File size: 3,221 Bytes
5a024f2
ab7be4d
646cadb
 
ab7be4d
 
 
 
 
 
 
 
646cadb
 
 
a3079cb
 
646cadb
a3079cb
 
646cadb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3079cb
646cadb
a3079cb
 
646cadb
 
 
 
 
df233b6
5a024f2
ab7be4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df233b6
 
 
ab7be4d
 
 
 
 
 
 
 
e7ee7bb
ab7be4d
 
 
 
 
 
 
 
 
 
 
 
 
df233b6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
---
dataset: Wind-Turbine-5MW-Drivetrain-Bearing-Damage-Dataset
language:
- en
tags:
- bearing-fault
- drivetrain
- condition-monitoring
- vibration-signal
- wind-turbine
- fault-diagnosis
license: cc-by-4.0
dataset_info:
  features:
  - name: signal_a1a
    sequence:
      sequence: float32
  - name: signal_a3a
    sequence:
      sequence: float32
  - name: signal_length
    dtype: int32
  - name: label
    dtype:
      class_label:
        names:
          '0': healthy
          '1': main_bearing
          '2': high_speed_bearing
          '3': low_speed_planet_bearing
  - name: fault_condition
    dtype: string
  - name: environmental_condition
    dtype: string
  - name: sampling_frequency
    dtype: float32
  - name: wind_speed
    dtype: float32
  splits:
  - name: train
    num_bytes: 69120747
    num_examples: 12
  download_size: 70324111
  dataset_size: 69120747
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
pretty_name: 5MW offshore wind turbine drivetrain bearing damage dataset
---

# 5MW Wind Turbine Drivetrain Bearing Damage Dataset

## Dataset Description
Dataset containing vibration signals from the NREL 5MW reference drivetrain model with different bearing conditions.
The reference paper for this dataset is available at: [DOI: 10.1016/j.renene.2022.12.049](https://doi.org/10.1016/j.renene.2022.12.049)
This is a subset of the original dataset available at Zenodo. For the full dataset and additional information, please visit: [DOI: 10.5281/zenodo.7674842](https://doi.org/10.5281/zenodo.7674842)


### Features:
- **`signal_a1a`**: Vibration time waveform from sensor A1A
- **`signal_a3a`**: Vibration time waveform from sensor A3A
- **`signal_length`**: Length of the signals
- **`label`**: Fault condition (0: healthy, 1: main bearing, 2: high-speed bearing, 3: low-speed planet bearing)
- **`environmental_condition`**: Operating conditions (EC1, EC2, EC3)
- **`sampling_frequency`**: 200.0 Hz
- **`wind_speed`**: Operating wind speeds (7.0, 12.0, 14.0 m/s)

### Data Split
The dataset includes samples from:
- **4 different conditions** (healthy + 3 fault locations)
- **3 different operating conditions** (EC1, EC2, EC3)
- **Total of 12 different scenarios**

### Implementation
https://github.com/alidi24/deep-learning-fault-diagnosis

### License
This dataset is licensed under **CC BY 4.0**.  
This means:
- ✅ You are free to share and adapt the data  
- ✅ You must give appropriate credit  
- ✅ You can use it for any purpose, including commercial use 

### Citation
In case using this dataset for your research, you are welcome to cite the paper:
```bibtex
@article{DIBAJ2023161,
title = {Fault detection of offshore wind turbine drivetrains in different environmental conditions through optimal selection of vibration measurements},
journal = {Renewable Energy},
volume = {203},
pages = {161-176},
year = {2023},
issn = {0960-1481},
doi = {https://doi.org/10.1016/j.renene.2022.12.049},
url = {https://www.sciencedirect.com/science/article/pii/S0960148122018341},
author = {Ali Dibaj and Zhen Gao and Amir R. Nejad},
keywords = {Offshore wind turbine, Drivetrain system, Fault detection, Optimal vibration measurements},
}
```