AgiBotDigitalWorld / scripts /convert_to_lerobot.py
Suoivy's picture
Upload 2 files
0ff287e verified
raw
history blame contribute delete
13.2 kB
"""
This project is built upon the open-source project 🤗 LeRobot: https://github.com/huggingface/lerobot
We are grateful to the LeRobot team for their outstanding work and their contributions to the community.
If you find this project useful, please also consider supporting and exploring LeRobot.
"""
import os
import cv2
import json
import glob
import shutil
import logging
import argparse
from pathlib import Path
from typing import Callable
from functools import partial
from math import ceil
from copy import deepcopy
import subprocess
from multiprocessing import Pool, cpu_count
import h5py
import torch
import einops
import numpy as np
from PIL import Image
from tqdm import tqdm
HEAD_COLOR = "head.mp4"
HAND_LEFT_COLOR = "hand_left.mp4"
HAND_RIGHT_COLOR = "hand_right.mp4"
HEAD_CENTER_FISHEYE_COLOR = "head_front_fisheye.mp4"
HEAD_LEFT_FISHEYE_COLOR = "head_left_fisheye.mp4"
HEAD_RIGHT_FISHEYE_COLOR = "head_right_fisheye.mp4"
BACK_LEFT_FISHEYE_COLOR = "back_left_fisheye.mp4"
BACK_RIGHT_FISHEYE_COLOR = "back_right_fisheye.mp4"
HEAD_DEPTH = "head"
ALL_VIDEOS = [HEAD_COLOR, HAND_LEFT_COLOR, HAND_RIGHT_COLOR, HEAD_CENTER_FISHEYE_COLOR, HEAD_LEFT_FISHEYE_COLOR, HEAD_RIGHT_FISHEYE_COLOR, BACK_LEFT_FISHEYE_COLOR, BACK_RIGHT_FISHEYE_COLOR]
DEFAULT_IMAGE_PATH = (
"images/{image_key}/episode_{episode_index:06d}/frame_{frame_index:06d}.jpg"
)
FEATURES = {
"observation.images.top_head": {
"dtype": "video",
"shape": [480, 640, 3],
"names": ["height", "width", "channel"],
"video_info": {
"video.fps": 30.0,
"video.codec": "av1",
"video.pix_fmt": "yuv420p",
"video.is_depth_map": False,
"has_audio": False,
},
},
"observation.images.cam_top_depth": {
"dtype": "image",
"shape": [480, 640, 1],
"names": ["height", "width", "channel"],
},
"observation.images.hand_left": {
"dtype": "video",
"shape": [480, 640, 3],
"names": ["height", "width", "channel"],
"video_info": {
"video.fps": 30.0,
"video.codec": "av1",
"video.pix_fmt": "yuv420p",
"video.is_depth_map": False,
"has_audio": False,
},
},
"observation.images.hand_right": {
"dtype": "video",
"shape": [480, 640, 3],
"names": ["height", "width", "channel"],
"video_info": {
"video.fps": 30.0,
"video.codec": "av1",
"video.pix_fmt": "yuv420p",
"video.is_depth_map": False,
"has_audio": False,
},
},
"observation.images.head_center_fisheye": {
"dtype": "video",
"shape": [748, 960, 3],
"names": ["height", "width", "channel"],
"video_info": {
"video.fps": 30.0,
"video.codec": "av1",
"video.pix_fmt": "yuv420p",
"video.is_depth_map": False,
"has_audio": False,
},
},
"observation.images.head_left_fisheye": {
"dtype": "video",
"shape": [748, 960, 3],
"names": ["height", "width", "channel"],
"video_info": {
"video.fps": 30.0,
"video.codec": "av1",
"video.pix_fmt": "yuv420p",
"video.is_depth_map": False,
"has_audio": False,
},
},
"observation.images.head_right_fisheye": {
"dtype": "video",
"shape": [748, 960, 3],
"names": ["height", "width", "channel"],
"video_info": {
"video.fps": 30.0,
"video.codec": "av1",
"video.pix_fmt": "yuv420p",
"video.is_depth_map": False,
"has_audio": False,
},
},
"observation.images.back_left_fisheye": {
"dtype": "video",
"shape": [748, 960, 3],
"names": ["height", "width", "channel"],
"video_info": {
"video.fps": 30.0,
"video.codec": "av1",
"video.pix_fmt": "yuv420p",
"video.is_depth_map": False,
"has_audio": False,
},
},
"observation.images.back_right_fisheye": {
"dtype": "video",
"shape": [748, 960, 3],
"names": ["height", "width", "channel"],
"video_info": {
"video.fps": 30.0,
"video.codec": "av1",
"video.pix_fmt": "yuv420p",
"video.is_depth_map": False,
"has_audio": False,
},
},
"observation.state": {
"dtype": "float32",
"shape": [22],
},
"action": {
"dtype": "float32",
"shape": [22],
},
"episode_index": {
"dtype": "int64",
"shape": [1],
"names": None,
},
"frame_index": {
"dtype": "int64",
"shape": [1],
"names": None,
},
"index": {
"dtype": "int64",
"shape": [1],
"names": None,
},
"task_index": {
"dtype": "int64",
"shape": [1],
"names": None,
},
}
from modified_lerobot_dataset import AgiBotDataset
def process_video(video_path):
output = video_path.replace('.mp4', '_encode.mp4')
try:
command = [
"ffmpeg",
"-i", video_path,
"-vcodec", "libsvtav1",
"-pix_fmt", "yuv420p",
"-r", "30",
"-g", "2",
"-crf", "30",
"-vf", "scale=640:360:flags=bicubic",
"-loglevel", "error",
"-y", output
]
subprocess.run(command, check=True)
except subprocess.CalledProcessError as e:
print(f"Video failure: {' '.join(command)}, error: {e}")
except Exception as e:
print(f"Video unknwon failure: {' '.join(command)}, error: {e}")
finally:
pass
def preprocess_vides(episode_list, debug=False):
video_paths = []
for episode_path in episode_list:
video_dir = episode_path.replace('meta_info', 'observation') + "/video"
for file in ALL_VIDEOS:
video_path = os.path.join(video_dir, file)
video_paths.append(video_path)
if debug:
for video in video_paths:
process_video(video)
else:
with Pool(processes=os.cpu_count() // 2) as pool:
for _ in tqdm(pool.imap_unordered(process_video, video_paths), total=len(video_paths), desc="Video preprocessing"):
pass
def load_depths(root_dir: str, camera_name: str):
cam_path = Path(root_dir)
all_imgs = sorted(list(cam_path.glob(f"*")), key=lambda x: int(x.stem))
return [np.array(Image.open(f"{file}/{camera_name}.png")).astype(np.float32) / 1000 for file in all_imgs]
def load_local_dataset(episode_path: str) -> list | None:
"""Load local dataset and return a dict with observations and actions"""
observation_path = episode_path.replace('meta_info', 'observation')
with open(f"{episode_path}/task_info.json") as f:
task_info = json.load(f)
task = task_info['task_name']
with h5py.File(Path(episode_path) / "aligned_joints.h5") as f:
state_joint = np.array(f["state/joint/position"])
joint_names = f["state/joint"].attrs['name'].tolist()
head_joint_names = [
"joint_head_yaw",
"joint_head_pitch",
]
body_joint_names = [
"joint_lift_body",
"joint_body_pitch",
]
arm_joint_names = [
"Joint1_l",
"Joint1_r",
"Joint2_l",
"Joint2_r",
"Joint3_l",
"Joint3_r",
"Joint4_l",
"Joint4_r",
"Joint5_l",
"Joint5_r",
"Joint6_l",
"Joint6_r",
"Joint7_l",
"Joint7_r",
]
effector_joint_names = [
"right_Left_1_Joint",
"right_Right_1_Joint",
"left_Left_1_Joint",
"left_Right_1_Joint"
]
# Get indices for arm and effector joints from the first frame
head_joint_indices = [joint_names.index(name) for name in head_joint_names]
body_joint_indices = [joint_names.index(name) for name in body_joint_names]
arm_joint_indices = [joint_names.index(name) for name in arm_joint_names]
effector_joint_indices = [joint_names.index(name) for name in effector_joint_names]
# Extract joint positions for all frames
state_head = state_joint[:, head_joint_indices]
state_body = state_joint[:, body_joint_indices]
state_arm = state_joint[:, arm_joint_indices]
state_effector = state_joint[:, effector_joint_indices]
# Get action from state
action_head = state_head[1:] - state_head[:-1]
action_body = state_body[1:] - state_body[:-1]
action_arm = state_arm[1:] - state_arm[:-1]
action_effector = state_effector[1:] - state_effector[:-1]
# repeat the last frame of the action
action_head = np.concatenate([action_head, action_head[-1:]])
action_body = np.concatenate([action_body, action_body[-1:]])
action_arm = np.concatenate([action_arm, action_arm[-1:]])
action_effector = np.concatenate([action_effector, action_effector[-1:]])
states_value = np.hstack(
[state_head, state_body, state_arm, state_effector]
).astype(np.float32)
assert (
action_arm.shape[0] == action_effector.shape[0]
), f"shape of action_arm:{action_arm.shape};shape of action_effector:{action_effector.shape}"
action_value = np.hstack(
[action_head, action_body, action_arm, action_effector]
).astype(np.float32)
depth_imgs = load_depths(f"{observation_path}/depth", HEAD_DEPTH)
assert len(depth_imgs) == len(
states_value
), f"Number of images and states are not equal"
assert len(depth_imgs) == len(
action_value
), f"Number of images and actions are not equal"
frames = [
{
"observation.images.cam_top_depth": depth_imgs[i],
"observation.state": states_value[i],
"action": action_value[i],
}
for i in range(len(depth_imgs))
]
v_path = observation_path + "/video"
videos = {
"observation.images.top_head": f"{v_path}/{HEAD_COLOR}".replace('.mp4', '_encode.mp4'),
"observation.images.hand_left": f"{v_path}/{HAND_LEFT_COLOR}".replace('.mp4', '_encode.mp4'),
"observation.images.hand_right": f"{v_path}/{HAND_RIGHT_COLOR}".replace('.mp4', '_encode.mp4'),
"observation.images.head_center_fisheye": f"{v_path}/{HEAD_CENTER_FISHEYE_COLOR}".replace('.mp4', '_encode.mp4'),
"observation.images.head_left_fisheye": f"{v_path}/{HEAD_LEFT_FISHEYE_COLOR}".replace('.mp4', '_encode.mp4'),
"observation.images.head_right_fisheye": f"{v_path}/{HEAD_RIGHT_FISHEYE_COLOR}".replace('.mp4', '_encode.mp4'),
"observation.images.back_left_fisheye": f"{v_path}/{BACK_LEFT_FISHEYE_COLOR}".replace('.mp4', '_encode.mp4'),
"observation.images.back_right_fisheye": f"{v_path}/{BACK_RIGHT_FISHEYE_COLOR}".replace('.mp4', '_encode.mp4'),
}
return {
'frames': frames,
'videos': videos,
'task': task
}
def main(
src_path: str,
tgt_path: str,
repo_id: str,
preprocess_video: bool = False,
debug: bool = True,
):
# remove the existing dataset
if os.path.exists(f"{tgt_path}/{repo_id}"):
shutil.rmtree(f"{tgt_path}/{repo_id}")
dataset = AgiBotDataset.create(
repo_id=repo_id,
root=f"{tgt_path}/{repo_id}",
fps=30,
robot_type="a2d",
features=FEATURES,
)
episode_list = sorted(
[
f
for f in glob.glob(f"{src_path}/meta_info/*/*")
if os.path.isdir(f)
]
)
# preprocess the videos to avoid encoding error
if preprocess_video:
preprocess_vides(episode_list, debug)
# load the raw datasets
raw_datasets_before_filter = [
load_local_dataset(episode_path)
for episode_path in tqdm(episode_list)
]
# remove the None result from the raw_datasets
raw_datasets = [
dataset for dataset in raw_datasets_before_filter if dataset is not None
]
for episode_data in tqdm(raw_datasets, desc="Generating dataset from raw datasets"):
for frame in tqdm(episode_data['frames'], desc="Generating dataset from raw dataset"):
dataset.add_frame(frame)
dataset.save_episode(task=episode_data['task'], videos=episode_data['videos'])
dataset.consolidate(run_compute_stats=True)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--data_dir",
type=str,
required=True,
)
parser.add_argument(
"--save_dir",
type=str,
required=True,
)
parser.add_argument(
"--repo_id",
type=str,
required=True,
)
parser.add_argument(
"--preprocess_video",
action="store_true",
)
parser.add_argument(
"--debug",
action="store_true",
)
args = parser.parse_args()
assert os.path.exists(args.data_dir), f"Cannot find {args.data_dir}."
main(args.data_dir, args.save_dir, args.repo_id, args.preprocess_video, args.debug)