akshaydudhane commited on
Commit
dead97c
Β·
verified Β·
1 Parent(s): 29af5cf

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +119 -7
README.md CHANGED
@@ -48,24 +48,136 @@ configs:
48
  path: Eardial_downstream_task_datasets/Image_captioning/RSICD_Captions/RSICD_Captions_test/data-00000-of-00001.arrow
49
  ---
50
 
51
-
52
  # 🌍 EarthDial-Dataset
53
 
54
- The **EarthDial-Dataset** is a collection of task-specific evaluation datasets curated for benchmarking remote sensing, satellite imagery, and Earth observation downstream tasks. It is designed to serve as a testbed for evaluating vision-language and multimodal models in real-world Earth monitoring use-cases.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55
 
56
  ---
57
 
58
- ## πŸ“ Dataset Structure
59
 
60
- This repository contains a main folder `EarthDial_downstream_task_datasets`, which includes several task-specific directories. Each directory contains multiple datasets in Apache Arrow format. There are **no training or validation splits** β€” these datasets are intended for **evaluation only**.
 
61
 
62
- ## πŸ“¦ Sample Dataset Load
63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64
 
 
65
 
66
- ```python
67
  from datasets import load_dataset
68
 
69
  dataset = load_dataset(
70
  "akshaydudhane/EarthDial-Dataset",
71
- data_dir="EarthDial_downstream_task_datasets/Classification/AID/test")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48
  path: Eardial_downstream_task_datasets/Image_captioning/RSICD_Captions/RSICD_Captions_test/data-00000-of-00001.arrow
49
  ---
50
 
 
51
  # 🌍 EarthDial-Dataset
52
 
53
+ The **EarthDial-Dataset** is a curated collection of evaluation-only datasets focused on remote sensing and Earth observation downstream tasks. It is designed to benchmark **vision-language models (VLMs)** and **multimodal reasoning systems** on real-world scenarios involving satellite and aerial imagery.
54
+
55
+ ---
56
+
57
+ ## πŸ“š Key Features
58
+
59
+ - **Evaluation-focused**: All datasets are for inference/testing only β€” no train/val splits.
60
+ - **Diverse Tasks**:
61
+ - Classification
62
+ - Object Detection
63
+ - Change Detection
64
+ - Grounding Description
65
+ - Region Captioning
66
+ - Image Captioning
67
+ - Visual Question Answering (GeoChat Bench)
68
+ - **Remote Sensing Specific**: Tailored for multispectral, RGB, and high-resolution satellite data.
69
+ - **Multimodal Format**: Includes images, questions, captions, annotations, and geospatial metadata.
70
 
71
  ---
72
 
73
+ ## πŸ—‚οΈ Dataset Structure
74
 
75
+ The dataset is structured under the root folder:
76
+ `EarthDial_downstream_task_datasets/`
77
 
78
+ Each task has its own subdirectory with `.arrow`-formatted shards, structured as:
79
 
80
+ ```bash
81
+ EarthDial_downstream_task_datasets/
82
+ β”‚
83
+ β”œβ”€β”€ Classification/
84
+ β”‚ β”œβ”€β”€ AID/
85
+ β”‚ β”‚ └── test/data-00000-of-00001.arrow
86
+ β”‚ └── ...
87
+ β”‚
88
+ β”œβ”€β”€ Detection/
89
+ β”‚ β”œβ”€β”€ NWPU_VHR_10_test/
90
+ β”‚ β”œβ”€β”€ Swimming_pool_dataset_test/
91
+ β”‚ └── ...
92
+ β”‚
93
+ β”œβ”€β”€ Region_captioning/
94
+ β”‚ └── NWPU_VHR_10_test_region_captioning/
95
+ β”‚
96
+ β”œβ”€β”€ Image_captioning/
97
+ β”‚ β”œβ”€β”€ RSICD_Captions/
98
+ β”‚ └── UCM_Captions/
99
+ β”‚...
100
 
101
+ ## πŸ—‚οΈ Example data usage
102
 
 
103
  from datasets import load_dataset
104
 
105
  dataset = load_dataset(
106
  "akshaydudhane/EarthDial-Dataset",
107
+ data_dir="EarthDial_downstream_task_datasets/Classification/AID/test"
108
+ )
109
+
110
+ ## Example Demo Usage
111
+
112
+ import argparse
113
+ import torch
114
+ from PIL import Image
115
+ from transformers import AutoTokenizer
116
+ from earthdial.model.internvl_chat import InternVLChatModel
117
+ from earthdial.train.dataset import build_transform
118
+
119
+ def run_single_inference(args):
120
+ # Load model and tokenizer from Hugging Face Hub
121
+ print(f"Loading model and tokenizer from Hugging Face: {args.checkpoint}")
122
+ tokenizer = AutoTokenizer.from_pretrained(args.checkpoint, trust_remote_code=True, use_fast=False)
123
+ model = InternVLChatModel.from_pretrained(
124
+ args.checkpoint,
125
+ low_cpu_mem_usage=True,
126
+ torch_dtype=torch.bfloat16,
127
+ device_map="auto" if args.auto else None,
128
+ load_in_8bit=args.load_in_8bit,
129
+ load_in_4bit=args.load_in_4bit
130
+ ).eval()
131
+
132
+ if not args.load_in_8bit and not args.load_in_4bit and not args.auto:
133
+ model = model.cuda()
134
+
135
+ # Load and preprocess image
136
+ image = Image.open(args.image_path).convert("RGB")
137
+ image_size = model.config.force_image_size or model.config.vision_config.image_size
138
+ transform = build_transform(is_train=False, input_size=image_size, normalize_type='imagenet')
139
+ pixel_values = transform(image).unsqueeze(0).cuda().to(torch.bfloat16)
140
+
141
+ # Generate answer
142
+ generation_config = {
143
+ "num_beams": args.num_beams,
144
+ "max_new_tokens": 100,
145
+ "min_new_tokens": 1,
146
+ "do_sample": args.temperature > 0,
147
+ "temperature": args.temperature,
148
+ }
149
+
150
+ answer = model.chat(
151
+ tokenizer=tokenizer,
152
+ pixel_values=pixel_values,
153
+ question=args.question,
154
+ generation_config=generation_config,
155
+ verbose=True
156
+ )
157
+
158
+ print("\n=== Inference Result ===")
159
+ print(f"Question: {args.question}")
160
+ print(f"Answer: {answer}")
161
+
162
+ if __name__ == "__main__":
163
+ parser = argparse.ArgumentParser()
164
+ parser.add_argument('--checkpoint', type=str, required=True, help='Model repo ID on Hugging Face Hub')
165
+ parser.add_argument('--image-path', type=str, required=True, help='Path to local input image')
166
+ parser.add_argument('--question', type=str, required=True, help='Question to ask about the image')
167
+ parser.add_argument('--num-beams', type=int, default=5)
168
+ parser.add_argument('--temperature', type=float, default=0.0)
169
+ parser.add_argument('--load-in-8bit', action='store_true')
170
+ parser.add_argument('--load-in-4bit', action='store_true')
171
+ parser.add_argument('--auto', action='store_true')
172
+
173
+ args = parser.parse_args()
174
+ run_single_inference(args)
175
+
176
+
177
+
178
+ python demo_infer.py \
179
+ --checkpoint akshaydudhane/EarthDial_4B_RGB \
180
+ --image-path ./test.jpg \
181
+ --question "Which road has more vehicles?" \
182
+ --auto
183
+