|
from pathlib import Path |
|
from typing import Callable |
|
|
|
from tqdm import tqdm |
|
import h5py |
|
import torch |
|
import einops |
|
import shutil |
|
import logging |
|
import numpy as np |
|
from math import ceil |
|
from copy import deepcopy |
|
|
|
|
|
|
|
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset |
|
from lerobot.common.datasets.utils import ( |
|
STATS_PATH, |
|
check_timestamps_sync, |
|
get_episode_data_index, |
|
serialize_dict, |
|
write_json, |
|
) |
|
|
|
def get_stats_einops_patterns(dataset, num_workers=0): |
|
"""These einops patterns will be used to aggregate batches and compute statistics. |
|
|
|
Note: We assume the images are in channel first format |
|
""" |
|
|
|
dataloader = torch.utils.data.DataLoader( |
|
dataset, |
|
num_workers=num_workers, |
|
batch_size=2, |
|
shuffle=False, |
|
) |
|
batch = next(iter(dataloader)) |
|
|
|
stats_patterns = {} |
|
|
|
for key in dataset.features: |
|
|
|
assert batch[key].dtype != torch.float64 |
|
|
|
|
|
if key in dataset.meta.camera_keys: |
|
|
|
_, c, h, w = batch[key].shape |
|
assert ( |
|
c < h and c < w |
|
), f"expect channel first images, but instead {batch[key].shape}" |
|
assert ( |
|
batch[key].dtype == torch.float32 |
|
), f"expect torch.float32, but instead {batch[key].dtype=}" |
|
|
|
|
|
stats_patterns[key] = "b c h w -> c 1 1" |
|
elif batch[key].ndim == 2: |
|
stats_patterns[key] = "b c -> c " |
|
elif batch[key].ndim == 1: |
|
stats_patterns[key] = "b -> 1" |
|
else: |
|
raise ValueError(f"{key}, {batch[key].shape}") |
|
|
|
return stats_patterns |
|
|
|
|
|
def compute_stats(dataset, batch_size=1, num_workers=4, max_num_samples=None): |
|
"""Compute mean/std and min/max statistics of all data keys in a LeRobotDataset.""" |
|
if max_num_samples is None: |
|
max_num_samples = len(dataset) |
|
else: |
|
max_num_samples = min(max_num_samples, len(dataset)) |
|
|
|
|
|
stats_patterns = get_stats_einops_patterns(dataset, num_workers) |
|
|
|
|
|
mean, std, _max, _min = {}, {}, {}, {} |
|
for key in stats_patterns: |
|
mean[key] = torch.tensor(0.0).float() |
|
std[key] = torch.tensor(0.0).float() |
|
_max[key] = torch.tensor(-float("inf")).float() |
|
_min[key] = torch.tensor(float("inf")).float() |
|
|
|
def create_seeded_dataloader(dataset, batch_size, seed): |
|
generator = torch.Generator() |
|
generator.manual_seed(seed) |
|
dataloader = torch.utils.data.DataLoader( |
|
dataset, |
|
num_workers=num_workers, |
|
batch_size=batch_size, |
|
shuffle=True, |
|
drop_last=False, |
|
generator=generator, |
|
) |
|
return dataloader |
|
|
|
|
|
|
|
first_batch = None |
|
running_item_count = 0 |
|
dataloader = create_seeded_dataloader(dataset, batch_size, seed=1337) |
|
for i, batch in enumerate( |
|
tqdm( |
|
dataloader, |
|
total=ceil(max_num_samples / batch_size), |
|
desc="Compute mean, min, max", |
|
) |
|
): |
|
this_batch_size = len(batch["index"]) |
|
running_item_count += this_batch_size |
|
if first_batch is None: |
|
first_batch = deepcopy(batch) |
|
for key, pattern in stats_patterns.items(): |
|
batch[key] = batch[key].float() |
|
|
|
batch_mean = einops.reduce(batch[key], pattern, "mean") |
|
|
|
|
|
|
|
|
|
|
|
mean[key] = ( |
|
mean[key] |
|
+ this_batch_size * (batch_mean - mean[key]) / running_item_count |
|
) |
|
_max[key] = torch.maximum( |
|
_max[key], einops.reduce(batch[key], pattern, "max") |
|
) |
|
_min[key] = torch.minimum( |
|
_min[key], einops.reduce(batch[key], pattern, "min") |
|
) |
|
|
|
if i == ceil(max_num_samples / batch_size) - 1: |
|
break |
|
|
|
first_batch_ = None |
|
running_item_count = 0 |
|
dataloader = create_seeded_dataloader(dataset, batch_size, seed=1337) |
|
for i, batch in enumerate( |
|
tqdm(dataloader, total=ceil(max_num_samples / batch_size), desc="Compute std") |
|
): |
|
this_batch_size = len(batch["index"]) |
|
running_item_count += this_batch_size |
|
|
|
if first_batch_ is None: |
|
first_batch_ = deepcopy(batch) |
|
for key in stats_patterns: |
|
assert torch.equal(first_batch_[key], first_batch[key]) |
|
for key, pattern in stats_patterns.items(): |
|
batch[key] = batch[key].float() |
|
|
|
|
|
batch_std = einops.reduce((batch[key] - mean[key]) ** 2, pattern, "mean") |
|
std[key] = ( |
|
std[key] + this_batch_size * (batch_std - std[key]) / running_item_count |
|
) |
|
|
|
if i == ceil(max_num_samples / batch_size) - 1: |
|
break |
|
|
|
for key in stats_patterns: |
|
std[key] = torch.sqrt(std[key]) |
|
|
|
stats = {} |
|
for key in stats_patterns: |
|
stats[key] = { |
|
"mean": mean[key], |
|
"std": std[key], |
|
"max": _max[key], |
|
"min": _min[key], |
|
} |
|
return stats |
|
|
|
|
|
|
|
|
|
class AgiBotDataset(LeRobotDataset): |
|
def __init__( |
|
self, |
|
repo_id: str, |
|
root: str | Path | None = None, |
|
episodes: list[int] | None = None, |
|
image_transforms: Callable | None = None, |
|
delta_timestamps: dict[list[float]] | None = None, |
|
tolerance_s: float = 1e-4, |
|
download_videos: bool = True, |
|
local_files_only: bool = False, |
|
video_backend: str | None = None, |
|
): |
|
super().__init__( |
|
repo_id=repo_id, |
|
root=root, |
|
episodes=episodes, |
|
image_transforms=image_transforms, |
|
delta_timestamps=delta_timestamps, |
|
tolerance_s=tolerance_s, |
|
download_videos=download_videos, |
|
local_files_only=local_files_only, |
|
video_backend=video_backend, |
|
) |
|
|
|
def save_episode( |
|
self, task: str, episode_data: dict | None = None, videos: dict | None = None |
|
) -> None: |
|
""" |
|
We rewrite this method to copy mp4 videos to the target position |
|
""" |
|
if not episode_data: |
|
episode_buffer = self.episode_buffer |
|
|
|
episode_length = episode_buffer.pop("size") |
|
episode_index = episode_buffer["episode_index"] |
|
if episode_index != self.meta.total_episodes: |
|
|
|
raise NotImplementedError( |
|
"You might have manually provided the episode_buffer with an episode_index that doesn't " |
|
"match the total number of episodes in the dataset. This is not supported for now." |
|
) |
|
|
|
if episode_length == 0: |
|
raise ValueError( |
|
"You must add one or several frames with `add_frame` before calling `add_episode`." |
|
) |
|
|
|
task_index = self.meta.get_task_index(task) |
|
|
|
if not set(episode_buffer.keys()) == set(self.features): |
|
raise ValueError() |
|
|
|
for key, ft in self.features.items(): |
|
if key == "index": |
|
episode_buffer[key] = np.arange( |
|
self.meta.total_frames, self.meta.total_frames + episode_length |
|
) |
|
elif key == "episode_index": |
|
episode_buffer[key] = np.full((episode_length,), episode_index) |
|
elif key == "task_index": |
|
episode_buffer[key] = np.full((episode_length,), task_index) |
|
elif ft["dtype"] in ["image", "video"]: |
|
continue |
|
elif len(ft["shape"]) == 1 and ft["shape"][0] == 1: |
|
episode_buffer[key] = np.array(episode_buffer[key], dtype=ft["dtype"]) |
|
elif len(ft["shape"]) == 1 and ft["shape"][0] > 1: |
|
episode_buffer[key] = np.stack(episode_buffer[key]) |
|
else: |
|
raise ValueError(key) |
|
|
|
self._wait_image_writer() |
|
self._save_episode_table(episode_buffer, episode_index) |
|
|
|
self.meta.save_episode(episode_index, episode_length, task, task_index) |
|
for key in self.meta.video_keys: |
|
video_path = self.root / self.meta.get_video_file_path(episode_index, key) |
|
episode_buffer[key] = video_path |
|
video_path.parent.mkdir(parents=True, exist_ok=True) |
|
shutil.copyfile(videos[key], video_path) |
|
if not episode_data: |
|
self.episode_buffer = self.create_episode_buffer() |
|
self.consolidated = False |
|
|
|
def consolidate( |
|
self, run_compute_stats: bool = True, keep_image_files: bool = False |
|
) -> None: |
|
self.hf_dataset = self.load_hf_dataset() |
|
self.episode_data_index = get_episode_data_index( |
|
self.meta.episodes, self.episodes |
|
) |
|
check_timestamps_sync( |
|
self.hf_dataset, self.episode_data_index, self.fps, self.tolerance_s |
|
) |
|
if len(self.meta.video_keys) > 0: |
|
self.meta.write_video_info() |
|
|
|
if not keep_image_files: |
|
img_dir = self.root / "images" |
|
if img_dir.is_dir(): |
|
shutil.rmtree(self.root / "images") |
|
video_files = list(self.root.rglob("*.mp4")) |
|
assert len(video_files) == self.num_episodes * len(self.meta.video_keys) |
|
|
|
parquet_files = list(self.root.rglob("*.parquet")) |
|
assert len(parquet_files) == self.num_episodes |
|
|
|
if run_compute_stats: |
|
self.stop_image_writer() |
|
self.meta.stats = compute_stats(self, batch_size=1, num_workers=1, max_num_samples=1000) |
|
serialized_stats = serialize_dict(self.meta.stats) |
|
write_json(serialized_stats, self.root / STATS_PATH) |
|
self.consolidated = True |
|
else: |
|
logging.warning( |
|
"Skipping computation of the dataset statistics, dataset is not fully consolidated." |
|
) |
|
|
|
def add_frame(self, frame: dict) -> None: |
|
""" |
|
This function only adds the frame to the episode_buffer. Apart from images โ which are written in a |
|
temporary directory โ nothing is written to disk. To save those frames, the 'save_episode()' method |
|
then needs to be called. |
|
""" |
|
|
|
|
|
|
|
if self.episode_buffer is None: |
|
self.episode_buffer = self.create_episode_buffer() |
|
|
|
frame_index = self.episode_buffer["size"] |
|
timestamp = ( |
|
frame.pop("timestamp") if "timestamp" in frame else frame_index / self.fps |
|
) |
|
self.episode_buffer["frame_index"].append(frame_index) |
|
self.episode_buffer["timestamp"].append(timestamp) |
|
|
|
for key in frame: |
|
if key not in self.features: |
|
raise ValueError(key) |
|
item = ( |
|
frame[key].numpy() |
|
if isinstance(frame[key], torch.Tensor) |
|
else frame[key] |
|
) |
|
self.episode_buffer[key].append(item) |
|
|
|
self.episode_buffer["size"] += 1 |
|
|
|
|