYmmud78qur+TaTt2uj83zihVqZjUdCb5Vbd2drdr7m/46+AHi7wt4O1rxXq3hu3eC00+V7m3N2m27UxjcGXJVuEVMsCcHAyCa+ev2q/BvhrwlZ+IovFhnOqXvwu1m6i0+RbVX1DOTF5QmOTP9nivUZgV2x7SgVcqPov4i+ItW1bTJ9G1jx1qVxZ3t1bQQJcW7kwQSXUfmrL5TlX/AHZKhuw5y3JPhv8AwUk8R+K9D8P+MfF3hrRNI8Q2w+GWpWOo3LeMvseqabZx21/N9sjiaGVJt0pVMM68Iz/vAjpXyHE+JrV8olTrdXG1l57O7St11a1Wl3ZP6vIcHh6WYKUL6J3u1+H/AAD8xP2MPEP7Mun+KtCl8U+OviRZ+LrP4kRNpOsy6tdWmn21tJf2zpfmK9tZoVQzfvZfMZUbylLomSR+i3x71f4Aa58BLbX/ABn+1z4t1PRP+E1Df254H8RRMdRultJYjpLNpkSxG2YB2aJ8IJQC7DAA/Pj4E/G340a7oFh4W8T/ABF0jxTo2l/Erw7YTfBRbC5s5rwXOqW7SbZJDJakSGcsy3EnIhKAD5gf0z1s+PbT4LLefCH4W6f8OtQj1CG1uLHxBqFkLbT4Y7Pc1yj2k8iCCMtvVCqSMqsXhUSOrfkeeSpqpKTkr8z1bpdv795/d7vzPtsMppJWey/m7+Wn6/I/PX9jPxR4T+IPxg8O+HfhZ+zNPpepaj4r1PSNY8eQ2t21xaQizvYNQitvs1w+J1iju3t2aBnMsURwxIQ/pC/h670n4DX9vqOvnXvhhH8MGt4NOh0Cb+39Qt1sgC7Xb3KxyNLCsn7s20T73UmRdpU/lF8G/hTf/Dj9oHwTr3w3+K2n+PBd+KrebSo77W2ijk1eTalkr3C6e9xHameO1EmcNsATIbDL+qGj+HfGbarrXiX/AIZo0LRfitq3gH7PcfEOVLe40O61IxokVk7xzDUHg8wRyNmFUWKIgy7wuePiCUeam4Svbme8Xb3o62esf8ab7KO51YBP3k1bbv2f3+mnqed/BrSf2Yn/AGnvBdzon7InxL0bxSnhuFfD3jfVdMlGlW1qNGKRxSyx3bQb/ssZgbMbOsvDYcswf+1tod78WP2JPEunfC/9o/w14/vbS885fFWp6vpSiwkjEeIIfsUcKPM7tHCIxmdvtpVSSUUeg/DXRv2qvCfxX06X4s/Ffw9c6Ncw2ZfTLezMTQkafMl7FETAhRZdRktZIvMZnMVvKMgsynzX/gqB4pv/ABl+wV4ojuPhzrnhW6g1GCKw8Pa1qOlrdXx3KsckKWl7PbyqjyC48tpN/wDobEx8LnVYnnzqhWlVv8HvOq5296X23GM16QXL/NozF0l9RnBR35tFG1/h+zdxfrJ37HlH/BO7x9+0DdftAeHfhV+0J+0FHFa6FYTQ+HfDUOg6sf7b8qzaN0SaS4eCLyo2WYqyBm8vCoCjlPtDw98QPGXjLwTY6nr3wh8Q6FrN9qBs73SLh7a6/s1d7qLqWR5oElgwqufJZ5MSKAhIOPzp/wCCV2o/DAftC/DLTPBHhfxZY+Il0a5k8fW19Bd3dmsw0ty80U8dvDb2yC4Pl/MZi3mIisuW3/cHgjxr8GP2VPgVbeFP2of2z9N1HVInWxm8b+NfE8ejtNq5tE8xwss+0ZlWadbQMURX2AYjBrgxUqbx6vbeO6qbKVS+kOmq211Vt5HVCLWHdovb+52j3/Xtr0Py48SaZaL8etdk8W/tVa34J8XJ8QDaeJl1bR7WGwi1AC+d8GKC6G2JpJIWEcjw5vkJIRGCfpB/wS40/wAE+Hv2Z9ftPhf49PjnVIPGd6de1i2MDW0upPBAzrAYXCPDsMDb94LsXbC7ti/ln8afjX+ym/7WHjHxX8NdW07UtHTxCLvwn9g1KC1Fva2un/6xbi0aKYn7RELpiY12o8iMXVRX23/wS9/at+B8P7Pk1l4m/as+GPgZbbVbu0s/DqePLK28+zZ45Vu5Ee9jfzd0kkAY8GONFw2dx+yzF4erHnly8vuJXjOcdE9oJqaavvL4dvTxMOq8Eoxvf3m9YxerW8n7v3bn1v8Aszan4O8QeJl1jwT4b1PTNC0mNZIoL2VHuRPG4YHaryKsRLO2SxYs7AKoUV9A6xqngTxro8lv4psLOBRPK8RtoSWhDgZwwVdpYgE8cnBOeK+Yv2EPGWgv8N08eaF5N9NJqlza3NwsjlFiay028tvkYjaJIrtJgyj95G0TFtvl17T4m/aOPh7Tr3xcmluLfT7KWSWC2uQygRqWbYqoH3jaeN3Xj0x+o4TDzo4eNOMpT5dFKTu36vqfI4qrSlXlKSScuiWn3Hwv45/4LC+A/ib4A1a3+G/wu1G5htfDh1e6j1XVEhh85b+CGzswYhvmE8s1ujMViI80hVkGWr5d8J/8FL/2jP2ufiDp3jW+8O6YfDVkZtJ1P4c6N4pvLRvEmlyw3cccc2oWsnlo1pcBVPkG0Z2lkYxPFJGE+eI/FHi/xj8EtG17S08JXv8AwmfhwabLp3hy20/TpJM6urBykTwytah7GKMzEhI54mCzYZ7aul+G37HHxx+HXgqy+JfgP9mfxxeXU/iom0tvC/hyC9vLCziu/s3lyxpFIgX57kkSZZ/ln3nckg+fj9ZxL5MX78eq0S/XbTc9Wng6dCaqUsVC/kqn6w6nvvwU/wCCdf7OU+p6l8TvivoXxH+F2oR+L31Xwpp3wx8cwTx6VZlNPEOdQu4RMJY5IL6VAEJUzwjzSVcnV8E3g+HXh7xl8PfjB/wUB1fW9MvviXqD6JqHir4ralPenwbKsMUVlOkeo2kCagUjbLyRXNuhkYeVKrlRc0j9s6H9nHS9K0T9pjwxp/hvW77ULs6vo9x4attK1PVby9KXU0dtM9tua4aS/ErggmRJ0KkiUsnIfFT9ur9nzxn4Nh8R3H7O/iW6vrpoU05fDf7TN1oqXJZsGNhawQASR+YwcPH/AAJyxUBep4bLnZugn6pP9DKVTFOfL7Ra9nb/ACOv/Z01n/gnV8IPFE+vXH7QMV/rDadJb2eoeHfiPDpU9hK8CrNLayQ3JaPKTAjc8jKGA3nDE+geFPiT+zBf6Muk+K/igvxIuJ7RLbWrLxn4wi1i3vUyC0MqzTyGVCVA+cbiAATmvmrRvixDovhXw9ZeBPhh8V/EV/o0w1Ow1PxF+0HeX8l/OEtw1ndQW9pbRyufs6N5M4eBvLuPkJlkLehaj+29+0d8H/Btv4+8B/B28U6tcSabd6jqloZbOzgl+yYkWcgCdUeVlmgYQuhjiw580EU1hFLmdBeuhdOhWasqq/8AAn/wT2qyt/2bND+GHiHxN4J/Zn+DvhaG21TTLmFPCWmadpaJco1zewanJKtpI3mW8ME8UZ3ArFeS4YDfu5Pxn+0T+yt4z8OwaN8WfGXhC60+S43xTS/Eq1tUWdcZRZYRC4cq/QHgHJwdprnPhl+2j+2TpvwBuNK/aR8f6Reaxa+K9A1O4vdN+Hen3ul3+natp2p65BFNCbyyCu8FoZPOVwwP7sJLKVkW5+2R+2T8Cfhb8T774HfET9kj4O/EKbTdO0XUIri90yZYLiW80mLUt6Rf6YNyRXMxDBj8gZyVEvNRqQhKVqfXuuy80V9UjKnG9aKX/b//AMgdl8ONd/ZB+BHgLSvGOjeAvBV/p1/bvcW3ibxB4nh1JNUFrarLPcRiQvCoSGRZpTbqiASLI+NwY/Ln7UPwL/Yo+DPwJs/2aPin8cLzwx4em8f3HiS/0zW9PvdVfVL+3gk02T5rFIWj2FtwEcqKFiYkESRMfSfjF8UvB/iT4deA5tR/Za8B63ba1aobTw7f6rfS2fh3TLfVL7Tkt9Pivori3hhiTT1nMFvFbop2qhIVZH8d+Jn7f/gn4oeK5dB+Mn7Ab+KYvDfnWei6tqHjyC/FvpyiXE0VtNZhreF47cts3KMY645TxEnL4LL0v+PN+haweGS5Y14uX/b6X4wX5lb9nX9kT9gXxRr9z4c/Z80TUfE2t3+l6jp11BafDvxDcEW1xaz6fdFUkdzGytNxLu+Qg8ElXXV+C37P37Kf7DPxH8S6Z498RaXrGtTaBbXM2jfEr4R39x/Z1pp+mzXMtxDA2xSZLWN7iRgGLCJWHX5rPgr9uLwp+zl8V57n4d/s0weEpvt32GbVdL8SyWEltc3CGZleWKDa6SLjMm4bpG2lcgZn8e/8FAv2c/iF4yPjbx18Dvhz4r8S3tvLaf2vrfjGxurq5tJIjZOBcSWskkkTxhrZlOFKgxnutd1OrRn70V+B59anPDz5JSVvJn3hp/hX45/D/SfDvxF0LwrpejarrV5qGnWum6f8OdStrUwjS9CSJRZi6xGVt9NhVQQPLEEyKFIkFfPH7YcWkfF/xzFdfH/41aDo/ijw7o0diui6Toly6WERZ3ia6tvNaeG4mjQSsrNGzptcZXZKdT9tP9tz9oaf9i34eeOvDx1jwpqetapqeteHptK8cXhk1mzXR9EjE9rMIjLNGZdRuyZIcrG0DnZsdok+Hfij4t1/4gSW2m/B34yaVaat4jtrZLDT/EH2meV5pUSJx9oHzJmR5CPMVNqpHnI3seGtja8IulQivV3sn6f8FHXhcDTrNVqs16Kyb+bf6M6z4Tf8Fkf27vB/gWz0jxh8MNE8V6zE9w0+ram1jbyTK00jxq4t763jGyNkQFYVzsBOSSxy/Fn/AAVG/wCCiPxD8eWfjux8S6d8PYdOsri1j0fR7u2ure8Sd42Z5I3jvF81GgiCOysUV5QrqJHD+T2+kX2AEVV/4CB/SrUegXUi/vr8oO4DE1r9RpXbbf3mkc2qRpRhGnBctteSLbt3bTv5rZ9j6C8Nf8FfP+CjnhrwpNY6V8Q9Pe4kYPJtstPX7Q/yrvdhpZw20DkIfuqOMZEnwh/4K9f8FT/h74ems/EP7TFnrN1d6rcXssmqRQt5TTvveNDJpcrJGHLlIlby41ZY41SNVRfn0eGbf70t7Iw78inrpmmwEKWdh7S//qrL+zsOotau/nL/AD0+R0Sz7GTqwqONO8b2tRpJa90oWl5cydulj6osf+C6f/BVaG5MY8a6K0YiZY5Um0/BY5wxU6Lnjg4z+JrlPA//AAUq/wCCgN3+zrrH7Pfxv+PN1410y+v4LqJfEt9b3TsouorqW3mupbB7mWIyo+zLExIyxjeiKteENcadbKNlsgwc5J/rTJfFKWwGyeNAO6uKj+zqEVZJ/e/8x1c9xdaalONPRNaUqUVZ2vdRgrvs949Gj7c/Z0/4LC/Gv9kn4UQeFfh5+z/4bu7me9km1ebSBazz3zszeW0sklzYoVjTCKEhTHU72Z5G1dF/4L3f8FBdG/aV1jxvcaJBq3w9m0X7No/hG60bShHBeCKw3TqY54rlR5sd5t8y6kVluDujTYmPgG68Zws5Vrhnz/dcn+Qqg/iueVNsXngfoc/WsnlcHKUnKXvee3odL4hvTow+rUl7N3+F3lptPXVfcfqnb/8AByN+1bFbtcH9lKyco+0RLaWe5xkYYZ13AHPcg8dBXGeJP+Dhj/govrPx10Dxv4e+FdhpHgjTtMnh1vwk2naVIdTu3jlEc7ltReYRxl4ztiuoizRj5WXcG/NKXU9Sad5TqsoBGChiAUcdjj+pprau8CEvdO5I9c4/wrOGU04Nvnk7q2r/AK1NMTxHDExivqlGNpKXuwavbo/efuvqup+t/wAUv+C1Xj349eE7Lw54z0HSdJt4L6K9DaHaTw3CyBHTy5N146Sx7ZHDIDhjtySuQfBbj42fBi3tGg0TxF4z8KW00kcl7pvw/wDEup6LZXkqR+Uks1vaaokLSbdoZ1jRpNi7y21dv5+XWr3VzIUjuJeRnOOBWTqi63KoW21u5ifBIaCZ4yD9VqoZXCCtzz9eZ/pY4MZmqxdTmVGEFppFWWnWzvr8z75/bj/4KKeDtO+C3g/WdQ+G+leIYfAviIXNpBrEl3NfXtrLpjWV3aG6ur642pcQxo8ixxqrTxrMyufMD/GvxF+Onwcv/HZ8bv4KTw7a3cun20UOky3IeJEbyUOJbmRU2li25CvAyVZhlvHfGOg/FXV7KfSB8R9WezuYyk1vNqcwDoeqsBww9jxXnGs/DL4vxWTWkN/NeQRuriO7kDtlW3DDfePI6VM8qpv/AJeTXpJ3/G/Uzp5k4Q5XShL1Vz7Lt0CMTJcDK9D61MkkAkyDknq5rmo/FF1qqrLo9nlVHzOfmx6cAUj2muXc5h+0TyA4yVRkTH4gZr37HiqVzX1HWrGBmEt4i7c8eYM/l3rJvfG9pGgFuHZR3wOT/OnN4OtI5v8AT3kICgyAIAR+JzU0fhrSrcKFs/MLPtUyHIBz+WPfpRoF30KEGo63qzEWjGNSM7pFAH1zg5qsdE1FZneS/LMP7sWR+GcV0MKCWMO0GQD1Ttj6+hwaa1rcS28lw0BjWM7FkbPzycYQEZ55z6DIyRkZW4zHg0lBGrmFiR/EeOc/WnPAkLFvIlOepZ8bfzNTX6XwjkgNysGwEhi2SxAPy85HT19BXL69r2sTS/ZECYySWW4RiQB0yAB+mTTSuDdjauWsTJskuEUryVM2M1Te4sbqRrS18wlOjKeAfz5rnUsdTuMyJayMPXYePxrX0bRr6JlnvxhRn933P1x0ptIFJkyWs8YL/aMEAZ5pmxQW8x3YdM9quTLI0KpFKWRWJVN3AJwDx68Dn2qsZvJGx7dcnuQRj9ev596lId7EE9rbTRbDCGX6mqdzpNqAUjtyOOPmNaJLFiRGucdsdKjnkwCQR07DNFhcxyVj+3Z8FNPiFvZ+EPEMUeSSsdjbjn/v/wD54qRv29vg66sH8OeKMkrgpb24GB1B/ff1496+R6K4vrFRmqpQR9dTft8/BuecN/wiXiOOMYwkdrb4UdMDM54wPXv7ZNV/27fhHtCxeGfESgZJUWduAx4xn997dffpXyfRS+sVB+zifV8P7d3wlBLSeFvEKswO4rbwNnn3m4/z1pt5+3f8Lp7Q2yeF9fO5CrhrW32kEjPBlI5wM8fXNfKVFP6xUDkifQ2ufteeCNYvZLw6Rqy+ZIX8v7HAqLnkgBZAAPQdulJpf7V3w0gYLqGh62yZB+S2hJ+nMor56op/WaovZxPqBP2zvgxEgSLwp4gXAGD9lt/x/wCW3r/k0h/bU+FOCB4c14D2tIB/7Wr5goqfrFQfs4n04/7Z/wAKCCF0DxCOeP8ARof/AI9UNx+2L8KZ1KnQNeIxwDaQcf8Akavmmin9YqB7OJ9Ix/tgfC5F2/8ACO637kWsP/x2gfthfDEZI0DXDkY5tIOf/ItfN1FH1ioL2cT/2Q==",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD7w0/9gf4aWvjvx54w1nWJ9eX4gyXH9uafe3Qt4YhLqNvqDLEYk8xCJraP7zt8u4EZORp+Ff2Cv2L7P4m+GdQsPhnqEGv/AA/srPUtBEXiO8a2ty2p3l4jjMmZT9rM0jB8jDKvK5UfO1v8Bv8AgpPpXxi+Meq6l47+KS+FdRS/Hw2itfiJePGQ2u2clt5ccNwWtv8AiXpcD51QAFkOGIU+m/sz+Cf2tdF+Eml6N8R/EOvv8QF8QeHpb+fWPEk8102jQ+KXnuI3llLOyHTllRlBYFcpzwK/NsPTz94Sc6+Zq3K/dTSe35dz6mpHLliEo4bW++vc9n/aSi/bZa708/sq6n4FFmbZxqq+LFmE4l3fKYjGjKRt67u+Peuw0H4k+LPgt8FI/HPxl1y0XVtN0QTeJLqwWMRSTqMskQbap3PhUB25JUdTXEftE/tt/s4/sjXGn6f+0F44tvDkuqwvLp6RaVqd4sqKwUkm0spQvzEDDEGtLxavh/8Aab+Bcc2h2Vtc6Zr9pb3/AIf1n7MJXi+ZXWZYLnyHRmjLp821l8w5HUV8bhfrc1hY1KccPT5lasouLej1cm0n+B6tZU4Kq43qO3wdPSx+XPjL/goaPFXjfWdR+Lnj34nW3iK68QajBcS6BrGrf2cdKk85YkjEMqxLIFdQJYow4RVXdwQKd3+2jqKan4eg+CHxU8fprGnxnTrG41DxJrayPbSFA6bS5+0SMQp3Slm3L1y2a5jxNrXwAuf+Cjmk+A/EOv8AjTWvDGp2t+dTvNLhsomnuLMX1nmAGaWIQl7NWDnO7kjHy1794x8L/CPwjZHW/wBl3WdT0vS2s7lPGM3jrTra8lWM7I4mtI4DGm8LLMSXb73lkbcEj7vN/YRzylSq1lrC6nqv5rac2t/XqeTgalV5bKUKTXvW5dH28unY/Qzx9f8AwX8M+ANP174+eKNG0vSleEfbfFfiSO3tPtXlsQN80wjZ8eYRgkkBiOldD4Q8WeDfFXhW28Q/D/xDo+qeH7mJjY6lpF7DcWTxhirFJY2MZUEMCQcDBz0Neb/tLfsy+Hf2ytM+GFx4h1n+z9J8IePofF81nJAZH1BP7J1GzS2JHER3X6SFvm4hKgAsGX0z4YeDLP4U+DbLwp4faK5i025nlttxMS4kuZJwmApIC+Ztz3xnFfnTo4aWWUpPFNPn1hfSKu/eS7nue0qRxMkqV1y/F3fY4r4/ePNK+H3wf1nx74W03Tdauo4FgtYtLiS8JklcRhisKuXCjc5X+IRFcjOR+F2v6j8SfC2v6ncyaLrsmoXVqLS6t7pBDEj/AGOO1mwSyyEsIc4YLjfJlQXbP9Bfx21+L4keDpIvHXha0t9N063kurh7fxI8Zj2AMzl2tD8oVW4285zxjFfjdaWvw1k/aU+Jnxi134SLcaJ4xUaroNnc66zS2xbw7aLGzTRxIZGjmtnbZjbmTbg9T+k5VQyzD4HEPA4yVaVtVLVWW26/I+crVMZUxFP6xh1BX0a7/I8N+Bfx6/a48H+Ab2Dw54P8FR6fpFrKtva674saK91BXvwjNDaRL5kgWRJMnhQnmk5IFfoD/wAEbvjb43j8GeNfix+0NpcOjxeJNTtLPRP7J0TVZUkNpHIZ8BrY4UfaIgCGILeYONoz4j8Kv2xv2VNL/Z48F/Dv4h/BHTvEPiCxsdSiu557y9hOZdVupUhJjkjj3lJi+5yqBSMyL90eyf8ABJ7WLP8Aaw+GHiLwdqWlJ4Yt/B2vpcQW2lu0jzreQLH8xlbIA+wjGMDJY85q8ZRw+Ly6v/a85YeknG7j9p99m99NAU61LEU1g4qpJp7vZdt/z1Pqb9qf4zeAfEfwRv8Aw9pWsX8lxd6jpJtzJoF/FDIBqNq4IlkhWPBVePm54xmuM+Bs2mtpOr2uo6PbalBd+XbXWnXUKyJdwtHO5jKlH3FWjWVVABLRKu4KzZn/AGs/gNp3gf4ErrWk+NtVdtK1XQ0jtLuBTDIDqNpDkhecgHdnP8J55zWt+xFp8uvWnja1n1BDLB4fea1lisWDQSeXPGsoEjMjEeYcBgRk9OK+j4Rp5FRyWpHLasqtNS1ct72XkulmefmVTMZ4hfWoqEraJPp97MK5/wCCp3wzs7yI2n7LvxqvTY25jOnWOiaVGqY4zIkmpoVxhRlsYJA4PFUo/wBuG3vLO7+P8X7P3xSkuoIl0+y8NXGm2EV40UUspkuikep/ZWtgtyR5rzZDRPlVKDPXaR+1h8FLHQbDStMTXLVrEI3nW+iyQmWRIzGGP/ErHOGPfPvWKfit4Y8T+KPFHinWvGHiC10TxD4A1HQLVpZJZHmupJLZnCReTEYysRY5b5GLJnGCH8hcCZLg2nGM/e93V9Hv0RvTzrMakndRstdux6pZftTfDLUBYX0OlaoYLq3R2uZoLbfb7l3cqZs9wPl9z6V5N+2J+2xp3gP4La/e+ELfVo7mTdaJdSpb26Wqybg9x5nmnChQxBU7lLKcYU4x/hvrvwv0HwzZadq2uai1xb20SyLPcTnLBACB8jAAEEcYFUfE/izwnqTSWiXLX9tIGDWOqWHn27nBCsVV4XO0kMuGHIGcjIrrlwHk9SnGnOM3GOyc5WXyvYX9uY6Dco2T9Efl6PiLqWqXlxrHhzxetrbXd7c3ENvaazBO3mec5lYIY94Xe8pOeOf9qum+Gfwt/aZ+Mt1YPpHgZPFOmTCO7n0+08dyRPNDuGeUsGSNjkLnDYZgAGOAftnxh9ue70C78G+GfDGnPo6TQTSweAIiLqJ4wN0u3U43dt6Ich15Zyc5xVVvGHxN06SJ/Dfgv4e6bH1v7e0+BuniO7IfehcprkchAbH8fOMnJyT6c+GMFOKTjJ9Pjlt95yLNcdB3uvuR2Hj7/gqP8f8A9ln4aWXjr9oj9iS18PeF0lTTrC6s/iTLM7yiF3VCk2kQlV8uJzvyQNhyRld1DSv+Cz83xq/Ya8f/ALVXwB/Z3vJ9S8H6xNYppGr+I5ZIbhLeO0uLm43W8SMEW2uHbHBzEc8GovjX4h8PftNfC3S/hN8Xvgf4ak0XT9S+3CwtvAzW1uZykiFxHB4iXgrLJlTuBJyRnkcH4V+Anwq+GHwJ+JvwR+CXhTVfDlr4z0LW4NKs4NRnSwt72+0k2Su8c97dsqFwgkb96fLHyqSAK4IcA5BFJrD6+cpP9To/tzMnrKf4I+Ifj9/wc6/tQfE/wDqnwtHwG8EadbaiIt9zHf6hdSJskWUAFrgAnKgHj1FfI8n7dvxt8Uu08PgqykRnJaKE3vlqW5IVftOF69Md6/ST4Uf8EyvhloPg6zk+JP7OXwz1PxTJaCPV72C4E1qZckBoI7nTH2KAQezZHJPU9hrn7DvhHwzoIl+DPwJ+F+j69bXENxp2oNYww/Z5EcMTvt9NSTp/tc9CAK9LC8G5RhU/ZU7X85f5nNUzzHzlq7/Jf5Hw1+07pHxV/Z2+Avws+O/jX4IaYsHxM0dtQsX1VZHTakNuzlQk+5AGuAAH5IK4HBNdJ+wx/wAFk/2hv2T01LwJ8Cf2cPhOW1yRLrULnWdC1F5Zwi7UUtFex7kXexUFTgyMc8mvv39qnwbe/tV/sWD9jzxR4R8FWfjBPDVhAniUasbg6YqalY3T3NvbGyWcLJ/ZzWwJmB2yyZZgDGaP7OP7PHxC+Df7Rnw8+Nfh7wh4auJ/DX7PWnfDJ9Ps70QPqd7azpNJqwkewdVaRY/LKFGk2kgytjFFXhbLMRT5a1JWv1b/AMzSGa45P3Zfdb/I8P8AH3/Bc79vP4yeDJfh34k+DHwo02xu7m2a4fSbXU4WVoZ4548eZNMv340OO49q+5/DHxL8Q/sK/tk+OvgL8adaj8UeCV+AA8V6z4v0/Q47ZNOV9bXT5VuInnYGCKMNM7AliHxsO0bus0X9sf8AaDt3hm/4RhEtHhJjW28fRIAgONhxohYMcH5Tj1yOM8j8dfFF/wDtJ+JfFE1z4F0+I6l8LBpGry6xqyXD3kA1OFxagx2KBISZ5WbIYvkA/dBHThcqo5VS9lhFywbu0tr6GVXF1MV71bfzOZ/4Zy/btv00+90zUPh7b2WugHQLm50u5kFxuXevmKt4pj/dbm78rt75Hnn7emu/tA/sifsEeM/jV4n0Pwfrfiz4X+N7OeTdp92unvFeR6fb/ukW43rIDeW5JMhGFfjkAWNC/bs+GOpJPY2v7a1npkOmTi2t59T8dzWcMFxyPKG6/AR9iSYj+Vj5T44Rgvp3jH45fBif9jGx8W/Ej9pPw5daJ4q8atFN4n1PxskdhrksFrGCiXM906zhZYDiLzZDGYMZzHmu51ZYiMJKelzCrhMTgqsqdXR2Pn3xhF/wUw8NahcQWupfA14orgorXGg6yDty20ti844U5xnn1ry79rn9pX9tb9lbwhonxB8c+F/g3q93EywzPD4Y1R3s7udrxR5LPfAqnkWwy2QxaRlxgAn6Vvv2oPgLpuiW2v6t+2N4bi069ZjZ31z8XYhFOyNtby3a7wxUnB2kkZxXjvxO/wCCmNjoHjeTRPh/oF7470OZI/sfiKy8e30i6xKu4Tiy8m2uIbhYBkOzzRYZJFGSK6JurTi3Kpp6XMaVGdaooxtfzaX4syv+CWf7Xf7UP/BRr43eIfg1/Zfw00O40vwTNrllM2iamI5ZI76yt2jdxfSFV8u6dgQjZZFHAJI2f24/2qf2iP2M/iLqnwz1Twd4L1e90kP5r6XouqTq2LO2ugwK3IYjbdIDlBjB5Pb2fT/2i/GGneDLDxxovw3+K97BrVnLNps/hTS9U1RJI4rqa2kDtaq/lFZ7aZCrgNhFfaUdGaI/tU3Hj74JeMPEFt8QPi18PNU8Bx2D+MtX1PRnQaU1xJEqpHa6oLd7kl7i3G5Q5X7TEzqnnR55Pr8Hp7R/+Av/ACPWlkGYRtJunbyq0n+UzxLwJ+0/8b/jF/wUY+Jv7DvgjUfCVpB4Q8U6npWhajNp9z50wtdZhsFM/wC9frHIxJWMfOAQMfKeh/4KQ337W/7Fvww0bUdA8ZWmq+K9U8RahZvYaVpcd1G8MUGkyxGCFoVmdv8ATp9/DYCKflCkt9BfBb/goD+yr4h02x+GGveJvHfibxHpehPPrOo3mky2f2sW1o9xPctF9uWOJmigmfy04JBVAeFo1z/go9/wTo/sd7/UfGfibw3p8kS+ZqGrabNbxLuOFkEk90IwPmBUnjkeuah46nfWo/uYlkeYyn7sYv0qU/8A5I/N79lv9t79s/4267470HxT8b4NDuNB+E2r+KPDlvfaNpdgup39rtSO2WS7twGTzGkL/MMLaTfOoR2Xu/An7Snx4sLKy1f44/tiR2V4/kC98K6LoelPdpIjLHeWckjWbLBcqxLx/K0MiEES+v0/qWrf8E6vgx4o1bUfHfxe8Z3niO21JI7zVPiTBYO1ncWs0gVFZ5UWMxStKFG/KsdqkYUDp/En7U37NtsFltvjrp8IisIr2eXxLfWtkq20kKzRTqY7if8AdtE6SKx2go6sMggnKpiee3+0OC66Xb+etvuOmjkOYP8A5c8z6e/G35/qereE/wBkLxx4y+AY+M+gfGrUbc6Xaan9tT+xrTdfvY3NxGJcmBjEzpCCVUhct90V4B+3v4G/a0/Zbu/Glr4F+Jvivxcmm/D3TfEujWuleBtOlae+uPENjp0yeTFZEOy2s80m1CGygc/Krg7em/tD/sqa1b2mq3P7QXgBodQQtYXEepmVLpQxTMbiLEg3KyfLkBlIzlSK3tP8b/su3WjXGtz+NtGvITvi026sNMZ4JblHjMitI8QGEjfJC5YF48jDZralicBTX8W/re/4mdXh3iCUrKk/lb80z5C/Za+Lf/BSL4w+KPgp4W+KGueKPA8nj74oeLNF17+1vhbZxrbaVYaTo1xZ3JSWyR1U3F5eq0m4K3lYH+rav0j+BP7OPie/0PRLPxH8VL6HVPHPwsWa7S60O2D6bfR3WiTzR7UEYkclpR5ZC7FU5ztJr5x8XfGD9lzSPD//AAl83ibwncaTHqVrZXuqTRQQ29vNcec0KtNOUQM0dvcsqgl3ELlVOx8ey/AP4h/s/wBu/wAdtO0ODT9Gj8DfDG5/4TrTUsLgjT3CQMWk3R7nJ8i4dkXeY2LJgYC1bxVCcX7Opc48XlGY4OzxFOUE+63/AOCfnB8WP+CCH7VX7DHwU8VftAftK/F34b6xp0F/aS2Fr4Mvb25l+2SahHlpEu7O2jSL7O9yCwcld33SOK8+/a01bxfH/wAEhv2efAHgzXxYLL8SfGs7yJqxhMqQarPBGuS5aT93ND8o3N1yBxn6J1X9v39pf9rvQ/8AhCf2gfGuieKvAcrm5udHv77wVPa3kiqVjCC3llfcrSBwZFZBsJGHEbDnviZ8Mv2J/HH7OXw5+A3iD4c6r9h8Daxr93Z2sPjOCTB1O6tpZA80c7GTc8RJyP3YOQV5I8WjmNNw/eU5aO+3Q782ybE4DEujCtTqO28HzRv62Wq6/mfOfwE0PwTpfhYwfGO+KtP4fXQvCd9qUl1NZTeIZbgyPBDEYD5UxUq8jErvaRQSGRt3PfsleOPDOlxeCtD8WeJ7RbgaULPT1gZMSJPKboFtvIcC4dGBC4VUwOpP2B8I9N/Zh+F/j/VPin4d8AaLJ4o1vVVv7jU797G/+z3S3JuFkto5AIrVvP8A3u6FE+bac/Iu2p+y9+3t8H/DfjrR9B+KtzpKS6LdF4vDvw20vZLFeQRGXyhbTwRrFEJfKyd2RF5hJUrmuqGa4Wre0XFR7qxx4fJswrtQpxc5Oy0V9X29T3P4J/s1ftw/FXwl8GPH/wAD7nxXp3w9PgvULXxfbaL4xhhW51ddV1OOV4oGLqke7y5TINpdhgA+ZKa7HxF+wV+27efsufFHwlc/BLUPE3irxDocMZhfXLAtq039uaDLlXup03yx2mnztucqu23gRTuIFe4J/wAFwP2dLbYtn8GviHdbs+bJdjToSvptC3UmR9WHT3riP2rv+DhD4OfBj4F634w+Evwg1mTxpPClt4UsfF8sSWVzfySIg8z7NIzMkaNJMU3xeYsDIJI2dWrz6Oe4OtW9lSqRcm9F1Pqsx8OuMMuwEsXi8BUp04K8pNWSXd66Hzl+zj+wR+2o95e+L4f2Xr2+k1HwbqbxNF4k0VTMt1pFyLWMSxXjx4mMoRHD7fmyG2DdXHaj/wAEmP2yvHUFp4O+JH7JGrX+i6VaS2sUUslvi/jKW3lGRRKASGjbhzgNGGJGVC+yfsZf8HC3x21D9oXxT8Cv22/hd4Y1KGz0aTUdF174TwOBC8F39luLaZLy52zL5kiKsiMm0xOCJA4dfqu2/wCC2X7Oz/Mvw18eAL1L6ZY/0vDW2JzqhharhWaTscGT8CcSZ1g/rOX4WpVp3a5oq6urXR8JftNf8Ey/2w/FPxe8d3U/wF8X6lpl5421i60yfTbFZTJbPqE00Do0B+ZWjMZAJLZAyA2a898ff8Erv2/7fUr2H/hlbxnqNtrGn2XkPp9xFlLYabbW6xvgOUlUR7SGKupXBwa/Tay/4LefAcxlp/hL45V89FtLIgj1z9pq3H/wWy+BoC+T8H/GrsRyTDaAdvSc1yf6zYCO9SP3nr/8Qm47m3bLq2v90/FvxJ/wSN/4KjeEI7nX7P8AYY8Z6imqwJbaHNsS5vLOOEyMxlWKQGLM0rFfMQFkZyrH5a9f+Fn7A/7d3wp0zXdStP2FviLbaZrWvXS6f9i0maSaCS4tovNkntvNeVVG1FMiIY2MbgZc8++ft9/8HPfxl+HHxUsvhz+yb8L/AA7aQ6daCbX7jxdA13O90zw7IFiSeDMIS4hZxGWkbzCQ8SxMzfV3wZ/4L1fDfxz8NfDXiXxn8DdYsNX1XQra71SDTtSgmtLe5eJGkjidyryIGLBWKAkLkgE10YjNaNHDwrVJJRlszx8u4P4izPMK2X4TDSqVqV1OK1cbPld9ej0Piz4e/sjftGaB8G/EWoW/7G3xG067bxZpLraweBb6e4mX7LqeXSKcq5VTIQ7ruVGkQHHmCvdPCP7M/wARP2PPg38bvG/xJ8JXttD4u+B5W90qMRSXhFvYWSXUkiqzKkSSXrjcWBH2efcqoqM/0Tf/APBbL4Q2qMIfgv4nZ0UsTNcwRr37hiegz0r5u0z9u39n27+KfxE8c6X8L/HGoz/Em1v5NetjcjUbRxLb6fFbqiMgitbZIrSYuwRxI8m5mfcqLxPPcFiKcoUp3l5anXmXBPE+QqnWzPCSoxk7Juyv5btn5OJqeovGFHn4PXMzAH8qeJtQdfmmKjsPOkOP1rPmku5o8JeNkkc9P5YqNlkj5mlZyOuWNfYOmuiPied9y9caZb3Mwnu9QuVIA5ivpYxwfRXApNU0TSdVtxZDxJfWyOpVlt9RJ3gjBBDls/Ssa4ngDeaszLgc73OP1OKrjUJpsmC4EgC8kP8A4Gl7IpVGndM2W8A6nJbi0g+O3jq0QJtjWz8QJHsGMfKPLIGB7VieIfgNoXiq3jsfGXx9+IurwxziaOPWPFKXIikGcMnnQsFOCRle1RTX0q8mIvz9wAms9tT10XGUsAsXokx3D8CAP1rNYSjzXUVfvZHbUzbMqtN0515uL3Tk2vuvY1T8BfBSalbavD8ZPGqXNlpp0+0aPVrQeTak5MK/6NgJ7D1q3H8JtCisZNOf9oP4iRQyIytb2/iOCNcMMN9y3AGRWFJLqEshLGQHH1/rSfZpZ0/0i5nABOVS6kUH6gNilLCU5O7RnRzHG0KfJSqSiuybS/A1Zfgb8NzGlsvj/wAS3AViRLeavFJICe5dosn6+w9BVe+/Zs+EWs3z6hrvxE8VXE0sjPJIfEJUyOzFmZisYLEkkknkknmqcty8Q2IOR2LE/qapy3V2edx6cYY1P1Sj/KjX+1Mwa1rS/wDAn/mdx4T+Evwr8EJe23hXxRrcEWpRsmoRnxEzfaUZNjK2ecFeDgj3rY8A+DPg18Lb1tT8DaUum3DxCOSaHXLzdKgIIVv3+SM4OD3FeSS31+Dkhj7lzWZqU2qzQspmYKc5G81Tw8GrSRhHFVoScoyab3d3qe/XVp8KPFV6114m+H/hvVABtLX2j28rZyDktIpdj1+8T1rpk+IllpGhLoXhuW306GK0FvYwQ3JihgRU2oqohwqKMAKBgAYA7V8aarZa4szXOn37owHyjeQfzzXP6nqPi22lYPqkyuR97f1o9hT2Jliq09ZNs+gLrXYypWKylc+uCB+dVhrpUGJLBUJ64k5/lUUJMjfaLmQxxDOWdtoqaC00e+JlguvNIbAMZDc56Hiu6yucF9BkmoajMd0USgn+8c/0oWTUNuJZM8dkU/zq5LpzkgQNIoHsP8KWCxXn/SZGOOjY/oKLIaZnqruxSdZCvqzD+mKat69xI6LpV1EsZwv2kRgtgDJG12+UnO05yVwSFJKi80DSKWDrwf4utQ3cFzJFtgnQN6lc4o0HcriRN+4yMp7gdqSa5lC4jDH0JNWYbFwgLlWbHzELjmkuLJnXb5hX6Y5/SkwujNurmUnfLwT0x/8AWqt+/uThbnYFPPFW5kcsNsZcY9qRfmUCO0RSOrAdf1pWHzdBhtlK7Q2R3PTNQ3FuuQPIAHvViV70k7du32Uf4UiJqEpAkCBByCRT5Q5zPn0RJgJFiiG44xjn6/59Ko6j4UtpVzcWsJAHp/hXQtZXTMCY1x6rQ9hIVKgA5HHzcilyai5tToLW0vwQplYnGGkYrk/XFTGxmU4Z+f4TgdfWpo3nx5YkUsT8q7AeTjoQT6/rVXUNcW2CLgylYyJEWCQbHDsCjhgBnAB+UkYYc5BAsgke21GNwhkVt3XaOn6VCYrmOTcXXaOSqryaitdeeeIrLp1wFBxuzgJ7/qD/APrqpq+v2CKsIvVbqBtppXG7IvSTQHJeJI19yQB7ZqvJqGlt8nnKpA+9u4Jrmry6ZmLu2eeOOtRCRMFhMPYYp8pn7Q6S71a0tlL20wdgBhc5yapQ6pqF1cq29QuemBgfnWVFcEt87DHYVZiMT4HmYzRyjUkzZEQchnDEkcFjnNNSG1BMYK+YFBZA3IBzg498H8jT47Sewj2SMd2CGKHsf/11G8S7jcxQhndQrnHO0ZIH6n86koj8sRsWLgD0KinCTdEUiiibJBDHORjPA5xznv6fmStG/wC7lfb6CpVSFR8jgjHUt0oArtcOnEiYI7AnFNaR3ORxn0NWisY6sDkdQeDUbpAwyRg9uaAP/9k=",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [45,57,85,70] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [23,42,104,66] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiivW/2f/hB4b+IPhy41bWtIF00WoNDzcSJhdiH+Fh3Y00m3ZETnGnG7PJKK+pJ/wBmP4TwooHhcbj1zfXGRjrx5nrUCfsv/Di5XbZ+FJJGGPu3U4UknpuL4HbrSehj9bpHzFRX0Rqn7Pfw5068/s2Tw7i437WQXkxCHsM7qqX/AMDfh/aI0D+FQZEOGaC/mY9PdyKlSTdh/WadrngVFeqal8LvCsV5Hb2uiOFLEuXmk+Vc45+bj615/wCM9MtdG8SXOnWcPlxR7dqby2MqD1JOetXZmkasZuyMuiiikaBRRRQAUUUUAFfR/wCxim/wZfKGYFtWcLgjGfLi6+2M/pXzhX1B+wnA134QvbWCLdM2tOY8dSfJiPH5VrRV5nJjXbDs9Y1KyijsJNaukd0hGXSKP5io6n/PvWDaePraaZI9A1PbLcT+ULeYkOWcEduTnkenPvXpZ8N6qLb7Cto3nQgtNl2y3ueuOp+ufpXj/wAVPh74iKXfiS5tLeIq5zbWyhSI8cOQOp5GePeomk7nkUpJvczPFuqabp2t3aalcTPqECorIuFjcdwrg8EZz0528E5rLurnWb5pTGY1HmH55+XxnjOOAcVy0oupLNvNWQkOcOw6Edh9OK6vwBdyazotzFPLGrW5zIjtgsQOo/M89B36ioS7nVKxkXtlcNdNeXczsyKySRscbfm5JH4dK8a+LcAtviDfwhNoHlHHpmJDXvereFjO5urW5YqF2yRqS2cdjkV4N8YGlb4iagZid37oHP8A1yStW17M2wjvW+RzNFFFZnpBRRRQAUUUUAFfWH7AJtx4C1Bj5Qca6wfe+GYGKHAAHJxg5+tfJ9e1fsxfGnwd8MdBudP8Sa6bR5NSM6gW0rkrsReqKf7p4rSm7SOTGwlOg1FXZ9p2OpQi1kdI0gAj2sypnOT2988evvjNYnjDQbCaySK8RZhKgkeMk7QRj5SM9M54z+leZW37Y/wLXZFL45ZY1bdhdMueD6/6qkn/AGtv2frmR3l+IJy5yT/Zl5054/1WKxmm3ozx40a8fsP7iv8AGrw7BFqsY0fRnj+QrKyphd+SeB24Iz27964r4fzR6f4ikgv40EdynlsGXODnIxxxz9K6vUv2ofgHdFVg8ekKrA/Npl0cn8Yv0rkZfjp8ErTxemr6d4iXyGDGRl0+4GCecgGP1wOB0ojdKzOmMatrcr+5naarpUN1AUFu6S5yD6ZA6nv0/wA5r5j+N/HxP1NSrAr5IYMMHIhTNe0a1+0J8K7qArZeLpN3PW0n+Y+v+rGK8F+Ies2Wv+MbzV9PuzPDMUKSFSM4jUHggHqCK2duQ3wVOpGo3JNaGLRRRWZ6YUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//Z",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAACTgCrR0LW1UO2jXQDY2k27c56dqf4aiE3iPT4Su4PexKVz1y4r3fxd4bh0KwRGtJLiJPvpGzEAc5YdM/jSd0iZSSdjwI6XqY4OnT/8Aflv8KQ6dqCjcbCYD1MRr0oSaRNIYobuKI4yDICu0fl/Kob3TraKDEcwkBPBB61g67T0Q7nmzI6HDoQfcUlaXiWLybpV8sr161m1tCXNFMYUUUVQBRRRQAUUUUAFFFFAGv4AJHjvRCDgjV7bBP/XVa+xvEmjy61p8g0+RiJDvlxIOWxhWwP8AJr4x8K6jbaR4n03Vr3d5NrfwzS7Bk7VcMce+BX01B+078ErQD7Pr1wSY8ENp8vB/75rWDXI0zgxsZuUXFX3/AEPPfHPwzurBJ7241FZZCdzN5RGcnrxnFcdp2g+IYYzPa3apHICME5/QjFep+KP2j/hPqcEljZT33lt1/wBD3Bxj3x6ntXD6p8VfBEqGKyN1t2n/AJY7cmuOVP3rm1KpVa96JxPjRJEuIPNOTtILAcE8ZxWJWz4w12z1y5jlsyxVN2d64POP8Kxq2irI6QooopgFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/9k=",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [38,52,59,66] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [44,59,65,72] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD8z7C9AlAaTGGHJxVnVtrXEUciHcAGJPoen8qzPLKz7BzkjGO9bmt2yTXaywENutkGVOeRmoSjylWRFBJZtGINuXHGc8An8alEJjGd6nPXac1TtLK4juSzjqR2PNXHinDqsan5jgDHJqbK47JFmwcglDIAvZTWhYJbR/aZmTLGL5SD3ArPsLWY3LRzQOG4wCpBrZsdIupMgR7BjkyAgEflTLvoLo0f23asnGDnD8d62YW0/S90txCkigZCk5Bxz3rElm/sid0Dg7R82zntnvUY1htQkERl+QnkMAOPwoGnc3dQ1LSL6zW4jgiiySRGhGR+uawdSuURhLGCELAMfaqEV3dQxL9qLBfMYAFQONx/pVuKSzuoWW4YMjDIXdg5BosJvUkSe1MBkHXacHPeo4VhmPnuhYgZ4PPFMnn023tfLEZ6EKA3Q/nUNlfBWwI324/u+9C0G3ZFuO8HnlFymBzuHaluHgnaMAgsJQTz2qtLPAZWlCkZHU1FDcIbnKtjp1/Ci10G6OagguI7wJNyVdduBWxD5rAgKwI6ZFD6cZbyOZCo+cE5Y89K0DAsfBAye+eDT5rmaViKyhZ2Uz4PIz271o6ro/2Lyrm2micod48py3TBqosTlhFCw3E4H17Vr6Z4a8RTW32gIrx4PK+mTntmmtikrjNHt5NUZLooRIrAyNIMZweOn0rYvZGtbURnOSCFIHU1Vso57MYX/gWBnvXS+FbGHWdtrd2zMsgIEhTgcnOD60NDtY4LUophJLNcQOQ6YUhT1xVfTI4IlMk8DZ3gjrwv/wCuut+Idja6bqI0zTSxSNMljzkkVy0swh+SVW54PFSNCav9mnhV0XChsncaht7eIwh4cAkHB3VYRbW5gaKXBUjO0tjkHij7MiwCOzdVIz/Fmk3qDVzNuIZprtbUMN+7JPbpVqERWcfl3SFiBglelQJZarDqrXk0JeI7fmTHQYz6elF7qltNeyWKRyBwByQMcge/vTGPcpcytHCpC4+XPrVW6jmsnVmU8uFG0VPA8kOMt93kcVXub7Up9SWKe0JtzIpSYdzjv6DrQJux0HgnwjL4n1SCN5SY8nKoOpz3PatX4jfDjX/CPiOPREtG2+QsignkhgD3r71+G/7M/hn4YRvc6j4TtGMm47jFuAIHHX60eP8A4MfD7xNeP4iv9LjN1JbNGGOflULtAAzgVSaWjJckfnnDpM9hcLJeIA+4Epnniui0fW5YY/It5/LI7OB3J9a+jL/9mLw3q99JBI9qyscH5zkg8cDvxWp4V/ZM8HaQZcaVbFcDEhj5bknmq5lbQakj5p0qG3S/WeZ0ZMkuA2cnt+tfSX7Cn7Pnwv8Aj547vI/jB8VovCfhuwhCBrJ431O9u2K+VDa2xVml4LuzKjgBNuNzDHR6f+y14V1m6TT9O0q0ku5nWO1jYMFaRjhQdpGQTjvSeFfghdfAVfh5+zD4X+P2v+GdW8eb7L4uWuj6m89xfW5VvNntQsLhSzLPF8hBEYiKp8zFrhGMnqTKdlofJf7QWn6Z8O/iz4g8AWfiRtYGm6jLBb6gunvam4UHaknkS4kj3YBCuA2DyAeB5nrPiRrd8XEM7FkLKViHGOP6V92+PvgN8Ff2kPiL40sf2Wfh14fTR/hv4Wa78PxSxiFdbnE6RXEdzI43yAxI5Duxbe3msDuKtzdp+y98M9bsLW58a+DdPvb37MgmmtAqAtgZCorKAg6LxnAGSTkklSUdQVXmR8T2ninzXK7ZlyMLujUc1etpPEkqm7tbeURFSRKY1wQOv5YNfZUv7IvwNti9xH8PrdY0G5gwBKAdSfnOKs6V+yn8CbhPt1v4KgVdpzIZMB16ED95z9KhqPQpSPjG38Q+IImNtLp32hAOGA+97cflVyz1DT7jaNU0KeGVm2g+WcbieBkH0r7WtP2Vf2aprRo7nwfHHP5gMTIxAcd1b94MdOMc/MfQU9/2Rf2dreN0h0V2QnfggZ3Y7EucegNLkja5N+p8WXttaGMpBAyP23E8HH1qCG2uPKMbqZCqk4jGa+1E/Zd/Z8siHl8MF0Y7VSZNxY+gKkEn0q3/AMMs/s+S2y3kPgTyUw6SBpTG24YO7GCQMH17Hily2GpXP0g+M/wOs9QvkGmQgQCMvJGqBeQBj+VeG/E/9n3XLe0k1DTrQgP/AKnMiKDgAHqfWvqz4peLtJXfDb+a8nyjKJxhgB3PtXhnjHwX4x8W6j/aEPxGvrGNExFZ2yBV/E98/T86uUEjJHzbpP7OPi+G5lnup7WGZc/cv3yAc9AAVBxjqMVr6X8AfG0c4kF1mN2UNLJdbgOfZRn8QBXrGo/CH4pSS28mlfEmbap/eCZmyef9lCT9Kux+CfizpmkyQR+KXuZwc7gWQBepGGQcnnqKnlQHNfBv9n/Xj8SNMvNX1BYrHT5TeXVyxXYBEpkGeQcZXJ6cA818mftF+DvFfxc1XXv2m/Ct1d2Vrf8AjqXSvD08F+8TNp6Q3ESzApjas75yDxzg9q+p/Elp8ZPFviKH9n7QvEcq6p4stXt7n5Vb+zrQj97cM2MhfL3g4OSGwOSK6v4vfAm30jwvB8LtF06RdC02yhjslCg4eEL854GCSrE9Tk9zzWi93VFXR5F/wTD+Eut6N4k1Pwf488PxWj3Hh3y5nh5+0wTmNgWK4DMFAUnrnqa5b49/sm+NvAPi3VrLw54xv1sY3kW0j89Rv5wFCscYycDOAQMmvrb9lfQ2g8aWkSOjqulKm5hhirfMBwOwAre/ay8O3dqf7StdEMuy3EsbptyHXocsrelaSbnHUz0vaJ+W974M+I8OqJpsmoeNBOMvG1pa27Qgg4yrCUBuR2PXI4qHWfDHxLSS5j/4TnxRJFaAs05tSRIMgfKiybu/5c8V7z4z8efEjRdS3aF8M9d1G8DsY2sIoWB5yA5FnI23OMg8fyrg/GX7Vv7Qui3B0rxB4HXTLY7Sq3GnTB06ZI2NHtbOSDsGeuDWBacjgf8AhFfiFaRwhNY8SXMjBZCYdKud7pu5BKoSDjp82OnI7ZMmoeMbC7ksNb17xZvjk3xxSQFfJX+98/zKefvY4r17wR4y+Ivjm3F9N8ANX1uOU+bBqOn6JfsWCthsAxmOU5BXiQe/INaur638KI5JNCu/gl4zsNajYNd6bLC1iwYrkHOXKEgqfXByOwp2divU8Jv9b8X31qUs/Gvip4QTlRGJQowc88Z79BmqdnL4mmkSKDxr4kmLMFMJsJcjJ/3cE+2e9e76T8U/Cur6gvhe6/Z38XzQxDMsbam7BkB5L/IvndeA2ecegNdj4Z8Q/A29SGwm8E+I9OtLt/3FjNazRWrNyMeYyiMg/NkFsHJ4NJ3toFkfY2q6jqJmB1LUJZZV5xDGCH6cfMeOw61i6v4pit22TQeS+D5PmSIrE4HXc2PTpX2Dqn7Hnw91S0/tCXSLKOeOJhbR2pkhDsM43SbmKZPcKdvUA9K8zX9gf4t60sb6r448KaFEcs50zS73VL4EOdojnubiO3UhQvL2jg5IK9DVtqxjytI8c8G6nrGsL5iQPNDEp890Me1Cc4JYHGB1ODXAa9+09L458dT/AAI/ZK0EfEHxuG8u5l0tt+maIdxQyXlyPkVQc/KDyRgN2Pu3xG/4Ik/Df42akl18Yf2qfi9rOkoiiTwvca7ZQ2U5ByyyRW9rErKeMAYYA43dMeyfs0/sNfAr9kvw7/whXwwu7nRdJXLHT4tQSMTSEYMsh5Z5CuMuSWOBknAqFLsF11OI/ZP/AGJtb+DGmyeLviF4lTW/FGq25GsazPGR5uCSIIgxO2FTnbjBYHJGTgdh8SfhrpktvMTBCHljZXwv3RsxkcV6lDH4A8PXjmLxFqU0jY8yKO4luFbHIB2qQAc+31rE8b+P9LlQ6P4M0y5GoscReYI0E2RxgSOCwycdPUCrUmJNXPFP2afgjc6DpT3F9YOby3n8sz7BgpnI564x3xmvWNe+EeieKNMSHWIkbghkZeMZPfqawbfUvixa6rJcataajEgT5oYZIRGpxwQoTJ9Tzmul1TxDNbWkZl8S2VrMyZe31SdYyBjqDg5z6ZrRMm2p8l/tX/s42ovGsrPxh4x0vyCpRvDGpTWyLkA4GwDIIPOT1ya+bL/wh8O7VbnRfEPjf4h60ro0U9lfeJJJQ3rlWuSoJHGdh68g85/QrXPjsNIu59P1O4tJI0GDEu2UEEZ4IIHIPv16V88/Gib4eeLPOltYP7OuhL5huNPIQY68qeB6kgAn1rOasaRufKemeHvD/wAK9GFxpnjb4haPDc3cgsZ4/FcMUanqAYygzgnGBgkKTnPNXtD+JtklsbFvj5e38EW6WRtS8YKjxNkkjYSGPUnA5Pas39oX9n/QvF0FxqGgeK/EV7PtBjg0+Zpdz44xHzjnj614BYeDbLwo+p6H4pfxbpsjRnyXvbpLUSSbQFVkkhOT9DyB901mpuDsxtXaZ9OWH7QvhmWyjXSviBbXs9uHEkLMbmbywxLFSZRz3BwcDsaj0n9p/wCEd/bPpLeN4bKVSYPIaII4JHCrtUjp0Hb04r4kl1jxH4U1iXUvDdrFaTxswW9sL7bLtx1KgAD1J24J5xzXoXgPxf8AEnxXoJh8L+GL1zLkte/2LYsk7g4JST+z2JbdwS0uMhskdmqiZVrn6T6x/wAFEPGt8ZNLj8eC5CY/dnW7OF0YjIwr3CyflnPb0qDSv23v2jfEOsmKz8U6wLBY/n/dwzxhdvJ3oXbHBzt59MkV8Sj4h65d+BZ9P1K00jXYhcMRb/2TKkkOWK7fMDeTztyGMJKnPJxXSeGx4BTw5Ami/GPX/Dl2EY3On21xDcKzkkqqrFJA+frHk5AGQATV7q5N7H1/q/7T/wAVrm4ja6vZbkEbXu/7FaR4D/eDNCZEwMEY54yK42x/bN8YeCtSdNR+JWvO8ZZo7eRZdrAseNk8QLZ9lHsa+avGfjTT/DclpZeJPEV7FLcg/ZtSuvh8IJZTwMl7eTfJjg5YMRngHoc+w1Lxhql/BHb/ABS0rUmtpRLHp9xdSWyuuQ2H+3hAox1zjg8ZGKi2omfbGnftWfEDxJ5GpQ+Pr60MwAiV4vJUc4/ugHmuM+KHxS8fR60s3iDX5pGbDWs8t62ScDoV4HNeV+H/ABz480K5RtesPBkgVk8tdLvoLpivB2t9lmADc8EjOMdcVs3moav4vnm8Q3kmmWls0IWOO4ki8uNVzu2pJIzjJ5JK9uKtJEnp/wAJPjL4s8U6I9lc+Ir/AMuF2VFN85xljn+L61v63qdlb6fLrGspPc7ELMWYu5wOxY+3rXi/gi+udC1kahpixajbpkzrpcClDx1LHYpx3AYMe1bOu+LdK1y//teC78ny02GFryK0Ge5G/wDeEj1WXqMYFU5WQGX41+Knig3Fza+H7uz0+ARMIp9TinG9iOBmNGUYz1JxxzXnWv8AiS+1u2a48XfHrw1ZyRxtutLe4uCdndmZLd+P+A/jnmq/iH4+eII/ExQfCjS9Rht7kbpLzUtThaRFxljJJdmJSAMh+FGMnjisvxx8ShJoL63p3gTxPpttOzHyPCHjC2uYZCFIIa3LXBlTIJYbRk5ywFZ3uWtjF03U9M8O66+qaH4k0rXIWG2VbTXYFYrwWCxXdtIZSQCNoizg/dYdfP8A4qfEv9nHx3jR/GPwt8S6bMpfbfafd6bayNhiMbU0uIuMnOM4OB07bHwy8aaA3jttA/4Zb8T+LFuY2mht1s4RPHjlybdrKSNhncc7c4ORg816jr/wjsvGOhSaX4f/AGePEti0xDyW1/ovhiw8hSMFvO/s4z5XPCKgYjnqOZkuwzwe38afDnwbo1paaRr179ktxt3RWVtFdjexK/6UsQlQ/MBuWQEfwgcAdBc+NfhB8SdPi0+1kiS9hhbYvjXxlIkNw+DjYxAw/PBaTseOeOg1X4dH4b38F14t02yvY5VWOeC98K3EiRRBwBvvrMWhQLhcsm/HIKkAgdX4zvv2fLLwzb6f4T8W+DdHPlgS2l5pU99CjOCzYEkUjsxJJDFhjdgg9ai7QHTz+E/H3g3WPsPjb4MWmnaarJ5up2T6LdIVGCzgG0kJ5JHzZIKnAH3axvG2v/s9RXc0Gs/FzTNKuPs/FrqPh6V3hQjopsbOOKJTyThWJzlgeh43Xfhz8Y/hsr2moeC7CO0m+e41jUfD+mQCxVfmaQXNwuIyBzsLgMCcBiMCfwNoEOo6iNTb4yX1ndSMpefSdG0+SDCfc8ySGaIDvgkEdcHqTbkkJbaEdrb/AA18PLF4h0uwj8Z+HGDuutxaPdxQ71Pzq8sxt1Tb0HUgANxmup8M+MdH0nVk8Q/Dy38GaVCY1kt7W90qeS7vBjLRQPdxurg9A0Mm3LAgmu8bw5qWoeH1ttc/aJ0q9W5Vo7O+e5tIpYSRtC7orh/4vTLf7SnpyVt4O8KeHdVhl1nxZP42uG3RW/2GOJrhHzwGka+AOSQqlkIAXkHu76CsdHpfxhtPE+qG48Rxa/4NkK4dp/D9nZxLxj/WSRySFWVS+doGM89BXV6Z4x8G6tNDYaT4/wBGnu7hxHE+jaXHNcyEnA3ubdsfU8Z7Y4rhotK8NTySQN4G8RWl75qGK1ubXT5FHTAz5MnJ65BcjI6YwOg1yyn1uex0M/CqaO7BGIL7TzC2MDDZtpAzZ/2lUemKcZCd0d3q3g9/Apj8S6v46um851WexFpFA068cNLHbJzt6FuBxngVy/jrxX4aVJWuvh7r10jKdinWrKTcNnYGQEg+mw5z9094tO+G9rbuYtU8JXtlcMmZIIvNIYZ42LPK/wCe1hnI5+7SQ/CnR7bVWvo9X8ZpDGVeexuokt7SdeMqDbvbFTjgtnPuOtNu4jyfWLP4fXWvSeLtA8K/ESXUIIswtpmt2li8ZUfdiCzQvLgjHyKRnIJzmuv8KfFbxrrlit5e+N/iPoVszhIW8QeD5r4ll+TiaaR3bGDyOOOPl5rvtL8B+EL/AFJ3Xwc9lbBd1vOdSu/LZwP4j/ajKeQeSre4rW8X/DX4I+JdCi0jWfgJpmteVIJEnhuraGVpADyZ3l8zHO37x44xjipauaI+b/i98Rdf8ZXUXhHwT+0NNql9LcBFOvaR9geF/RGW3QN9CwPbOBmuf8JeHP2srl5tOtPGd9LHCCifbfDN/Jazk8kJKsDo2Mk5zgYPPFfQNv8ACKGS3e3j/Z58O2MtwrQwyX17pt4oiLbQ5dbEyyFRgbWfAxjJwKveF/g7e27nT/F3gb4fyIs4KS2WieWRHj7rLhUPvwB3pSTA8q8N/A/9saeOz8T3niHw6YIt5s7a/tZ4oTKCcbo/swMnzAnazD2K8Y9u8L23xGtPC4s/FtzYQ3IgZZYtJVEgcHJP7uWCTaSe4J+hJrSt/B2maABHo2r6dpwCnesUvyls5A+d2XbjHyqQeMDFQS6Ro81211qeqaJdXIZR51xpccqGPAyNwYYOcfMWbHPHpL1A/9k=",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD823uQMrzTPtA/2qimdTkhqr+ev94V7B45LPcMzEKT1qJWlDZ3VA9wu8/MOtJ56/3hV2QF+K4YkLurQiceSc1hwXA38MK1LWbcm3NS5W0AkkG85FVjphlk3rwKtVdhS1X70opxmBSS0MIAyOKJHUD6VPdPErna4xng1n3V1EpAEg6VXNccdyQzhm2LkfWrUEHmJksKyI58yfKc1pWtyoTBftTuyyb7HF70+azggQMwzkdqiE6nowNE0ryrtwcYpD5mYzTHafpUFDTLtP0qWICWDIxWZkUpLadnLKOCeKBG8fyv1q1INqY9KhrRbAJB1NXLe8MbBRVZDzinVhUT5gL/ANuPtWiDkZrEh6VbUvFyWP50oxAnvZiuVzWVM+981NcSM8zHcevrULDkVrCPvDjuOtv9b+FXovu1XtY97gY7Va3iNSD6VrylkkHep16D6VR88DpU6sdo5PSpA5SbVGHyg9farmm6gQu13GPpWSyK7A4xUyRsh4f9KzMzTubxcnDd6rC8Ytw3FVZCzcbqbGpU8tnmtFsBpxSFuh5qzGqt1FUbPOce1XohKBu2AAckk9Kzmm2BIqheFFWlPnxknrjrUFrFJeQtNFEwAOFLDANWNOtpYoSbgbaSTAozZRiM96qXN40IGTz24q7fFfObac81RmgE/wB44x0rSCdy4xZf0O8S4lIYc7TV24jBBYdqytMVLWXr2xmtQXcbQsAP4eOa1G9COJFb7wqwv3R9KppOY/4RVpZcgFcdKyuhXRyyxqwyCPzprSKn3jW4/wAPPFMPP9jzYH/TI/4VXuPCHifG46FPj18hv8Kv2bM7oymHG/IwenNIhDfMGHWrY8NeLSxT/hH7kqDwfIbH8qUeGPEhOP7KlB9DGaXLLsO6JNKj8+bahBwBnJroJbe1k0aQRyqJFKHHr8wyPyqj4S8M6rFqX/Ez0+VEYDBMZrW8R6ZZ6YXMdncMpX5mWIkD8a0p0+Z2Yro+tP22f2Tfh34X/Z4+H/7QvwcnVZH8M28vivSoGDCJjnMzDscV8c6jqhuHAt+VK5O30r6A/YysdV+Nei6r8P8AxX48uNMs7yA2ek3txcboCccRyc4UAnvXkPxM+FN18LJJdPu2Z54dSkgV1UlJVGeQehHFdMsNaI01c4x7lWlJ3gj1oZ4nI2OPxNWo/Cmv3MYubfS5GjYbgyoSMUx/Bnip3Xy9ImOR2iPP6VyOLjKxsmrDLeLLgkgj2Oa0ILPK7gpxjvTbDwT4qaXDaVKMDuhH860IfCPiqJgBpzjkdTTs2ZzauY+oZhJxVnTxJLtBQ9K0bjwZ4qn6aYx+iGp7Twh4ihAzoU+QOfkNT7Mm6PvCf4deHGfdDpNvgHnEdZ+q+GvDFv8A6ONIg/8AAcVzV58U/iZYxg25sJEPU+YoOKzH+IvjK8n868jRR9a9vlgedeZ0P9k+Ghvtv7OiOCQFECj+lVIvh74XmmMj+Hw2T12D/Cudf4l+OZ7s28dlbCNWIV8rkj1NSv8AEPxXb6j9mmuYIm8oMN4BU9e9FoGdqvc6tvhj4Pmh2y+HQAOR8oqXT/g94B1AfY7nw6rI/DBhwe9czafFLx9EG3Q2jjoHDritbSviz4iZfKvIrZiT1hYZH5VMacHUE5VIrU5b9mz4Lx6z4y+JXwn0pWtorhXuNJhT70Mm3qp+orr/ABv+xZq1nplv4J+J2o3E0z6Ylx58gAMMjYzg/ia3f2VNRib9pFbmVvIW/wALKOhYe1fV37ZXhIS/D7TvHFjaBpFP2aTCdgOM/lXp08Opx0OaeMnBn5p6z8O/HX7NWprJr3hyTxD4TnkCJdWkeXtl9+vqa9b8J+EvhJ8QNJh1TwreBzNGD5O4bk9sV3h1+KHRzYX0SOsqnzrVxuRx05Xp0ryTxJ+z/qd14hHi/wCBF2nh/U45fMe2RlSGUZ5G3p+FclTCPmNYY6UtGd3afBnwb5ZQWAdgcMjDmrtv8DvCTlZBoi8c8iu8/Zztdengkg+MGkytc26Za4S3PlufUHGDXqc/w/tNXtjc6DbxpE54fAHHtWX1Q0eLsj57Hwr8J2fH/CPR8e1PHw08NEZHh1OenFe1Xfwo1PzjK0DNGRgEDIzVG78BXVrKI5N8YA4BU81X1aBzfXJnyLrfwh1G+CtcC5t/LO4Mr5BxVQ/CzxFIMjWpRB3LHmvULj4g6ZeJ9nOtWasRhY/tCHP61h6pcaP9p3T+NbVGxnyRcAD+dcHNI6/aHIW/w+tbF1Nxr2cddw/+vTPGHh5Lm1S00qdJ2Ubiw4P0rR8RzeHYDHJJrKSyTHcI4ZQTj14qTQrDwxcYlGteS7DG1yckUc0hwkm9TnNN+E3inWYlmS6MStgbFeug0D4Ea9IzyafeHzIT039a73wZ8DNT8R3cV9pPi5reOQ4CSSHDV9M/An9mHSNOeDU/EOqQSwoP9IJfl+OxzitqKcpirP3NDwj9jb4J/Em3+Kbazr1jFMkDD7KwjIK/rX6CeI/hrZfEX4PXnhW/t3LeX5i+WQGDD0yKyYF+BfwvhttU0vUoopP+WmZAea7zwJ8RfBl7GkdjqcTrIuH+YDIr6HCLlizwa83zan556x+zx4j0/WriCeR0Au2ji8xSSE4/Xk16R4C/YwnOjx6uYr2Vxh5GSQbc4z0x/WvsXX/D3wj19GS+s4o5t5KTFMgn8K6jRvE3gTwZpkNrFaW8kSwgEhcEkDGea1qxXLdLUw9q0tzxH4bfs/6ePAAna3l89SVZLtBjHrisDXf2ZPHL+JIr/RdbzZbc/Z4VwoNe66j8U/Ct5J5dvcRRKoIKE8EGqdt8ZfDOllbSJoslvlK4rL2d+glXlfcg+Hn7Nl5J4USDW2DyZ3NKqcAfjWf4Y8KfCrxRrF/4Me4tDd2VyY98+1W49s816Bofxm0e7byoJxtA4iWTGT74rjvHv7Pvww+LU0viDSro6JrUku99QtVKtn8OtY/V2m+ZaGn1mJ+JF3ZRR3LW1p8NrmZ1GRLAfuAeucVUt9f8N6zqg0G78CSJORt81nxzX3FZ/B0R6ldWd1opAET+YYohnbg5xx6VR0z4Nfs32GpRane6BdTXI4In4+b8q8eWHsepKqkfMfhz4H+JtNeLVLKwtkZ0zGk0m7amOP0rWtNE8UwX6Imj2kt5EMbQpOR+Ar7Ch8KfDiGx8yx8IK0ajGSTx7VVtND0+yvft+h/D22WQjBmK5IX8accNzDjVsfLN9rnxo06+RTaRW8bYGxIWJUD2Ar1Lwf8V9Xj0byNV1W9AePbPapaSKxwM5BxjqK9lH9nq3mXOi2Tu/DuIhuStCCzjmh3yW1qYgPlLW65/lXTToKmxzxDaseA+EPiP4h13xL9ivvCWpGySTh58YYfnX0T4XvrNdBhvLiKa3uUHKI3Sq9v4Vtnk8+GyTn+5GBV6OGCGLyAvGK9ahJpanmYiMW0VtR+I96g+zwazcI0fUFSR+FWvD/jq41tGTVtcuVKHau7PzD2qI6VZEfNGje2OakhttLsgf8AQxGT0963crnE10NRktp23W19Kc/xMeDT4ns4GHmuWIP3s1mpqCA7IxgYqN72R5Aq9SeKm6Eoq51ujeIV0OT7ZEWf2zXQD9ojW9Gi26Xo8DNj+Jz/AIV5j5Guh/NP+r9KbcQX5kB+1gZ7Y6VHMa+yif/Z",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [38,32,57,71] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [41,47,58,81] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK/pG/YZ1QR/sTfB2PgbfhZ4eH3v+obb1rSpqq7XsZ1Kns0tD+bmiv6g/GXi9fDmiXGo6ZElzqk0LJp2nmQb7yVEeRYo0LAySEByFBBO3qACRN8ZvG//CK+F9J1j4deGtW1m41bTrm50u70pm1Oyn2KSiytYwTrGZQ0MkMjSLE6+arvCVBPNisRhcJUjTnJ3fZf8E3w9DEYmDnCOi8/+Afy7UV/Tz8IviTd+MfB9ofE2teH5vEltZQN4isvD1+s8NnPICQvDMVztYAEkZVgGcLuPUnVYyPv/pXowwtKcbxnf5f8E4p4icHaULf16H8rtFf1QHUwDkMKhl1VsY4/Gn9Tj/P+H/BI+uP+X8f+Afyy0V/UZqOpanPGI9Mvre3fdlpLm2aVSuDwArKc5xzn8PT8sv8Ag5Alvni+C66leRTzr/wke+SGExqRnTMYUsxHGB15Izx0rKph1Ti3f8P+CaU8R7RrbXpd329LfifmBRRRXMdIUUUUAFf0C/ss/FPw74A/Yk+Eeoa7eOsX/CsdCH7tcjC6dDuyTwMbTnnt7jP8/VfsH+zF4gvvFP7OXgnSdWtzeWcXw/0i3tI7m1UrC0NjGRyX5HmDcjAHDIcg4cLyYzE1sNTTp2u+514TC0cTUtVbsux7/wDE/Uf2fPiV4Cu/Avxf8Uz+HdG1OG0nsfEMupW/2y9WC88y509LnUnVLZS0MMoeSZF3vCu0n91JV1f9kb/gnT8GdLGiav4+vvF0mp6wI9QsZtTiafSEjkvYw10ba6t2todoUuTy263lVVVwK8+u/B3in4m+FrmD4e31lFdRSrPp1rf3RghjLgRlCkG8F1TCh9pGw/ewcn5y+Hf/AATl/aY+FGmz6D4uHhY6O4na61Kx8U6rp93DvjEe+F1j8ncDtb54ZVYx4YHjHmUZTqxk/aOCbu1fd6a7+SPRryjStDkUrKyfl20Pr6z+Jf7H3gzSLz9nr4I3GieB/FXxD0+KO4bwn421fxBqOlyuJobGSfy7cRwSq9zHK2J0i2TKfOboPoqbxRaWSF769ijCgeZIx2qOgyST8o56k8V8CfBv/gnCvw+8fxeKv+F23t1rL3onkvD4dmluJbbzImEDTG748s25Am8kHLsx3r5YH0Rc/BP+zNZXwr/wlcU48seSsskm2bODgNhlJC4PDcbVGeTntw+Np4WMoqfM273fol+hxVsI8RKMpR5YrSyXS9/1Pbbvxpo9kC2oapbwYyT50oXjnnk9ODz7Ut54ogsIJLvUJ44ok53M+MjqT+Gf0zXj+ueENfh8q+1O2sZGhdbfzYJXYQBgvUMw54B56HBGeKwr25n+xQ6L4phnvbNyjRLNYJernPlBduCzNjJ+VTwrkknioqZ1Xjf3V97/AKf4FU8ow0re8/PRf56fie5R+M9NvozNp14k3zFflcYyDhvyPH1GOtfmD/wcKeJ08ST/AAlMW3bB/b4yDzknTwc8/wCz7V9vaJNr91A+iXeoCK1kkYzfZ0beihuMOFJ3kowbvkjIBZQfgP8A4Lt6PcaCPhVp8+qfawU1uRZHlDyDd9gyr4AAI9PmIHBd+CJoZxPE4pUXG1/PsrlVcnp4bDOspXa8u7sfnzRRRXrHmBRRRQAV+x/7Jfh641D9mLwVrOpamo061+H+kTzlYiGWTyVjERDq6SBo0yQqj+HLbtyH8cK/Tr4Kf8FK/wBljTP2d/BPwt8dePtOtpPDvg6wsr/T7nw5qEnm3EEES7UnjhcoxaPBZflOMDC8ny809v7Jeyjd37XPRy6VGNSXtHZWPpP4Y3bb303Q73yvtPlR2z2qxKkqM+8ocZbbjcNhxh0yQoHzdfr+qa/4bWGytdDFyYr54QLOHzVCFmKngE4IHA6jC9M5r5k8Hf8ABUz9j3w1LG0XxA0q0t5JHYWll4d1fdbeZIXYmRov3zYYoSR82wFmbII6bUP+CsX7DLK+74vJdKXDJGPDmqZjDj5gCbdcgcKQCmcZBNee8PXlDWL+461XpRn8S+8+gUsbjXTFeS3ZGmJZx2j2sjli2FPmK3DFcA/UkYyM5Po1pdavJZNbXrWkV9FAkOBcK7CFt0cbDDKSqvvDck84BHb4v07/AIK4fsVDSrnSdS+JksccpGZLDw/fRuxH8Sg25GT1+Y9h0xzvQf8ABX/9ia1so9Dh+O0aWtuqCAReFNU2lFQ4jYm23AjJXOCOcis1hK6s1F/cU8RS1XMvvPpTxbHqmh3YTTpLl7a8A82481DESARhlI+/ggjAwDXFa34Q1HQL6a/tzOY2twWmVdi25yAMAMdowwxu7gNlQDXkcP8AwV3/AGFrjw+ml33x4USs7lmXwtqgEYwgU4FqMng/L0OD8wzg14P+CuP7EGlvG9v8fBLGswZrZPCuphSuCCMtag45OACCMkBgOKp4avzX5H9zBYilb4l956fZ+JzoGpQ22r3E04ezWMRPGI22Zwxy7gvwEOQQoVWwCxOfg7/guB/aaXPw1h1XVkunX+1/KO1g6xlNOK7i2d3fDZB7FRgM3vPjH/gpt+wtr0qyWPxoaJ87fOi8O6kjLkdctasxHGM5zzyCOR8b/wDBTT9pX4SftCX/AIOh+Evjl9ct9Eiv/tU0mmT2zI032cjPmxpuJ8tvujA2jpxV4LB1aeNjUcWlr+TFisXTqYOUE10/NHyzRRRX0Z4QUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/9k=",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+f+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKK/aL/glX8Fv2QNd/wCCW2m/FT4rfs2/DjVdb0W11C+1TxP4u8Cw3Za2TU7+NpJZvs0kkscS+SXKlmjiiJxgCvRPAeu/8Ej734J6XrHi79mr4NX+q2sa22q6/wCGvDOh3VtMIhFbvqF0n2aN9NjlvGjAM0USKt3Ec/vFVOarjMNSqKLbd3Z2V7eupvDC4ipBySXzdr+h+DNFf0KXfwE/4JxW/hnTvG0f7NXwZn0TV4ZZNM1qy8K6JcWdyI2ZJAk8SNGxV0dCAxww29SAfO/G/wAI/wBhr+19P1XTf2TvAltpbYjmgX4a2CM1w+RGxP2YkpgMCoPVkYDjNdM62Bgv4yZhTpY6bs6LS7s/C+iiigAooooAKKKKACiiigAooooA/Tr9hb9qib4O/sR+GPC2p3z7dV8Ja5pWh6VqjNHot5LJqOoGaO8liUuhnFxGFQlDItg8SSw+exf6i8Ef8FAP+CdfxJ0jUfg78Mfgp4U+Hmvwyppuuyax8M9Jt4tVEMluZ2k+e7iaDzE80IZZpjKlvhXRZJ1/Frw9+0d8ZfCvgiH4c6F4uSHRrcsYLN9LtpNhMpl3B3jLgiQlgc5BxjGBXP6z488VeIdQbU9Z1MTzOxZma3jAJJyTtCgZJJJOOSSTkkmvNngPaTcm7XfR+d9dDvhjpU4KKV9Oq/4J+2Phf45/scWy2XgvV/EEGq65ZW9zPougeDfB2q6fFYw3KTyzPdx3dwLVVkuWfEUFtbzRpawqVCM0Vuk/xH+EUOlZn1XUXjEJEzX9k3mElt5YyFN5bcVBJIG1U27MMD+N3gb9or4yfDfUl1jwX4zazu0jEcdybG3ldUA2hQ0kbEAL8ox90EgYBIrq7z9vn9rXUYBb33xceVBnAfRbE4z158jNc1TKOaWkrrzf/ANo5nJLVW9F/wAE8eooor2zygooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//9k=",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [47,56,72,77] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [50,41,70,57] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD4u8IeN/EmlRz6je+F5Lu0gs1nuZPKZgtsX2eaxHGzLBcngkgZzXa/DzVvC0HijTJn8JQX+h3bCXUdKv8AbsYblJjKgAFWBxhlOSOvNcndfFOF4E1J44btJrFo767t1QupWEHzS6nDAt8uDlS0THoTjmofG9vpmuf8JJ4XkuprH98b21jiKqgbb84AZuATjGTx27n88pxq0KntIaNO/wDVj03h6VWNpI/Tb4KfHPwv8Rtfm8FafpzaeLZfL0W3lgdGuIEUj5QNyfKqk4D7toyUXBr086arqHT5gfTvX5Y+HfFWi6pqMNzJcpNaSsGlKAtu2sAOPUH/AD0r9IP2dfiF/wALA+E2m6oNPuY2tIvskkk4U+aYlALgqTnjBJwOc8Cv0vh3inEZlKVLEpKS106/1c+PzLJlh/ehqjrhpjZ/1eKbJppPG3608a3auHNs/nMkvlOkXzMH4+XA5zyOPcVDbeJbDUtKi13Trm3uLK4hEsF7BdRvDJGRkOHVipXHOc4xX1axsU9zyY4Gb6Dl04AgEcUj6cqjIGa8p+M37YXw28F/Du913wH4w0PXNYSUQ6Zp9jq8E/2i6kimWCErHJuYPMIwQh3AfMcKpNa37N37ROk/tCfDW28XafarDfxARaxYoSRbTgAlQT1Uggqe4z6GspZjBVOW+pv/AGfaNzvZNPbAKJn8aaNPmY5MP5mlXVLoHBthyeOR/jUv9oyDh48Z9K1jjG1a5P1N9CP7Ls+TH5CgWU5J2px25qQ31xx5MEbc8bhzVTRZPEx0Sx/4SAQJqBsojfLGPlE5QGQLg4xuzj2o+s+YvqrXQs/2SSN2P8/nSx6btbDDinBr8nG0DPv/APXp8cksbZnYAY96Pbu2444Zt7H4HWnx01WLwjbeDo7JRCtjFb3EnR3CmQNj0BRwB75Pek0H4xaj4XvI7rRoHi8vGAWUggY4ORz0FcsmiRrcbFkB9P8AOa1tH+GfjHxRKbXwx4X1HUZR/wAsrGyeZvwCgk18r/Z+X2s0vv8A+CfULE4roemv+1dFPd22qWfw5tbWVIVF0kF8EjmkDZZ9qxALn0FVvGn7W/xF8Wy2EE1wYNO0pSNO0p7+SWCBizFnWNiFV23YZgMkAA9K5W0/Z5+Ob2B1K3+Dfi64t1PMlp4aupgOcfwIe/FXLT9mT48asN0HwU8VoNgbfd6FcwKc47yqoz7dazpZfk+FnzRST85f8EzqPGVlaSb+Rpa9+1V8WPFWk6noWteII57bWdW/tPVUJYC7uvmPmuoYLuJdjwo5x2AFZ0vx++LTwnT7LxzqNrYm1SD+z7e8dbfaIkjb93naN6oN+PvdDkcVtSfsV/tE2EgS6+FdwuVyCNQtyCcZ25Ev3sclfvDuKut+x/8AHiGxbUP+FaO0IBJkj1G2YYBwcESnPPp6H0OO6NXAws1Jfev8zjnhsYn8Dt6P/I4rwZ8T/Evgr4k2XxR0iWBtYs9Yg1RJriISLJcRSrMrOpPzAugyPTjgcV13wc/a6+Pn7Ouq3978JPHH9mPfwxxXglsYbgSpGzMgImRgCCzcjB+Y881W0j9nTx5qHidvDQ0WzNxHpxvXWHVYJgIvmC/NHIygkq3Gc4GcYrpX/ZL8Yf2ZJf6rbR2tzEsZuLOZPnjJPzkkHBVQCdwOCBnpzUvHZbSd3Nfff8i1g8ZJaRf3P/Iu+J/+Cnv7W/ja2fw54q+IkV9Y3MRjltjp0VuhBZCdwtxGJQVVkKyblxIxADBWXc+D/wDwUl+LvwRsbjT/AAToGjSQ3ilrpdWku7gvMduZubgKrjDAbVCgPjGFULwUn7GXxW1a9t7jwxo1rcW/zGS5jvIyAMYztDFmw3y/KCe+OKyF/Zn+PTXT2lh8LdSu5YlkaSOCDLqEGW+Q/MeAeg7V008fl9TWFRff/mZ1MLjqe8X9z/yPa9O/4K9/tc6b4/fxVd63od7pbJtTwzdaCgsoztA374mW5LcFv9djLH5cYUdVcf8ABaL9ofUbARJ4S8F28mD/AKTBpd1uPPHD3ZHA4HH1ya+ar79nf4vabqMuj+I/BZ025gKmaG6uIFZFIyHxvBK45yMg9qwNW+Fvxb8PwLcXXwl8RzQScx3Nho09xEwPIw8aFenqRXRDG4O9nOL+a/zOeeGxltIu/o/8j36X/gp/+2E161xH8dZ4425EC+HtJKr7Am2J/M1DrP8AwUx/a51yBbe++Ol8FVtw+y6bY27Zxj70MKE/Qmvn608G+Nb9vIt/CV8swbD288JjkQ5wQytgqQexqxf/AAy+JWlgNf8Ag66QMpaNUdXZwO6qpJb2xnPaqlmGCTtzr71/mQ8Bjd3F/c/8j9EIfi+Teto2kfD/AFiS2jgJjihu2K3PLEwh1XC8BTl9oPzKOm4T3OveOL+4mfSNB0+LT4pIktYi8kizKsrO+x9yhTtCAMQrHc4O3AJzF+Hl/wCEtNuNT1PT20W4uL5oomSFbiJo0lODlpGMKll3rk8qP96k0i68W+KNLmvvBHjKO/W2RWvrQSpbuqnodyu4U5KA7hyWGBz8v457/dn6cmzYg8XePItTNv4k0e2tI724aa3InVmILbcKC3yoDngswHA561p2fxC0aW4ia2Ebyyh5tn2HchjDHO0qfnBbAOMgenGKr6v43vfDvwxstB1y8tNSdN0tnZXU0f2pZzIkCoVZ1yCZEPytyBkEcCuRY/EjWHhv5313R5YZWbVhb64s32i4lwU3xi4LRjad+Cc4GeMmk6U5lKco63OP/bt8TanefAy+uPBF7d2k2m6pDfXd3pkzQFrX5kYeYhVlVXdGK/MoClv4c13f7P8A+ypD8Z/CkGl+JvAmm32l3mkWOrTXt1qTTPG7zsYbW4iKLKx2xo53sYnzt2sVKpn+KPDPi3T7C5tPG9w97pOvJJbXIsYY4pru0kSRNwkDyEMdy5BfcUKgKCCa9Y/4Jo/G7W5vBPj74PfD/wCH3h/w9pXhfSpPtmrW1g6XOr3dq93cHc0MSW8OcSSoiR7iHAkncrvrblnDD8vY1oypyqXnrc2PhT+zt4a8AeLNUfT7S5nk1KzcpZCWAbpBO4LoQoD84jYDJQoMAOmV3PGtzbzXmr6Wljpj3trpVtNcW8zwyxiMyyeVuMgDbHaAqgMakkyLlzsRvU/CCSeDSdY0+5/tPzdHivBZajqXkT3jGMypGkbDeCUZUCr92QA7Nx+T5N+BniCb4wR+L4dH8aQeIfE/j62g1V7W38RwRyQXsOkaZfX0CpbWoMUcb3TW4Sa4KZSCPbGRJI3C/aznzJnp/uadO1iw99rFpf28Oq+G7S1kupER70QPcQudwVUedlwpOQmCBgnA3AAmhdaXoEkbWXijUJ5EjUvHc37WyeYzZA2LHHEDGD2YAsODkV02p+F9L/4QxtGl1K7h1jTtRmt9Tt57fZMswLtJG67crIkkbqcnhgw5xXATQPoOpy/Zra7sJmlfdLFAkvmRbx+5KBPMAKhsuuApxgdTW695anm1EoLQfa+OdGENxbabNolzDEoEiFPPeX5mKsS+cFgvKqvGSAzA4rOu77R/Fk1lF4k8eafpplnYLZWlo0JjVclIy8TozDAAIZRgDHAOBTu9dZZHutT8QxJN5pWO3gv5o2lOwqVKTBWRQcnaR1AOTwKwotd1fxDZWmkeG/E1sxiguI5NJup4rmR4I927zFdmLFcZ3M2Rn0JxvTpJnO6l1ZnReJdc+EHh++kgv7myvjPaKhtmvG+bDBdySFyRnA7nIrG0KPwdqZ1LUE8cWl3HBOZfsctmspsjIxKhSLSR22kY4JYHA5Jq5rz63pemXn9v6Cf3Nx5RvHs7S1hRwwxwJXdoyVbD4JK9t2AWaskWrwCaK2jltLqLy7jTbWXy45CFwFd/KKxJlgdwcYC4xvGD1U8NBx1M6lpLYf4iutBvPhjf6l4bt/J1LR7iK1n0e61a8sXhiWN1mDROygyKSRsIGd2Dgbg2D4F+M8HhXQB4y0Dw5qU01/eRWWs6aRczm6tUMTSXI3SsgBwU4XLBcn5UGOXv/GWgyaVZaj8RPCUum6gtsFs44rLzbWISOoGxXWRi7B28wudx2uQecVxOu6V4clCTaN4X0a9sJLaNrKWy2W0rshLSZiiUbyyjaSyFiBgEbuOmlCg00zldaVz6C+Ifxl+DHifR4PDPgTxBo9pLbXL3KQWetm0mbZGgZGGQGyQ2e6FM9WG2jpHiqz8H6bLHP4ovYbW6t48vNfyXj6UVZo0DAyy7VCpkSFWX5wOCRn5r0jx3DBex+EBpsP2uO9ErTxXjo8kJYHyZFyQ46cEdOecCvTrb4R6vL4PDz+DrxL1lRLXUr/UpZvPjZxs5l/d7i5Cr0O0gBQTxnOlQpaXNFWbO10a4vvHSTXH/AAlVrqxtXd/7X0OW2e707PLKytBtKjpuZdy+ZnIIU12Wo6R4v+Cf7P8A4UfwloevKfG3iDxJ/aUbW0NhDHa2moC2YQTvFE1wjJFDNLHGzp8kWMEMzcJYa5r3w1VdN+J/hfxHeWMEhEqadYi8NxCzBVcxqykLtVNxcqDgDOWrsfjT8VZ9b+Cfwu0W20/VdStNP0zxDq+iLHoULQ273etXZKowWOUq0FpExaYBt0jKS23BybUo2iaU566nRfs8ftG+K9a+Lfh34OXVnJJFqkQ0+GKTVpdRnstpL77YQ200kWSpRiREFR2Kz27BXQ+DFj4V8EeJNH8ZWU+q6ZqKeE9T8YeGJrR4kt9K1KWSGVnETIpnabTIbVd77g62yKnygCPyL9mrx9PpPx90Dxbq/wAG9s+j3Qa9ni0SRClvJHJDKUbY5wqzSh0TIUSM2wsUFafxE8Yz3/xAvoPhX4O1i0urnQofD89rqNoyv5a2cUDwKC8hRikKpgMS/wAxL5JzzSw7g9EdUcU+XVmr8WdH+Ll54jvPG2p/tAa0JdSmmu7lLQ3KSPJsLzCSSGX5g5G7DRkLltmOK5/wpFqtvbSapZ+K11O2t5PK1OTWYmtJdrYZSgyFLNky7iVzkgITzXntvrmreDI7aHxLPrkMUJaKQWkiFTIHKsgRiMEDDDrjepznOO/1z4jfDLxnolt4c03xFp1xayXccaNOihzcgq6mVQpU7SUGBzgA960p0XON7GEsRzOzG+P/AIKar4tnjGt+NoRZ6jPDIbCDSkmeaRJdqyHfsWZvL3bi+SVhxlgSTDonwz+JGjeKrLUXh0ddPtXs7W11HQdO2TzW2/5FEaEhSwUK20HhgNwVePRfhv8ABK5nn0jxM1+Z7qW0nt0ikJ8mKELJCsqsq/LvTzhk4O1xjO5ScjV73xPZ6lf6/Za7Z6v9hS4u00e5CRytCgWSOGJ8K3zOq/OWDHepDMu7d1U5xguWxm9XdGT8TfELQeKtJRPFulaYIUWK5N9od1HHPISUkIdZzh8MCIljYjaG3kbitvRtYvkb/hEL3xNp2k6z5ELxwRRSxRTTkMwPm+YjhsMAwAf5ccbcA4r+LvFfjS9W38X+Hb6FZpZEXUL+BGlkYM2FVpI1aEsNzJu25XJAC5rkvEWgeANAN1YW8d0dXcxpbXM482OeEszNDuA+VzswVPBUN3IB6acqbXKtyXJ7nXfGTTdHe3k8D3OvXqR3CxzaeLKJ54xwoy2xFZS/mLH8rum5m6fKCzTvh9J4I0u5v9f1q4gsyPszlI5njsIXgceYu9tnm+aUOCpwOCB1rP8ACvhnwtcSQ+J/+EM1mFLm4mjuALqedrFgqRiWFkI2bhKQqg8YXGMZrU+LehfFnwV4GtG0HxzcQRpZ/Z72PUI0MLyRytvPKkAM0ijJyBsXJ5Jrw022o3sYtRbOS+HXgTw344E0v/CYRwauC6tYG6uBEJG3YOGYYDjcdoC4wcHAwbmrD9pDw1ZXm60vmt7iSCwVLAiUXO1IpBOVOWQIke7eSRxgjliKWmfEbxx4e8Vz3PjHwDpXnnT4HvZrGNwy5RJHiYcJ5gOQQCxBVcfKVrvrq+v77ULK3+H8cl3axag9wYtUkZoomClVVwTlWVk5x1Dk8k5q6kqkZWkJe69DBsvj/q/iHwYPEPi3wvNretB2t/DUFsT9nkliZCzTu0G1JTwN4YEBeM7yTY+IieND8HPAPgXRvGVuk+haT/ZDvpKlf7Tw73PnvHM6uH8yeSM8MWKD7oGBn/EHTIvGlpqb+FtAhhu7W6Wd4p9MeOKPaFMixyFcemVyCCT0GK47QLZtB8VxP4jsjqZhe3uPKdXndIPN8wholQyxxlWOHOScsCQcqdcO3DUU5yRTs9G+MmuwXWr22ry3EWnRsmyWBIS4YhFbCtlwGdSScEgHk4xXUeGdM8RWWhJLqFz4lvtZe/8AP069mlQrAksgQqMEgAuzuUYgkAYPJx5/4o0DTvD3iW/vPDM7QQT6iZLcWl4UWOFVcywumM8SCMZKhgY2Xn5tvV+BP2hPCfhKBzd6eZHitTMIJZTtVipyAM5LKWbnoTiuuUpyty6mKbTu2ejeK9C0DWEgU+I55NV0u0tLNtMazHlSy/aUVLjzN5V1ZGjQjacsQFBckV5vqHgKzg8dt4UvdKtJraxM01sLSErD5hswpfcQFV1AjOWyuYQSAPu8tpPxa+HtvrWp6j4p8Q6gl/rM0swkt2IFqRJuhTDA4AD5wWYfIPXFb/wvXwZpHiHSfFy/Fa61K5ubw7tMkBKXKlXUIxX7hwQDjH3R71r7OVCnszdTpzlueo6B4z+J/wCzTrs3hPxhoHiHVbRtHSW0eCxWT940rAohDYAztG5yAd42jDKzdRqPiDSfiBaXHiaw06SxvISbe4S8t2jMKCUBPMRwxj3ucGPccOAM52402k0DX9Bmv7q+kEDWItIYNRUkosARpEIGTuyu7cSSxGRgbQPLPH3inxF4cudSiv8AUb1dPVYbZr+z025QSySnGwy5xIAsUkgUkZCKpJcEtya1pe7ub3cF5F2aH4uaXPLr2lePIZLKfTw1xbXTp5ckp3FjyNoDnO3HRWUYyMVxvxFXxf4nspTpcul6vfOqTumjjYbfckhZckfKwbDbem2R87SVJy/E0OteEtavo/h+L7XdI1USzf8AHyuIlAz+8MjMFdlG7DYAwQOck3PhrpOqadANa8deCtRTT75ZI01PSbktPGdoJLCNizL8qnbGu7KqxBC11Qi6bTe5lKSaNbQ/AGq6dYy+JdN+I00rNeWy2NtZqYgWDECP5X2sPKVSTgYC7QG5x2ngP4oN8WtUu/AmvWFkGmW5miXyBKlvFGCN3ylmKjD5wjsQEwA5QN88WfgrxL4a06bw1D4vu7SDR/EqQ3OozS+Qfs8sZAaQjMf7hoS33vm88c8cej+Ffhu3w3uNL8Qa/qKTXl1pTyXOo2s09t9rE00MikSRyq+5IlGQ4aMt2YJl+WtRja+hg5NkPirWtU8BeMm0TSNftP3jBJIZg8IktpwZYJBG4ztMZRlYhGZNrYUHAv8AhzxZ4h0rWbjXLKSLVmNxILqweZYvqVOTtUNkkAE7uMHJNY/7W3iB77VL2w8VaFNe+IYNSDW32ZYbWG0jCEbmtrdDkspjIYyAlmkyvBL+d6JeKsmpw+LNPv4ruS2eKWGDG63njcklUG3G4AhgxbBwRjHGioe0irkOcuY9y0s3niPUrnxJdX2taSNRtGZNPWfzIJrhVRxNGFOABnqQc7iDjnFbXbbwt4q8Uzad4qtLiC6054PsUewbbny3hdh0xIWWPHltuRTyCwOa57wz42t9Esxox1qC7+yWq2ttm6cKGMbDMTs44KqW4POEGAQ2N34Q+Hr34g39r4i1/wAP6jPZpcteWsd6U2u7OA+WcBkyVDDBO09sFq5vZypXcloU5X3LegfEj4c/EG8tbfxTdQ6X/YtsqvcsxjaS6QNtcspBbORz1ydwGQKofE/9lr4R/EMvrvg7VEsNcYFk0+O7aaPPyvtIwNgClwAu4Ar95gKpfGn4G6Ja+Lrqw0jVDpVnc2iXE6W8ebYMMLiQ+YV8ws8RCMqqqqznaoy3Rn4i22i6TD4ps7f7HqH9lvbz38FjC9ui7m8uKY3WN6IZCimPmRQM7+RVxm4tSpMaSbsz5x+MP7M/iPwvpd3r0WpxTx6Wyx6gJo5IGilMkcYAWRR5ilnUBkyM5HpnU+BmgeA9L1TQtSuVklk/tGFb9SS0bRMjbjllBVgTGcrkbQ3NdH44+ImpajZazBdajc6nPqMYi1K9sbny2dg8m3dE6sHKmIEMS6EEYGVJPM/CTwJ4v8a+IRGmpX1tYWkSxwzzSE/Z2wTGADxgAD7vAJHTNe3Pmlhb1HZmbiqex7d4jg8R+E41m07xiIdM1Ah0kupwrR3QYdwrZLx+ahBGFyCQQjKaWty654pt0Jt9G1iWOYy3Md3sMLECJj5iOhV1G3BHy/eYbTznhfGfjvxR4MkfS9O1W9jsra7QSXK5YIxU/I56Zcq7+owQBgV0fhP4naV4rnurd0Rrm0Dr9p8gh5GbIYFsbnHzKPmOcIFOcbj5NKm4e+XKtLk1PHPEOn+KbfSbrVvD8jw29peK0tz9tZyUZlALEtl15+jEZGRg16DdN4t+JvgdtN8G6ysF5aW4ee0t9WSQQ7l2six/KckBSNq45xk4U1z/AIk1zxLrF6xSyeyltYZXmsbu7MAmWMyOEjVgpwqxoNi54IB9DtL8S/D9x4atSdHfSdVvowIYlRQzjecKHXAwN3IJDADcAxOa9CUZSgpJEczseja340+GfjabXXfxytta6ppnmie4MTfZ7qFFVo1iIV03ZLbfnyUGQmax9H1w6J4RtrC/8RpJHbWbWFpLZRmOW7ijR9kTEsC/mN5pIGTlDnsDlx+Evhd8U9L1uDw5BeeHPEVhdfaojJKkKyF8iMoGjjZYsS7dgXad4O4ZFcr8Y9K14+D18L+MrmXUNUhsVls3ttPCqio6sykAKY1RGkYjbz5it0ya5aEaU2ojnNxV0eqfBzXdC8QasNH8bf8ACN6hDLbwf8TZr15JZYwsV2kbxXDZJaZSkiPH3kC+rXf2ofhD4Ul12bxJofg0WMzWkjXN7psUSWrxpGI0b5AGDbY3JBPLMQm1cKPjXw0NS0q7hupGkt3eIzW/mSNGsqh9uR2b5lYevymvqb4UfGDx7fXllpniFtPuPDup2KPcDWJ3CySxks3lMxRi4Z2J2koFYq0m4VWKpVsHUVRPQUaimrM8d8NfDvxdrXiz/hF7DQlgNu0k13NdRYjgiXJLM+cAbWVvlKkltq8kZ9y0rxl4G+C0V74CGl3trFe3dtM/kzl1VxA6vHs3ZRX8xTkZy0fK/KC3rVzo3hzwpNYQ6vp0Fs7Xht11oRj95FtA3TlAC4VEhjy2SVAVQVyK8R/aN0bwG89+fEEF494Lh2W4jv1iZj8247Sp+RiHK5zyWBHBNc7xdPMZqk1b+v8AgDsoK4vx71+LxjbQa/qfiafVre4s5ChvlkTLjdGrna2RjzAuf4h2BBLYvgrx3qlzoUvhvU9M1C1jgtkdkW5l2bmHlEBgWUlkRW3EdVfg7RXGvcfC2LwPL4TS1uIZry9S6jmluy+1ADhRtXBPzNk8ZwpABzuu2Hwpvz4Tgv8Aw/4oIedZhbyhwv7ryzI6cEckqFwecvjpjPZToUqFPlvqDmlZnUH4c38ev20fhHV9kGoslzqVs/lsjp9olZVCFT8igKnZucgAZxb+J3hPxF4L17S/iB8O9Ib+xmul0zVUVwACsYQlkjPRFaN+RvbYRjJ3DyV/ivr3hPQTpXiGVry2QiC3EY8vCL82OcZAY5BxnKg9QDXS+HP2hpR4bNzrcupaxGwWO0VZFD2wJVTt5PICkBenzn0wYq0sTUld7GacYvU9k0PV5fGcGueHpfDOl2esy6VGbO5k8qZ5M5eGfdG7OwVfM2lVOzzM5AIY8T8Lfh78UbvTR4LvfBlnBJdXdzd6LqlnJHdTwyxoglVyJJWBZkiXaAchSWyACczwf+0lYXV1qvjXyrWz1gRBNPuZ54reQMGwGLKVdyke7CKSd5jwdpkR4fAv7XNpovix9S1rXlOpWZdtNludhh2sTvijST93CoBysaKq4LhFZmRS4UasItJG7nCVrm78Svh1fwaBD418Sw3aubqwtbiOczPKPNT5VjXzCU3bgPLbbtbI3BV2v5poFnq2s3KaV4Y8NW2oxWl+8qXUd2yzSxRo8uGZsFlCI5Cgdc4znj6mvNdOsaBoWkWdisUd94q3uZNUhMhWKUWkSB5IshwyqgfClSGXp87N0LwBp9vpN94v0i4Niuo226SRLmQyyW5t5ZEhAXb+6aNI02BmBzuK/OUKWNjRpNzRU6a6H//Z",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDMk0FiSdn4VBNoLNwYx1rvRocUiiWPDKwBVh3B71Xm0D5iVjGa/c1WP56dCUXqcI3h18/6o/nUQ0Bv7h/Ou5k0GTONv5VCdCYNgp+lJ1pFxpXOJl0Bgc7B09Khl0R+gj7V3EuhSY4Hf0qP+wGY4MY9uKj2jepahK5w/wDYcv8AzzpyaHLn7n512o8P8/6r9KcdALcGMflUOpd6s1VOozijokg/hH51KujMMkoa7B/DpwMJ29KcNAY4wo49ql1I3LjRqHKLoZbDFB19asQaKfQDmuph0MfxR557VZh8PB2GI6l1FY3jh5s5m20JmHC5xV+20RlHEeOfWukttAKnaY8Vet9DVgf3X8VYSqu50U8Kk9R/wSsPA/iLwQNW8DaidShmuXe81FrQwtdzkKTMysqk7lKENgArtxgcV083haIsT5YH4V8D+DP21Nf+E/w4vbL4V2mm6Nq+pTLqOoXEkU93LfhDKotY/Pnl+fkBFiWUlNhDM0xmra+C3/BaqG+MHhPxd4L/ALdvpV+W+upxZEOOqsYYHU5wdp8tBlgrEfer4XL+NcC6EKdWMk4qzkk+W6+blrvs/U+xxXCeLnN1YNO7vZvX8rfifbMnhaEKGCDPvWTaS+FNU1SXRdN1qyuLuE4mt4LpHdDgHBAORwQfoQe9fHfxW/a3+N3im+BbxPNoX2+7kmtNEtrpSbWKR9sMLugBf5UOcgfNnIG7C834S+MXjzw74ptdda51DRtV+0eRcXMEyL9qDShWRjjcrBvnHZgCOQwavOr+JGFhiFGlScoX1k3bTukdNHgyUqTlKXvW2R93t4YB+7D0/wBmmf8ACMLuyIf/AB2rHwT+Mvw5+Mbz+H/D2qTnULKPJhv/AC/OniCr++PlAJklsMq4wQeAME9+PC/P8NfZYbOsLjKKqUZqSfVHz9bJ6tCpyyVmecHwy27/AFY9gVpR4abP+qHT0r0Q+Fo8mQ44BJ9gBkn8hTf+EbjA4Kk960ePh3COVz7Hnv8Awi7MciIflT4/DUhPMH6V3zeHIOA23J6YNO/4R+2B5Mf/AH1UvHxStc1jluuxwq+GWXrb55qxbeGyxGLXv6V2qaJCg4xjrwKsRaZbRJ5kkiqo5ZmIAA9Sew9+1ZSxya3OiOAa6HIW3hXB3PAOfar0HhdO8KgH1rrk060hfErKGCltpYZwMZP0yR+Yp4hsJpHijljLxqGKZ5wTgHHocH8j6Vm8Yn1NY4G62PwU0r9nf9sDx/oi+JNE+AHxUufDVzaxXlprQ8JSXFpcxrtme4S5FqsYjMUjSK7MVAcNv2tuOD4e8Z/D260rSJ/FnhRxqOgwTRQG2cFb9pbi4mLTEnhELxhUAJO+QlwFVT+z/wALPiXo3we/Z48N/Cqxi1G91Dwx4Hs9FGoTaV5MU8tvaJAsjAMSqEx79vJ5I+bAr88tR/4JeeGLO6S1h/aGtnll2mK2l8OLFNJnbgKrXeXYlhxjuOmePyXB5rl1SlKGIfKulk9fwP1LE5dXp8ro6+tjwzxN8TPDX9jTXdjr2rjW/s4ayubZtvlO2WPLZO3BCgZ+UZAHep739oSDUVtxPb3lzEo829imZV8yZtu4pswIwFVFGAPu5616rqf/AAT7+HGh6hPaa1+0rpsc0CR5X/hHHJRJBlCyi5OBjOWztBU5PFdNof8AwTz+EGkWEcvi3x14h1kvCsv2nw/pS20e3eBwJUkJyhDDnHzLzgnD5+Gk/ib+T/yRyqhmcdkl80YfwK/bw8KfBTxSvjew0jXdQlt7Um1tZpo4RLMYWAWZ0blBIRnC/MoPAziu/b/gt/8AHK40a5tpPh94YN7ujeyubdbhEUhkLpJGZmLqQGXKshGepPIdp3/BPP8AZgvYiE8c+J7ZGQmH7VqdoHJ2g7SBbHPfGB61yXxN/Yr+F/w78S+Drbw5Jr+o2PizVfsJ1GfWLVbe1keNjEWKwAlSUkJJZCPLYEdh04HNclwEXSoOVnr/AF9xhVyfH4qSlLluY/xd/wCCnX7QvxpvBNfXsOi2doYbix07RXkjUXEc0ciu7l97AFA4ViwEkcbAAqMex2P/AAXB1S902x0m5+CdtY6jtgTUdaOrPeRJgqJpkswIC+fmZYjcLzgGTvV74d/8EkYtOxqvj/xS5tXSSSWG5s8S2ykv5RYRSNwBiN8Eh5OUKKpIzvFH/BOr4M2+nrf3mpXsksMTRyJpRCyROTuUSq7MqkqY32lslJkI+8K648UZZ7R6Sv8A15ky4azKMLux1vxF/wCC1HwiOmQ6N4Q+EGu6zFe2bRazLqd7HpgiLKFbyVia6Zxy+MshGF65OKcP/BbzTd/739nGEDI2keNWJPr1suP1ry29/YR+CGn3lzBN4x8RRxSI4USPFPJFI2xo1CqkYjbDdGaQfNyfkJPOSfsC6Q1yLmXxNqGm6cZnhW41HWYJ2kRc4lCwWwC5K4CgyHBJNdkOKMrt9r7jjlw/mL6xPfJv+C4OmrA4s/2fESQ/cMni3eo+oFopPfvXmh/4LdftRWokhj8J+AvMUHbcQ6JeKBleoV7xhkHnnIPAIxnPnqfsc+Bo9Rkg1K/8RW9q1q7R3sl9ZRQhkQs5LO27aApJO3gkA4GWGVP+yf8AC2G7lsU8S+KLiJoEnN6tvC8CpgklZiEWQ/7IwTgEZB5r/WXL5KyT+4hZHjIv3pL+vkekfDD/AILN/tY/HD4nTeBNQ8BeFYbmCK4nsP8AhHLe9heOaI5LMsl26zIIhICkgZckOQSgrjvFHxZ/a1vfGkvj+D4geJEmvPEiSSwXWtytbF5bpSbf7OZMGH51Ty9pXZgfdrmvCf7L/hrwt420zxp8MfEMLXlv5kl0+v34234ZywcImZEdflXBX5iMkLjLeiP8VPCXjy9Og6jb3Oh67Z3jTvZ38ipE7RlnRQSAQNxwMFsYJzyRXh4rOKlWXNBtpf1sexRw9KjGzS1PYdZ+Nfw48Y3d3puqatouyCNlivv7YWLy32sNjvKE5dV+9lUGcbs7WbAtvG/w01nTba58NaL4dunhkkuLRrO2MtwkiW4G2Z7dipZjbsqsqlm+UIxJFeS6l+yh8LvD4h1ybxjqi6f9rEF1HqEsMD3A3Fd0cjAAEkABWXJGSM5wJPDX7M/wjvvhu2vQeNGjvDdK0vn3sUUURbymjHlToHkG0yAgYYZcfMIjJXz9OhlsdOZnpupXZ734m8X+HLRYdU062vY0B+zyx29hPGLeEyjEpjuIlJjCDevV8bgA2AaG+Ja6Xod2y6ra3UNzAypDrNhHb20WxI2DuWjeQP8AOMOocOHUDaGyvzf4p+G3hTwjpN3LBDa2OrSXcVtIJZUeL7P56EXUYMatHuAwVBRwpOFZTuN3W/BTaxoc/iayTwq6208MTT6feahaxR2qFIYxEhmH2ggxoRLEW5XcwGCG3lhMHa6loEa9VfEtT3XUNZ8PaVa6nq0X9k2d3ZzpFc3FnPJdHzpAOJlVQsTc8bzGqhVzjHFDxJ8a9R8HpJ4nbWXvreDUvPja1jhjnsyggjSeN4wPMPmNuTAyQvYIzDgbn4VfD7Qvhdc+O/iVol1Y3qQpdQa1FFdTRzyMyKsYjYorTEXBIh3CTgnChXAg8MfCe3ubq+sLHxvMljqPlPc6LpF+qOJJshUWOZ2KjcSAxdAFAJcc4zUMGn6F+1mfXHwW/a18V/C79mrwZqPxqm1jxLffFV/FUA8Va1qURm0poNiNcF7j7S8zRt5c6J5LIGdl6GOuc+MniS51hdQsJvGU15c+H/ELW1zp7axJdTwI8YWPdLMXdZTJBOhhmCmNIIlJ7L4h8Tvilo2lC4+D8/hS2vfDdtLZ29qsemyC9klgEnm3Z+2BblJLg3DI6MoBEcaYIiRY538Q6lHp+t3V3Ol7c6t4gt9WubfUUGn30s8RlAmeUJ5yxlZ5vJEmFaRmYBSxzzvBxU3NLd6HY8XKVPlfQuX3j/wvPdJLZXcl5eXDNLfRx6JcFYooo98sjiCKXcAN7AMwjkVvlyrFVq+I9G05fD2mah4itNH1Vb7ZNapc2AEyiMebtS3CI0rGJDIRuQkO+SpVjVaTwZ4E8RQpfa54Qu9P/tS9ktLS4jglieWdJCAZpk3CIMfm+Y4ZMblZlOIvHTvDZaZe/wDCMwxR2mYXsLjT5rXU4pOWkFvcwsFUKsrgnO2T77AKm09dKjBOKT1Obmd9UXwvg/wrrjx2qiyto7gT6aIwYGwVCCUWqbvKR2fCmQg5c52kALxuq3cWn3N54q03Tjd2LSDGpRWc8t27RTIki5Xftba+MFHkGRypG6rniOZvFsFrY+Ptan0PWLWGeDBMrRJESTGDDujQyAKQSFZm3Bi7lTWXHdfETSb5dT+HVsf7OfZBrl+Zbki9GxTnfujEsaeWMAOGQJtbA2k91OinLVmU5JI1dV8VeB5j/aKaZq1/LEY4bP8AtHTN8luxCygKswSQKFjUN8pG1QcHLFuA174U/Dn4pWbePvBWhai9lY3LDUNGvGuI3U7MgqXYyAAkMw3DjlS3AqTxP4v0m/a8sPiNaaleyR2kV3HHBLLHb/Z5ZI5EF1JLJJIhbeFJVi+VwXi3Ev0HgT4d/CbX/DV58S/DXhx9Pl0i2fOnQ3Uz/ZZGdI0ZlWSV1RCWclgMtsDMAx206caN5LQ5rxlo0eofD7xO2k6BD4F8VpZ6lfPcR/ZoEbZEsagqV3urvt2Kh48sZc5cAAnK8f6p4Rvp9T8G+HLC0tbOy1fOrXGl3kayhy0jqyqImWXdEXkbYHkHl8J0rL1qLwh4z0ey0/VYlvLqe8me9eOUWckdqpVUaNQ4KhJfLJU7mHl7SnAFXvHGpeOfh34b8n4V6hZrPdC71BvDmrSNO91ZQxiKUMlwzFZMeZIeArCRUVVYbG+ep0ve037F+0fQxL74c6H47sJNXsfErnSvD4+0+fNdeaNQZF3yQSY2GKQl2A2ZQ4yoycjsfhd4j0LQP7OsvEfgyCztrazSB9Vskina0KWnmQ3F40bucZRB++USYkQAblUjivhhqPhe9szaeGvDU3hLxUlwyzWlneu7S7y6vGfMPGBGn3Y85RlwChUzfEfxs4tovFnhu78vW9JuJdN1ZotfeIoTO/k3DlVQKpbcHcLsLps6oSlyVZz9m11GpqL5jU+J+t6R4Ssx4m8Iiz1ydbtLWSbdJb2xMSq6yK6ShdgEiGMnOxQ6bpFBNeXeH/iTqXizxZaWN/4at4YpbiJxfXuoLK9jcYdxcJPsMqSFSVBJz8qgk+VEIy5vdZ8T+G7u3m8ZavBrljKyy29wY7uMwM8iPK8eBJKFjkJEg3KY5Sg2lsVJ8OfiVDb6nK/xkvLa5W0gkimQ2LTnfHldxU7EXKbSFJ+YsecB8+hRowhQbcby7r8DOVbax0mufC/UvHPw8gbQNL01bpLoRakss8Ms0McxJt3jfllXZNu+byw4V9u47Sed8JfEm/8AB3iawvb/AFy/8S6Hp8fGnPamSZsSEK0LMqvsVUQkn50byycLzVmz+IPxR8U28mteANdtZ7+HURHo2i6iyTSQW21yzLKAE4IjxtVdwAJK7Mnu/hj4M8TXfgDUfCfxD8D6HLp+qwwWosNK81Fif7U9zPNJMFYbCbaEqFEiCQx7lcRmMaqryQca33dSkud3ibvjfU9C1W6tfFnw/lsNals0c3unNp1rPHqEcwDQlsFpY0eRtjMIyrHJKuw2nireDwl8P4dct9B8L39oZrw2unaxBcteWl5ODLIqMxVSdinG2MAEjBLADGD4e0HQPhp4s1jwn4XvZbW4SGKIzpMPMtXcKqgrKzeashUSI6quUlT5lyCOe8d/G7X9NsU8N69q4t9es7iSOSeK7Jt7mFkwrgqDh/uOrZ/jOVDZYZ4ei3OyWnRlyqNJJlTW/GcGo6wvhu51IapHFAkUIlZg/kbvkjUOvmIF4Oe4IJyDks0aPWZPEV9aaf4RDmaOOK6kiu51McWBDDaxMjOH5Zu5Vg4ABwhNzxt4L1K80ux8bS694bihv7CW40q5Ux2kiSh1WSGQK6CKQbSwLjg7VIGQa5TwxNf/AAc8b/8ACbySTzTxgiyS5u2RDcxTrLlhHIoKuy8Ox/jZsBtki+tBOcVb7jCTdztbLX/hn430TxD4Gmt7nSjcWVnb28s0Ms80Gxj53zRYZ1DM8gUllK7mYFkDDZ+FWleJPA/i620TQ9CtoIb6xdJ2sNQRkleFfM3GaTasajzVIBYKHwpbqDwPjfS9W1+90H4q3vgy10pLJ3g1/U2SFdPnvI1jnlWRYEkJYrcRhwVdSJoAQBJWFYat4o1XVtR8dapJa20E0Uk+lSzwzJ9qhWOeO3igkyrH97ujwr43jLb9gCz7K8OWL07MnmPY/D3gi40z4lWOuab4fudVa58RwCy0TRdUQoN43QpGkQ82SQZjwgT5jDkrIHIjf8ZfH2g+Mri0bwl40htrpJZnB1C1ETCMzOHVbhYxMzAuVzkLujYgNvOJPgh8JdQ8FWksll4/1O8ttXAkhu9EsnjSdWj4t2uJyslu6SpDIEMcbbVw8mGRl80+NXxO0rxD8QtM8SW1kbzXbWzX+2b7UDKC1xtKurAgSSvhBmST5ixIIwAa8qEKlXEJLW3VdvNEK7PTdH8W+LrXX5tQ8W+Ff+Ehs5rO3s9Pn0VzJLHco0TK5RMtsKTOcgA71U4CBS0OnaxrltPJ4Nm8UX+by/YR2viIYmAcOIWtyrGNXSb5jubLGMbdmA1cl4W0vUfhvNa+MJNQ1FrO3021huoITGwYyWaT5KnL7WVon4GVDgcMyg7/AIb060/aAnkvreTT2iuBFd+HoLu3VIVEcsjXFtt2MZYiV3EcKSvKjcWGdWnUhUfNHTuilzdTY8MaH4O8Q+HZPA1vp2lXPiG31J7UtJqzWarBNkw2yhg6iVQkpKorYO4gHIz5r8Z/2ctT8NajpmteGtauYLDW7Sa8ij1uHy7gAEvJG6qDgInzMzFRhXJ+VCxv/Dn4U+LdJ8d6ZbfFDQp7rQn1WebVmj3TXGpwwxNI8TSwy79uEDEhpFEgXJJbFdz4l+KUfgz4dad8OvEKrc2CMZ01y2llmtLmGK8BRmYMwjdpkAkDpKEeOI7d6gR9N54avF03zJ9B8qlHU+YND+H/AMR73xzJo3hzVo0uLa4DxSWV35sLuuWO2aLcmAqsc5wdpGa+l/BHi/xj8IdD8NAQXdyl5bltNeC/luEa7ktmuHj+yx+bHN5nki3R/k+do2baoMi+A+P/ABRqB+Kt7rHheOw87UriSW5S1h8sqJCTIu6RQAOTk8jGMk816NdfEfSPH3hiz8A634SdP7PvJXjiDeQY0Tc5VGjBZifkRRhjuKgZJZR0ZlCVRw00690Z0qkqU9DT+OHinTPFOlWmuXmi3Fpfi2e4tbRdOt0a+kCyNk7D+8JfeDk7cYcNllL8L8P/AI5a/H4rS48Q3dndtDbrcI1/bEyTsfl2SPgrtG5f4lAwpBJAx1vifSdC8BeGrmyvfEXmaXfzSHTY5rvEanG0W3mxOwbAIBfJBQEbuUzyvh77V4r8Qf2h4C8SnSNQhRYYbSK6JgudoTcm3J3bscsSFxHkrg/LrQVKNGy2XU25nOV2Z1x8TPFvxP8AGs+lR+FEns7eaWQrY3EIEO4hZHBVP3g4HJDEgc5wMR67DoPhrXPD19pelw3JvbZbi5t0dbhwd+QzIcqSVUHGMHPA6itrxH4xtr8ajqtpbiy1DzF07UNRtNLaIeczb3MqoCquQnG0/MCTgHcatfA/wRbf8JKBra200Oo6ZcPYXFxctAk21pgkkAmWM4MsCKTgEnKdyy6ucoU3O1kun/BJd2jYvLbwDPbS6RZ22q6bZ3d3Z6lBb3OnSLaZzPHz93B/1pAA2gM/sBnW/h2zu7iOXRvFFs0paaew0aWZF+d5WLJGkqAptESvnpv2ZB2jbi/E/wCIXxHtvFUllqEc8aRzm21W0ieV0mkTEZkYq2GYRhF4I+XHTdVeztPCVtbT3un6vqj3GjwfaLmOzuIopMycJKv2kbQFZ03KACVPUHmoownGkm3q/mTeNrHpV5a+K/iZ4uk1DRPCl/rGnaJfXs/9lNEsFvYQ71Z4yV3ENKqOrHeC7GQg7sGuU13Qvhwuj2njix1/7JqlpILabTLu0eK4tWtYY4kk8sygb/MhJZgCPnJWNSpB+cPBH7bX7Ufw7vJ9Q8LfFi4Se5gMM819p9reMyHGVzcROR91en90elYWp/tHfGrWLjUrrUPHUztq7BtSAtYVWfGSAVVANuTnaABkA4yARcMJiITTVrfP59DN4ilbZ3PfPBepXtz4nE+nXWowKXddQvkuXtoooIWjVoOF+RVib5VA+VeAMcD6i1nxR/wqRNFOh+HrvV9NgLxNqGjsk5wEjtoofPbchL/xOOCwIU421+bmnfH74qaT4cfwnp+u2kdjLIHkT+xLMyOwXaCZDFvOBkD5uATjqa2dH/bD/aR0HR10HSvidPHaooWONrC2cxgHI2s0ZZSDyCCCp5GKwxmXV8TNNNWXS7/yFDERitbn1Npuu3OpXSN4h1Pw3qD6QsV9Z6Hqvmxl1K+d5s3kyfMHmnLOkZRVY7c4fA5Wz1Gf/hI5LWz8Pa/bRIzrb6fYMZgm1A4j4AOzBIO0E/xbSRXzjB+0l8Z7bVZNZi8Xp9olg8mRm0q1KtHtVQpUxbcAIuOONoI5FJpX7SHxn0TXF8SaX4wWK9VcCb+zLZhjGOVMZU8ADkdBiuilg6lN308v6sN4mDR9XfBzwD4cs9X1LFr9i1+zc2U1jqcX2iBGBLAowQv5jNGEG3oT6Hmj8ZfAl34S8T3PiDUPiEvmzb3soiECFTgrE4cqkZLknILKAoyFyDXy/N+0f8arnWBr1z43klulTakktlAwUbdvCmPaOOuBzk56mmeJv2iPjB4x0+PS/EfixLiGFFWJf7MtkZVUEABkjBxg+vOBnoMR9TxUqvPJqz6Xf+Rl7Wm31PpXWtWs28D2/hHxJdQ3L2Uge3SDUotzweWm2Yb1beGXDZ3DGAeeVGJZ3z2epzah4X0N7bVBaoiMsMIUxh8uxQZDuQFIAUeoH97551H40fEvVr0ajqXiTzpRGIwz2cONuwJjGzGNoA6dqivPi58Q7+KOG68RErESUC2sS9fXCjIHYHp2xW9HCSpxcXsy1XhFaH1Fb+GfGd5p+n2moiYBbWO/spLudwlvOQolEcO1y8kmVIBGFG44LYIYviT4paBJZXngya8WwsoJLS2JhEUwgWFUMYxgSIIhHuIyoVl3YDKD86XH7SXxuu9JttEufH1w9vZuGtw1vDvQggj59m44IGMnjAAxUd5+0J8XL9GW98TxSF4wjyPpVqXYAkjLeVuzyec56egq/YSlHllYHiI3ufVWp+P9A8b2VuvxM+Gl9b3Dnz7G/wBLaOMxBZC7GIsj4ACg52MPkOePmXnbfSPDHiAailt4i16a4WaSZ7K6Tzwts/llfNeFiTwyyuwVRmNgV3BBJ813Hxn+Jt1v87xS+JAA4W2iUEDoMBRwPSrFp8ffi5Yc2XjGSLMYRtlrCNy4xg/JzwB19KUMK6cHFC9tC7dj/9k=",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [36,29,65,70] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [43,42,61,65] |
[
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD4W1Dwt4ds7aT/AE2IeXxvxzwcVz+o6Bp1/JFFYajvbnIQkelYV5438xpF+0+Zlj8m7GeateF/EPnXL3H2PHlFePM65z7e1fB+yqdj9ITVzbHgjU9PsluJLiZEAJX97x1+tb/g/WdOSMRz3q+bt/izmuY8R+Pft3+hb/I2AfJv3dvoKueDtP8At0ovPN24X7u3Pf1rnrU5pq6PRwa5k7HrPh5x9hLE8GQkfkK24Ssm1BgkjpXMeH9SxYbPJ+6+M7vYe1dh4N0S88QXkQdTAhP38bu34V4ldNVJH0mHg+SOhueEtDnWOaWfTwVfbsLKDnrXa/D/AEkDWUX7Av8ArV/gHqKd4b8KXEoXT7ecvjALiPp+Ga9T+HXwuvkdVks2kHeYLjj1x7VzJ32O+TikepeDNOlt9MCxwKi+iEf0p2vW0jXSrJFkeWODz3NNsvD1vodkItOuZVfdgyM2cj0xTxDOwzcXJkbsSuOKr3jkqpOd0fIf7d3wjj8RaRd3Z0uOdhFlWaJWKncOmelfIHww1KDR75vD2sgQNbFwyOOuemcfSv0q+O/gyPxFYTJLf+WpjOQYs55+or85fippGneFfidPb/aAN8pGdmM4P1969Wg1KaRwYmDVFuxleIfFM+lyT20+VUlgrk9Qen8653R9YjnuWSW/LgRk4Zye49as/EqWOTdNE25doII78CvPbnX57VBJbx7STgnf2/KvXoU9HofOYuVmhNExLc27zMSzAFst3xW/J4hj8O48tgPO69+n1+tcUNYRUBtgwkA+UkcUQXd/q15FZTLudyRGR0HrmvSVBSla5wRqNWO18PiTxbr7zGCSVXZcBAeOAO1fQXw3+GLNDiS3bGw9z7Vz37JvwwvbWRbi/tdzSqfmjyR9447Cvqvwd4At4AtpJDtZPmJPSvAxuLcKvLbY+nwOFUaXNfc888IfBW91GbasbJDu+ZWzyeOc/lXo2j+BLvQQiW8LbEADKqk5wMV6l4Z0TQ103YxKlXwcj2Fal7ceG9HsWvJ2aLyUB3vgD09a8epP2k2+57VOXJBI8sXUfF/h+RZfDunks/8ArC8WcY6dR7mu1+H/AO1N4o8GyJpXxA0mOC2dti3axrlgx6kY4xn9KrXH7QPw30KZoLx0uGbpu2/Lj059/wBK4f4reL/h78SLZptNvo4HlXBViABxjjBPpVUsKpS3CpWstj6y8KeOfhh4vtBBpmrRTXAG9t0+BtHHY+pFW9Rg0iO4WO0eMgpnCy57n3r89/D2j+IPCeprLo3jFfJK7AvmHd1B6fhXsPgr4h+LNJuYrafU/tLMobeW6Dpj9K0lhlF2uZqfMrnrXxKRr3zrOCZRuDDORxX5r/tv+HJfDXiWLWIFKyvcSDzRkgcpn271+immXtvrERurlWKkfveOpPp+Jr46/wCCmvg+TSdCt5LZFI3Ss+3PQ+Xj+tbYNXxCRljVbDN+n5nzc6xaxpaxTOJCYeMN0JHtXnHiHSdS0u8P2ibMHRRtGM/X86t+HvF8+iXJimDiLAGAOQMV2Vn/AMI/4vs2hu3PlbdyggZ3dP6mvoKa5EfLYqHtGjy426RjcpPHrXqHwF+Fn/CaeIYTbLI+108zkcZzjHHsa5JPDMuqsuktAY2lIUsuAQfrX3H+xl8Bl0DRo9Um09dsgiLTMi543d+veox2InRoScZWka4HCxq1o3jdHrHwG+Ctt4W0e3hFqzOsZLGXBPJJ7AV6BfaNZWtuZoVIYfSut0XTobewiWxVWTbgOoxnnn/CtuP4a3fiiH7P9h8uP73mKAM+3618nWqynK7d2fTKEaSslZHzt4v+I2s+HN4s9LabaM5RTj+fWuBh8I/HD4+6l5MevS6VZPIQ8bA5K8kYBOPSvqXxz+zc8NkdRtI2dwu3yQRg++Pxr5N/aAm+N2g+JoND0LxB5FiZCk5tF2vEo7dskYAragoynG/kRUq8kXLsP8U/sBRSabPe3vx8u7G/jGUjulQpIT1wFBPGB37187/FT4Q/tCfBy5XWrXXYNd0K3cGS7s45Fc9+7YHp07Vn/tLeNfi/4Y1NJdJ8faiUuI2yfMMfK7emw8/e71wPwl+M/wAcLq/Oma/4ivbzTZJAJIri6d0dSeeGJHrX0NPDRi78p5scdUxD5eVo9b+HXx5bV7pZtWjnhXb1Y/LnI45r6P8AhH4tg8RxJe2Um9Ek8ss3PIAP9a8O/wCFIaL4j0eHxp4VsphJJcLG9qrfIqEEltucdQPzr3P9mj4R61Gm+OylWFbkhwDgbtq9s/SvOxajCtbY9LDO9P3j33wYgm01lbIyAePzrwz9uXw4fGPhKaeZOYkfITtjbjrn0r3fxWsnhPwvPPJGYDFCOQMZ6DtXwr+1L+1hKktx4a+1fL+8Vm3n261yYZVHXXLe4sdUprCSu10/M+UPEOh6xJqVz+4RRkr8oIxgY9ai8Oza9o2YpWHl7MAnOc5HvWL42+M032p7XTcOFbJcd+9c5/wtzW5XUfZwwVskE19vSoKVKPu6nyWJxFFNe8j3j4TzQeJviTb6Xcp5May72cndngnGOK/SD4Larp1r4Ss9I0+3DbVAeQPjPpxj61+dv7OPgnU9We58QkO1yDmKYL90duBx0r7B+AXju70y7TRryViylAwZQN3X2r5XN7VlzR6H02UwdG0H1Prvw4PL0mCPr15+rGvVPB4KafnrXiWla/K9nC8E4jQgYQgcfnXqHgfXbiSy2yX6kY/2a+easetXoyqWsdZqmnf2ram387y899ua8C+OXwOtdUM13bwYlUkgiLO4569a970298+As1wrYbGcj0qtrunpqlq6sqmTHyMe3NdNObjZrdHl1KUlJo/Nn43/ALMGoeJbmCD7EW2+Zz5GcZ2+/tS/CD9iqwhsIbTULX5ssJH+yYwCx/2vSvvTUvhGuqyCWIxqwzvJ75qxp3wvs9GtwZUiD4O9s/eH/wCquqePxdtzOlQlGR5b8L/2Yvh34R8MJYWsBlYMP3jrxj6Z/rXc+EfAOgeHdSFlYWyhHO84XHJ4/pXRQ2em2cIhtlVVB6byf5mq9xJHbXiz2zgMEGGBz3Ncs8RKo7z3O+nTaic9+0V4ft38Aakllahpfso2AdzuFfhp+1hY/EHT/ixqVre6VcCCedhFIqkhADz29xX75+OLWK+8H3F3dxbz9nG1z0J4/CvknxR+zt8M/iPYX9zqfhi2k1EyECV5XDc57BsdvSvRy/F06GJU2ro8nMsJVqYOSj5fmj8X9a0a/wBLjE7h5g3VmTafy5rMtZ/3h+T+H1r9BP2gv+CfU0a3F5pViF4LFI9xwAvpmvljxB+yt4g0K/OLeURn5Qvlt1r7HB5ph6qfQ+JxWW4pNaH3B8JfhTP8P9CggSSAlrZPN8tycnaM9QO9Tw3d54f8XRayJkWKGYeau75jk8Y49jXoVxo0OnacUV3LQxhfmI7celeb/EzSIEt0uo7iZWZixAYYyMY7V8VOrOteMtmfp1CjCE00fUXhHxRZ69pUMwlO8xZbdj/GvSPAniSwNnny5en90f418jfBf4kTSaRbi9kUSAMrBc4wGIHU+mK9l8K/Fo2cy2cccBQjqytnt71xV6cYNWPWowjUvc+lvBet2N7A1sjFGMp++AOw966Oe9tfIMPnLkDHWvCNK+IMFsyXsMoDFfu84rat/iKlzIPMnxv5O2sk2iJ4Gg5Nu56ouoW1t95i27+52rO8Waxa/wBnIdj9+w9frXI6T42tE8zdKWzj73OOtSal4km1aMQqkflfwkA5/nTcmzD6rSjsK2uWZGAkn/fI/wAafZSLq1wIbbg/7fFZ32WP+8351e8N/uNWVE5GM81FkxezjHRHYeK7aWf4c/2PGMzRJub0PI6V8yaSTF46v4JI2DJImSRweW6V9WSBWsyHUEGPkGvD/HPgzSdK8Stq1q83mTsS6ll28dMce9aKTgrozhCLlqQXXhK11ZWuHK7pkwSwz2xXCeI/2X9J8RXDSazcWstuvzqkduEbd0zx7E16La6pLFAu5V2qOeD0/Om3/i3To7RyG/h70/rNXuaTwmHq/EjxrxrpMmUEdmo3KM4A5rgfiD4PfUvD8rS2oQxqdpAHf/8AVXo+r6zZ6h4btNZWYFyqp5Wepx1z/wDWqE2Vve6LJBcRhvtS4B/uY/n1/SuhRcXdnPDRo+avBltc6RJLZpJITFux8x65J/rVn/hZeu+FpY9Rvo5kRpBGCzE8nnt9K9Th+GEWma3LLHH56O4x+729QPc1111+z9ofiTQ3lvYVgVPnXMG7kA+49a19tS6s7aNSMU7s4Pwj8dYrlo7rUL4xoFAwd2Py/GvQdM+LVhd3MENrdh3lx5agNzxn0rxrXPhrfWfiM6NpCGWIJnzVjxg5IxjJ9B3716V8Ifhfd6RLHf6rcmfy2yAYdu3jGOpqJOMr2O2Nely2ueueAB4h8RXhdLGTYhXGHHOc+/tXc+NI7zwR4YHiOa2bbEpNwgOduPp7VF8Pre2sLZbi3hAxtyAevWu4uZdL8R6BPpOr6UJYrogMDJ90YwR071lTjZ6nNWnDlPiz4q/8FNvA3gq+/siS3uIAJP8AWQxkseDxyOlUPAf/AAUf8MeMdTF1pmryrtPl7J0IYkc5+UYxzXo/7TP/AATW+EnxP0+TUtGnbTrjzdyKtr5pPytxnev+RX5vfET4d+Jf2ZPHVxZS6VKYEvGRBIxTeOm/ocZxjHt1r0aHI4W6nm1a0Iy3P0sH7a009uI4b/JZRgBmp2k/HPUPiDeiVIwy2Z/eEN/f9c9fumvzbtfj54gE6ulo2M8D7T2/75r3/wDZx+Jmo2VveT39wW+3CHYC+Nm3fntz94enSitllOnTc4vU7sPicPUqKMXqfX2oeJEneS4S625XIjDEDgVxnif4kw29i8TyqjLywz2wa4DxD8Vzo8Bk8zzNw6ebj+hrxT4u/HecWk32cbDzyJ+2D7VhRwtWpLlitTtrWp0nUey3PSPgZ8Y7Lxn4fk0nVHEksTYtmZgNjZ68dfxr27w6kV7pqbwH2gdD0/Kvh+C28R/BfxyLa9RVtBeuD5RPK5IGMge1fU3wG+KGmahZvBcmUm4Efk4C4GN2c8+4qq9NKk2meNFO9mep2+lWiwJM9pjnhiD612VklpN4baOcptJ6ZxmsPUl2+D0vQwZISQ208nJJ4/OpdEnTWtFFpaqVYOGJk4GPwz615kjT4TlL/QtJ0u+kvYbJYgWyZGJxn6k1nWnxa8JWNy9g2u2CqjkTqbpBjB788c11XjD4V6R4nsTL4inuPLUbStrdMvHXpjrzXxt8cf8Agnh4ztvGV54z+F3jO/vNNnLSz2rMxKZOdpxkYGf0ruoUlNJN2OqMVyKTPs7wj8bPDxuVtYfEVkY2IAVbmM5/WvTdN+ImhvBGkd5B83AImHr9a/G7XZ/jH8I9XeCG4eZoDyrMR5WPqB1/pV7TP29/izpEMVjePMXhOHKYI6565rvjl6k/iIlPCVFbma9Ufsrf+IIZY08nVIXZZAQFkU9jXzH+3d+zBofxo0P+19N0xJdZWECKPLAN8zENwQOpP5V8XaP/AMFJ/H9leCed7sqB/Cq56j1au1tP+Cp/iO7gVnnSMoNuL8hXPuME8c/nmr+o1o/Aro5KmHwc5X9p+B85634ZvvDGuzaDqli8NxbXLwsjqRllYg4z16V6R4G8W3mjaeqmRiVVdgAHy9ay/iF8cfCHxP1z+1ZTafbZJWcMjfNuYknH61u/DL4U638S7mS20ozLtUMHiHygHP3vy4/Gu2cXKHKznwsaeHxCm3oi5qfxSu74tFfXDOFHIIAx+Qr59+PnxZvIbtrXTdQAUyfMi7TkYNeg/tFtH8H3fw5JPI1+Ym3PxjOMjPOfSvlHXtUvNbuPt18wMpPJBrtyvARlP2jex43Fufyw9GNCir86d3fa1j//2Q==",
"path": "image_1.jpg"
},
{
"bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABwAHADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD85rHwE93bie5Te5JBYsa6nQvC+i6akKQ6dGr4USNzknjJrsfhx8PtRuoE1C7snQFyCWGOhrR8b+FdNuYHtoLhWkVSrKOoIGMV+fyhF9D9PU5LqVvC/wDo2oxxQfKuG4H0Ndz4bYytN5hzgLjP414rb+BrnS5lvVtn+Q98d+K9A8K6lY2dt5F1dIjsAApPWuStBc2iO7DyvDc9R0WNIovPjUBwx+arE17dMWzMec54rmNGuIPsWRIOWNXWurfyyPNHSvLqRlzuyPYpQTgnYsuzbTzVjSdJm1d3SI8oATWRo0Mt1qcUFvGXdicKOpwCa79Fa30YQTqVcjhT9Kz1PQjFJ7GTpWj/ANnawkFwuWKhufx/wr3P4eotxpsMMw3KsICg9q8V8G+Fm1C/ae4QqfNIAPccV7noOk+I7fRrW3tdXRIVhUIpPIGOlZz12N48tyLVbK1uIXnmhDOBwxr57/ab8B6J4k8OTW8+mRv85LZzz8pr6Tu/BVtJbsiNkkcCuI+J3hXTh4cmtzOA+D8vfpXVhpzhBpOxz16cJzva5+VniDQ08LeNzpVonlxhdyop4HzMP6V219dXA8L2oEp/1X+Na/7SfhW/0nXJrhLR/I8nJlxwDuavPfDep2E+mw28N0rOq4KjtzX0eGXNRi2fKYyKWJkkj3i9+Ld9PcGSxkWGMgYQcYrIj8dS3OpqJpyTJP8AMc+rV4fqfxTisVNvaq804GdqjIrY8F6peauo1LVna3IAliRe56gHNW8NVjujzOeNTY9w8VavGuiSmzl/eZXb/wB9CsrwdNfajdSSXEikRbTjJ75/wrjLbxJquozraCJW3npzXo3w48N38pcmMjzQueOnWuWt7krM9PBUKlSlddzttJ8QWcNksTxS5B5wo/xq3p3iG21Odre2s7gFWKksgwf1q5oXwulvJltnmlAbnIArvvDnwXttLaN1eV923cWQV5dWrBTZ9PQhKNGKfYy/h94Q1ebXbfUEEexN+QSc8ow9K9N0bwLqWryOhtd+wA4XnFamiaJpXhcC52NIkYORtGeRj+tUdT+Leq6dctD4X0xVYHEpkBGR26VxSd1ZHROpCMbs6Dwl8Obq0vhFLpUhJOeFr0y1+GmlvaJLM1yjlAWTjAPp1rwO4/aR8a+Gpxe6hbwKAufmLf41xWt/8FA9Sj1e5tzdEYmZcITtHPbmqoUalWTUUczxdBbs+odU+z6PYSalcX0LpGOVifLHJxxkD1rzD4h6jbahaubdifNJVc9uO9eMar+1tfXdhJbKluxfAwZG9R7103hLxcfFenLdO67iuSingV0uhUg7MuGIp1FdM+ff2ufA+s2WiT3bvC6NAWGxmJ6t7V8leG9YttFlzdxSHBOQgHr7kV+hH7RukWureDJo7gf8siMgfWvzx+JMKeG9du4LQb1SYgb/AP61fQYCLq0lCO6Pm8xnGlWlOWzOg8P6Ba6ZAk0lupn7u3P860pLiYnO7GDxhQK4641n+0ZftTTYJGMbvSum8NWdzrP2eGxiebOxX8sE46Z6V6GJfIkeTgcP7abV7Hofws0tdX1e3BTMpJwfwNfV3w7+GduukJcrbAOQPm3GvM/2cvhfeyy24TT5WbDHiM5+6a+ovA/w+mjs3jeKRSFXIK/WvncdiLVlp0Pp8Dh/ZUmr9Sn4V8N2lrZ+bd24aYOQHyenGOK7K2tbf7NGfKH+rH8qhGjvosPlSRsFzncwrlPiR8S9P8M2qvqN3HFHGvy73C7wPT61483z1L9z1FPljY6y+uLbT7R7ya5ECoPmlIBx26HivIvit+058Hvh1bvNr2pRPKxIR8Acj6V5l4+8b/GP453v/CLfCG0uLO3vjj7RJEdqBfnOT9FI/GqM3/BNb4ZWmmL4y+OPjy2uLy55MH24DYw5JIzXrYXARVdOTuvQ83E4xRoN8p518Vf25vC3jJJbPw5qIkjA2Bgi8HJ46e4rgbXxhq2p2yagl2CJl3gmJe/4V0vx1+B/7KPhRfsvhHxFZLqKW4MeL1Txlh0z7GvG/DEX2LUZLSK6EqRuVSRGyGHqK9epQpU1eKseVTxft3a1j27wVayaxIiSMWkLfKc19RfBzw9LpWjiWbJDRADn3rxj9lP4PeIfE2o2uvjRLthEzE4hYjlCPT3r658LeCb3w7DG9xYSIWG3a8ZHavIxk+Sol5Hp4adoM8M/ad8aaV4Y0B7C8iyz23mDk9CWH9K/O/4h+LdH1jxVfPLDuRpiVG4+gr6D/wCCoOt6pompuixyrG+MPyBne/FfD93eyXVy9xK5DOckE19BkWHc0p33PmM/x6g3Hl2PUraQm6/s5YnLjncBxzX0j+y38N5NeuLNUtPvtFvLg98Z7V5N8N/BSeINfFjCC8hx0Wv0I/ZU+Ddr4f0Syu5Lfc6WkTuDGBghQTXBm2Kq0qcXHuevlGHpupK/Y9V+B/wo07RfKBtwHCnBA4+6a9Qt/B0iE/YTGufvbiR/Sk8HR262YMduFPqK6nQ7MXbSAyFdoHb618tiMVVqTuz6CMI01ZHBeMfCmqCzYKY2OOisf8K8Q+IHwa8X+Lpy1xFbvDFJlY2ZslQemNvXFfYFn4TtZ7j7ZcTlwOPLKcUs/hXRmmdltEGWJHy9OaUG3ZnPOrNSaPzk+LfiH4n/AAysbhfBHhYWZRQFlkUqFyQD0B7Eivi/4y+N/jL4s1qQeI9e1GUFz+5juHVU+nrX7JfHP4TaZ4i0+4SWUEMFzGIBz8w96+UPH/7JPh241CS8LkHJO37MP8a9fD42UKyc9jgrU5Vqbgt2fn34E+HfibXWaysopnkkmJL3cjNg4HfB4r7v/Y+/4J5+FvGnhO18QeKrlPOFsjXKKxOHxzjI6Va+FP7PthY+IBBa6UJVEn3jFjmvsj4CfDG48J6W9vBuK3OHKFMeX7CunF5lGUF7Pcww2AnRk3Mq/CL4O+GfhpZCxgsiCehjXj9a9M0/4eaZqsYupUUxoN2D1rVu/D9lNbtGnyE9GA6c5qtp3iSXTpJdKW1V1CffLY7149bEVKsryPSp04wVkfnH/wAFhf2Y9T1XwXNq/h2K2LxHz/mZgdu5uOFPPFflLcaJrCTskmnyhlOD8vpX9Fv7R3w3034leBbmyvUBd1KgbAeMf/Xr82/id+xjHoniO9NrphdPPO0eQBXv5dnFPB0VHqfPZjlE8bWk3secfsfWSyeO01jVVEsJfbg8dD7V+iXw08W2Ntbi108CNZECBcZ4Ix3r4f8AgX8M9SstCgnNjcRbpGO/yWXqfXFeu6f4r1fwVd28IFwyGRFZyWwBkc5rhzOTnCOt9T67LaVKNK/Kkz7E8O+I7zT7tI5bj9xg7k2DnjjnGa6/QPG9ujS7WAyF7fWvnn4ffEC01MJDPqcW1gcu04x09c16BoN5DMJGhulcYHKvn1rwZxblselyQfQ9t0bxpayWm5yM7zzV430kyfaI34cbl49ea8l0zxMNMtvsxIPzE5zXSWWrCe2ilF7jeinb5nTI6VN2tDmnRjzP3fwNnXLW3vbZ5rqPe3HOSO/tXH634G8LXgDXGlBtxO7984z+RrpZpi0ZBlz7bqqXLRhRvZevc1HPN9SFSjF3SMPwz8PPB2hk3Wl6KsUnmE7jM7c4H95jXaabrOo6bEDZThPl/wCean+YrnZriGNsCdV46bgKz59RUSsovh1OB5tOLlcpxvujsD4r18jBv/8AyEn+FV4r26e4a4aXLsOTtFctp8WpSzLKsc7IOrBWIFa9glyLpTIkgHfIOK1Tk0T7OK6HQ2sUeo2rC9UON2MHjjA9K8s+Knw7s7nUJ54bBNrPkflXvXhqzW703zLW1EoD4Zo03AHA4471xHxOsbhLyZfsbj5unln0o5ddhqMT4w+Hfgu1svClvbzxgMM5FR+LPB1rfxstqo3ICPmOORXZ21pHHbokXygKOMVRvNPz5red13H7td9SpCS0ZNPR6nis/jDUvAPiOKC/fFspIcRcnOMDj64r2j4dfFW1vbAGK7ILqu0MMeteK/GPw4N0urfa/uEfu/L65I75rz3w98TdT0DVGtWmO3cAv7zHTPtSjCU1dHfRkuU+8vD+vw30YhmnBlZsgg8YrttP1SzihgjeXlVUHA9hXyT8L/jPC8KG7uMPu7y9uPavTbX4u6e7Rn7UOSP+Wn/1q554as5NpHTzxsfRLa3Ybf8AWH8qqahrNgVXEh6+leSD4m2sx8uK9BY9Bvplz4780AG5HH+3UPDVUrtGR6Xd6nZvICJP4fSs6SeN7glTwW4rhLLXdT1a7ENkSyYwXDdD6V21jpUw02MyT/P5QyCvfH1qVTmjOo1Y7/RdltZNZvKjSP8AdCNnNJqmpWmiwrPeycO20BOTnrXyF8av2vvEHwRlkt9S0O4Nwo+R0uDgdv7lfMXib/gp58RvEPiOez06GcrEN217oqBzj+5XVQw9apFuKOKriKNKVpM/VrTfjBb6JAbSyvxGjPvKyHBzgD19q5H4h/HDSXd2uNVXeW+Yg/8A16/Ofwn+1v8AETxzpz6tes8bxzmEAXROQAG/uj+9VDxP8YfFetTOsviJ4Tnkbt2P1FdkMDimk1H8UR7ek1e59fxyOEADdPaoboO8UiofmZTj60y1lSQCNZAzf3Qcmr0fkjajbd3AIPXNec/cNXDlPPfGfw/fWNJm+3RlsgHhiO/tXzJ8S/Cy6Drq/Iyje2z5j2xX3T/ZQ1IGzeLAcHqv415l8TPgfa64+86RGWXcUY2wJOcdOPauijXUYWsXCairHyjZ+OLnRJAouSHHI+ldVYfFvUTDDIbwsdqnGBz0re8Rfs1ai+pMY9DnI2jBFoT6+1dr8P8A9m23SC3Op6IoAjTPm2nPQeorf267Gvt12OU0/wCN/iIXifYtLlEuflLDI6c/pXpXgDX/ABn43uoYzA0KIQ05MY+cHt7V0tx+z74VjiMmm2kiTggozRYA555x6ZrsfCOhQaFafY0s0VlUZkEYBb8azlUTVifrCeljvfh/4a0jS9IWS1tyJC+XLOT82B61uNdzBiAw6+lcXpuqGBfso1Eo5bIj87BI9cZretppWhQvKxJAzlq5qjklori5ucy/F/wk8F/FFG03xNpMEpnGDM4wRjnr+FfO3x2/4J8fCp7GW+8MWscF0jFnkjmbkYPHX1r67itlMg/cD/vmsrxdH4fj0uYXSWasykESBAT7c104XEVKcGuRnn4rDurNO5+Y9t8ONT+FlpeWN1eiaFbxpAyqOBtUY/SvG/i/8Y4tD1CaPR5ts2/ngHt719fftmXfhnRtCu44bqwtZHhLhVdEJ5YZ7Z6dfavzT8bXzXniW7m+2GVDMdreZuBHsa+vyql9cjG+h8Vm+Mr4CrJJ3P/Z",
"path": "image_2.jpg"
}
] | <image> <image>Given two images, you need to:
1. Analyze and Identify the target object marked by bounding box [41,37,64,53] in <image_1>;
2. Re-locate this target in <image_2>;
3. Return [x_min, y_min, x_max, y_max] coordinates of the target in <image_2>. | [53,43,74,60] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.