|
""" |
|
This script is adapted from the Hugging Face 🤗 LeRobot project: |
|
https://github.com/huggingface/lerobot |
|
|
|
Original file: |
|
https://github.com/huggingface/lerobot/blob/main/lerobot/scripts/visualize_dataset.py |
|
|
|
The original script was developed as part of the LeRobot project for dataset visualization. |
|
This version adds support for depth map visualization. |
|
""" |
|
|
|
import argparse |
|
import gc |
|
import logging |
|
import time |
|
from pathlib import Path |
|
from typing import Iterator |
|
|
|
import numpy as np |
|
import rerun as rr |
|
import torch |
|
import torch.utils.data |
|
import tqdm |
|
import matplotlib.pyplot as plt |
|
|
|
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset |
|
|
|
|
|
class EpisodeSampler(torch.utils.data.Sampler): |
|
def __init__(self, dataset: LeRobotDataset, episode_index: int): |
|
from_idx = dataset.episode_data_index["from"][episode_index].item() |
|
to_idx = dataset.episode_data_index["to"][episode_index].item() |
|
self.frame_ids = range(from_idx, to_idx) |
|
|
|
def __iter__(self) -> Iterator: |
|
return iter(self.frame_ids) |
|
|
|
def __len__(self) -> int: |
|
return len(self.frame_ids) |
|
|
|
|
|
def to_hwc_uint8_numpy(chw_float32_torch: torch.Tensor) -> np.ndarray: |
|
assert chw_float32_torch.dtype == torch.float32 |
|
assert chw_float32_torch.ndim == 3 |
|
c, h, w = chw_float32_torch.shape |
|
assert c < h and c < w, f"Expect channel first images, but instead {chw_float32_torch.shape}" |
|
|
|
if c == 1: |
|
|
|
min_depth = 0.4 |
|
max_depth = 3 |
|
clipped_depth = torch.clamp(chw_float32_torch, min=min_depth, max=max_depth) |
|
normalized_depth = (clipped_depth-min_depth) / (max_depth-min_depth) |
|
depth_image = np.sqrt(normalized_depth.squeeze().cpu().numpy()) |
|
|
|
colormap = plt.get_cmap('jet') |
|
colored_depth_image = colormap(depth_image) |
|
hwc_uint8_numpy = (colored_depth_image[:, :, :3] * 255).astype(np.uint8) |
|
else: |
|
|
|
hwc_uint8_numpy = (chw_float32_torch * 255).type(torch.uint8).permute(1, 2, 0).numpy() |
|
|
|
return hwc_uint8_numpy |
|
|
|
|
|
def visualize_dataset( |
|
dataset: LeRobotDataset, |
|
episode_index: int, |
|
batch_size: int = 32, |
|
num_workers: int = 0, |
|
mode: str = "local", |
|
web_port: int = 9090, |
|
ws_port: int = 9087, |
|
save: bool = False, |
|
output_dir: Path | None = None, |
|
**kwargs, |
|
) -> Path | None: |
|
if save: |
|
assert ( |
|
output_dir is not None |
|
), "Set an output directory where to write .rrd files with `--output-dir path/to/directory`." |
|
|
|
repo_id = dataset.repo_id |
|
|
|
logging.info("Loading dataloader") |
|
episode_sampler = EpisodeSampler(dataset, episode_index) |
|
dataloader = torch.utils.data.DataLoader( |
|
dataset, |
|
num_workers=num_workers, |
|
batch_size=batch_size, |
|
sampler=episode_sampler, |
|
) |
|
|
|
logging.info("Starting Rerun") |
|
|
|
if mode not in ["local", "distant"]: |
|
raise ValueError(mode) |
|
|
|
spawn_local_viewer = mode == "local" and not save |
|
rr.init(f"{repo_id}/episode_{episode_index}", spawn=spawn_local_viewer) |
|
|
|
|
|
|
|
|
|
gc.collect() |
|
|
|
if mode == "distant": |
|
rr.serve(open_browser=False, web_port=web_port, ws_port=ws_port) |
|
|
|
logging.info("Logging to Rerun") |
|
|
|
for batch in tqdm.tqdm(dataloader, total=len(dataloader)): |
|
|
|
for i in range(len(batch["index"])): |
|
rr.set_time_sequence("frame_index", batch["frame_index"][i].item()) |
|
rr.set_time_seconds("timestamp", batch["timestamp"][i].item()) |
|
|
|
|
|
for key in dataset.meta.camera_keys: |
|
|
|
rr.log(key, rr.Image(to_hwc_uint8_numpy(batch[key][i]))) |
|
|
|
|
|
if "action" in batch: |
|
for dim_idx, val in enumerate(batch["action"][i]): |
|
rr.log(f"action/{dim_idx}", rr.Scalar(val.item())) |
|
|
|
|
|
if "observation.state" in batch: |
|
for dim_idx, val in enumerate(batch["observation.state"][i]): |
|
rr.log(f"state/{dim_idx}", rr.Scalar(val.item())) |
|
|
|
if mode == "local" and save: |
|
|
|
output_dir = Path(output_dir) |
|
output_dir.mkdir(parents=True, exist_ok=True) |
|
repo_id_str = repo_id.replace("/", "_") |
|
rrd_path = output_dir / f"{repo_id_str}_episode_{episode_index}.rrd" |
|
rr.save(rrd_path) |
|
return rrd_path |
|
|
|
elif mode == "distant": |
|
|
|
try: |
|
while True: |
|
time.sleep(1) |
|
except KeyboardInterrupt: |
|
print("Ctrl-C received. Exiting.") |
|
|
|
|
|
def main(): |
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument( |
|
"--repo-id", |
|
type=str, |
|
default=None, |
|
) |
|
parser.add_argument( |
|
"--episode-index", |
|
type=int, |
|
nargs="*", |
|
default=None, |
|
help="Episode indices to visualize (e.g. `0 1 5 6` to load episodes of index 0, 1, 5 and 6). By default loads all episodes.", |
|
) |
|
parser.add_argument( |
|
"--dataset-path", |
|
type=Path, |
|
default=None, |
|
help="Root directory for the converted LeRobot dataset stored locally.", |
|
) |
|
parser.add_argument( |
|
"--output-dir", |
|
type=Path, |
|
default=None, |
|
help="Directory path to write a .rrd file when `--save 1` is set.", |
|
) |
|
parser.add_argument( |
|
"--batch-size", |
|
type=int, |
|
default=32, |
|
help="Batch size loaded by DataLoader.", |
|
) |
|
parser.add_argument( |
|
"--num-workers", |
|
type=int, |
|
default=4, |
|
help="Number of processes of Dataloader for loading the data.", |
|
) |
|
parser.add_argument( |
|
"--mode", |
|
type=str, |
|
default="local", |
|
help=( |
|
"Mode of viewing between 'local' or 'distant'. " |
|
"'local' requires data to be on a local machine. It spawns a viewer to visualize the data locally. " |
|
"'distant' creates a server on the distant machine where the data is stored. " |
|
"Visualize the data by connecting to the server with `rerun ws://localhost:PORT` on the local machine." |
|
), |
|
) |
|
parser.add_argument( |
|
"--web-port", |
|
type=int, |
|
default=9090, |
|
help="Web port for rerun.io when `--mode distant` is set.", |
|
) |
|
parser.add_argument( |
|
"--ws-port", |
|
type=int, |
|
default=9087, |
|
help="Web socket port for rerun.io when `--mode distant` is set.", |
|
) |
|
parser.add_argument( |
|
"--save", |
|
type=int, |
|
default=0, |
|
help=( |
|
"Save a .rrd file in the directory provided by `--output-dir`. " |
|
"It also deactivates the spawning of a viewer. " |
|
"Visualize the data by running `rerun path/to/file.rrd` on your local machine." |
|
), |
|
) |
|
|
|
args = parser.parse_args() |
|
kwargs = vars(args) |
|
root = f"{kwargs.pop('dataset_path')}/{args.repo_id}" |
|
|
|
logging.info("Loading dataset") |
|
dataset = LeRobotDataset(args.repo_id, root=root, local_files_only=True) |
|
|
|
visualize_dataset(dataset, **vars(args)) |
|
|
|
if __name__ == "__main__": |
|
main() |