url
stringlengths
58
61
repository_url
stringclasses
1 value
labels_url
stringlengths
72
75
comments_url
stringlengths
67
70
events_url
stringlengths
65
68
html_url
stringlengths
46
51
id
int64
599M
2.98B
node_id
stringlengths
18
32
number
int64
1
7.5k
title
stringlengths
1
290
user
dict
labels
listlengths
0
4
state
stringclasses
2 values
locked
bool
1 class
assignee
dict
assignees
listlengths
0
4
comments
sequencelengths
0
30
created_at
int64
1,587B
1,744B
updated_at
int64
1,588B
1,744B
closed_at
int64
1,587B
1,744B
author_association
stringclasses
4 values
sub_issues_summary
dict
body
stringlengths
0
228k
closed_by
dict
reactions
dict
timeline_url
stringlengths
67
70
state_reason
stringclasses
3 values
draft
float64
0
1
pull_request
dict
https://api.github.com/repos/huggingface/datasets/issues/7503
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7503/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7503/comments
https://api.github.com/repos/huggingface/datasets/issues/7503/events
https://github.com/huggingface/datasets/issues/7503
2,978,512,625
I_kwDODunzps6xiH7x
7,503
Inconsistency between load_dataset and load_from_disk functionality
{ "login": "zzzzzec", "id": 60975422, "node_id": "MDQ6VXNlcjYwOTc1NDIy", "avatar_url": "https://avatars.githubusercontent.com/u/60975422?v=4", "gravatar_id": "", "url": "https://api.github.com/users/zzzzzec", "html_url": "https://github.com/zzzzzec", "followers_url": "https://api.github.com/users/zzzzzec/followers", "following_url": "https://api.github.com/users/zzzzzec/following{/other_user}", "gists_url": "https://api.github.com/users/zzzzzec/gists{/gist_id}", "starred_url": "https://api.github.com/users/zzzzzec/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/zzzzzec/subscriptions", "organizations_url": "https://api.github.com/users/zzzzzec/orgs", "repos_url": "https://api.github.com/users/zzzzzec/repos", "events_url": "https://api.github.com/users/zzzzzec/events{/privacy}", "received_events_url": "https://api.github.com/users/zzzzzec/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
[]
1,744,083,982,000
1,744,083,982,000
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
## Issue Description I've encountered confusion when using `load_dataset` and `load_from_disk` in the datasets library. Specifically, when working offline with the gsm8k dataset, I can load it using a local path: ```python import datasets ds = datasets.load_dataset('/root/xxx/datasets/gsm8k', 'main') ``` output: ```text DatasetDict({ train: Dataset({ features: ['question', 'answer'], num_rows: 7473 }) test: Dataset({ features: ['question', 'answer'], num_rows: 1319 }) }) ``` This works as expected. However, after processing the dataset (converting answer format from #### to \boxed{}) ```python import datasets ds = datasets.load_dataset('/root/xxx/datasets/gsm8k', 'main') ds_train = ds['train'] ds_test = ds['test'] import re def convert(sample): solution = sample['answer'] solution = re.sub(r'####\s*(\S+)', r'\\boxed{\1}', solution) sample = { 'problem': sample['question'], 'solution': solution } return sample ds_train = ds_train.map(convert, remove_columns=['question', 'answer']) ds_test = ds_test.map(convert,remove_columns=['question', 'answer']) ``` I saved it using save_to_disk: ```python from datasets.dataset_dict import DatasetDict data_dict = DatasetDict({ 'train': ds_train, 'test': ds_test }) data_dict.save_to_disk('/root/xxx/datasets/gsm8k-new') ``` But now I can only load it using load_from_disk: ```python new_ds = load_from_disk('/root/xxx/datasets/gsm8k-new') ``` output: ```text DatasetDict({ train: Dataset({ features: ['problem', 'solution'], num_rows: 7473 }) test: Dataset({ features: ['problem', 'solution'], num_rows: 1319 }) }) ``` Attempting to use load_dataset produces unexpected results: ```python new_ds = load_dataset('/root/xxx/datasets/gsm8k-new') ``` output: ```text DatasetDict({ train: Dataset({ features: ['_data_files', '_fingerprint', '_format_columns', '_format_kwargs', '_format_type', '_output_all_columns', '_split'], num_rows: 1 }) test: Dataset({ features: ['_data_files', '_fingerprint', '_format_columns', '_format_kwargs', '_format_type', '_output_all_columns', '_split'], num_rows: 1 }) }) ``` Questions 1. Why is it designed such that after using `save_to_disk`, the dataset cannot be loaded with `load_dataset`? For small projects with limited code, it might be relatively easy to change all instances of `load_dataset` to `load_from_disk`. However, for complex frameworks like TRL or lighteval, diving into the framework code to change `load_dataset` to `load_from_disk` is extremely tedious and error-prone. Additionally, `load_from_disk` cannot load datasets directly downloaded from the hub, which means that if you need to modify a dataset, you have to choose between using `load_from_disk` or `load_dataset`. This creates an unnecessary dichotomy in the API and complicates workflow when working with modified datasets. 2. What's the recommended approach for this use case? Should I manually process my gsm8k-new dataset to make it compatible with load_dataset? Is there a standard way to convert between these formats? thanks~
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7503/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7503/timeline
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/7502
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7502/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7502/comments
https://api.github.com/repos/huggingface/datasets/issues/7502/events
https://github.com/huggingface/datasets/issues/7502
2,977,453,814
I_kwDODunzps6xeFb2
7,502
`load_dataset` of size 40GB creates a cache of >720GB
{ "login": "pietrolesci", "id": 61748653, "node_id": "MDQ6VXNlcjYxNzQ4NjUz", "avatar_url": "https://avatars.githubusercontent.com/u/61748653?v=4", "gravatar_id": "", "url": "https://api.github.com/users/pietrolesci", "html_url": "https://github.com/pietrolesci", "followers_url": "https://api.github.com/users/pietrolesci/followers", "following_url": "https://api.github.com/users/pietrolesci/following{/other_user}", "gists_url": "https://api.github.com/users/pietrolesci/gists{/gist_id}", "starred_url": "https://api.github.com/users/pietrolesci/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pietrolesci/subscriptions", "organizations_url": "https://api.github.com/users/pietrolesci/orgs", "repos_url": "https://api.github.com/users/pietrolesci/repos", "events_url": "https://api.github.com/users/pietrolesci/events{/privacy}", "received_events_url": "https://api.github.com/users/pietrolesci/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
[]
1,744,044,754,000
1,744,044,920,000
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
Hi there, I am trying to load a dataset from the Hugging Face Hub and split it into train and validation splits. Somehow, when I try to do it with `load_dataset`, it exhausts my disk quota. So, I tried manually downloading the parquet files from the hub and loading them as follows: ```python ds = DatasetDict( { "train": load_dataset( "parquet", data_dir=f"{local_dir}/{tok}", cache_dir=cache_dir, num_proc=min(12, os.cpu_count()), # type: ignore split=ReadInstruction("train", from_=0, to=NUM_TRAIN, unit="abs"), # type: ignore ), "validation": load_dataset( "parquet", data_dir=f"{local_dir}/{tok}", cache_dir=cache_dir, num_proc=min(12, os.cpu_count()), # type: ignore split=ReadInstruction("train", from_=NUM_TRAIN, unit="abs"), # type: ignore ) } ) ``` which still strangely creates 720GB of cache. In addition, if I remove the raw parquet file folder (`f"{local_dir}/{tok}"` in this example), I am not able to load anything. So, I am left wondering what this cache is doing. Am I missing something? Is there a solution to this problem? Thanks a lot in advance for your help! A related issue: https://github.com/huggingface/transformers/issues/10204#issue-809007443. --- Python: 3.11.11 datasets: 3.5.0
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7502/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7502/timeline
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/7501
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7501/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7501/comments
https://api.github.com/repos/huggingface/datasets/issues/7501/events
https://github.com/huggingface/datasets/issues/7501
2,976,721,014
I_kwDODunzps6xbSh2
7,501
Nested Feature raises ArrowNotImplementedError: Unsupported cast using function cast_struct
{ "login": "yaner-here", "id": 26623948, "node_id": "MDQ6VXNlcjI2NjIzOTQ4", "avatar_url": "https://avatars.githubusercontent.com/u/26623948?v=4", "gravatar_id": "", "url": "https://api.github.com/users/yaner-here", "html_url": "https://github.com/yaner-here", "followers_url": "https://api.github.com/users/yaner-here/followers", "following_url": "https://api.github.com/users/yaner-here/following{/other_user}", "gists_url": "https://api.github.com/users/yaner-here/gists{/gist_id}", "starred_url": "https://api.github.com/users/yaner-here/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/yaner-here/subscriptions", "organizations_url": "https://api.github.com/users/yaner-here/orgs", "repos_url": "https://api.github.com/users/yaner-here/repos", "events_url": "https://api.github.com/users/yaner-here/events{/privacy}", "received_events_url": "https://api.github.com/users/yaner-here/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
[ "Solved by the default `load_dataset(features)` parameters. Do not use `Sequence` for the `list` in `list[any]` json schema, just simply use `[]`. For example, `\"b\": Sequence({...})` fails but `\"b\": [{...}]` works fine." ]
1,744,029,339,000
1,744,029,784,000
1,744,029,783,000
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
### Describe the bug `datasets.Features` seems to be unable to handle json file that contains fields of `list[dict]`. ### Steps to reproduce the bug ```json // test.json {"a": 1, "b": [{"c": 2, "d": 3}, {"c": 4, "d": 5}]} {"a": 5, "b": [{"c": 7, "d": 8}, {"c": 9, "d": 10}]} ``` ```python import json from datasets import Dataset, Features, Value, Sequence, load_dataset annotation_feature = Features({ "a": Value("int32"), "b": Sequence({ "c": Value("int32"), "d": Value("int32"), }), }) annotation_dataset = load_dataset( "json", data_files="test.json", features=annotation_feature ) ``` ``` ArrowNotImplementedError: Unsupported cast from list<item: struct<c: int32, d: int32>> to struct using function cast_struct The above exception was the direct cause of the following exception: DatasetGenerationError Traceback (most recent call last) Cell In[46], line 11 2 from datasets import Dataset, Features, Value, Sequence, load_dataset 4 annotation_feature = Features({ 5 "a": Value("int32"), 6 "b": Sequence({ (...) 9 }), 10 }) ---> 11 annotation_dataset = load_dataset( 12 "json", 13 data_files="test.json", 14 features=annotation_feature 15 ) ``` ### Expected behavior A `datasets.Datasets` instance should be initialized. ### Environment info - `datasets` version: 3.5.0 - Platform: Linux-6.11.0-21-generic-x86_64-with-glibc2.39 - Python version: 3.11.11 - `huggingface_hub` version: 0.30.1 - PyArrow version: 19.0.1 - Pandas version: 2.2.3 - `fsspec` version: 2024.12.0
{ "login": "yaner-here", "id": 26623948, "node_id": "MDQ6VXNlcjI2NjIzOTQ4", "avatar_url": "https://avatars.githubusercontent.com/u/26623948?v=4", "gravatar_id": "", "url": "https://api.github.com/users/yaner-here", "html_url": "https://github.com/yaner-here", "followers_url": "https://api.github.com/users/yaner-here/followers", "following_url": "https://api.github.com/users/yaner-here/following{/other_user}", "gists_url": "https://api.github.com/users/yaner-here/gists{/gist_id}", "starred_url": "https://api.github.com/users/yaner-here/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/yaner-here/subscriptions", "organizations_url": "https://api.github.com/users/yaner-here/orgs", "repos_url": "https://api.github.com/users/yaner-here/repos", "events_url": "https://api.github.com/users/yaner-here/events{/privacy}", "received_events_url": "https://api.github.com/users/yaner-here/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7501/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7501/timeline
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/7500
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7500/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7500/comments
https://api.github.com/repos/huggingface/datasets/issues/7500/events
https://github.com/huggingface/datasets/issues/7500
2,974,841,921
I_kwDODunzps6xUHxB
7,500
Make `with_format` correctly indicate that a `Dataset` is compatible with PyTorch's `Dataset` class
{ "login": "benglewis", "id": 3817460, "node_id": "MDQ6VXNlcjM4MTc0NjA=", "avatar_url": "https://avatars.githubusercontent.com/u/3817460?v=4", "gravatar_id": "", "url": "https://api.github.com/users/benglewis", "html_url": "https://github.com/benglewis", "followers_url": "https://api.github.com/users/benglewis/followers", "following_url": "https://api.github.com/users/benglewis/following{/other_user}", "gists_url": "https://api.github.com/users/benglewis/gists{/gist_id}", "starred_url": "https://api.github.com/users/benglewis/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/benglewis/subscriptions", "organizations_url": "https://api.github.com/users/benglewis/orgs", "repos_url": "https://api.github.com/users/benglewis/repos", "events_url": "https://api.github.com/users/benglewis/events{/privacy}", "received_events_url": "https://api.github.com/users/benglewis/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[ { "id": 1935892871, "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement", "name": "enhancement", "color": "a2eeef", "default": true, "description": "New feature or request" } ]
open
false
null
[]
[]
1,743,933,369,000
1,743,933,369,000
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
### Feature request Currently `datasets` does not correctly indicate to the Python type-checker (e.g. `pyright` / `Pylance`) that the output of `with_format` is compatible with PyTorch's `Dataloader` since it does not indicate that the HuggingFace `Dataset` is compatible with the PyTorch `Dataset` class. It would be great if we could get the typing to work nicely. ### Motivation To avoid casting types in our Python code. ### Your contribution I would be happy to contribute a PR if this is something that may be accepted and could work with the current approach. This doesn't have to be for just PyTorch, but I imagine that the same thing would be useful for `tensorflow` and such, but we only have a need for PyTorch at this stage.
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7500/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7500/timeline
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/7499
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7499/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7499/comments
https://api.github.com/repos/huggingface/datasets/issues/7499/events
https://github.com/huggingface/datasets/pull/7499
2,973,489,126
PR_kwDODunzps6Rd4Zp
7,499
Added cache dirs to load and file_utils
{ "login": "gmongaras", "id": 43501738, "node_id": "MDQ6VXNlcjQzNTAxNzM4", "avatar_url": "https://avatars.githubusercontent.com/u/43501738?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gmongaras", "html_url": "https://github.com/gmongaras", "followers_url": "https://api.github.com/users/gmongaras/followers", "following_url": "https://api.github.com/users/gmongaras/following{/other_user}", "gists_url": "https://api.github.com/users/gmongaras/gists{/gist_id}", "starred_url": "https://api.github.com/users/gmongaras/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gmongaras/subscriptions", "organizations_url": "https://api.github.com/users/gmongaras/orgs", "repos_url": "https://api.github.com/users/gmongaras/repos", "events_url": "https://api.github.com/users/gmongaras/events{/privacy}", "received_events_url": "https://api.github.com/users/gmongaras/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
[]
1,743,806,164,000
1,743,806,164,000
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
When adding "cache_dir" to datasets.load_dataset, the cache_dir gets lost in the function calls, changing the cache dir to the default path. This fixes a few of these instances.
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7499/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7499/timeline
null
0
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7499", "html_url": "https://github.com/huggingface/datasets/pull/7499", "diff_url": "https://github.com/huggingface/datasets/pull/7499.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7499.patch", "merged_at": null }
https://api.github.com/repos/huggingface/datasets/issues/7498
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7498/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7498/comments
https://api.github.com/repos/huggingface/datasets/issues/7498/events
https://github.com/huggingface/datasets/issues/7498
2,969,218,273
I_kwDODunzps6w-qzh
7,498
Extreme memory bandwidth.
{ "login": "J0SZ", "id": 185079645, "node_id": "U_kgDOCwgXXQ", "avatar_url": "https://avatars.githubusercontent.com/u/185079645?v=4", "gravatar_id": "", "url": "https://api.github.com/users/J0SZ", "html_url": "https://github.com/J0SZ", "followers_url": "https://api.github.com/users/J0SZ/followers", "following_url": "https://api.github.com/users/J0SZ/following{/other_user}", "gists_url": "https://api.github.com/users/J0SZ/gists{/gist_id}", "starred_url": "https://api.github.com/users/J0SZ/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/J0SZ/subscriptions", "organizations_url": "https://api.github.com/users/J0SZ/orgs", "repos_url": "https://api.github.com/users/J0SZ/repos", "events_url": "https://api.github.com/users/J0SZ/events{/privacy}", "received_events_url": "https://api.github.com/users/J0SZ/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
[]
1,743,678,548,000
1,743,678,682,000
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
### Describe the bug When I use hf datasets on 4 GPU with 40 workers I get some extreme memory bandwidth of constant ~3GB/s. However, if I wrap the dataset in `IterableDataset`, this issue is gone and the data also loads way faster (4x faster training on 1 worker). It seems like the workers don't share memory and basically duplicate the data 4x40. ### Steps to reproduce the bug Trainer arguments: ``` dataloader_pin_memory=True, dataloader_num_workers=40, dataloader_prefetch_factor=2, dataloader_persistent_workers=True, ``` Call trainer: ``` trainer = Trainer( model=model, args=train_args, train_dataset=load_from_disk('..').with_fromat('torch'), ) ``` The dataset has 600GB and consists of 1225 files. ### Expected behavior The optimal bandwidth should be 100MB/s to keep up with GPU. ### Environment info Linux Python 3.11 datasets==3.2.0
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7498/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7498/timeline
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/7497
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7497/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7497/comments
https://api.github.com/repos/huggingface/datasets/issues/7497/events
https://github.com/huggingface/datasets/issues/7497
2,968,553,693
I_kwDODunzps6w8Ijd
7,497
How to convert videos to images?
{ "login": "tongvibe", "id": 171649931, "node_id": "U_kgDOCjsriw", "avatar_url": "https://avatars.githubusercontent.com/u/171649931?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tongvibe", "html_url": "https://github.com/tongvibe", "followers_url": "https://api.github.com/users/tongvibe/followers", "following_url": "https://api.github.com/users/tongvibe/following{/other_user}", "gists_url": "https://api.github.com/users/tongvibe/gists{/gist_id}", "starred_url": "https://api.github.com/users/tongvibe/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tongvibe/subscriptions", "organizations_url": "https://api.github.com/users/tongvibe/orgs", "repos_url": "https://api.github.com/users/tongvibe/repos", "events_url": "https://api.github.com/users/tongvibe/events{/privacy}", "received_events_url": "https://api.github.com/users/tongvibe/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[ { "id": 1935892871, "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement", "name": "enhancement", "color": "a2eeef", "default": true, "description": "New feature or request" } ]
open
false
null
[]
[]
1,743,664,119,000
1,743,664,164,000
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
### Feature request Does someone know how to return the images from videos? ### Motivation I am trying to use openpi(https://github.com/Physical-Intelligence/openpi) to finetune my Lerobot dataset(V2.0 and V2.1). I find that although the codedaset is v2.0, they are different. It seems like Lerobot V2.0 has two version, one is data include images infos and another one is separate to data and videos. Does someone know how to return the images from videos?
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7497/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7497/timeline
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/7496
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7496/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7496/comments
https://api.github.com/repos/huggingface/datasets/issues/7496/events
https://github.com/huggingface/datasets/issues/7496
2,967,345,522
I_kwDODunzps6w3hly
7,496
Json builder: Allow features to override problematic Arrow types
{ "login": "edmcman", "id": 1017189, "node_id": "MDQ6VXNlcjEwMTcxODk=", "avatar_url": "https://avatars.githubusercontent.com/u/1017189?v=4", "gravatar_id": "", "url": "https://api.github.com/users/edmcman", "html_url": "https://github.com/edmcman", "followers_url": "https://api.github.com/users/edmcman/followers", "following_url": "https://api.github.com/users/edmcman/following{/other_user}", "gists_url": "https://api.github.com/users/edmcman/gists{/gist_id}", "starred_url": "https://api.github.com/users/edmcman/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/edmcman/subscriptions", "organizations_url": "https://api.github.com/users/edmcman/orgs", "repos_url": "https://api.github.com/users/edmcman/repos", "events_url": "https://api.github.com/users/edmcman/events{/privacy}", "received_events_url": "https://api.github.com/users/edmcman/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[ { "id": 1935892871, "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement", "name": "enhancement", "color": "a2eeef", "default": true, "description": "New feature or request" } ]
open
false
null
[]
[]
1,743,622,036,000
1,743,622,036,000
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
### Feature request In the JSON builder, use explicitly requested feature types before or while converting to Arrow. ### Motivation Working with JSON datasets is really hard because of Arrow. At the very least, it seems like it should be possible to work-around these problems by explicitly setting problematic columns's types. But it seems like this is not possible because the features are only used *after* converting to arrow. Here's a simple example where the Arrow error could potentially be avoided by converting the column to a string: https://colab.research.google.com/drive/16QHRdbUwKSrpwVfGwu8V8AHr8v2dv0dt?usp=sharing ### Your contribution Maybe with some guidance. I'm not very familiar with arrow or pandas.
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7496/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7496/timeline
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/7495
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7495/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7495/comments
https://api.github.com/repos/huggingface/datasets/issues/7495/events
https://github.com/huggingface/datasets/issues/7495
2,967,034,060
I_kwDODunzps6w2VjM
7,495
Columns in the dataset obtained though load_dataset do not correspond to the one in the dataset viewer since 3.4.0
{ "login": "bruno-hays", "id": 48770768, "node_id": "MDQ6VXNlcjQ4NzcwNzY4", "avatar_url": "https://avatars.githubusercontent.com/u/48770768?v=4", "gravatar_id": "", "url": "https://api.github.com/users/bruno-hays", "html_url": "https://github.com/bruno-hays", "followers_url": "https://api.github.com/users/bruno-hays/followers", "following_url": "https://api.github.com/users/bruno-hays/following{/other_user}", "gists_url": "https://api.github.com/users/bruno-hays/gists{/gist_id}", "starred_url": "https://api.github.com/users/bruno-hays/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/bruno-hays/subscriptions", "organizations_url": "https://api.github.com/users/bruno-hays/orgs", "repos_url": "https://api.github.com/users/bruno-hays/repos", "events_url": "https://api.github.com/users/bruno-hays/events{/privacy}", "received_events_url": "https://api.github.com/users/bruno-hays/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
[]
1,743,613,271,000
1,743,674,062,000
null
CONTRIBUTOR
{ "total": 0, "completed": 0, "percent_completed": 0 }
### Describe the bug I have noticed that on my dataset named [BrunoHays/Accueil_UBS](https://huggingface.co/datasets/BrunoHays/Accueil_UBS), since the version 3.4.0, every column except audio is missing when I load the dataset. Interestingly, the dataset viewer still shows the correct columns ### Steps to reproduce the bug ```python from datasets import load_dataset ds = load_dataset("BrunoHays/Accueil_UBS", streaming=True) print(next(iter(ds["test"])).keys()) ``` With datasets >= 3.4.0: -> dict_keys(['audio']) With datasets == 3.3.2: -> dict_keys(['audio', 'id', 'speaker', 'sentence', 'raw_sentence', 'start_timestamp', 'end_timestamp', 'overlap']) ### Expected behavior All the columns should be present ### Environment info - `datasets` version: 3.3.2 - Platform: macOS-14.6.1-x86_64-i386-64bit - Python version: 3.10.15 - `huggingface_hub` version: 0.30.1 - PyArrow version: 16.1.0 - Pandas version: 1.5.3 - `fsspec` version: 2023.10.0
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7495/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7495/timeline
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/7494
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7494/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7494/comments
https://api.github.com/repos/huggingface/datasets/issues/7494/events
https://github.com/huggingface/datasets/issues/7494
2,965,347,685
I_kwDODunzps6wv51l
7,494
Broken links in pdf loading documentation
{ "login": "VyoJ", "id": 75789232, "node_id": "MDQ6VXNlcjc1Nzg5MjMy", "avatar_url": "https://avatars.githubusercontent.com/u/75789232?v=4", "gravatar_id": "", "url": "https://api.github.com/users/VyoJ", "html_url": "https://github.com/VyoJ", "followers_url": "https://api.github.com/users/VyoJ/followers", "following_url": "https://api.github.com/users/VyoJ/following{/other_user}", "gists_url": "https://api.github.com/users/VyoJ/gists{/gist_id}", "starred_url": "https://api.github.com/users/VyoJ/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/VyoJ/subscriptions", "organizations_url": "https://api.github.com/users/VyoJ/orgs", "repos_url": "https://api.github.com/users/VyoJ/repos", "events_url": "https://api.github.com/users/VyoJ/events{/privacy}", "received_events_url": "https://api.github.com/users/VyoJ/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
[]
1,743,576,322,000
1,743,576,322,000
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
### Describe the bug Hi, just a couple of small issues I ran into while reading the docs for [loading pdf data](https://huggingface.co/docs/datasets/main/en/document_load): 1. The link for the [`Create a pdf dataset`](https://huggingface.co/docs/datasets/main/en/document_load#pdffolder) points to https://huggingface.co/docs/datasets/main/en/pdf_dataset instead of https://huggingface.co/docs/datasets/main/en/document_dataset and hence gives a 404 error. 2. At the top of the page, it's mentioned that to work with pdf datasets we need to have the `pdfplumber` package installed but the link to its installation guide points to `pytorch/vision` [installation instructions](https://github.com/pytorch/vision#installation) instead of `pdfplumber`'s [guide](https://github.com/jsvine/pdfplumber#installation) I love the work on enabling pdf dataset support and these small tweaks would help everyone navigate the docs better. Thanks! ### Steps to reproduce the bug The issue is on the [Load Document Data](https://huggingface.co/docs/datasets/main/en/document_load) page of the datasets docs. ### Expected behavior 1. For solving the first issue, I went through the [source .mdx code](https://github.com/huggingface/datasets/blob/main/docs/source/document_load.mdx?plain=1#L188) of the datasets docs and found that the link is pointing to `./pdf_dataset` instead of `./document_dataset` 2. For the second issue, I went through the [source .mdx code](https://github.com/huggingface/datasets/blob/main/docs/source/document_load.mdx?plain=1#L13) of the datasets docs and found that the link is `pytorch/vision` [installation instructions](https://github.com/pytorch/vision#installation) instead of `pdfplumber`'s [guide](https://github.com/jsvine/pdfplumber#installation) Just replacing these two links should fix the bugs ### Environment info datasets v3.5.0 (main at the time of writing)
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7494/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7494/timeline
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/7493
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7493/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7493/comments
https://api.github.com/repos/huggingface/datasets/issues/7493/events
https://github.com/huggingface/datasets/issues/7493
2,964,025,179
I_kwDODunzps6wq29b
7,493
push_to_hub does not upload videos
{ "login": "DominikVincent", "id": 9339403, "node_id": "MDQ6VXNlcjkzMzk0MDM=", "avatar_url": "https://avatars.githubusercontent.com/u/9339403?v=4", "gravatar_id": "", "url": "https://api.github.com/users/DominikVincent", "html_url": "https://github.com/DominikVincent", "followers_url": "https://api.github.com/users/DominikVincent/followers", "following_url": "https://api.github.com/users/DominikVincent/following{/other_user}", "gists_url": "https://api.github.com/users/DominikVincent/gists{/gist_id}", "starred_url": "https://api.github.com/users/DominikVincent/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/DominikVincent/subscriptions", "organizations_url": "https://api.github.com/users/DominikVincent/orgs", "repos_url": "https://api.github.com/users/DominikVincent/repos", "events_url": "https://api.github.com/users/DominikVincent/events{/privacy}", "received_events_url": "https://api.github.com/users/DominikVincent/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
[]
1,743,526,820,000
1,743,526,820,000
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
### Describe the bug Hello, I would like to upload a video dataset (some .mp4 files and some segments within them), i.e. rows correspond to subsequences from videos. Videos might be referenced by several rows. I created a dataset locally and it references the videos and the video readers can read them correctly. I use push_to_hub() to upload the dataset to the hub. Expectation: A user uses `load_dataset` and can load the videos. However, the videos seem to be just referenced via paths on the computer and not uploaded to the hub. Therefore a target user cannot load the videos in the dataset. ### Steps to reproduce the bug 1. create a video dataset with paths e.g. { ["videos"]: [path1, path2, ...]} 2. dataset.push_to_hub 3. on a different computer (or same pc if relative paths are used in a different folder): ``` dataset = load_dataset("siplab/egosim", split="train") video = dataset[0]["video_head"] ``` 3. will fail ### Expected behavior Expectation: A user uses `load_dataset` and can load the videos. ### Environment info datasets 3.1.0 Python 3.8.18
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7493/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7493/timeline
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/7492
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7492/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7492/comments
https://api.github.com/repos/huggingface/datasets/issues/7492/events
https://github.com/huggingface/datasets/pull/7492
2,959,088,568
PR_kwDODunzps6QtCQM
7,492
Closes #7457
{ "login": "Harry-Yang0518", "id": 129883215, "node_id": "U_kgDOB73cTw", "avatar_url": "https://avatars.githubusercontent.com/u/129883215?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Harry-Yang0518", "html_url": "https://github.com/Harry-Yang0518", "followers_url": "https://api.github.com/users/Harry-Yang0518/followers", "following_url": "https://api.github.com/users/Harry-Yang0518/following{/other_user}", "gists_url": "https://api.github.com/users/Harry-Yang0518/gists{/gist_id}", "starred_url": "https://api.github.com/users/Harry-Yang0518/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Harry-Yang0518/subscriptions", "organizations_url": "https://api.github.com/users/Harry-Yang0518/orgs", "repos_url": "https://api.github.com/users/Harry-Yang0518/repos", "events_url": "https://api.github.com/users/Harry-Yang0518/events{/privacy}", "received_events_url": "https://api.github.com/users/Harry-Yang0518/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
[ "This PR fixes issue #7457" ]
1,743,367,280,000
1,743,539,172,000
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
This PR updates the documentation to include the HF_DATASETS_CACHE environment variable, which allows users to customize the cache location for datasets—similar to HF_HUB_CACHE for models.
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7492/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7492/timeline
null
0
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7492", "html_url": "https://github.com/huggingface/datasets/pull/7492", "diff_url": "https://github.com/huggingface/datasets/pull/7492.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7492.patch", "merged_at": null }
https://api.github.com/repos/huggingface/datasets/issues/7491
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7491/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7491/comments
https://api.github.com/repos/huggingface/datasets/issues/7491/events
https://github.com/huggingface/datasets/pull/7491
2,959,085,647
PR_kwDODunzps6QtBsD
7,491
docs: update cache.mdx to include HF_DATASETS_CACHE documentation
{ "login": "Harry-Yang0518", "id": 129883215, "node_id": "U_kgDOB73cTw", "avatar_url": "https://avatars.githubusercontent.com/u/129883215?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Harry-Yang0518", "html_url": "https://github.com/Harry-Yang0518", "followers_url": "https://api.github.com/users/Harry-Yang0518/followers", "following_url": "https://api.github.com/users/Harry-Yang0518/following{/other_user}", "gists_url": "https://api.github.com/users/Harry-Yang0518/gists{/gist_id}", "starred_url": "https://api.github.com/users/Harry-Yang0518/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Harry-Yang0518/subscriptions", "organizations_url": "https://api.github.com/users/Harry-Yang0518/orgs", "repos_url": "https://api.github.com/users/Harry-Yang0518/repos", "events_url": "https://api.github.com/users/Harry-Yang0518/events{/privacy}", "received_events_url": "https://api.github.com/users/Harry-Yang0518/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
[ "Already included HF_DATASETS_CACHE" ]
1,743,366,903,000
1,743,367,000,000
1,743,367,000,000
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
{ "login": "Harry-Yang0518", "id": 129883215, "node_id": "U_kgDOB73cTw", "avatar_url": "https://avatars.githubusercontent.com/u/129883215?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Harry-Yang0518", "html_url": "https://github.com/Harry-Yang0518", "followers_url": "https://api.github.com/users/Harry-Yang0518/followers", "following_url": "https://api.github.com/users/Harry-Yang0518/following{/other_user}", "gists_url": "https://api.github.com/users/Harry-Yang0518/gists{/gist_id}", "starred_url": "https://api.github.com/users/Harry-Yang0518/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Harry-Yang0518/subscriptions", "organizations_url": "https://api.github.com/users/Harry-Yang0518/orgs", "repos_url": "https://api.github.com/users/Harry-Yang0518/repos", "events_url": "https://api.github.com/users/Harry-Yang0518/events{/privacy}", "received_events_url": "https://api.github.com/users/Harry-Yang0518/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7491/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7491/timeline
null
0
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7491", "html_url": "https://github.com/huggingface/datasets/pull/7491", "diff_url": "https://github.com/huggingface/datasets/pull/7491.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7491.patch", "merged_at": null }
https://api.github.com/repos/huggingface/datasets/issues/7490
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7490/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7490/comments
https://api.github.com/repos/huggingface/datasets/issues/7490/events
https://github.com/huggingface/datasets/pull/7490
2,958,826,222
PR_kwDODunzps6QsPUI
7,490
(refactor) remove redundant logic in _check_valid_index_key
{ "login": "suzyahyah", "id": 2980993, "node_id": "MDQ6VXNlcjI5ODA5OTM=", "avatar_url": "https://avatars.githubusercontent.com/u/2980993?v=4", "gravatar_id": "", "url": "https://api.github.com/users/suzyahyah", "html_url": "https://github.com/suzyahyah", "followers_url": "https://api.github.com/users/suzyahyah/followers", "following_url": "https://api.github.com/users/suzyahyah/following{/other_user}", "gists_url": "https://api.github.com/users/suzyahyah/gists{/gist_id}", "starred_url": "https://api.github.com/users/suzyahyah/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/suzyahyah/subscriptions", "organizations_url": "https://api.github.com/users/suzyahyah/orgs", "repos_url": "https://api.github.com/users/suzyahyah/repos", "events_url": "https://api.github.com/users/suzyahyah/events{/privacy}", "received_events_url": "https://api.github.com/users/suzyahyah/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
[]
1,743,335,142,000
1,743,335,422,000
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
This PR contributes a minor refactor, in a small function in `src/datasets/formatting/formatting.py`. No change in logic. In the original code, there are separate if-conditionals for `isinstance(key, range)` and `isinstance(key, Iterable)`, with essentially the same logic. This PR combines these two using a single if statement. **Considerations** 1. Although range in python is guaranteed to have integers, internally calling `int()` on an object that is already an int is negligible. (In python it returns the original object. It doesn't create a new integer object or perform any actual conversion) 2. Technically a range is already an Iterable, and we could just do `isinstance(key, Iterable)` but I explicitly did `isinstance(key, (range, Iterable))` just to be super obvious and consistent that both cases are handled because I see `slice, range, Iterable` everywhere in this `formatting.py` 3. This PR removes the `if len(key)>0` conditional. I think it is cleaner to have it this way for three reasons. - There was originally no else statement and the code would have failed silently anyway. - The if len(key)>0 should be caught much earlier, rather than in `formatting.py`. - There are actually multiple cases where this would fail, if len(key)>0, if key is non numeric or float, or if key is a list of lists. It's clunky to state all this and the error be thrown during max or indexing. **Previous PR and Issues Checks** 1. No known PR or Issues (both closed or open) in hf datasets repository **Tests** 1. Tested using Dataset (load_dataset("wikitext", "wikitext-103-raw-v1")), Pytorch DataLoader, with a Pytorch BatchSampler (list of indexes returned instead of single index).
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7490/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7490/timeline
null
0
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7490", "html_url": "https://github.com/huggingface/datasets/pull/7490", "diff_url": "https://github.com/huggingface/datasets/pull/7490.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7490.patch", "merged_at": null }
https://api.github.com/repos/huggingface/datasets/issues/7489
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7489/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7489/comments
https://api.github.com/repos/huggingface/datasets/issues/7489/events
https://github.com/huggingface/datasets/pull/7489
2,958,204,763
PR_kwDODunzps6QqSRD
7,489
fix: loading of datasets from Disk(#7373)
{ "login": "sam-hey", "id": 40773225, "node_id": "MDQ6VXNlcjQwNzczMjI1", "avatar_url": "https://avatars.githubusercontent.com/u/40773225?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sam-hey", "html_url": "https://github.com/sam-hey", "followers_url": "https://api.github.com/users/sam-hey/followers", "following_url": "https://api.github.com/users/sam-hey/following{/other_user}", "gists_url": "https://api.github.com/users/sam-hey/gists{/gist_id}", "starred_url": "https://api.github.com/users/sam-hey/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sam-hey/subscriptions", "organizations_url": "https://api.github.com/users/sam-hey/orgs", "repos_url": "https://api.github.com/users/sam-hey/repos", "events_url": "https://api.github.com/users/sam-hey/events{/privacy}", "received_events_url": "https://api.github.com/users/sam-hey/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
[ "@nepfaff Could you confirm if this fixes the issue for you? I checked Memray, and everything looked good on my end.\r\n\r\nInstall: `pip install git+https://github.com/sam-hey/datasets.git@fix/concatenate_datasets`\r\n", "Will aim to get to this soon. I don't have a rapid testing pipeline setup but need to wait for some AWS nodes to become free", "I now set up a small experiment:\r\n\r\n```python\r\n# Log initial RAM usage\r\n process = psutil.Process(os.getpid())\r\n initial_ram = process.memory_info().rss / (1024 * 1024) # Convert to MB\r\n logging.info(f\"Initial RAM usage: {initial_ram:.2f} MB\")\r\n\r\n chunk_datasets = [\r\n Dataset.load_from_disk(dataset_path, keep_in_memory=False) for _ in range(N)\r\n ]\r\n combined_dataset = concatenate_datasets(chunk_datasets)\r\n\r\n # Log final RAM usage\r\n final_ram = process.memory_info().rss / (1024 * 1024) # Convert to MB\r\n ram_diff = final_ram - initial_ram\r\n logging.info(f\"Final RAM usage: {final_ram:.2f} MB\")\r\n logging.info(f\"RAM usage increase: {ram_diff:.2f} MB\")\r\n```\r\n\r\nThe RAM usage is linearly correlated with `N` on datasets master!\r\n\r\nFor my test dataset:\r\n- N=5 => RAM usage increase: 26302.91 MB\r\n- N=10 => RAM usage increase: 52315.18 MB\r\n- N=20 => RAM usage increase: 104510.65 MB\r\n- N=40 => RAM usage increase: 209166.30 MB\r\n\r\nUnfortunately, your patch doesn't seem to change this:\r\n```bash\r\npip install git+https://github.com/sam-hey/datasets.git@fix/concatenate_datasets\r\npip list | grep datasets\r\ndatasets 3.5.1.dev0\r\n```\r\nGives exactly the same RAM statistics.\r\n\r\n**Edit:** The results are a bit flawed as the memory increase all seems to come from `Dataset.load_from_disk(dataset_path, keep_in_memory=False)` here (which I don't think should happen either?) and not from `concatenate_datasets`. This seems different from my large-scale setup that runs out of memory during `concatenate_datasets` but I don't seem to be able to replicate this here...", "Thanks a lot, @nepfaff, for taking a look at this! It seems that `concatenate_datasets()` is fixed with this PR. I can also confirm that loading a large number of files requires significant memory. However, as I understand it, this is expected/a bug since the memory consumption stems from `pa.memory_map()`, which returns a memory-mapped file.\r\n\r\nThis behavior might be related to this bug: https://github.com/apache/arrow/issues/34423 \r\n\r\n<img width=\"1728\" alt=\"Screenshot 2025-04-03 at 16 01 11\" src=\"https://github.com/user-attachments/assets/475691d8-3aba-4d7e-b8ef-5e7552c70b14\" />\r\n" ]
1,743,265,378,000
1,743,688,939,000
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
Fixes dataset loading from disk by ensuring that memory maps and streams are properly closed. For more details, see https://github.com/huggingface/datasets/issues/7373.
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7489/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7489/timeline
null
0
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7489", "html_url": "https://github.com/huggingface/datasets/pull/7489", "diff_url": "https://github.com/huggingface/datasets/pull/7489.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7489.patch", "merged_at": null }
https://api.github.com/repos/huggingface/datasets/issues/7488
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7488/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7488/comments
https://api.github.com/repos/huggingface/datasets/issues/7488/events
https://github.com/huggingface/datasets/pull/7488
2,956,559,358
PR_kwDODunzps6QlLmn
7,488
Support underscore int read instruction
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7488). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "you rock, Quentin - thank you!" ]
1,743,177,675,000
1,743,178,844,000
1,743,178,843,000
MEMBER
{ "total": 0, "completed": 0, "percent_completed": 0 }
close https://github.com/huggingface/datasets/issues/7481
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7488/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7488/timeline
null
0
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7488", "html_url": "https://github.com/huggingface/datasets/pull/7488", "diff_url": "https://github.com/huggingface/datasets/pull/7488.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7488.patch", "merged_at": "2025-03-28T16:20:43" }
https://api.github.com/repos/huggingface/datasets/issues/7487
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7487/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7487/comments
https://api.github.com/repos/huggingface/datasets/issues/7487/events
https://github.com/huggingface/datasets/pull/7487
2,956,533,448
PR_kwDODunzps6QlF8N
7,487
Write pdf in map
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7487). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update." ]
1,743,176,965,000
1,743,181,793,000
1,743,181,791,000
MEMBER
{ "total": 0, "completed": 0, "percent_completed": 0 }
Fix this error when mapping a PDF dataset ``` pyarrow.lib.ArrowInvalid: Could not convert <pdfplumber.pdf.PDF object at 0x13498ee40> with type PDF: did not recognize Python value type when inferring an Arrow data type ``` and also let map() outputs be lists of images or pdfs
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7487/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7487/timeline
null
0
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7487", "html_url": "https://github.com/huggingface/datasets/pull/7487", "diff_url": "https://github.com/huggingface/datasets/pull/7487.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7487.patch", "merged_at": "2025-03-28T17:09:51" }
https://api.github.com/repos/huggingface/datasets/issues/7486
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7486/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7486/comments
https://api.github.com/repos/huggingface/datasets/issues/7486/events
https://github.com/huggingface/datasets/issues/7486
2,954,042,179
I_kwDODunzps6wExtD
7,486
`shared_datadir` fixture is missing
{ "login": "lahwaacz", "id": 1289205, "node_id": "MDQ6VXNlcjEyODkyMDU=", "avatar_url": "https://avatars.githubusercontent.com/u/1289205?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lahwaacz", "html_url": "https://github.com/lahwaacz", "followers_url": "https://api.github.com/users/lahwaacz/followers", "following_url": "https://api.github.com/users/lahwaacz/following{/other_user}", "gists_url": "https://api.github.com/users/lahwaacz/gists{/gist_id}", "starred_url": "https://api.github.com/users/lahwaacz/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lahwaacz/subscriptions", "organizations_url": "https://api.github.com/users/lahwaacz/orgs", "repos_url": "https://api.github.com/users/lahwaacz/repos", "events_url": "https://api.github.com/users/lahwaacz/events{/privacy}", "received_events_url": "https://api.github.com/users/lahwaacz/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
[ "OK I was missing the `pytest-datadir` package. Sorry for the noise!" ]
1,743,099,432,000
1,743,104,951,000
1,743,104,950,000
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
### Describe the bug Running the tests for the latest release fails due to missing `shared_datadir` fixture. ### Steps to reproduce the bug Running `pytest` while building a package for Arch Linux leads to these errors: ``` ==================================== ERRORS ==================================== _________ ERROR at setup of test_pdf_feature_encode_example[<lambda>1] _________ [gw44] linux -- Python 3.13.2 /build/python-datasets/src/datasets-3.5.0/test-env/bin/python file /build/python-datasets/src/datasets-3.5.0/tests/features/test_pdf.py, line 8 @require_pdfplumber @pytest.mark.parametrize( "build_example", [ lambda pdf_path: pdf_path, lambda pdf_path: open(pdf_path, "rb").read(), lambda pdf_path: {"path": pdf_path}, lambda pdf_path: {"path": pdf_path, "bytes": None}, lambda pdf_path: {"path": pdf_path, "bytes": open(pdf_path, "rb").read()}, lambda pdf_path: {"path": None, "bytes": open(pdf_path, "rb").read()}, lambda pdf_path: {"bytes": open(pdf_path, "rb").read()}, ], ) def test_pdf_feature_encode_example(shared_datadir, build_example): E fixture 'shared_datadir' not found > available fixtures: _hf_gated_dataset_repo_txt_data, arrow_file, arrow_path, audio_file, bz2_csv_path, bz2_file, cache, capfd, capfdbinary, caplog, capsys, capsysbinary, ci_hfh_hf_hub_url, ci_hub_config, cleanup_repo, csv2_path, csv_path, data_dir_with_hidden_files, dataset, dataset_dict, disable_implicit_token, disable_tqdm_output, doctest_namespace, geoparquet_path, gz_file, hf_api, hf_gated_dataset_repo_txt_data, hf_private_dataset_repo_txt_data, hf_private_dataset_repo_txt_data_, hf_private_dataset_repo_zipped_img_data, hf_private_dataset_repo_zipped_img_data_, hf_private_dataset_repo_zipped_txt_data, hf_private_dataset_repo_zipped_txt_data_, hf_token, image_file, json_dict_of_lists_path, json_list_of_dicts_path, jsonl2_path, jsonl_312_path, jsonl_gz_path, jsonl_path, jsonl_str_path, lz4_file, mock_fsspec, mockfs, monkeypatch, parquet_path, pytestconfig, record_property, record_testsuite_property, record_xml_attribute, recwarn, set_ci_hub_access_token, set_sqlalchemy_silence_uber_warning, set_test_cache_config, set_update_download_counts_to_false, seven_zip_file, sqlite_path, tar_file, tar_jsonl_path, tar_nested_jsonl_path, temporary_repo, tensor_file, testrun_uid, text2_path, text_dir, text_dir_with_unsupported_extension, text_file, text_file_content, text_gz_path, text_path, text_path_with_unicode_new_lines, tmp_path, tmp_path_factory, tmpdir, tmpdir_factory, tmpfs, worker_id, xml_file, xz_file, zero_time_out_for_remote_code, zip_csv_path, zip_csv_with_dir_path, zip_file, zip_image_path, zip_jsonl_path, zip_jsonl_with_dir_path, zip_nested_jsonl_path, zip_text_path, zip_text_with_dir_path, zip_unsupported_ext_path, zip_uppercase_csv_path, zstd_file > use 'pytest --fixtures [testpath]' for help on them. /build/python-datasets/src/datasets-3.5.0/tests/features/test_pdf.py:8 _________ ERROR at setup of test_pdf_feature_encode_example[<lambda>2] _________ [gw44] linux -- Python 3.13.2 /build/python-datasets/src/datasets-3.5.0/test-env/bin/python file /build/python-datasets/src/datasets-3.5.0/tests/features/test_pdf.py, line 8 @require_pdfplumber @pytest.mark.parametrize( "build_example", [ lambda pdf_path: pdf_path, lambda pdf_path: open(pdf_path, "rb").read(), lambda pdf_path: {"path": pdf_path}, lambda pdf_path: {"path": pdf_path, "bytes": None}, lambda pdf_path: {"path": pdf_path, "bytes": open(pdf_path, "rb").read()}, lambda pdf_path: {"path": None, "bytes": open(pdf_path, "rb").read()}, lambda pdf_path: {"bytes": open(pdf_path, "rb").read()}, ], ) def test_pdf_feature_encode_example(shared_datadir, build_example): E fixture 'shared_datadir' not found > available fixtures: _hf_gated_dataset_repo_txt_data, arrow_file, arrow_path, audio_file, bz2_csv_path, bz2_file, cache, capfd, capfdbinary, caplog, capsys, capsysbinary, ci_hfh_hf_hub_url, ci_hub_config, cleanup_repo, csv2_path, csv_path, data_dir_with_hidden_files, dataset, dataset_dict, disable_implicit_token, disable_tqdm_output, doctest_namespace, geoparquet_path, gz_file, hf_api, hf_gated_dataset_repo_txt_data, hf_private_dataset_repo_txt_data, hf_private_dataset_repo_txt_data_, hf_private_dataset_repo_zipped_img_data, hf_private_dataset_repo_zipped_img_data_, hf_private_dataset_repo_zipped_txt_data, hf_private_dataset_repo_zipped_txt_data_, hf_token, image_file, json_dict_of_lists_path, json_list_of_dicts_path, jsonl2_path, jsonl_312_path, jsonl_gz_path, jsonl_path, jsonl_str_path, lz4_file, mock_fsspec, mockfs, monkeypatch, parquet_path, pytestconfig, record_property, record_testsuite_property, record_xml_attribute, recwarn, set_ci_hub_access_token, set_sqlalchemy_silence_uber_warning, set_test_cache_config, set_update_download_counts_to_false, seven_zip_file, sqlite_path, tar_file, tar_jsonl_path, tar_nested_jsonl_path, temporary_repo, tensor_file, testrun_uid, text2_path, text_dir, text_dir_with_unsupported_extension, text_file, text_file_content, text_gz_path, text_path, text_path_with_unicode_new_lines, tmp_path, tmp_path_factory, tmpdir, tmpdir_factory, tmpfs, worker_id, xml_file, xz_file, zero_time_out_for_remote_code, zip_csv_path, zip_csv_with_dir_path, zip_file, zip_image_path, zip_jsonl_path, zip_jsonl_with_dir_path, zip_nested_jsonl_path, zip_text_path, zip_text_with_dir_path, zip_unsupported_ext_path, zip_uppercase_csv_path, zstd_file > use 'pytest --fixtures [testpath]' for help on them. /build/python-datasets/src/datasets-3.5.0/tests/features/test_pdf.py:8 _________ ERROR at setup of test_pdf_feature_encode_example[<lambda>3] _________ [gw44] linux -- Python 3.13.2 /build/python-datasets/src/datasets-3.5.0/test-env/bin/python file /build/python-datasets/src/datasets-3.5.0/tests/features/test_pdf.py, line 8 @require_pdfplumber @pytest.mark.parametrize( "build_example", [ lambda pdf_path: pdf_path, lambda pdf_path: open(pdf_path, "rb").read(), lambda pdf_path: {"path": pdf_path}, lambda pdf_path: {"path": pdf_path, "bytes": None}, lambda pdf_path: {"path": pdf_path, "bytes": open(pdf_path, "rb").read()}, lambda pdf_path: {"path": None, "bytes": open(pdf_path, "rb").read()}, lambda pdf_path: {"bytes": open(pdf_path, "rb").read()}, ], ) def test_pdf_feature_encode_example(shared_datadir, build_example): E fixture 'shared_datadir' not found > available fixtures: _hf_gated_dataset_repo_txt_data, arrow_file, arrow_path, audio_file, bz2_csv_path, bz2_file, cache, capfd, capfdbinary, caplog, capsys, capsysbinary, ci_hfh_hf_hub_url, ci_hub_config, cleanup_repo, csv2_path, csv_path, data_dir_with_hidden_files, dataset, dataset_dict, disable_implicit_token, disable_tqdm_output, doctest_namespace, geoparquet_path, gz_file, hf_api, hf_gated_dataset_repo_txt_data, hf_private_dataset_repo_txt_data, hf_private_dataset_repo_txt_data_, hf_private_dataset_repo_zipped_img_data, hf_private_dataset_repo_zipped_img_data_, hf_private_dataset_repo_zipped_txt_data, hf_private_dataset_repo_zipped_txt_data_, hf_token, image_file, json_dict_of_lists_path, json_list_of_dicts_path, jsonl2_path, jsonl_312_path, jsonl_gz_path, jsonl_path, jsonl_str_path, lz4_file, mock_fsspec, mockfs, monkeypatch, parquet_path, pytestconfig, record_property, record_testsuite_property, record_xml_attribute, recwarn, set_ci_hub_access_token, set_sqlalchemy_silence_uber_warning, set_test_cache_config, set_update_download_counts_to_false, seven_zip_file, sqlite_path, tar_file, tar_jsonl_path, tar_nested_jsonl_path, temporary_repo, tensor_file, testrun_uid, text2_path, text_dir, text_dir_with_unsupported_extension, text_file, text_file_content, text_gz_path, text_path, text_path_with_unicode_new_lines, tmp_path, tmp_path_factory, tmpdir, tmpdir_factory, tmpfs, worker_id, xml_file, xz_file, zero_time_out_for_remote_code, zip_csv_path, zip_csv_with_dir_path, zip_file, zip_image_path, zip_jsonl_path, zip_jsonl_with_dir_path, zip_nested_jsonl_path, zip_text_path, zip_text_with_dir_path, zip_unsupported_ext_path, zip_uppercase_csv_path, zstd_file > use 'pytest --fixtures [testpath]' for help on them. /build/python-datasets/src/datasets-3.5.0/tests/features/test_pdf.py:8 _________ ERROR at setup of test_pdf_feature_encode_example[<lambda>4] _________ [gw44] linux -- Python 3.13.2 /build/python-datasets/src/datasets-3.5.0/test-env/bin/python file /build/python-datasets/src/datasets-3.5.0/tests/features/test_pdf.py, line 8 @require_pdfplumber @pytest.mark.parametrize( "build_example", [ lambda pdf_path: pdf_path, lambda pdf_path: open(pdf_path, "rb").read(), lambda pdf_path: {"path": pdf_path}, lambda pdf_path: {"path": pdf_path, "bytes": None}, lambda pdf_path: {"path": pdf_path, "bytes": open(pdf_path, "rb").read()}, lambda pdf_path: {"path": None, "bytes": open(pdf_path, "rb").read()}, lambda pdf_path: {"bytes": open(pdf_path, "rb").read()}, ], ) def test_pdf_feature_encode_example(shared_datadir, build_example): E fixture 'shared_datadir' not found > available fixtures: _hf_gated_dataset_repo_txt_data, arrow_file, arrow_path, audio_file, bz2_csv_path, bz2_file, cache, capfd, capfdbinary, caplog, capsys, capsysbinary, ci_hfh_hf_hub_url, ci_hub_config, cleanup_repo, csv2_path, csv_path, data_dir_with_hidden_files, dataset, dataset_dict, disable_implicit_token, disable_tqdm_output, doctest_namespace, geoparquet_path, gz_file, hf_api, hf_gated_dataset_repo_txt_data, hf_private_dataset_repo_txt_data, hf_private_dataset_repo_txt_data_, hf_private_dataset_repo_zipped_img_data, hf_private_dataset_repo_zipped_img_data_, hf_private_dataset_repo_zipped_txt_data, hf_private_dataset_repo_zipped_txt_data_, hf_token, image_file, json_dict_of_lists_path, json_list_of_dicts_path, jsonl2_path, jsonl_312_path, jsonl_gz_path, jsonl_path, jsonl_str_path, lz4_file, mock_fsspec, mockfs, monkeypatch, parquet_path, pytestconfig, record_property, record_testsuite_property, record_xml_attribute, recwarn, set_ci_hub_access_token, set_sqlalchemy_silence_uber_warning, set_test_cache_config, set_update_download_counts_to_false, seven_zip_file, sqlite_path, tar_file, tar_jsonl_path, tar_nested_jsonl_path, temporary_repo, tensor_file, testrun_uid, text2_path, text_dir, text_dir_with_unsupported_extension, text_file, text_file_content, text_gz_path, text_path, text_path_with_unicode_new_lines, tmp_path, tmp_path_factory, tmpdir, tmpdir_factory, tmpfs, worker_id, xml_file, xz_file, zero_time_out_for_remote_code, zip_csv_path, zip_csv_with_dir_path, zip_file, zip_image_path, zip_jsonl_path, zip_jsonl_with_dir_path, zip_nested_jsonl_path, zip_text_path, zip_text_with_dir_path, zip_unsupported_ext_path, zip_uppercase_csv_path, zstd_file > use 'pytest --fixtures [testpath]' for help on them. /build/python-datasets/src/datasets-3.5.0/tests/features/test_pdf.py:8 _________ ERROR at setup of test_pdf_feature_encode_example[<lambda>5] _________ [gw44] linux -- Python 3.13.2 /build/python-datasets/src/datasets-3.5.0/test-env/bin/python file /build/python-datasets/src/datasets-3.5.0/tests/features/test_pdf.py, line 8 @require_pdfplumber @pytest.mark.parametrize( "build_example", [ lambda pdf_path: pdf_path, lambda pdf_path: open(pdf_path, "rb").read(), lambda pdf_path: {"path": pdf_path}, lambda pdf_path: {"path": pdf_path, "bytes": None}, lambda pdf_path: {"path": pdf_path, "bytes": open(pdf_path, "rb").read()}, lambda pdf_path: {"path": None, "bytes": open(pdf_path, "rb").read()}, lambda pdf_path: {"bytes": open(pdf_path, "rb").read()}, ], ) def test_pdf_feature_encode_example(shared_datadir, build_example): E fixture 'shared_datadir' not found > available fixtures: _hf_gated_dataset_repo_txt_data, arrow_file, arrow_path, audio_file, bz2_csv_path, bz2_file, cache, capfd, capfdbinary, caplog, capsys, capsysbinary, ci_hfh_hf_hub_url, ci_hub_config, cleanup_repo, csv2_path, csv_path, data_dir_with_hidden_files, dataset, dataset_dict, disable_implicit_token, disable_tqdm_output, doctest_namespace, geoparquet_path, gz_file, hf_api, hf_gated_dataset_repo_txt_data, hf_private_dataset_repo_txt_data, hf_private_dataset_repo_txt_data_, hf_private_dataset_repo_zipped_img_data, hf_private_dataset_repo_zipped_img_data_, hf_private_dataset_repo_zipped_txt_data, hf_private_dataset_repo_zipped_txt_data_, hf_token, image_file, json_dict_of_lists_path, json_list_of_dicts_path, jsonl2_path, jsonl_312_path, jsonl_gz_path, jsonl_path, jsonl_str_path, lz4_file, mock_fsspec, mockfs, monkeypatch, parquet_path, pytestconfig, record_property, record_testsuite_property, record_xml_attribute, recwarn, set_ci_hub_access_token, set_sqlalchemy_silence_uber_warning, set_test_cache_config, set_update_download_counts_to_false, seven_zip_file, sqlite_path, tar_file, tar_jsonl_path, tar_nested_jsonl_path, temporary_repo, tensor_file, testrun_uid, text2_path, text_dir, text_dir_with_unsupported_extension, text_file, text_file_content, text_gz_path, text_path, text_path_with_unicode_new_lines, tmp_path, tmp_path_factory, tmpdir, tmpdir_factory, tmpfs, worker_id, xml_file, xz_file, zero_time_out_for_remote_code, zip_csv_path, zip_csv_with_dir_path, zip_file, zip_image_path, zip_jsonl_path, zip_jsonl_with_dir_path, zip_nested_jsonl_path, zip_text_path, zip_text_with_dir_path, zip_unsupported_ext_path, zip_uppercase_csv_path, zstd_file > use 'pytest --fixtures [testpath]' for help on them. /build/python-datasets/src/datasets-3.5.0/tests/features/test_pdf.py:8 _________ ERROR at setup of test_pdf_feature_encode_example[<lambda>6] _________ [gw44] linux -- Python 3.13.2 /build/python-datasets/src/datasets-3.5.0/test-env/bin/python file /build/python-datasets/src/datasets-3.5.0/tests/features/test_pdf.py, line 8 @require_pdfplumber @pytest.mark.parametrize( "build_example", [ lambda pdf_path: pdf_path, lambda pdf_path: open(pdf_path, "rb").read(), lambda pdf_path: {"path": pdf_path}, lambda pdf_path: {"path": pdf_path, "bytes": None}, lambda pdf_path: {"path": pdf_path, "bytes": open(pdf_path, "rb").read()}, lambda pdf_path: {"path": None, "bytes": open(pdf_path, "rb").read()}, lambda pdf_path: {"bytes": open(pdf_path, "rb").read()}, ], ) def test_pdf_feature_encode_example(shared_datadir, build_example): E fixture 'shared_datadir' not found > available fixtures: _hf_gated_dataset_repo_txt_data, arrow_file, arrow_path, audio_file, bz2_csv_path, bz2_file, cache, capfd, capfdbinary, caplog, capsys, capsysbinary, ci_hfh_hf_hub_url, ci_hub_config, cleanup_repo, csv2_path, csv_path, data_dir_with_hidden_files, dataset, dataset_dict, disable_implicit_token, disable_tqdm_output, doctest_namespace, geoparquet_path, gz_file, hf_api, hf_gated_dataset_repo_txt_data, hf_private_dataset_repo_txt_data, hf_private_dataset_repo_txt_data_, hf_private_dataset_repo_zipped_img_data, hf_private_dataset_repo_zipped_img_data_, hf_private_dataset_repo_zipped_txt_data, hf_private_dataset_repo_zipped_txt_data_, hf_token, image_file, json_dict_of_lists_path, json_list_of_dicts_path, jsonl2_path, jsonl_312_path, jsonl_gz_path, jsonl_path, jsonl_str_path, lz4_file, mock_fsspec, mockfs, monkeypatch, parquet_path, pytestconfig, record_property, record_testsuite_property, record_xml_attribute, recwarn, set_ci_hub_access_token, set_sqlalchemy_silence_uber_warning, set_test_cache_config, set_update_download_counts_to_false, seven_zip_file, sqlite_path, tar_file, tar_jsonl_path, tar_nested_jsonl_path, temporary_repo, tensor_file, testrun_uid, text2_path, text_dir, text_dir_with_unsupported_extension, text_file, text_file_content, text_gz_path, text_path, text_path_with_unicode_new_lines, tmp_path, tmp_path_factory, tmpdir, tmpdir_factory, tmpfs, worker_id, xml_file, xz_file, zero_time_out_for_remote_code, zip_csv_path, zip_csv_with_dir_path, zip_file, zip_image_path, zip_jsonl_path, zip_jsonl_with_dir_path, zip_nested_jsonl_path, zip_text_path, zip_text_with_dir_path, zip_unsupported_ext_path, zip_uppercase_csv_path, zstd_file > use 'pytest --fixtures [testpath]' for help on them. /build/python-datasets/src/datasets-3.5.0/tests/features/test_pdf.py:8 _______________ ERROR at setup of test_dataset_with_pdf_feature ________________ [gw44] linux -- Python 3.13.2 /build/python-datasets/src/datasets-3.5.0/test-env/bin/python file /build/python-datasets/src/datasets-3.5.0/tests/features/test_pdf.py, line 34 @require_pdfplumber def test_dataset_with_pdf_feature(shared_datadir): E fixture 'shared_datadir' not found > available fixtures: _hf_gated_dataset_repo_txt_data, arrow_file, arrow_path, audio_file, bz2_csv_path, bz2_file, cache, capfd, capfdbinary, caplog, capsys, capsysbinary, ci_hfh_hf_hub_url, ci_hub_config, cleanup_repo, csv2_path, csv_path, data_dir_with_hidden_files, dataset, dataset_dict, disable_implicit_token, disable_tqdm_output, doctest_namespace, geoparquet_path, gz_file, hf_api, hf_gated_dataset_repo_txt_data, hf_private_dataset_repo_txt_data, hf_private_dataset_repo_txt_data_, hf_private_dataset_repo_zipped_img_data, hf_private_dataset_repo_zipped_img_data_, hf_private_dataset_repo_zipped_txt_data, hf_private_dataset_repo_zipped_txt_data_, hf_token, image_file, json_dict_of_lists_path, json_list_of_dicts_path, jsonl2_path, jsonl_312_path, jsonl_gz_path, jsonl_path, jsonl_str_path, lz4_file, mock_fsspec, mockfs, monkeypatch, parquet_path, pytestconfig, record_property, record_testsuite_property, record_xml_attribute, recwarn, set_ci_hub_access_token, set_sqlalchemy_silence_uber_warning, set_test_cache_config, set_update_download_counts_to_false, seven_zip_file, sqlite_path, tar_file, tar_jsonl_path, tar_nested_jsonl_path, temporary_repo, tensor_file, testrun_uid, text2_path, text_dir, text_dir_with_unsupported_extension, text_file, text_file_content, text_gz_path, text_path, text_path_with_unicode_new_lines, tmp_path, tmp_path_factory, tmpdir, tmpdir_factory, tmpfs, worker_id, xml_file, xz_file, zero_time_out_for_remote_code, zip_csv_path, zip_csv_with_dir_path, zip_file, zip_image_path, zip_jsonl_path, zip_jsonl_with_dir_path, zip_nested_jsonl_path, zip_text_path, zip_text_with_dir_path, zip_unsupported_ext_path, zip_uppercase_csv_path, zstd_file > use 'pytest --fixtures [testpath]' for help on them. /build/python-datasets/src/datasets-3.5.0/tests/features/test_pdf.py:34 _________ ERROR at setup of test_pdf_feature_encode_example[<lambda>0] _________ [gw46] linux -- Python 3.13.2 /build/python-datasets/src/datasets-3.5.0/test-env/bin/python file /build/python-datasets/src/datasets-3.5.0/tests/features/test_pdf.py, line 8 @require_pdfplumber @pytest.mark.parametrize( "build_example", [ lambda pdf_path: pdf_path, lambda pdf_path: open(pdf_path, "rb").read(), lambda pdf_path: {"path": pdf_path}, lambda pdf_path: {"path": pdf_path, "bytes": None}, lambda pdf_path: {"path": pdf_path, "bytes": open(pdf_path, "rb").read()}, lambda pdf_path: {"path": None, "bytes": open(pdf_path, "rb").read()}, lambda pdf_path: {"bytes": open(pdf_path, "rb").read()}, ], ) def test_pdf_feature_encode_example(shared_datadir, build_example): E fixture 'shared_datadir' not found > available fixtures: _hf_gated_dataset_repo_txt_data, arrow_file, arrow_path, audio_file, bz2_csv_path, bz2_file, cache, capfd, capfdbinary, caplog, capsys, capsysbinary, ci_hfh_hf_hub_url, ci_hub_config, cleanup_repo, csv2_path, csv_path, data_dir_with_hidden_files, dataset, dataset_dict, disable_implicit_token, disable_tqdm_output, doctest_namespace, geoparquet_path, gz_file, hf_api, hf_gated_dataset_repo_txt_data, hf_private_dataset_repo_txt_data, hf_private_dataset_repo_txt_data_, hf_private_dataset_repo_zipped_img_data, hf_private_dataset_repo_zipped_img_data_, hf_private_dataset_repo_zipped_txt_data, hf_private_dataset_repo_zipped_txt_data_, hf_token, image_file, json_dict_of_lists_path, json_list_of_dicts_path, jsonl2_path, jsonl_312_path, jsonl_gz_path, jsonl_path, jsonl_str_path, lz4_file, mock_fsspec, mockfs, monkeypatch, parquet_path, pytestconfig, record_property, record_testsuite_property, record_xml_attribute, recwarn, set_ci_hub_access_token, set_sqlalchemy_silence_uber_warning, set_test_cache_config, set_update_download_counts_to_false, seven_zip_file, sqlite_path, tar_file, tar_jsonl_path, tar_nested_jsonl_path, temporary_repo, tensor_file, testrun_uid, text2_path, text_dir, text_dir_with_unsupported_extension, text_file, text_file_content, text_gz_path, text_path, text_path_with_unicode_new_lines, tmp_path, tmp_path_factory, tmpdir, tmpdir_factory, tmpfs, worker_id, xml_file, xz_file, zero_time_out_for_remote_code, zip_csv_path, zip_csv_with_dir_path, zip_file, zip_image_path, zip_jsonl_path, zip_jsonl_with_dir_path, zip_nested_jsonl_path, zip_text_path, zip_text_with_dir_path, zip_unsupported_ext_path, zip_uppercase_csv_path, zstd_file > use 'pytest --fixtures [testpath]' for help on them. /build/python-datasets/src/datasets-3.5.0/tests/features/test_pdf.py:8 ``` ### Expected behavior All fixtures used in tests should be available. ### Environment info Arch Linux build system, building the [python-datasets](https://gitlab.archlinux.org/archlinux/packaging/packages/python-datasets) package. There are actually [many deselected tests](https://gitlab.archlinux.org/archlinux/packaging/packages/python-datasets/-/blob/6f97957f0c326cc7b3da6b7f12326305bcaef374/PKGBUILD#L66-148) which were failing on previous releases, but these errors popped up in 3.5.0.
{ "login": "lahwaacz", "id": 1289205, "node_id": "MDQ6VXNlcjEyODkyMDU=", "avatar_url": "https://avatars.githubusercontent.com/u/1289205?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lahwaacz", "html_url": "https://github.com/lahwaacz", "followers_url": "https://api.github.com/users/lahwaacz/followers", "following_url": "https://api.github.com/users/lahwaacz/following{/other_user}", "gists_url": "https://api.github.com/users/lahwaacz/gists{/gist_id}", "starred_url": "https://api.github.com/users/lahwaacz/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lahwaacz/subscriptions", "organizations_url": "https://api.github.com/users/lahwaacz/orgs", "repos_url": "https://api.github.com/users/lahwaacz/repos", "events_url": "https://api.github.com/users/lahwaacz/events{/privacy}", "received_events_url": "https://api.github.com/users/lahwaacz/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7486/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7486/timeline
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/7485
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7485/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7485/comments
https://api.github.com/repos/huggingface/datasets/issues/7485/events
https://github.com/huggingface/datasets/pull/7485
2,953,696,519
PR_kwDODunzps6QbjFJ
7,485
set dev version
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7485). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update." ]
1,743,093,574,000
1,743,093,719,000
1,743,093,582,000
MEMBER
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7485/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7485/timeline
null
0
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7485", "html_url": "https://github.com/huggingface/datasets/pull/7485", "diff_url": "https://github.com/huggingface/datasets/pull/7485.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7485.patch", "merged_at": "2025-03-27T16:39:42" }
https://api.github.com/repos/huggingface/datasets/issues/7484
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7484/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7484/comments
https://api.github.com/repos/huggingface/datasets/issues/7484/events
https://github.com/huggingface/datasets/pull/7484
2,953,677,168
PR_kwDODunzps6Qbevn
7,484
release: 3.5.0
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7484). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update." ]
1,743,093,207,000
1,743,093,344,000
1,743,093,262,000
MEMBER
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7484/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7484/timeline
null
0
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7484", "html_url": "https://github.com/huggingface/datasets/pull/7484", "diff_url": "https://github.com/huggingface/datasets/pull/7484.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7484.patch", "merged_at": "2025-03-27T16:34:22" }
https://api.github.com/repos/huggingface/datasets/issues/7483
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7483/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7483/comments
https://api.github.com/repos/huggingface/datasets/issues/7483/events
https://github.com/huggingface/datasets/pull/7483
2,951,856,468
PR_kwDODunzps6QVInB
7,483
Support skip_trying_type
{ "login": "yoshitomo-matsubara", "id": 11156001, "node_id": "MDQ6VXNlcjExMTU2MDAx", "avatar_url": "https://avatars.githubusercontent.com/u/11156001?v=4", "gravatar_id": "", "url": "https://api.github.com/users/yoshitomo-matsubara", "html_url": "https://github.com/yoshitomo-matsubara", "followers_url": "https://api.github.com/users/yoshitomo-matsubara/followers", "following_url": "https://api.github.com/users/yoshitomo-matsubara/following{/other_user}", "gists_url": "https://api.github.com/users/yoshitomo-matsubara/gists{/gist_id}", "starred_url": "https://api.github.com/users/yoshitomo-matsubara/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/yoshitomo-matsubara/subscriptions", "organizations_url": "https://api.github.com/users/yoshitomo-matsubara/orgs", "repos_url": "https://api.github.com/users/yoshitomo-matsubara/repos", "events_url": "https://api.github.com/users/yoshitomo-matsubara/events{/privacy}", "received_events_url": "https://api.github.com/users/yoshitomo-matsubara/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7483). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "Cool ! Can you run `make style` to fix code formatting ?\r\n\r\nI was also thinking of naming the argument `try_original_type` and have it `True` by default", "@lhoestq \r\n\r\nThank you for the suggestion! I renamed the argument with `True` by default and ran `make style`\r\nDoes it look good?", "Thanks @lhoestq !\r\n\r\nLet me know if there are anything that I can do for this PR. Otherwise, looking forward to seeing this update in the package soon!" ]
1,743,059,240,000
1,744,090,669,000
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
This PR addresses Issue #7472 cc: @lhoestq
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7483/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7483/timeline
null
0
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7483", "html_url": "https://github.com/huggingface/datasets/pull/7483", "diff_url": "https://github.com/huggingface/datasets/pull/7483.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7483.patch", "merged_at": null }
https://api.github.com/repos/huggingface/datasets/issues/7482
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7482/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7482/comments
https://api.github.com/repos/huggingface/datasets/issues/7482/events
https://github.com/huggingface/datasets/pull/7482
2,950,890,368
PR_kwDODunzps6QRyY6
7,482
Implement capability to restore non-nullability in Features
{ "login": "BramVanroy", "id": 2779410, "node_id": "MDQ6VXNlcjI3Nzk0MTA=", "avatar_url": "https://avatars.githubusercontent.com/u/2779410?v=4", "gravatar_id": "", "url": "https://api.github.com/users/BramVanroy", "html_url": "https://github.com/BramVanroy", "followers_url": "https://api.github.com/users/BramVanroy/followers", "following_url": "https://api.github.com/users/BramVanroy/following{/other_user}", "gists_url": "https://api.github.com/users/BramVanroy/gists{/gist_id}", "starred_url": "https://api.github.com/users/BramVanroy/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/BramVanroy/subscriptions", "organizations_url": "https://api.github.com/users/BramVanroy/orgs", "repos_url": "https://api.github.com/users/BramVanroy/repos", "events_url": "https://api.github.com/users/BramVanroy/events{/privacy}", "received_events_url": "https://api.github.com/users/BramVanroy/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
[ "Interestingly, this does not close #7479. The Features are not correctly maintained when calling `from_dict` with the custom Features.", "Unfortunately this PR does not fix the reported issue. After more digging:\r\n\r\n- when the dataset is created, nullability information is lost in Features;\r\n- even with this PR, it will get lost eventually because of internal copying/recreation of the Features object without accounting for the nullable fields;\r\n- even if that is also fixed, and Features.arrow_schema correctly holds the nullability info, [casting the arrow Table](https://github.com/huggingface/datasets/blob/5f8d2ad9a1b0bccfd962d998987228addfd5be9f/src/datasets/arrow_dataset.py#L677) with a less strict schema to a more strict one (with nullability) will fail (only on deeper structs, not on flat fields). \r\n\r\nInterestingly, passing custom Features does not immediately load the underlying data with the right arrow_schema. Instead, the workflow is like this:\r\n\r\n- load pyarrow table with any of the methods (from_dict, from_pandas, etc.), which will always AUTO INFER rather than use a provided schema\r\n- the loaded table with auto-schema will be used to initialize the `Dataset` class, and only during construction will [CAST](https://github.com/huggingface/datasets/blob/5f8d2ad9a1b0bccfd962d998987228addfd5be9f/src/datasets/arrow_dataset.py#L677) the table to the user-provided schema if needed, if it differs from the auto-inferred one.\r\n\r\nSo I figured, since many/all of the pyarrow [`Table.from_*`](https://arrow.apache.org/docs/python/generated/pyarrow.Table.html) methods have a `schema=` argument, we should already load the Table with the correct schema to begin with. As an example, I tried changing this line:\r\n\r\nhttps://github.com/huggingface/datasets/blob/5f8d2ad9a1b0bccfd962d998987228addfd5be9f/src/datasets/arrow_dataset.py#L940\r\n\r\nto include the arrow_schema, if provided:\r\n\r\n```python\r\npa_table = InMemoryTable.from_pydict(mapping=mapping, schema=features.arrow_schema if features is not None else None)\r\n```\r\n\r\nBut that leads to:\r\n\r\n```\r\nTraceback (most recent call last):\r\n File \"/home/ampere/vanroy/datasets/scratch.py\", line 33, in <module>\r\n ds = Dataset.from_dict(\r\n ^^^^^^^^^^^^^^^^^^\r\n File \"/home/local/vanroy/datasets/src/datasets/arrow_dataset.py\", line 957, in from_dict\r\n pa_table = InMemoryTable.from_pydict(mapping=mapping, schema=features.arrow_schema if features is not None else None)\r\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\r\n File \"/home/local/vanroy/datasets/src/datasets/table.py\", line 758, in from_pydict\r\n return cls(pa.Table.from_pydict(*args, **kwargs))\r\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\r\n File \"pyarrow/table.pxi\", line 1968, in pyarrow.lib._Tabular.from_pydict\r\n File \"pyarrow/table.pxi\", line 6354, in pyarrow.lib._from_pydict\r\n File \"pyarrow/array.pxi\", line 402, in pyarrow.lib.asarray\r\n File \"pyarrow/array.pxi\", line 252, in pyarrow.lib.array\r\n File \"pyarrow/array.pxi\", line 114, in pyarrow.lib._handle_arrow_array_protocol\r\n File \"/home/local/vanroy/datasets/src/datasets/arrow_writer.py\", line 201, in __arrow_array__\r\n raise ValueError(\"TypedSequence is supposed to be used with pa.array(typed_sequence, type=None)\")\r\nValueError: TypedSequence is supposed to be used with pa.array(typed_sequence, type=None)\r\n```\r\n\r\nand I am not too familiar with pyarrow to solve this.\r\n\r\nSo ultimately I'm a bit at a loss here. I *think*, if we'd want to do this right, the automatic casting in init should be removed in favor of handling the logic inside `Dataset.from_*`, by passing the schema explicitly to `pa.Table.from_*(..., schema=schema)`. But I lack the knowledge of pyarrow to go further than what I've written about above.\r\n", "It's indeed a bit more work to support nullable since in addition to your comments, there are unclear behavior when it comes to concatenating nullable with non-nullable, and maybe how to handle non-nullable lists and nested data.\r\n\r\nBut yup I agree having the `Dataset.from_*` function pass the `schema` to the `pa.Table.from*` would be the way.\r\n\r\nJust one comment about this error: \r\n\r\n```\r\nValueError: TypedSequence is supposed to be used with pa.array(typed_sequence, type=None)\r\n```\r\n\r\nThis happens because `Dataset.from_dict` uses `OptimizedTypedSequence` by default, which should only be used if the user doesn't specify a schema" ]
1,743,027,369,000
1,743,080,870,000
null
CONTRIBUTOR
{ "total": 0, "completed": 0, "percent_completed": 0 }
This PR attempts to keep track of non_nullable pyarrow fields when converting a `pa.Schema` to `Features`. At the same time, when outputting the `arrow_schema`, the original non-nullable fields are restored. This allows for more consistent behavior and avoids breaking behavior as illustrated in #7479. I am by no means a pyarrow expert so some logic in `find_non_nullable_fields` may not perfect. Not sure if more logic (type checks) are needed for deep-checking a given schema. Maybe there are other pyarrow structures that need to be covered? Tests are added, but again, these may not have sufficient coverage in terms of pyarrow structure types. closes #7479
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7482/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7482/timeline
null
0
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7482", "html_url": "https://github.com/huggingface/datasets/pull/7482", "diff_url": "https://github.com/huggingface/datasets/pull/7482.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7482.patch", "merged_at": null }
https://api.github.com/repos/huggingface/datasets/issues/7481
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7481/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7481/comments
https://api.github.com/repos/huggingface/datasets/issues/7481/events
https://github.com/huggingface/datasets/issues/7481
2,950,692,971
I_kwDODunzps6v4ABr
7,481
deal with python `10_000` legal number in slice syntax
{ "login": "sfc-gh-sbekman", "id": 196988264, "node_id": "U_kgDOC73NaA", "avatar_url": "https://avatars.githubusercontent.com/u/196988264?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sfc-gh-sbekman", "html_url": "https://github.com/sfc-gh-sbekman", "followers_url": "https://api.github.com/users/sfc-gh-sbekman/followers", "following_url": "https://api.github.com/users/sfc-gh-sbekman/following{/other_user}", "gists_url": "https://api.github.com/users/sfc-gh-sbekman/gists{/gist_id}", "starred_url": "https://api.github.com/users/sfc-gh-sbekman/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sfc-gh-sbekman/subscriptions", "organizations_url": "https://api.github.com/users/sfc-gh-sbekman/orgs", "repos_url": "https://api.github.com/users/sfc-gh-sbekman/repos", "events_url": "https://api.github.com/users/sfc-gh-sbekman/events{/privacy}", "received_events_url": "https://api.github.com/users/sfc-gh-sbekman/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[ { "id": 1935892871, "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement", "name": "enhancement", "color": "a2eeef", "default": true, "description": "New feature or request" } ]
closed
false
null
[]
[ "should be an easy fix, I opened a PR" ]
1,743,019,854,000
1,743,178,844,000
1,743,178,844,000
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
### Feature request ``` In [6]: ds = datasets.load_dataset("HuggingFaceH4/ultrachat_200k", split="train_sft[:1000]") In [7]: ds = datasets.load_dataset("HuggingFaceH4/ultrachat_200k", split="train_sft[:1_000]") [dozens of frames skipped] File /usr/local/lib/python3.10/dist-packages/datasets/arrow_reader.py:444, in _str_to_read_instruction(spec) 442 res = _SUB_SPEC_RE.match(spec) 443 if not res: --> 444 raise ValueError(f"Unrecognized instruction format: {spec}") ValueError: Unrecognized instruction format: train_sft[:1_000] ``` It took me a while to understand what the problem was. But apparently `pyarrow` doesn't allow python numbers that may include `_` as in `1_000`. The `_` aids readability since `10_000_000` vs `10000000` is obviously easier to grasp of what the actual number is. Feature request: ideally `datasets` being a python module will do the right thing and convert python numbers into whatever pyarrow supports - in this case stripping `_`s. Second best it'd err and tell the user that using numbers with `_` in split slices is not acceptible, so that the user won't have to deal with a huge pyarrow assert they know nothing about. Thank you!
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7481/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7481/timeline
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/7480
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7480/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7480/comments
https://api.github.com/repos/huggingface/datasets/issues/7480/events
https://github.com/huggingface/datasets/issues/7480
2,950,315,214
I_kwDODunzps6v2jzO
7,480
HF_DATASETS_CACHE ignored?
{ "login": "stephenroller", "id": 31896, "node_id": "MDQ6VXNlcjMxODk2", "avatar_url": "https://avatars.githubusercontent.com/u/31896?v=4", "gravatar_id": "", "url": "https://api.github.com/users/stephenroller", "html_url": "https://github.com/stephenroller", "followers_url": "https://api.github.com/users/stephenroller/followers", "following_url": "https://api.github.com/users/stephenroller/following{/other_user}", "gists_url": "https://api.github.com/users/stephenroller/gists{/gist_id}", "starred_url": "https://api.github.com/users/stephenroller/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/stephenroller/subscriptions", "organizations_url": "https://api.github.com/users/stephenroller/orgs", "repos_url": "https://api.github.com/users/stephenroller/repos", "events_url": "https://api.github.com/users/stephenroller/events{/privacy}", "received_events_url": "https://api.github.com/users/stephenroller/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
[ "FWIW, it does eventually write to /tmp/roller/datasets when generating the final version.", "Hey, I’d love to work on this issue but I am a beginner, can I work it with you?", "Hi @lhoestq,\nI'd like to look into this issue but I'm still learning. Could you share any quick pointers on the HF_DATASETS_CACHE behavior here? Thanks!", "Hi ! `HF_DATASETS_CACHE` is only for the cache files of the `datasets` library, not for the `huggingface_hub` cache for files downloaded from the Hugging Face Hub.\n\nYou should either specify `HF_HOME` (parent cache path for everything HF) or both `HF_DATASETS_CACHE` and `HF_HUB_CACHE`" ]
1,743,009,574,000
1,744,046,640,000
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
### Describe the bug I'm struggling to get things to respect HF_DATASETS_CACHE. Rationale: I'm on a system that uses NFS for homedir, so downloading to NFS is expensive, slow, and wastes valuable quota compared to local disk. Instead, it seems to rely mostly on HF_HUB_CACHE. Current version: 3.2.1dev. In the process of testing 3.4.0 ### Steps to reproduce the bug [Currently writing using datasets 3.2.1dev. Will follow up with 3.4.0 results] dump.py: ```python from datasets import load_dataset dataset = load_dataset("HuggingFaceFW/fineweb", name="sample-100BT", split="train") ``` Repro steps ```bash # ensure no cache $ mv ~/.cache/huggingface ~/.cache/huggingface.bak $ export HF_DATASETS_CACHE=/tmp/roller/datasets $ rm -rf ${HF_DATASETS_CACHE} $ env | grep HF | grep -v TOKEN HF_DATASETS_CACHE=/tmp/roller/datasets $ python dump.py # (omitted for brevity) # (while downloading) $ du -hcs ~/.cache/huggingface/hub 18G hub 18G total # (after downloading) $ du -hcs ~/.cache/huggingface/hub ``` It's a shame because datasets supports s3 (which I could really use right now) but hub does not. ### Expected behavior * ~/.cache/huggingface/hub stays empty * /tmp/roller/datasets becomes full of stuff ### Environment info [Currently writing using datasets 3.2.1dev. Will follow up with 3.4.0 results]
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7480/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7480/timeline
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/7479
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7479/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7479/comments
https://api.github.com/repos/huggingface/datasets/issues/7479/events
https://github.com/huggingface/datasets/issues/7479
2,950,235,396
I_kwDODunzps6v2QUE
7,479
Features.from_arrow_schema is destructive
{ "login": "BramVanroy", "id": 2779410, "node_id": "MDQ6VXNlcjI3Nzk0MTA=", "avatar_url": "https://avatars.githubusercontent.com/u/2779410?v=4", "gravatar_id": "", "url": "https://api.github.com/users/BramVanroy", "html_url": "https://github.com/BramVanroy", "followers_url": "https://api.github.com/users/BramVanroy/followers", "following_url": "https://api.github.com/users/BramVanroy/following{/other_user}", "gists_url": "https://api.github.com/users/BramVanroy/gists{/gist_id}", "starred_url": "https://api.github.com/users/BramVanroy/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/BramVanroy/subscriptions", "organizations_url": "https://api.github.com/users/BramVanroy/orgs", "repos_url": "https://api.github.com/users/BramVanroy/repos", "events_url": "https://api.github.com/users/BramVanroy/events{/privacy}", "received_events_url": "https://api.github.com/users/BramVanroy/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
[]
1,743,007,603,000
1,743,007,618,000
null
CONTRIBUTOR
{ "total": 0, "completed": 0, "percent_completed": 0 }
### Describe the bug I came across this, perhaps niche, bug where `Features` does not/cannot account for pyarrow's `nullable=False` option in Fields. Interestingly, I found that in regular "flat" fields this does not necessarily lead to conflicts, but when a non-nullable field is in a struct, an incompatibility arises. It's not easy to explain in words, so the minimal example below should help I hope. Note that I suggest a solution in the comments in the code, simply allowing `Dataset.to_parquet` to allow for a `schema` argument which, when provided, will override the default ds.features.arrow_schema. ### Steps to reproduce the bug ```python import os from datasets import Dataset, Features import pyarrow as pa import pyarrow.parquet as pq # HF datasets is destructive when you call Features.from_arrow_schema(schema) on a schema # because it will not account for nullable and non-nullable fields in structs (it will always allow nullable) # Reloading the same dataset with the original schema will raise an error because the schema is not the same anymore non_nullable_schema = pa.schema( [ pa.field("text", pa.string(), nullable=False), pa.field("meta", pa.struct( [ pa.field("date", pa.list_(pa.string()), nullable=False), ], ), ), ] ) print("ORIGINAL SCHEMA") print(non_nullable_schema) print() feats = Features.from_arrow_schema(non_nullable_schema) print("FEATUR-IZED SCHEMA (nullable-restrictions are gone)") print(feats.arrow_schema) print() ds = Dataset.from_dict( { "text": ["a", "b", "c"], "meta": [{"date": ["2021-01-01"]}, {"date": ["2021-01-02"]}, {"date": ["2021-01-03"]}], }, features=feats, ) fname = "tmp.parquet" # This is not possible: TypeError: pyarrow.parquet.core.ParquetWriter() got multiple values for keyword argument 'schema' # Though I believe this would be the easiest fix: allow schema to be passed to to_parquet and overwrite the schema in the dataset # ds.to_parquet(fname, schema=non_nullable_schema) ds.to_parquet(fname) try: _ = pq.read_table(fname, schema=non_nullable_schema) finally: os.unlink(fname) ``` ### Expected behavior - Non-destructive behavior when converting an arrow schema to Features; or - the ability to override the default arrow schema with a custom one ### Environment info - `datasets` version: 3.2.0 - Platform: Linux-5.14.0-427.20.1.el9_4.x86_64-x86_64-with-glibc2.34 - Python version: 3.11.10 - `huggingface_hub` version: 0.27.1 - PyArrow version: 18.1.0 - Pandas version: 2.2.3 - `fsspec` version: 2024.9.0
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7479/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7479/timeline
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/7478
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7478/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7478/comments
https://api.github.com/repos/huggingface/datasets/issues/7478/events
https://github.com/huggingface/datasets/pull/7478
2,948,993,461
PR_kwDODunzps6QLPe3
7,478
update fsspec 2025.3.0
{ "login": "peteski22", "id": 487783, "node_id": "MDQ6VXNlcjQ4Nzc4Mw==", "avatar_url": "https://avatars.githubusercontent.com/u/487783?v=4", "gravatar_id": "", "url": "https://api.github.com/users/peteski22", "html_url": "https://github.com/peteski22", "followers_url": "https://api.github.com/users/peteski22/followers", "following_url": "https://api.github.com/users/peteski22/following{/other_user}", "gists_url": "https://api.github.com/users/peteski22/gists{/gist_id}", "starred_url": "https://api.github.com/users/peteski22/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/peteski22/subscriptions", "organizations_url": "https://api.github.com/users/peteski22/orgs", "repos_url": "https://api.github.com/users/peteski22/repos", "events_url": "https://api.github.com/users/peteski22/events{/privacy}", "received_events_url": "https://api.github.com/users/peteski22/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
[ "Sorry for tagging you @lhoestq but since you merged the linked PR, I wondered if you might be able to help me get this triaged so it can be reviewed/rejected etc. 🙏🏼 ", "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7478). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update." ]
1,742,982,785,000
1,743,189,354,000
1,743,177,115,000
CONTRIBUTOR
{ "total": 0, "completed": 0, "percent_completed": 0 }
It appears there have been two releases of fsspec since this dependency was last updated, it would be great if Datasets could be updated so that it didn't hold back the usage of newer fsspec versions in consuming projects. PR based on https://github.com/huggingface/datasets/pull/7352
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7478/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7478/timeline
null
0
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7478", "html_url": "https://github.com/huggingface/datasets/pull/7478", "diff_url": "https://github.com/huggingface/datasets/pull/7478.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7478.patch", "merged_at": "2025-03-28T15:51:54" }
https://api.github.com/repos/huggingface/datasets/issues/7477
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7477/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7477/comments
https://api.github.com/repos/huggingface/datasets/issues/7477/events
https://github.com/huggingface/datasets/issues/7477
2,947,169,460
I_kwDODunzps6vqjy0
7,477
What is the canonical way to compress a Dataset?
{ "login": "eric-czech", "id": 6130352, "node_id": "MDQ6VXNlcjYxMzAzNTI=", "avatar_url": "https://avatars.githubusercontent.com/u/6130352?v=4", "gravatar_id": "", "url": "https://api.github.com/users/eric-czech", "html_url": "https://github.com/eric-czech", "followers_url": "https://api.github.com/users/eric-czech/followers", "following_url": "https://api.github.com/users/eric-czech/following{/other_user}", "gists_url": "https://api.github.com/users/eric-czech/gists{/gist_id}", "starred_url": "https://api.github.com/users/eric-czech/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/eric-czech/subscriptions", "organizations_url": "https://api.github.com/users/eric-czech/orgs", "repos_url": "https://api.github.com/users/eric-czech/repos", "events_url": "https://api.github.com/users/eric-czech/events{/privacy}", "received_events_url": "https://api.github.com/users/eric-czech/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
[ "I saw this post by @lhoestq: https://discuss.huggingface.co/t/increased-arrow-table-size-by-factor-of-2/26561/4 suggesting that there is at least some internal code for writing sharded parquet datasets non-concurrently. This appears to be that code: https://github.com/huggingface/datasets/blob/94ccd1b4fada8a92cea96dc8df4e915041d695b6/src/datasets/arrow_dataset.py#L5380-L5397\n\nIs there any fundamental reason (e.g. race conditions) that this kind of operation couldn't exist as a utility or method on a `Dataset` with a `num_proc` argument? I am not seeing any other issues explicitly for that ask. \n", "We simply haven't implemented a method to save as sharded parquet locally yet ^^'\n\nRight now the only sharded parquet export method is `push_to_hub()` which writes to HF. But we can have a local one as well. \n\nIn the meantime the easiest way to export as sharded parquet locally is to `.shard()` and `.to_parquet()` (see code from my comment [here](https://github.com/huggingface/datasets/issues/7047#issuecomment-2233163406))", "> In the meantime the easiest way to export as sharded parquet locally is to .shard() and .to_parquet()\n\nMakes sense, BUT how can it be done concurrently? I could of course use multiprocessing myself or a dozen other libraries for parallelizing single-node/local operations like that.\n\nWhat I'm asking though is, what is the way to do this that is most canonical for `datasets` specifically? I.e. what is least likely to causing pickling or other issues because it is used frequently internally by `datasets` and already likely tests for a lot of library-native edge-cases?", "Everything in `datasets` is picklable :) and even better: since the data are memory mapped from disk, pickling in one process and unpickling in another doesn't do any copy - it instantaneously reloads the memory map.\n\nSo feel free to use the library you prefer to parallelize your operations.\n\n(it's another story in distributed setups though, because in that case you either need to copy and send the data or setup a distributed filesystem)" ]
1,742,921,271,000
1,743,671,591,000
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
Given that Arrow is the preferred backend for a Dataset, what is a user supposed to do if they want concurrent reads, concurrent writes AND on-disk compression for a larger dataset? Parquet would be the obvious answer except that there is no native support for writing sharded, parquet datasets concurrently [[1](https://github.com/huggingface/datasets/issues/7047)]. Am I missing something? And if so, why is this not the standard/default way that `Dataset`'s work as they do in Xarray, Ray Data, Composer, etc.?
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7477/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7477/timeline
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/7476
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7476/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7476/comments
https://api.github.com/repos/huggingface/datasets/issues/7476/events
https://github.com/huggingface/datasets/pull/7476
2,946,997,924
PR_kwDODunzps6QEbmO
7,476
Priotitize json
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7476). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update." ]
1,742,917,471,000
1,742,917,620,000
1,742,917,500,000
MEMBER
{ "total": 0, "completed": 0, "percent_completed": 0 }
`datasets` should load the JSON data in https://huggingface.co/datasets/facebook/natural_reasoning, not the PDF
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7476/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7476/timeline
null
0
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7476", "html_url": "https://github.com/huggingface/datasets/pull/7476", "diff_url": "https://github.com/huggingface/datasets/pull/7476.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7476.patch", "merged_at": "2025-03-25T15:45:00" }
https://api.github.com/repos/huggingface/datasets/issues/7475
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7475/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7475/comments
https://api.github.com/repos/huggingface/datasets/issues/7475/events
https://github.com/huggingface/datasets/issues/7475
2,946,640,570
I_kwDODunzps6voiq6
7,475
IterableDataset's state_dict shard_example_idx is always equal to the number of samples in a shard
{ "login": "bruno-hays", "id": 48770768, "node_id": "MDQ6VXNlcjQ4NzcwNzY4", "avatar_url": "https://avatars.githubusercontent.com/u/48770768?v=4", "gravatar_id": "", "url": "https://api.github.com/users/bruno-hays", "html_url": "https://github.com/bruno-hays", "followers_url": "https://api.github.com/users/bruno-hays/followers", "following_url": "https://api.github.com/users/bruno-hays/following{/other_user}", "gists_url": "https://api.github.com/users/bruno-hays/gists{/gist_id}", "starred_url": "https://api.github.com/users/bruno-hays/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/bruno-hays/subscriptions", "organizations_url": "https://api.github.com/users/bruno-hays/orgs", "repos_url": "https://api.github.com/users/bruno-hays/repos", "events_url": "https://api.github.com/users/bruno-hays/events{/privacy}", "received_events_url": "https://api.github.com/users/bruno-hays/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
[ "Hey, I’d love to work on this issue but I am a beginner, can I work it with you?", "Hello. I'm sorry but I don't have much time to get in the details for now.\nHave you managed to reproduce the issue with the code provided ?\nIf you want to work on it, you can self-assign and ask @lhoestq for directions", "Hi Bruno, I am trying to reproduce it this later in this week and let you know what I found.", "#self-assign" ]
1,742,911,087,000
1,744,046,942,000
null
CONTRIBUTOR
{ "total": 0, "completed": 0, "percent_completed": 0 }
### Describe the bug I've noticed a strange behaviour with Iterable state_dict: the value of shard_example_idx is always equal to the amount of samples in a shard. ### Steps to reproduce the bug I am reusing the example from the doc ```python from datasets import Dataset ds = Dataset.from_dict({"a": range(6)}).to_iterable_dataset(num_shards=1) state_dict = None # Iterate through the dataset and print examples for idx, example in enumerate(ds): print(example) if idx == 2: state_dict = ds.state_dict() print("checkpoint") break print(state_dict) ``` Returns: ``` {'a': 0} {'a': 1} checkpoint {'examples_iterable': {'shard_idx': 0, 'shard_example_idx': 6, 'type': 'ArrowExamplesIterable'}, 'epoch': 0} ``` ### Expected behavior shard_example_idx should be 2 instead of 6 If we run with num_shards=2, then shard_example_idx is 3 instead of 2 and so on. ### Environment info - `datasets` version: 3.4.1 - Platform: macOS-14.6.1-arm64-arm-64bit - Python version: 3.12.9 - `huggingface_hub` version: 0.29.3 - PyArrow version: 19.0.1 - Pandas version: 2.2.3 - `fsspec` version: 2024.12.0
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7475/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7475/timeline
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/7474
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7474/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7474/comments
https://api.github.com/repos/huggingface/datasets/issues/7474/events
https://github.com/huggingface/datasets/pull/7474
2,945,066,258
PR_kwDODunzps6P91lM
7,474
Remove conditions for Python < 3.9
{ "login": "cyyever", "id": 17618148, "node_id": "MDQ6VXNlcjE3NjE4MTQ4", "avatar_url": "https://avatars.githubusercontent.com/u/17618148?v=4", "gravatar_id": "", "url": "https://api.github.com/users/cyyever", "html_url": "https://github.com/cyyever", "followers_url": "https://api.github.com/users/cyyever/followers", "following_url": "https://api.github.com/users/cyyever/following{/other_user}", "gists_url": "https://api.github.com/users/cyyever/gists{/gist_id}", "starred_url": "https://api.github.com/users/cyyever/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/cyyever/subscriptions", "organizations_url": "https://api.github.com/users/cyyever/orgs", "repos_url": "https://api.github.com/users/cyyever/repos", "events_url": "https://api.github.com/users/cyyever/events{/privacy}", "received_events_url": "https://api.github.com/users/cyyever/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
[]
1,742,872,084,000
1,742,872,351,000
null
CONTRIBUTOR
{ "total": 0, "completed": 0, "percent_completed": 0 }
This PR remove conditions for Python < 3.9.
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7474/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7474/timeline
null
0
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7474", "html_url": "https://github.com/huggingface/datasets/pull/7474", "diff_url": "https://github.com/huggingface/datasets/pull/7474.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7474.patch", "merged_at": null }
https://api.github.com/repos/huggingface/datasets/issues/7473
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7473/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7473/comments
https://api.github.com/repos/huggingface/datasets/issues/7473/events
https://github.com/huggingface/datasets/issues/7473
2,939,034,643
I_kwDODunzps6vLhwT
7,473
Webdataset data format problem
{ "login": "edmcman", "id": 1017189, "node_id": "MDQ6VXNlcjEwMTcxODk=", "avatar_url": "https://avatars.githubusercontent.com/u/1017189?v=4", "gravatar_id": "", "url": "https://api.github.com/users/edmcman", "html_url": "https://github.com/edmcman", "followers_url": "https://api.github.com/users/edmcman/followers", "following_url": "https://api.github.com/users/edmcman/following{/other_user}", "gists_url": "https://api.github.com/users/edmcman/gists{/gist_id}", "starred_url": "https://api.github.com/users/edmcman/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/edmcman/subscriptions", "organizations_url": "https://api.github.com/users/edmcman/orgs", "repos_url": "https://api.github.com/users/edmcman/repos", "events_url": "https://api.github.com/users/edmcman/events{/privacy}", "received_events_url": "https://api.github.com/users/edmcman/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
[ "I was able to work around it" ]
1,742,577,832,000
1,742,584,798,000
1,742,584,798,000
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
### Describe the bug Please see https://huggingface.co/datasets/ejschwartz/idioms/discussions/1 Error code: FileFormatMismatchBetweenSplitsError All three splits, train, test, and validation, use webdataset. But only the train split has more than one file. How can I force the other two splits to also be interpreted as being the webdataset format? (I don't think there is currently a way, but happy to be told that I am wrong.) ### Steps to reproduce the bug ``` import datasets datasets.load_dataset("ejschwartz/idioms") ### Expected behavior The dataset loads. Alternatively, there is a YAML syntax for manually specifying the format. ### Environment info - `datasets` version: 3.2.0 - Platform: Linux-6.8.0-52-generic-x86_64-with-glibc2.35 - Python version: 3.10.12 - `huggingface_hub` version: 0.28.1 - PyArrow version: 19.0.0 - Pandas version: 2.2.3 - `fsspec` version: 2024.9.0
{ "login": "edmcman", "id": 1017189, "node_id": "MDQ6VXNlcjEwMTcxODk=", "avatar_url": "https://avatars.githubusercontent.com/u/1017189?v=4", "gravatar_id": "", "url": "https://api.github.com/users/edmcman", "html_url": "https://github.com/edmcman", "followers_url": "https://api.github.com/users/edmcman/followers", "following_url": "https://api.github.com/users/edmcman/following{/other_user}", "gists_url": "https://api.github.com/users/edmcman/gists{/gist_id}", "starred_url": "https://api.github.com/users/edmcman/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/edmcman/subscriptions", "organizations_url": "https://api.github.com/users/edmcman/orgs", "repos_url": "https://api.github.com/users/edmcman/repos", "events_url": "https://api.github.com/users/edmcman/events{/privacy}", "received_events_url": "https://api.github.com/users/edmcman/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7473/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7473/timeline
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/7472
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7472/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7472/comments
https://api.github.com/repos/huggingface/datasets/issues/7472/events
https://github.com/huggingface/datasets/issues/7472
2,937,607,272
I_kwDODunzps6vGFRo
7,472
Label casting during `map` process is canceled after the `map` process
{ "login": "yoshitomo-matsubara", "id": 11156001, "node_id": "MDQ6VXNlcjExMTU2MDAx", "avatar_url": "https://avatars.githubusercontent.com/u/11156001?v=4", "gravatar_id": "", "url": "https://api.github.com/users/yoshitomo-matsubara", "html_url": "https://github.com/yoshitomo-matsubara", "followers_url": "https://api.github.com/users/yoshitomo-matsubara/followers", "following_url": "https://api.github.com/users/yoshitomo-matsubara/following{/other_user}", "gists_url": "https://api.github.com/users/yoshitomo-matsubara/gists{/gist_id}", "starred_url": "https://api.github.com/users/yoshitomo-matsubara/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/yoshitomo-matsubara/subscriptions", "organizations_url": "https://api.github.com/users/yoshitomo-matsubara/orgs", "repos_url": "https://api.github.com/users/yoshitomo-matsubara/repos", "events_url": "https://api.github.com/users/yoshitomo-matsubara/events{/privacy}", "received_events_url": "https://api.github.com/users/yoshitomo-matsubara/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
[ "Hi ! By default `map()` tries to keep the types of each column of the dataset, so here it reuses the int type since all your float values can be converted to integers. But I agree it would be nice to store float values as float values and don't try to reuse the same type in this case.\n\nIn the meantime, you can either store the float values in a new column, or pass the output `features=` manually to `map()`", "Hi @lhoestq \n\nThank you for the answer & suggestion!\n\nCan we add some flag to `map()` function like `reuses_original_type=True` and skip reusing the original type when it's False?\n\nLet me know if it sounds like a reasonable solution. I am happy to submit a PR for this.", "In general we try to avoid adding new parameters when it's already possible to achieve the same results with existing parameters (here `features=`). But since it's not always convenient to know in advance the `features=` I'm open to contributions to adding this parameter yes", "Thank you for sharing the context. Good to know that. \n\nI submitted a PR #7483. Could you review the PR?", "Hi @lhoestq \n\nLet me know if there is something that I should add to [the PR](https://github.com/huggingface/datasets/pull/7483)!" ]
1,742,543,782,000
1,743,998,812,000
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
### Describe the bug When preprocessing a multi-label dataset, I introduced a step to convert int labels to float labels as [BCEWithLogitsLoss](https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html) expects float labels and forward function of models in transformers package internally use `BCEWithLogitsLoss` However, the casting was canceled after `.map` process and the label values still use int values, which leads to an error ``` File "/home/yoshitomo/anaconda3/envs/torchdistill/lib/python3.10/site-packages/transformers/models/bert/modeling_bert.py", line 1711, in forward loss = loss_fct(logits, labels) File "/home/yoshitomo/anaconda3/envs/torchdistill/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/home/yoshitomo/anaconda3/envs/torchdistill/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1747, in _call_impl return forward_call(*args, **kwargs) File "/home/yoshitomo/anaconda3/envs/torchdistill/lib/python3.10/site-packages/torch/nn/modules/loss.py", line 819, in forward return F.binary_cross_entropy_with_logits( File "/home/yoshitomo/anaconda3/envs/torchdistill/lib/python3.10/site-packages/torch/nn/functional.py", line 3628, in binary_cross_entropy_with_logits return torch.binary_cross_entropy_with_logits( RuntimeError: result type Float can't be cast to the desired output type Long ``` This seems like happening only when the original labels are int values (see examples below) ### Steps to reproduce the bug If the original dataset uses a list of int labels, it will cancel the int->float casting ```python from datasets import Dataset data = { 'text': ['text1', 'text2', 'text3', 'text4'], 'labels': [[0, 1, 2], [3], [3, 4], [3]] } dataset = Dataset.from_dict(data) label_set = set([label for labels in data['labels'] for label in labels]) label2idx = {label: idx for idx, label in enumerate(sorted(label_set))} def multi_labels_to_ids(labels): ids = [0.0] * len(label2idx) for label in labels: ids[label2idx[label]] = 1.0 return ids def preprocess(examples): result = {'sentence': [[0, 3, 4] for _ in range(len(examples['labels']))]} print('"labels" are int', examples['labels']) result['labels'] = [multi_labels_to_ids(l) for l in examples['labels']] print('"labels" were converted to multi-label format with float values', result['labels']) return result preprocessed_dataset = dataset.map(preprocess, batched=True, remove_columns=['labels', 'text']) print(preprocessed_dataset[0]['labels']) # Output: "[1, 1, 1, 0, 0]" # Expected: "[1.0, 1.0, 1.0, 0.0, 0.0]" ``` If the original dataset uses non-int labels, it works as expected. ```python from datasets import Dataset data = { 'text': ['text1', 'text2', 'text3', 'text4'], 'labels': [['label1', 'label2', 'label3'], ['label4'], ['label4', 'label5'], ['label4']] } dataset = Dataset.from_dict(data) label_set = set([label for labels in data['labels'] for label in labels]) label2idx = {label: idx for idx, label in enumerate(sorted(label_set))} def multi_labels_to_ids(labels): ids = [0.0] * len(label2idx) for label in labels: ids[label2idx[label]] = 1.0 return ids def preprocess(examples): result = {'sentence': [[0, 3, 4] for _ in range(len(examples['labels']))]} print('"labels" are int', examples['labels']) result['labels'] = [multi_labels_to_ids(l) for l in examples['labels']] print('"labels" were converted to multi-label format with float values', result['labels']) return result preprocessed_dataset = dataset.map(preprocess, batched=True, remove_columns=['labels', 'text']) print(preprocessed_dataset[0]['labels']) # Output: "[1.0, 1.0, 1.0, 0.0, 0.0]" # Expected: "[1.0, 1.0, 1.0, 0.0, 0.0]" ``` Note that the only difference between these two examples is > 'labels': [[0, 1, 2], [3], [3, 4], [3]] v.s > 'labels': [['label1', 'label2', 'label3'], ['label4'], ['label4', 'label5'], ['label4']] ### Expected behavior Even if the original dataset uses a list of int labels, the int->float casting during `.map` process should not be canceled as shown in the above example ### Environment info OS Ubuntu 22.04 LTS Python 3.10.11 datasets v3.4.1
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7472/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7472/timeline
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/7471
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7471/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7471/comments
https://api.github.com/repos/huggingface/datasets/issues/7471/events
https://github.com/huggingface/datasets/issues/7471
2,937,530,069
I_kwDODunzps6vFybV
7,471
Adding argument to `_get_data_files_patterns`
{ "login": "SangbumChoi", "id": 34004152, "node_id": "MDQ6VXNlcjM0MDA0MTUy", "avatar_url": "https://avatars.githubusercontent.com/u/34004152?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SangbumChoi", "html_url": "https://github.com/SangbumChoi", "followers_url": "https://api.github.com/users/SangbumChoi/followers", "following_url": "https://api.github.com/users/SangbumChoi/following{/other_user}", "gists_url": "https://api.github.com/users/SangbumChoi/gists{/gist_id}", "starred_url": "https://api.github.com/users/SangbumChoi/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SangbumChoi/subscriptions", "organizations_url": "https://api.github.com/users/SangbumChoi/orgs", "repos_url": "https://api.github.com/users/SangbumChoi/repos", "events_url": "https://api.github.com/users/SangbumChoi/events{/privacy}", "received_events_url": "https://api.github.com/users/SangbumChoi/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[ { "id": 1935892871, "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement", "name": "enhancement", "color": "a2eeef", "default": true, "description": "New feature or request" } ]
closed
false
null
[]
[ "Hi ! The pattern can be specified in advance in YAML in the README.md of the dataset :)\n\nFor example\n\n```\n---\nconfigs:\n- config_name: default\n data_files:\n - split: train\n path: \"train/*\"\n - split: test\n path: \"test/*\"\n---\n```\n\nSee the docs at https://huggingface.co/docs/hub/en/datasets-manual-configuration", "@lhoestq How can we choose in this case ? https://huggingface.co/datasets/datasets-examples/doc-image-5\n", "choose what ? sorry I didn't get it ^^'" ]
1,742,541,473,000
1,743,078,652,000
1,742,973,987,000
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
### Feature request How about adding if the user already know about the pattern? https://github.com/huggingface/datasets/blob/a256b85cbc67aa3f0e75d32d6586afc507cf535b/src/datasets/data_files.py#L252 ### Motivation While using this load_dataset people might use 10M of images for the local files. However, due to searching all the appropriate file pattern in fsspec, purely searching this pattern takes more than 10 hours (real use-case). ### Your contribution Yeah I can make this happen if this seems valid. @lhoestq WDYT? such like ``` def _get_data_files_patterns(pattern_resolver: Callable[[str], list[str]], patterns: PATTERNS) -> dict[str, list[str]]: ```
{ "login": "SangbumChoi", "id": 34004152, "node_id": "MDQ6VXNlcjM0MDA0MTUy", "avatar_url": "https://avatars.githubusercontent.com/u/34004152?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SangbumChoi", "html_url": "https://github.com/SangbumChoi", "followers_url": "https://api.github.com/users/SangbumChoi/followers", "following_url": "https://api.github.com/users/SangbumChoi/following{/other_user}", "gists_url": "https://api.github.com/users/SangbumChoi/gists{/gist_id}", "starred_url": "https://api.github.com/users/SangbumChoi/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SangbumChoi/subscriptions", "organizations_url": "https://api.github.com/users/SangbumChoi/orgs", "repos_url": "https://api.github.com/users/SangbumChoi/repos", "events_url": "https://api.github.com/users/SangbumChoi/events{/privacy}", "received_events_url": "https://api.github.com/users/SangbumChoi/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7471/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7471/timeline
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/7470
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7470/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7470/comments
https://api.github.com/repos/huggingface/datasets/issues/7470/events
https://github.com/huggingface/datasets/issues/7470
2,937,236,323
I_kwDODunzps6vEqtj
7,470
Is it possible to shard a single-sharded IterableDataset?
{ "login": "jonathanasdf", "id": 511073, "node_id": "MDQ6VXNlcjUxMTA3Mw==", "avatar_url": "https://avatars.githubusercontent.com/u/511073?v=4", "gravatar_id": "", "url": "https://api.github.com/users/jonathanasdf", "html_url": "https://github.com/jonathanasdf", "followers_url": "https://api.github.com/users/jonathanasdf/followers", "following_url": "https://api.github.com/users/jonathanasdf/following{/other_user}", "gists_url": "https://api.github.com/users/jonathanasdf/gists{/gist_id}", "starred_url": "https://api.github.com/users/jonathanasdf/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jonathanasdf/subscriptions", "organizations_url": "https://api.github.com/users/jonathanasdf/orgs", "repos_url": "https://api.github.com/users/jonathanasdf/repos", "events_url": "https://api.github.com/users/jonathanasdf/events{/privacy}", "received_events_url": "https://api.github.com/users/jonathanasdf/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
[ "Hi ! Maybe you can look for an option in your dataset to partition your data based on a deterministic filter ? For example each worker could stream the data based on `row.id % num_shards` or something like that ?", "So the recommendation is to start out with multiple shards initially and re-sharding after is not expected to work? :(\n\nWould something like the following work? Some DiskCachingIterableDataset, where worker 0 streams from the datasource, but also writes to disk, and all of the other workers read from what worker 0 wrote? Then that would produce a stream with a deterministic order and we can subsample.", "To be honest it would be cool to support native multiprocessing in `IterableDataset.map` so you can parallelize any specific processing step without having to rely on a torch Dataloader. What do you think ?\n\nrelated: https://github.com/huggingface/datasets/issues/7193 https://github.com/huggingface/datasets/issues/3444 \noriginal issue: https://github.com/huggingface/datasets/issues/2642\n\nAlternatively the DiskCachingIterableDataset idea works, just note that to make it work with a torch Dataloader with num_workers>0 you'll need:\n1. to make your own `torch.utils.data.IterableDataset` and have rank=0 stream the data and share them with the other workers (either via disk as suggested or IPC)\n2. take into account that`datasets.IterableDataset` will yield 0 examples for ranks with id>0 if there is only one shard, but in your case it's ok since you'd only stream from rank=0", "Ohh that would be pretty cool!\n\nThanks for the suggestions, as there's no actionable items for this repo I'm going to close this issue now." ]
1,742,531,617,000
1,742,981,686,000
1,742,971,768,000
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
I thought https://github.com/huggingface/datasets/pull/7252 might be applicable but looking at it maybe not. Say we have a process, eg. a database query, that can return data in slightly different order each time. So, the initial query needs to be run by a single thread (not to mention running multiple times incurs more cost too). But the results are also big enough that we don't want to materialize it entirely and instead stream it with an IterableDataset. But after we have the results we want to split it up across workers to parallelize processing. Is something like this possible to do? Here's a failed attempt. The end result should be that each of the shards has unique data, but unfortunately with this attempt the generator gets run once in each shard and the results end up with duplicates... ``` import random import datasets def gen(): print('RUNNING GENERATOR!') items = list(range(10)) random.shuffle(items) yield from items ds = datasets.IterableDataset.from_generator(gen) print('dataset contents:') for item in ds: print(item) print() print('dataset contents (2):') for item in ds: print(item) print() num_shards = 3 def sharded(shard_id): for i, example in enumerate(ds): if i % num_shards in shard_id: yield example ds1 = datasets.IterableDataset.from_generator( sharded, gen_kwargs={'shard_id': list(range(num_shards))} ) for shard in range(num_shards): print('shard', shard) for item in ds1.shard(num_shards, shard): print(item) ```
{ "login": "jonathanasdf", "id": 511073, "node_id": "MDQ6VXNlcjUxMTA3Mw==", "avatar_url": "https://avatars.githubusercontent.com/u/511073?v=4", "gravatar_id": "", "url": "https://api.github.com/users/jonathanasdf", "html_url": "https://github.com/jonathanasdf", "followers_url": "https://api.github.com/users/jonathanasdf/followers", "following_url": "https://api.github.com/users/jonathanasdf/following{/other_user}", "gists_url": "https://api.github.com/users/jonathanasdf/gists{/gist_id}", "starred_url": "https://api.github.com/users/jonathanasdf/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jonathanasdf/subscriptions", "organizations_url": "https://api.github.com/users/jonathanasdf/orgs", "repos_url": "https://api.github.com/users/jonathanasdf/repos", "events_url": "https://api.github.com/users/jonathanasdf/events{/privacy}", "received_events_url": "https://api.github.com/users/jonathanasdf/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7470/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7470/timeline
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/7469
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7469/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7469/comments
https://api.github.com/repos/huggingface/datasets/issues/7469/events
https://github.com/huggingface/datasets/issues/7469
2,936,606,080
I_kwDODunzps6vCQ2A
7,469
Custom split name with the web interface
{ "login": "vince62s", "id": 15141326, "node_id": "MDQ6VXNlcjE1MTQxMzI2", "avatar_url": "https://avatars.githubusercontent.com/u/15141326?v=4", "gravatar_id": "", "url": "https://api.github.com/users/vince62s", "html_url": "https://github.com/vince62s", "followers_url": "https://api.github.com/users/vince62s/followers", "following_url": "https://api.github.com/users/vince62s/following{/other_user}", "gists_url": "https://api.github.com/users/vince62s/gists{/gist_id}", "starred_url": "https://api.github.com/users/vince62s/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/vince62s/subscriptions", "organizations_url": "https://api.github.com/users/vince62s/orgs", "repos_url": "https://api.github.com/users/vince62s/repos", "events_url": "https://api.github.com/users/vince62s/events{/privacy}", "received_events_url": "https://api.github.com/users/vince62s/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
[]
1,742,503,559,000
1,742,541,637,000
1,742,541,637,000
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
### Describe the bug According the doc here: https://huggingface.co/docs/hub/datasets-file-names-and-splits#custom-split-name it should infer the split name from the subdir of data or the beg of the name of the files in data. When doing this manually through web upload it does not work. it uses "train" as a unique split. example: https://huggingface.co/datasets/eole-nlp/estimator_chatml ### Steps to reproduce the bug follow the link above ### Expected behavior there should be two splits "mlqe" and "1720_da" ### Environment info website
{ "login": "vince62s", "id": 15141326, "node_id": "MDQ6VXNlcjE1MTQxMzI2", "avatar_url": "https://avatars.githubusercontent.com/u/15141326?v=4", "gravatar_id": "", "url": "https://api.github.com/users/vince62s", "html_url": "https://github.com/vince62s", "followers_url": "https://api.github.com/users/vince62s/followers", "following_url": "https://api.github.com/users/vince62s/following{/other_user}", "gists_url": "https://api.github.com/users/vince62s/gists{/gist_id}", "starred_url": "https://api.github.com/users/vince62s/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/vince62s/subscriptions", "organizations_url": "https://api.github.com/users/vince62s/orgs", "repos_url": "https://api.github.com/users/vince62s/repos", "events_url": "https://api.github.com/users/vince62s/events{/privacy}", "received_events_url": "https://api.github.com/users/vince62s/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7469/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7469/timeline
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/7468
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7468/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7468/comments
https://api.github.com/repos/huggingface/datasets/issues/7468/events
https://github.com/huggingface/datasets/issues/7468
2,934,094,103
I_kwDODunzps6u4rkX
7,468
function `load_dataset` can't solve folder path with regex characters like "[]"
{ "login": "Hpeox", "id": 89294013, "node_id": "MDQ6VXNlcjg5Mjk0MDEz", "avatar_url": "https://avatars.githubusercontent.com/u/89294013?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Hpeox", "html_url": "https://github.com/Hpeox", "followers_url": "https://api.github.com/users/Hpeox/followers", "following_url": "https://api.github.com/users/Hpeox/following{/other_user}", "gists_url": "https://api.github.com/users/Hpeox/gists{/gist_id}", "starred_url": "https://api.github.com/users/Hpeox/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Hpeox/subscriptions", "organizations_url": "https://api.github.com/users/Hpeox/orgs", "repos_url": "https://api.github.com/users/Hpeox/repos", "events_url": "https://api.github.com/users/Hpeox/events{/privacy}", "received_events_url": "https://api.github.com/users/Hpeox/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
[ "Hi ! Have you tried escaping the glob special characters `[` and `]` ?\n\nbtw note that`AbstractFileSystem.glob` doesn't support regex, instead it supports glob patterns as in the python library [glob](https://docs.python.org/3/library/glob.html)\n" ]
1,742,448,119,000
1,742,897,892,000
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
### Describe the bug When using the `load_dataset` function with a folder path containing regex special characters (such as "[]"), the issue occurs due to how the path is handled in the `resolve_pattern` function. This function passes the unprocessed path directly to `AbstractFileSystem.glob`, which supports regular expressions. As a result, the globbing mechanism interprets these characters as regex patterns, leading to a traversal of the entire disk partition instead of confining the search to the intended directory. ### Steps to reproduce the bug just create a folder like `E:\[D_DATA]\koch_test`, then `load_dataset("parquet", data_dir="E:\[D_DATA]\\test", split="train")` it will keep searching the whole disk. I add two `print` in `glob` and `resolve_pattern` to see the path ### Expected behavior it should load the dataset as in normal folders ### Environment info - `datasets` version: 3.3.2 - Platform: Windows-10-10.0.22631-SP0 - Python version: 3.10.16 - `huggingface_hub` version: 0.29.1 - PyArrow version: 19.0.1 - Pandas version: 2.2.3 - `fsspec` version: 2024.12.0
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7468/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7468/timeline
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/7467
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7467/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7467/comments
https://api.github.com/repos/huggingface/datasets/issues/7467/events
https://github.com/huggingface/datasets/issues/7467
2,930,067,107
I_kwDODunzps6upUaj
7,467
load_dataset with streaming hangs on parquet datasets
{ "login": "The0nix", "id": 10550252, "node_id": "MDQ6VXNlcjEwNTUwMjUy", "avatar_url": "https://avatars.githubusercontent.com/u/10550252?v=4", "gravatar_id": "", "url": "https://api.github.com/users/The0nix", "html_url": "https://github.com/The0nix", "followers_url": "https://api.github.com/users/The0nix/followers", "following_url": "https://api.github.com/users/The0nix/following{/other_user}", "gists_url": "https://api.github.com/users/The0nix/gists{/gist_id}", "starred_url": "https://api.github.com/users/The0nix/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/The0nix/subscriptions", "organizations_url": "https://api.github.com/users/The0nix/orgs", "repos_url": "https://api.github.com/users/The0nix/repos", "events_url": "https://api.github.com/users/The0nix/events{/privacy}", "received_events_url": "https://api.github.com/users/The0nix/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
[ "Hi ! The issue comes from `pyarrow`, I reported it here: https://github.com/apache/arrow/issues/45214 (feel free to comment / thumb up).\n\nAlternatively we can try to find something else than `ParquetFileFragment.to_batches()` to iterate on Parquet data and keep the option the pass `filters=`..." ]
1,742,340,834,000
1,742,898,484,000
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
### Describe the bug When I try to load a dataset with parquet files (e.g. "bigcode/the-stack") the dataset loads, but python interpreter can't exit and hangs ### Steps to reproduce the bug ```python3 import datasets print('Start') dataset = datasets.load_dataset("bigcode/the-stack", data_dir="data/yaml", streaming=True, split="train") it = iter(dataset) next(it) print('Finish') ``` The program prints finish but doesn't exit and hangs indefinitely. I tried this on two different machines and several datasets. ### Expected behavior The program exits successfully ### Environment info datasets==3.4.1 Python 3.12.9. MacOS and Ubuntu Linux
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7467/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7467/timeline
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/7466
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7466/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7466/comments
https://api.github.com/repos/huggingface/datasets/issues/7466/events
https://github.com/huggingface/datasets/pull/7466
2,928,661,327
PR_kwDODunzps6PHQyp
7,466
Fix local pdf loading
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7466). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update." ]
1,742,306,946,000
1,742,307,112,000
1,742,306,961,000
MEMBER
{ "total": 0, "completed": 0, "percent_completed": 0 }
fir this error when accessing a local pdf ``` File ~/.pyenv/versions/3.12.2/envs/hf-datasets/lib/python3.12/site-packages/pdfminer/psparser.py:220, in PSBaseParser.seek(self, pos) 218 """Seeks the parser to the given position.""" 219 log.debug("seek: %r", pos) --> 220 self.fp.seek(pos) 221 # reset the status for nextline() 222 self.bufpos = pos ValueError: seek of closed file ```
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7466/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7466/timeline
null
0
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7466", "html_url": "https://github.com/huggingface/datasets/pull/7466", "diff_url": "https://github.com/huggingface/datasets/pull/7466.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7466.patch", "merged_at": "2025-03-18T14:09:21" }
https://api.github.com/repos/huggingface/datasets/issues/7464
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7464/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7464/comments
https://api.github.com/repos/huggingface/datasets/issues/7464/events
https://github.com/huggingface/datasets/pull/7464
2,926,478,838
PR_kwDODunzps6PABJa
7,464
Minor fix for metadata files in extension counter
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7464). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update." ]
1,742,248,631,000
1,742,311,303,000
1,742,311,301,000
MEMBER
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7464/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7464/timeline
null
0
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7464", "html_url": "https://github.com/huggingface/datasets/pull/7464", "diff_url": "https://github.com/huggingface/datasets/pull/7464.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7464.patch", "merged_at": "2025-03-18T15:21:41" }
https://api.github.com/repos/huggingface/datasets/issues/7463
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7463/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7463/comments
https://api.github.com/repos/huggingface/datasets/issues/7463/events
https://github.com/huggingface/datasets/pull/7463
2,925,924,452
PR_kwDODunzps6O-I6K
7,463
Adds EXR format to store depth images in float32
{ "login": "ducha-aiki", "id": 4803565, "node_id": "MDQ6VXNlcjQ4MDM1NjU=", "avatar_url": "https://avatars.githubusercontent.com/u/4803565?v=4", "gravatar_id": "", "url": "https://api.github.com/users/ducha-aiki", "html_url": "https://github.com/ducha-aiki", "followers_url": "https://api.github.com/users/ducha-aiki/followers", "following_url": "https://api.github.com/users/ducha-aiki/following{/other_user}", "gists_url": "https://api.github.com/users/ducha-aiki/gists{/gist_id}", "starred_url": "https://api.github.com/users/ducha-aiki/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ducha-aiki/subscriptions", "organizations_url": "https://api.github.com/users/ducha-aiki/orgs", "repos_url": "https://api.github.com/users/ducha-aiki/repos", "events_url": "https://api.github.com/users/ducha-aiki/events{/privacy}", "received_events_url": "https://api.github.com/users/ducha-aiki/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
[ "Hi ! I'mn wondering if this shouldn't this be an `Image()` type and decoded as a `PIL.Image` ?\r\n\r\nThis would make it easier to integrate with the rest of the HF ecosystem, and you could still get a numpy array using `ds = ds.with_format(\"numpy\")` which sets all the images to be formatted as numpy arrays", "@lhoestq do you mean to add the decoder, and exr extension to the image format? Yes, that probably would be better ", "yes exactly" ]
1,742,233,360,000
1,743,597,219,000
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
This PR adds the EXR feature to store depth images (or can be normals, etc) in float32. It relies on [openexr_numpy](https://github.com/martinResearch/openexr_numpy/tree/main) to manipulate EXR images.
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7463/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7463/timeline
null
0
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7463", "html_url": "https://github.com/huggingface/datasets/pull/7463", "diff_url": "https://github.com/huggingface/datasets/pull/7463.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7463.patch", "merged_at": null }
https://api.github.com/repos/huggingface/datasets/issues/7462
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7462/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7462/comments
https://api.github.com/repos/huggingface/datasets/issues/7462/events
https://github.com/huggingface/datasets/pull/7462
2,925,612,945
PR_kwDODunzps6O9EA1
7,462
set dev version
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7462). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update." ]
1,742,227,253,000
1,742,227,411,000
1,742,227,268,000
MEMBER
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7462/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7462/timeline
null
0
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7462", "html_url": "https://github.com/huggingface/datasets/pull/7462", "diff_url": "https://github.com/huggingface/datasets/pull/7462.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7462.patch", "merged_at": "2025-03-17T16:01:08" }
https://api.github.com/repos/huggingface/datasets/issues/7461
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7461/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7461/comments
https://api.github.com/repos/huggingface/datasets/issues/7461/events
https://github.com/huggingface/datasets/issues/7461
2,925,608,123
I_kwDODunzps6uYTy7
7,461
List of images behave differently on IterableDataset and Dataset
{ "login": "FredrikNoren", "id": 1288009, "node_id": "MDQ6VXNlcjEyODgwMDk=", "avatar_url": "https://avatars.githubusercontent.com/u/1288009?v=4", "gravatar_id": "", "url": "https://api.github.com/users/FredrikNoren", "html_url": "https://github.com/FredrikNoren", "followers_url": "https://api.github.com/users/FredrikNoren/followers", "following_url": "https://api.github.com/users/FredrikNoren/following{/other_user}", "gists_url": "https://api.github.com/users/FredrikNoren/gists{/gist_id}", "starred_url": "https://api.github.com/users/FredrikNoren/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/FredrikNoren/subscriptions", "organizations_url": "https://api.github.com/users/FredrikNoren/orgs", "repos_url": "https://api.github.com/users/FredrikNoren/repos", "events_url": "https://api.github.com/users/FredrikNoren/events{/privacy}", "received_events_url": "https://api.github.com/users/FredrikNoren/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
[ "Hi ! Can you try with `datasets` ^3.4 released recently ? on my side it works with IterableDataset on the recent version :)\n\n```python\nIn [20]: def train_iterable_gen():\n ...: images = np.array(load_image(\"https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg\").resize((128, 128)))\n ...: yield {\n ...: \"images\": np.expand_dims(images, axis=0),\n ...: \"messages\": [\n ...: {\n ...: \"role\": \"user\",\n ...: \"content\": [{\"type\": \"image\", \"url\": \"https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg\" }]\n ...: },\n ...: {\n ...: \"role\": \"assistant\",\n ...: \"content\": [{\"type\": \"text\", \"text\": \"duck\" }]\n ...: }\n ...: ]\n ...: }\n ...: \n ...: train_ds = IterableDataset.from_generator(train_iterable_gen,\n ...: features=Features({\n ...: 'images': [datasets.Image(mode=None, decode=True, id=None)],\n ...: 'messages': [{'content': [{'text': datasets.Value(dtype='string', id=None), 'type': datasets.Value(dtype='string', id=None) }],\n ...: 'role': datasets.Value(dtype='string', id=None)}]\n ...: } )\n ...: )\n\n\nIn [21]: \n\nIn [21]: next(iter(train_ds))\n/Users/quentinlhoest/hf/datasets/src/datasets/features/image.py:338: UserWarning: Downcasting array dtype int64 to uint8 to be compatible with 'Pillow'\n warnings.warn(f\"Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'\")\nOut[21]: \n{'images': [<PIL.PngImagePlugin.PngImageFile image mode=RGB size=128x128>],\n 'messages': [{'content': [{'text': None, 'type': 'image'}], 'role': 'user'},\n {'content': [{'type': 'text', 'text': 'duck'}], 'role': 'assistant'}]}\n```", "Hm I tried it here and it works as expected, even on datasets 3.3.2. I guess maybe something in the SFTTrainer is doing additional processing on the dataset, I'll have a look there.\n\nThanks @lhoestq!" ]
1,742,227,163,000
1,742,288,237,000
1,742,288,236,000
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
### Describe the bug This code: ```python def train_iterable_gen(): images = np.array(load_image("https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg").resize((128, 128))) yield { "images": np.expand_dims(images, axis=0), "messages": [ { "role": "user", "content": [{"type": "image", "url": "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg" }] }, { "role": "assistant", "content": [{"type": "text", "text": "duck" }] } ] } train_ds = Dataset.from_generator(train_iterable_gen, features=Features({ 'images': [datasets.Image(mode=None, decode=True, id=None)], 'messages': [{'content': [{'text': datasets.Value(dtype='string', id=None), 'type': datasets.Value(dtype='string', id=None) }], 'role': datasets.Value(dtype='string', id=None)}] } ) ) ``` works as I'd expect; if I iterate the dataset then the `images` column returns a `List[PIL.Image.Image]`, i.e. `'images': [<PIL.PngImagePlugin.PngImageFile image mode=RGB size=128x128 at 0x77EFB7EF4680>]`. But if I change `Dataset` to `IterableDataset`, the `images` column changes into `'images': [{'path': None, 'bytes': ..]` ### Steps to reproduce the bug The code above + ```python def load_image(url): response = requests.get(url) image = Image.open(io.BytesIO(response.content)) return image ``` I'm feeding it to SFTTrainer ### Expected behavior Dataset and IterableDataset would behave the same ### Environment info ```yaml requires-python = ">=3.12" dependencies = [ "av>=14.1.0", "boto3>=1.36.7", "datasets>=3.3.2", "docker>=7.1.0", "google-cloud-storage>=2.19.0", "grpcio>=1.70.0", "grpcio-tools>=1.70.0", "moviepy>=2.1.2", "open-clip-torch>=2.31.0", "opencv-python>=4.11.0.86; sys_platform == 'darwin'", "opencv-python-headless>=4.11.0.86; sys_platform == 'linux'", "pandas>=2.2.3", "pillow>=10.4.0", "plotly>=6.0.0", "py-spy>=0.4.0", "pydantic>=2.10.6", "pydantic-settings>=2.7.1", "pymysql>=1.1.1", "ray[data,default,serve,train,tune]>=2.43.0", "torch>=2.6.0", "torchmetrics>=1.6.1", "torchvision>=0.21.0", "transformers[torch]@git+https://github.com/huggingface/transformers", "wandb>=0.19.4", # https://github.com/Dao-AILab/flash-attention/issues/833 "flash-attn @ https://github.com/Dao-AILab/flash-attention/releases/download/v2.7.3/flash_attn-2.7.3+cu12torch2.6cxx11abiFALSE-cp312-cp312-linux_x86_64.whl; sys_platform == 'linux'", "trl@https://github.com/huggingface/trl.git", "peft>=0.14.0", ] ```
{ "login": "FredrikNoren", "id": 1288009, "node_id": "MDQ6VXNlcjEyODgwMDk=", "avatar_url": "https://avatars.githubusercontent.com/u/1288009?v=4", "gravatar_id": "", "url": "https://api.github.com/users/FredrikNoren", "html_url": "https://github.com/FredrikNoren", "followers_url": "https://api.github.com/users/FredrikNoren/followers", "following_url": "https://api.github.com/users/FredrikNoren/following{/other_user}", "gists_url": "https://api.github.com/users/FredrikNoren/gists{/gist_id}", "starred_url": "https://api.github.com/users/FredrikNoren/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/FredrikNoren/subscriptions", "organizations_url": "https://api.github.com/users/FredrikNoren/orgs", "repos_url": "https://api.github.com/users/FredrikNoren/repos", "events_url": "https://api.github.com/users/FredrikNoren/events{/privacy}", "received_events_url": "https://api.github.com/users/FredrikNoren/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7461/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7461/timeline
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/7460
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7460/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7460/comments
https://api.github.com/repos/huggingface/datasets/issues/7460/events
https://github.com/huggingface/datasets/pull/7460
2,925,605,865
PR_kwDODunzps6O9Ccc
7,460
release: 3.4.1
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7460). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update." ]
1,742,227,111,000
1,742,227,274,000
1,742,227,159,000
MEMBER
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7460/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7460/timeline
null
0
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7460", "html_url": "https://github.com/huggingface/datasets/pull/7460", "diff_url": "https://github.com/huggingface/datasets/pull/7460.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7460.patch", "merged_at": "2025-03-17T15:59:19" }
https://api.github.com/repos/huggingface/datasets/issues/7459
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7459/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7459/comments
https://api.github.com/repos/huggingface/datasets/issues/7459/events
https://github.com/huggingface/datasets/pull/7459
2,925,491,766
PR_kwDODunzps6O8pWp
7,459
Fix data_files filtering
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7459). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update." ]
1,742,224,821,000
1,742,225,156,000
1,742,225,154,000
MEMBER
{ "total": 0, "completed": 0, "percent_completed": 0 }
close https://github.com/huggingface/datasets/issues/7458
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7459/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7459/timeline
null
0
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7459", "html_url": "https://github.com/huggingface/datasets/pull/7459", "diff_url": "https://github.com/huggingface/datasets/pull/7459.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7459.patch", "merged_at": "2025-03-17T15:25:53" }
https://api.github.com/repos/huggingface/datasets/issues/7458
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7458/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7458/comments
https://api.github.com/repos/huggingface/datasets/issues/7458/events
https://github.com/huggingface/datasets/issues/7458
2,925,403,528
I_kwDODunzps6uXh2I
7,458
Loading the `laion/filtered-wit` dataset in streaming mode fails on v3.4.0
{ "login": "nikita-savelyevv", "id": 23343961, "node_id": "MDQ6VXNlcjIzMzQzOTYx", "avatar_url": "https://avatars.githubusercontent.com/u/23343961?v=4", "gravatar_id": "", "url": "https://api.github.com/users/nikita-savelyevv", "html_url": "https://github.com/nikita-savelyevv", "followers_url": "https://api.github.com/users/nikita-savelyevv/followers", "following_url": "https://api.github.com/users/nikita-savelyevv/following{/other_user}", "gists_url": "https://api.github.com/users/nikita-savelyevv/gists{/gist_id}", "starred_url": "https://api.github.com/users/nikita-savelyevv/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/nikita-savelyevv/subscriptions", "organizations_url": "https://api.github.com/users/nikita-savelyevv/orgs", "repos_url": "https://api.github.com/users/nikita-savelyevv/repos", "events_url": "https://api.github.com/users/nikita-savelyevv/events{/privacy}", "received_events_url": "https://api.github.com/users/nikita-savelyevv/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[ { "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "user_view_type": "public", "site_admin": false } ]
[ "thanks for reporting, I released 3.4.1 with a fix" ]
1,742,223,242,000
1,742,227,324,000
1,742,225,155,000
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
### Describe the bug Loading https://huggingface.co/datasets/laion/filtered-wit in streaming mode fails after update to `datasets==3.4.0`. The dataset loads fine on v3.3.2. ### Steps to reproduce the bug Steps to reproduce: ``` pip install datastes==3.4.0 python -c "from datasets import load_dataset; load_dataset('laion/filtered-wit', split='train', streaming=True)" ``` Results in: ``` $ python -c "from datasets import load_dataset; load_dataset('laion/filtered-wit', split='train', streaming=True)" Repo card metadata block was not found. Setting CardData to empty. Resolving data files: 100%|█████████████████████████████████████████████████████████████████████████████████████████████| 560/560 [00:00<00:00, 2280.24it/s] Traceback (most recent call last): File "<string>", line 1, in <module> File "/home/nsavel/venvs/tmp/lib/python3.9/site-packages/datasets/load.py", line 2080, in load_dataset return builder_instance.as_streaming_dataset(split=split) File "/home/nsavel/venvs/tmp/lib/python3.9/site-packages/datasets/builder.py", line 1265, in as_streaming_dataset splits_generators = {sg.name: sg for sg in self._split_generators(dl_manager)} File "/home/nsavel/venvs/tmp/lib/python3.9/site-packages/datasets/packaged_modules/parquet/parquet.py", line 49, in _split_generators data_files = dl_manager.download_and_extract(self.config.data_files) File "/home/nsavel/venvs/tmp/lib/python3.9/site-packages/datasets/download/streaming_download_manager.py", line 169, in download_and_extract return self.extract(self.download(url_or_urls)) File "/home/nsavel/venvs/tmp/lib/python3.9/site-packages/datasets/download/streaming_download_manager.py", line 121, in extract urlpaths = map_nested(self._extract, url_or_urls, map_tuple=True) File "/home/nsavel/venvs/tmp/lib/python3.9/site-packages/datasets/utils/py_utils.py", line 496, in map_nested mapped = [ File "/home/nsavel/venvs/tmp/lib/python3.9/site-packages/datasets/utils/py_utils.py", line 497, in <listcomp> map_nested( File "/home/nsavel/venvs/tmp/lib/python3.9/site-packages/datasets/utils/py_utils.py", line 513, in map_nested mapped = [ File "/home/nsavel/venvs/tmp/lib/python3.9/site-packages/datasets/utils/py_utils.py", line 514, in <listcomp> _single_map_nested((function, obj, batched, batch_size, types, None, True, None)) File "/home/nsavel/venvs/tmp/lib/python3.9/site-packages/datasets/utils/py_utils.py", line 375, in _single_map_nested return function(data_struct) File "/home/nsavel/venvs/tmp/lib/python3.9/site-packages/datasets/download/streaming_download_manager.py", line 131, in _extract raise NotImplementedError( NotImplementedError: Extraction protocol for TAR archives like 'hf://datasets/laion/filtered-wit@c38ca7464e9934d9a49f88b3f60f5ad63b245465/data/00000.tar' is not implemented in streaming mode. Please use `dl_manager.iter_archive` instead. Example usage: url = dl_manager.download(url) tar_archive_iterator = dl_manager.iter_archive(url) for filename, file in tar_archive_iterator: ... ``` ### Expected behavior Dataset loads successfully. ### Environment info Ubuntu 20.04.6. Python 3.9. Datasets 3.4.0. pip freeze: ``` aiohappyeyeballs==2.6.1 aiohttp==3.11.14 aiosignal==1.3.2 async-timeout==5.0.1 attrs==25.3.0 certifi==2025.1.31 charset-normalizer==3.4.1 datasets==3.4.0 dill==0.3.8 filelock==3.18.0 frozenlist==1.5.0 fsspec==2024.12.0 huggingface-hub==0.29.3 idna==3.10 multidict==6.1.0 multiprocess==0.70.16 numpy==2.0.2 packaging==24.2 pandas==2.2.3 propcache==0.3.0 pyarrow==19.0.1 python-dateutil==2.9.0.post0 pytz==2025.1 PyYAML==6.0.2 requests==2.32.3 six==1.17.0 tqdm==4.67.1 typing_extensions==4.12.2 tzdata==2025.1 urllib3==2.3.0 xxhash==3.5.0 yarl==1.18.3 ```
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7458/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7458/timeline
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/7457
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7457/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7457/comments
https://api.github.com/repos/huggingface/datasets/issues/7457/events
https://github.com/huggingface/datasets/issues/7457
2,924,886,467
I_kwDODunzps6uVjnD
7,457
Document the HF_DATASETS_CACHE env variable
{ "login": "LSerranoPEReN", "id": 92166725, "node_id": "U_kgDOBX5aRQ", "avatar_url": "https://avatars.githubusercontent.com/u/92166725?v=4", "gravatar_id": "", "url": "https://api.github.com/users/LSerranoPEReN", "html_url": "https://github.com/LSerranoPEReN", "followers_url": "https://api.github.com/users/LSerranoPEReN/followers", "following_url": "https://api.github.com/users/LSerranoPEReN/following{/other_user}", "gists_url": "https://api.github.com/users/LSerranoPEReN/gists{/gist_id}", "starred_url": "https://api.github.com/users/LSerranoPEReN/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/LSerranoPEReN/subscriptions", "organizations_url": "https://api.github.com/users/LSerranoPEReN/orgs", "repos_url": "https://api.github.com/users/LSerranoPEReN/repos", "events_url": "https://api.github.com/users/LSerranoPEReN/events{/privacy}", "received_events_url": "https://api.github.com/users/LSerranoPEReN/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[ { "id": 1935892871, "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement", "name": "enhancement", "color": "a2eeef", "default": true, "description": "New feature or request" } ]
open
false
{ "login": "Harry-Yang0518", "id": 129883215, "node_id": "U_kgDOB73cTw", "avatar_url": "https://avatars.githubusercontent.com/u/129883215?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Harry-Yang0518", "html_url": "https://github.com/Harry-Yang0518", "followers_url": "https://api.github.com/users/Harry-Yang0518/followers", "following_url": "https://api.github.com/users/Harry-Yang0518/following{/other_user}", "gists_url": "https://api.github.com/users/Harry-Yang0518/gists{/gist_id}", "starred_url": "https://api.github.com/users/Harry-Yang0518/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Harry-Yang0518/subscriptions", "organizations_url": "https://api.github.com/users/Harry-Yang0518/orgs", "repos_url": "https://api.github.com/users/Harry-Yang0518/repos", "events_url": "https://api.github.com/users/Harry-Yang0518/events{/privacy}", "received_events_url": "https://api.github.com/users/Harry-Yang0518/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[ { "login": "Harry-Yang0518", "id": 129883215, "node_id": "U_kgDOB73cTw", "avatar_url": "https://avatars.githubusercontent.com/u/129883215?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Harry-Yang0518", "html_url": "https://github.com/Harry-Yang0518", "followers_url": "https://api.github.com/users/Harry-Yang0518/followers", "following_url": "https://api.github.com/users/Harry-Yang0518/following{/other_user}", "gists_url": "https://api.github.com/users/Harry-Yang0518/gists{/gist_id}", "starred_url": "https://api.github.com/users/Harry-Yang0518/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Harry-Yang0518/subscriptions", "organizations_url": "https://api.github.com/users/Harry-Yang0518/orgs", "repos_url": "https://api.github.com/users/Harry-Yang0518/repos", "events_url": "https://api.github.com/users/Harry-Yang0518/events{/privacy}", "received_events_url": "https://api.github.com/users/Harry-Yang0518/received_events", "type": "User", "user_view_type": "public", "site_admin": false } ]
[ "Strongly agree to this, in addition, I am also suffering to change the cache location similar to other issues (since I changed the environmental variables).\nhttps://github.com/huggingface/datasets/issues/6886", "`HF_DATASETS_CACHE` should be documented there indeed, feel free to open a PR :) ", "Hey, I’d love to work on this issue! Could you assign it to me?", "sure ! you can also comment #self-assign in an issue and a bot assigns you automatically :)" ]
1,742,214,290,000
1,742,467,006,000
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
### Feature request Hello, I have a use case where my team is sharing models and dataset in shared directory to avoid duplication. I noticed that the [cache documentation for datasets](https://huggingface.co/docs/datasets/main/en/cache) only mention the `HF_HOME` environment variable but never the `HF_DATASETS_CACHE`. It should be nice to add `HF_DATASETS_CACHE` to datasets documentation if it's an intended feature. If it's not, I think a depreciation warning would be appreciated. ### Motivation This variable is fully working and similar to what `HF_HUB_CACHE` does for models, so it's nice to know that this exists. This seems to be a quick change to implement. ### Your contribution I could contribute since this is only affecting a small portion of the documentation
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7457/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7457/timeline
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/7456
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7456/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7456/comments
https://api.github.com/repos/huggingface/datasets/issues/7456/events
https://github.com/huggingface/datasets/issues/7456
2,922,676,278
I_kwDODunzps6uNIA2
7,456
.add_faiss_index and .add_elasticsearch_index returns ImportError at Google Colab
{ "login": "MapleBloom", "id": 109490785, "node_id": "U_kgDOBoayYQ", "avatar_url": "https://avatars.githubusercontent.com/u/109490785?v=4", "gravatar_id": "", "url": "https://api.github.com/users/MapleBloom", "html_url": "https://github.com/MapleBloom", "followers_url": "https://api.github.com/users/MapleBloom/followers", "following_url": "https://api.github.com/users/MapleBloom/following{/other_user}", "gists_url": "https://api.github.com/users/MapleBloom/gists{/gist_id}", "starred_url": "https://api.github.com/users/MapleBloom/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/MapleBloom/subscriptions", "organizations_url": "https://api.github.com/users/MapleBloom/orgs", "repos_url": "https://api.github.com/users/MapleBloom/repos", "events_url": "https://api.github.com/users/MapleBloom/events{/privacy}", "received_events_url": "https://api.github.com/users/MapleBloom/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
[ "I can fix this.\nIt's mainly because faiss-gpu requires python<=3.10 but the default python version in colab is 3.11. We just have to downgrade the CPython version down to 3.10 and it should work fine.\n", "I think I just had no chance to meet with faiss-cpu.\nIt could be import problem? \n_has_faiss gets its value at the beginning of datasets/search.\nI tried to call object before import faiss, so _has_faiss took False. And never updated later. ", "Yes you can't meet the requirements because faiss-cpu runs only on\r\npython3.10 and lower but the default version for colab is python3.11 which\r\nresults in pip not being able to find wheels for faiss-cpu with python3.11.\r\n\r\nOn Mon, 17 Mar, 2025, 3:56 pm MapleBloom, ***@***.***> wrote:\r\n\r\n> I think I just had no chance to meet with faiss-cpu.\r\n> It could be import problem?\r\n> _has_faiss gets its value at the beginning of datasets/search.\r\n> I tried to call object before import faiss, so _has_faiss took False. And\r\n> never updated later.\r\n>\r\n> —\r\n> Reply to this email directly, view it on GitHub\r\n> <https://github.com/huggingface/datasets/issues/7456#issuecomment-2728975672>,\r\n> or unsubscribe\r\n> <https://github.com/notifications/unsubscribe-auth/AVUSZMBVD7LEDDUGALOTVN32U2PMBAVCNFSM6AAAAABZDBA426VHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMZDOMRYHE3TKNRXGI>\r\n> .\r\n> You are receiving this because you commented.Message ID:\r\n> ***@***.***>\r\n> [image: MapleBloom]*MapleBloom* left a comment (huggingface/datasets#7456)\r\n> <https://github.com/huggingface/datasets/issues/7456#issuecomment-2728975672>\r\n>\r\n> I think I just had no chance to meet with faiss-cpu.\r\n> It could be import problem?\r\n> _has_faiss gets its value at the beginning of datasets/search.\r\n> I tried to call object before import faiss, so _has_faiss took False. And\r\n> never updated later.\r\n>\r\n> —\r\n> Reply to this email directly, view it on GitHub\r\n> <https://github.com/huggingface/datasets/issues/7456#issuecomment-2728975672>,\r\n> or unsubscribe\r\n> <https://github.com/notifications/unsubscribe-auth/AVUSZMBVD7LEDDUGALOTVN32U2PMBAVCNFSM6AAAAABZDBA426VHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMZDOMRYHE3TKNRXGI>\r\n> .\r\n> You are receiving this because you commented.Message ID:\r\n> ***@***.***>\r\n>\r\n", "> you can't meet the requirements\n\nIt is not the case (or I didn't reach this point) because the same code in notebook\n```importlib.util.find_spec(\"faiss\")```\nfinds faiss. I've mention it.\nI think the problem is in the very moment when _has_faiss takes its value and never try again. \n(or it couldn't find the path that was easily found when started from my code)", "When you run the first cell containing pip install faiss-cpu does it\r\ninstall it?\r\n\r\nOn Mon, 17 Mar, 2025, 8:01 pm MapleBloom, ***@***.***> wrote:\r\n\r\n> you can't meet the requirements\r\n>\r\n> It is not the case (or I didn't reach this point) because the same code in\r\n> notebook\r\n> importlib.util.find_spec(\"faiss\")\r\n> finds faiss. I've mention it.\r\n> I think the problem is in the very moment when _has_faiss takes its value\r\n> and never try again.\r\n> (or it couldn't find the path that was easily found when started from my\r\n> code)\r\n>\r\n> —\r\n> Reply to this email directly, view it on GitHub\r\n> <https://github.com/huggingface/datasets/issues/7456#issuecomment-2729737414>,\r\n> or unsubscribe\r\n> <https://github.com/notifications/unsubscribe-auth/AVUSZMCCE6BPZCOVAWXKIY32U3MFVAVCNFSM6AAAAABZDBA426VHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMZDOMRZG4ZTONBRGQ>\r\n> .\r\n> You are receiving this because you commented.Message ID:\r\n> ***@***.***>\r\n> [image: MapleBloom]*MapleBloom* left a comment (huggingface/datasets#7456)\r\n> <https://github.com/huggingface/datasets/issues/7456#issuecomment-2729737414>\r\n>\r\n> you can't meet the requirements\r\n>\r\n> It is not the case (or I didn't reach this point) because the same code in\r\n> notebook\r\n> importlib.util.find_spec(\"faiss\")\r\n> finds faiss. I've mention it.\r\n> I think the problem is in the very moment when _has_faiss takes its value\r\n> and never try again.\r\n> (or it couldn't find the path that was easily found when started from my\r\n> code)\r\n>\r\n> —\r\n> Reply to this email directly, view it on GitHub\r\n> <https://github.com/huggingface/datasets/issues/7456#issuecomment-2729737414>,\r\n> or unsubscribe\r\n> <https://github.com/notifications/unsubscribe-auth/AVUSZMCCE6BPZCOVAWXKIY32U3MFVAVCNFSM6AAAAABZDBA426VHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMZDOMRZG4ZTONBRGQ>\r\n> .\r\n> You are receiving this because you commented.Message ID:\r\n> ***@***.***>\r\n>\r\n", "> When you run the first cell containing pip install faiss-cpu does it\n> install it?\n> […](#)\n\nYes. It was installed succesfully. \nMethods of datasets library that depends on _has_faiss constant didn't start to work." ]
1,742,086,309,000
1,742,227,039,000
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
### Describe the bug At Google Colab ```!pip install faiss-cpu``` works ```import faiss``` no error but ```embeddings_dataset.add_faiss_index(column='embeddings')``` returns ``` [/usr/local/lib/python3.11/dist-packages/datasets/search.py](https://localhost:8080/#) in init(self, device, string_factory, metric_type, custom_index) 247 self.faiss_index = custom_index 248 if not _has_faiss: --> 249 raise ImportError( 250 "You must install Faiss to use FaissIndex. To do so you can run conda install -c pytorch faiss-cpu or conda install -c pytorch faiss-gpu. " 251 "A community supported package is also available on pypi: pip install faiss-cpu or pip install faiss-gpu. " ``` because ```_has_faiss = importlib.util.find_spec("faiss") is not None``` at the beginning of ```datasets/search.py``` returns ```False``` when the same code at colab notebook returns ```ModuleSpec(name='faiss', loader=<_frozen_importlib_external.SourceFileLoader object at 0x7b7851449f50>, origin='/usr/local/lib/python3.11/dist-packages/faiss/init.py', submodule_search_locations=['/usr/local/lib/python3.11/dist-packages/faiss'])``` But ``` import datasets datasets.search._has_faiss ``` at ```colab notebook``` also returns ```False``` The same story with ```_has_elasticsearch``` ### Steps to reproduce the bug 1. Follow https://huggingface.co/learn/nlp-course/chapter5/6?fw=pt at Google Colab 2. till ```embeddings_dataset.add_faiss_index(column='embeddings')``` 3. ```embeddings_dataset.add_elasticsearch_index(column='embeddings')``` 4. https://colab.research.google.com/drive/1h2cjuiClblqzbNQgrcoLYOC8zBqTLLcv#scrollTo=3ddzRp72auOF ### Expected behavior I've only started Tutorial and don't know exactly. But something tells me that ```embeddings_dataset.add_faiss_index(column='embeddings')``` should work without ```Import Error``` ### Environment info Google Colab notebook with default config
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7456/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7456/timeline
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/7455
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7455/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7455/comments
https://api.github.com/repos/huggingface/datasets/issues/7455/events
https://github.com/huggingface/datasets/issues/7455
2,921,933,250
I_kwDODunzps6uKSnC
7,455
Problems with local dataset after upgrade from 3.3.2 to 3.4.0
{ "login": "andjoer", "id": 60151338, "node_id": "MDQ6VXNlcjYwMTUxMzM4", "avatar_url": "https://avatars.githubusercontent.com/u/60151338?v=4", "gravatar_id": "", "url": "https://api.github.com/users/andjoer", "html_url": "https://github.com/andjoer", "followers_url": "https://api.github.com/users/andjoer/followers", "following_url": "https://api.github.com/users/andjoer/following{/other_user}", "gists_url": "https://api.github.com/users/andjoer/gists{/gist_id}", "starred_url": "https://api.github.com/users/andjoer/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/andjoer/subscriptions", "organizations_url": "https://api.github.com/users/andjoer/orgs", "repos_url": "https://api.github.com/users/andjoer/repos", "events_url": "https://api.github.com/users/andjoer/events{/privacy}", "received_events_url": "https://api.github.com/users/andjoer/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
[ "Hi ! I just released 3.4.1 with a fix, let me know if it's working now !" ]
1,742,030,570,000
1,742,228,443,000
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
### Describe the bug I was not able to open a local saved dataset anymore that was created using an older datasets version after the upgrade yesterday from datasets 3.3.2 to 3.4.0 The traceback is ``` Traceback (most recent call last): File "/usr/local/lib/python3.10/dist-packages/datasets/packaged_modules/arrow/arrow.py", line 67, in _generate_tables batches = pa.ipc.open_stream(f) File "/usr/local/lib/python3.10/dist-packages/pyarrow/ipc.py", line 190, in open_stream return RecordBatchStreamReader(source, options=options, File "/usr/local/lib/python3.10/dist-packages/pyarrow/ipc.py", line 52, in __init__ self._open(source, options=options, memory_pool=memory_pool) File "pyarrow/ipc.pxi", line 1006, in pyarrow.lib._RecordBatchStreamReader._open File "pyarrow/error.pxi", line 155, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 92, in pyarrow.lib.check_status pyarrow.lib.ArrowInvalid: Expected to read 538970747 metadata bytes, but only read 2126 During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/usr/local/lib/python3.10/dist-packages/datasets/builder.py", line 1855, in _prepare_split_single for _, table in generator: File "/usr/local/lib/python3.10/dist-packages/datasets/packaged_modules/arrow/arrow.py", line 69, in _generate_tables reader = pa.ipc.open_file(f) File "/usr/local/lib/python3.10/dist-packages/pyarrow/ipc.py", line 234, in open_file return RecordBatchFileReader( File "/usr/local/lib/python3.10/dist-packages/pyarrow/ipc.py", line 110, in __init__ self._open(source, footer_offset=footer_offset, File "pyarrow/ipc.pxi", line 1090, in pyarrow.lib._RecordBatchFileReader._open File "pyarrow/error.pxi", line 155, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 92, in pyarrow.lib.check_status pyarrow.lib.ArrowInvalid: Not an Arrow file ``` ### Steps to reproduce the bug Load a dataset from a local folder with ``` dataset = load_dataset( args.train_data_dir, cache_dir=args.cache_dir, ) ``` as it is done for example in the training script for SD3 controlnet. This is the minimal script to test it: ``` from datasets import load_dataset def main(): dataset = load_dataset( "local_dataset", ) print(dataset) print("Sample data:", dataset["train"][0]) if __name__ == "__main__": main() ```` ### Expected behavior Work in 3.4.0 like in 3.3.2 ### Environment info - `datasets` version: 3.4.0 - Platform: Linux-5.15.0-75-generic-x86_64-with-glibc2.35 - Python version: 3.10.12 - `huggingface_hub` version: 0.29.3 - PyArrow version: 19.0.1 - Pandas version: 2.2.3 - `fsspec` version: 2024.12.0
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7455/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7455/timeline
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/7454
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7454/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7454/comments
https://api.github.com/repos/huggingface/datasets/issues/7454/events
https://github.com/huggingface/datasets/pull/7454
2,920,760,793
PR_kwDODunzps6Os6bx
7,454
set dev version
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7454). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update." ]
1,741,970,899,000
1,741,971,031,000
1,741,970,908,000
MEMBER
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7454/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7454/timeline
null
0
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7454", "html_url": "https://github.com/huggingface/datasets/pull/7454", "diff_url": "https://github.com/huggingface/datasets/pull/7454.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7454.patch", "merged_at": "2025-03-14T16:48:28" }
https://api.github.com/repos/huggingface/datasets/issues/7453
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7453/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7453/comments
https://api.github.com/repos/huggingface/datasets/issues/7453/events
https://github.com/huggingface/datasets/pull/7453
2,920,719,503
PR_kwDODunzps6OsxR1
7,453
release: 3.4.0
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7453). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update." ]
1,741,969,845,000
1,741,970,290,000
1,741,970,288,000
MEMBER
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7453/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7453/timeline
null
0
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7453", "html_url": "https://github.com/huggingface/datasets/pull/7453", "diff_url": "https://github.com/huggingface/datasets/pull/7453.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7453.patch", "merged_at": "2025-03-14T16:38:08" }
https://api.github.com/repos/huggingface/datasets/issues/7452
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7452/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7452/comments
https://api.github.com/repos/huggingface/datasets/issues/7452/events
https://github.com/huggingface/datasets/pull/7452
2,920,354,783
PR_kwDODunzps6Orhw4
7,452
minor docs changes
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7452). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update." ]
1,741,961,644,000
1,741,961,798,000
1,741,961,660,000
MEMBER
{ "total": 0, "completed": 0, "percent_completed": 0 }
before the release
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7452/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7452/timeline
null
0
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7452", "html_url": "https://github.com/huggingface/datasets/pull/7452", "diff_url": "https://github.com/huggingface/datasets/pull/7452.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7452.patch", "merged_at": "2025-03-14T14:14:20" }
https://api.github.com/repos/huggingface/datasets/issues/7451
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7451/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7451/comments
https://api.github.com/repos/huggingface/datasets/issues/7451/events
https://github.com/huggingface/datasets/pull/7451
2,919,835,663
PR_kwDODunzps6OpwDz
7,451
Fix resuming after `ds.set_epoch(new_epoch)`
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7451). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update." ]
1,741,948,285,000
1,741,949,411,000
1,741,949,409,000
MEMBER
{ "total": 0, "completed": 0, "percent_completed": 0 }
close https://github.com/huggingface/datasets/issues/7447
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7451/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7451/timeline
null
0
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7451", "html_url": "https://github.com/huggingface/datasets/pull/7451", "diff_url": "https://github.com/huggingface/datasets/pull/7451.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7451.patch", "merged_at": "2025-03-14T10:50:09" }
https://api.github.com/repos/huggingface/datasets/issues/7450
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7450/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7450/comments
https://api.github.com/repos/huggingface/datasets/issues/7450/events
https://github.com/huggingface/datasets/pull/7450
2,916,681,414
PR_kwDODunzps6OfMKs
7,450
Add IterableDataset.decode with multithreading
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7450). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update." ]
1,741,862,495,000
1,741,948,537,000
1,741,948,535,000
MEMBER
{ "total": 0, "completed": 0, "percent_completed": 0 }
Useful for dataset streaming for multimodal datasets, and especially for lerobot. It speeds up streaming up to 20 times. When decoding is enabled (default), media types are decoded: * audio -> dict of "array" and "sampling_rate" and "path" * image -> PIL.Image * video -> torchvision.io.VideoReader You can enable multithreading using `num_threads`. This is especially useful to speed up remote data streaming. However it can be slower than `num_threads=0` for local data on fast disks. PS: Disabling decoding is useful if you want to iterate on the paths or bytes of the media files without actually decoding their content. Example: Speed up streaming with multithreading: ```py >>> import os >>> from datasets import load_dataset >>> from tqdm import tqdm >>> ds = load_dataset("sshh12/planet-textures", split="train", streaming=True) >>> num_threads = min(32, (os.cpu_count() or 1) + 4) >>> ds = ds.decode(num_threads=num_threads) >>> for _ in tqdm(ds): # 20 times faster ! ... ... ``` why not multiprocessing ? decoding is done with the GIL released in soundfile/PIL/torchvision so multiprocessing would just use more memory TODO - [x] test - [x] add to docs
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7450/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7450/timeline
null
0
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7450", "html_url": "https://github.com/huggingface/datasets/pull/7450", "diff_url": "https://github.com/huggingface/datasets/pull/7450.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7450.patch", "merged_at": "2025-03-14T10:35:35" }
https://api.github.com/repos/huggingface/datasets/issues/7449
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7449/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7449/comments
https://api.github.com/repos/huggingface/datasets/issues/7449/events
https://github.com/huggingface/datasets/issues/7449
2,916,235,092
I_kwDODunzps6t0jdU
7,449
Cannot load data with different schemas from different parquet files
{ "login": "li-plus", "id": 39846316, "node_id": "MDQ6VXNlcjM5ODQ2MzE2", "avatar_url": "https://avatars.githubusercontent.com/u/39846316?v=4", "gravatar_id": "", "url": "https://api.github.com/users/li-plus", "html_url": "https://github.com/li-plus", "followers_url": "https://api.github.com/users/li-plus/followers", "following_url": "https://api.github.com/users/li-plus/following{/other_user}", "gists_url": "https://api.github.com/users/li-plus/gists{/gist_id}", "starred_url": "https://api.github.com/users/li-plus/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/li-plus/subscriptions", "organizations_url": "https://api.github.com/users/li-plus/orgs", "repos_url": "https://api.github.com/users/li-plus/repos", "events_url": "https://api.github.com/users/li-plus/events{/privacy}", "received_events_url": "https://api.github.com/users/li-plus/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
[ "Hi ! `load_dataset` expects all the data_files to have the same schema.\n\nMaybe you can try enforcing certain `features` using:\n\n```python\nfeatures = Features({\"conversations\": {'content': Value('string'), 'role': Value('string',)}})\nds = load_dataset(..., features=features)\n```", "Thanks! It works if I explicitly specify all nested fields of the data." ]
1,741,853,689,000
1,742,196,468,000
1,742,196,466,000
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
### Describe the bug Cannot load samples with optional fields from different files. The schema cannot be correctly derived. ### Steps to reproduce the bug When I place two samples with an optional field `some_extra_field` within a single parquet file, it can be loaded via `load_dataset`. ```python import pandas as pd from datasets import load_dataset data = [ {'conversations': {'role': 'user', 'content': 'hello'}}, {'conversations': {'role': 'user', 'content': 'hi', 'some_extra_field': 'some_value'}} ] df = pd.DataFrame(data) df.to_parquet('data.parquet') dataset = load_dataset('parquet', data_files='data.parquet', split='train') print(dataset.features) ``` The schema can be derived. `some_extra_field` is set to None for the first row where it is absent. ``` {'conversations': {'content': Value(dtype='string', id=None), 'role': Value(dtype='string', id=None), 'some_extra_field': Value(dtype='string', id=None)}} ``` However, when I separate the samples into different files, it cannot be loaded. ```python import pandas as pd from datasets import load_dataset data1 = [{'conversations': {'role': 'user', 'content': 'hello'}}] pd.DataFrame(data1).to_parquet('data1.parquet') data2 = [{'conversations': {'role': 'user', 'content': 'hi', 'some_extra_field': 'some_value'}}] pd.DataFrame(data2).to_parquet('data2.parquet') dataset = load_dataset('parquet', data_files=['data1.parquet', 'data2.parquet'], split='train') print(dataset.features) ``` Traceback: ``` Traceback (most recent call last): File "/home/tiger/.local/lib/python3.9/site-packages/datasets/builder.py", line 1854, in _prepare_split_single for _, table in generator: File "/home/tiger/.local/lib/python3.9/site-packages/datasets/packaged_modules/parquet/parquet.py", line 106, in _generate_tables yield f"{file_idx}_{batch_idx}", self._cast_table(pa_table) File "/home/tiger/.local/lib/python3.9/site-packages/datasets/packaged_modules/parquet/parquet.py", line 73, in _cast_table pa_table = table_cast(pa_table, self.info.features.arrow_schema) File "/home/tiger/.local/lib/python3.9/site-packages/datasets/table.py", line 2292, in table_cast return cast_table_to_schema(table, schema) File "/home/tiger/.local/lib/python3.9/site-packages/datasets/table.py", line 2245, in cast_table_to_schema arrays = [ File "/home/tiger/.local/lib/python3.9/site-packages/datasets/table.py", line 2246, in <listcomp> cast_array_to_feature( File "/home/tiger/.local/lib/python3.9/site-packages/datasets/table.py", line 1795, in wrapper return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks]) File "/home/tiger/.local/lib/python3.9/site-packages/datasets/table.py", line 1795, in <listcomp> return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks]) File "/home/tiger/.local/lib/python3.9/site-packages/datasets/table.py", line 2108, in cast_array_to_feature raise TypeError(f"Couldn't cast array of type\n{_short_str(array.type)}\nto\n{_short_str(feature)}") TypeError: Couldn't cast array of type struct<content: string, role: string, some_extra_field: string> to {'content': Value(dtype='string', id=None), 'role': Value(dtype='string', id=None)} ``` ### Expected behavior Correctly load data with optional fields from different parquet files. ### Environment info - `datasets` version: 3.3.2 - Platform: Linux-5.10.135.bsk.4-amd64-x86_64-with-glibc2.31 - Python version: 3.9.2 - `huggingface_hub` version: 0.28.1 - PyArrow version: 17.0.0 - Pandas version: 2.2.2 - `fsspec` version: 2024.3.1
{ "login": "li-plus", "id": 39846316, "node_id": "MDQ6VXNlcjM5ODQ2MzE2", "avatar_url": "https://avatars.githubusercontent.com/u/39846316?v=4", "gravatar_id": "", "url": "https://api.github.com/users/li-plus", "html_url": "https://github.com/li-plus", "followers_url": "https://api.github.com/users/li-plus/followers", "following_url": "https://api.github.com/users/li-plus/following{/other_user}", "gists_url": "https://api.github.com/users/li-plus/gists{/gist_id}", "starred_url": "https://api.github.com/users/li-plus/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/li-plus/subscriptions", "organizations_url": "https://api.github.com/users/li-plus/orgs", "repos_url": "https://api.github.com/users/li-plus/repos", "events_url": "https://api.github.com/users/li-plus/events{/privacy}", "received_events_url": "https://api.github.com/users/li-plus/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7449/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7449/timeline
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/7448
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7448/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7448/comments
https://api.github.com/repos/huggingface/datasets/issues/7448/events
https://github.com/huggingface/datasets/issues/7448
2,916,025,762
I_kwDODunzps6tzwWi
7,448
`datasets.disable_caching` doesn't work
{ "login": "UCC-team", "id": 35629974, "node_id": "MDQ6VXNlcjM1NjI5OTc0", "avatar_url": "https://avatars.githubusercontent.com/u/35629974?v=4", "gravatar_id": "", "url": "https://api.github.com/users/UCC-team", "html_url": "https://github.com/UCC-team", "followers_url": "https://api.github.com/users/UCC-team/followers", "following_url": "https://api.github.com/users/UCC-team/following{/other_user}", "gists_url": "https://api.github.com/users/UCC-team/gists{/gist_id}", "starred_url": "https://api.github.com/users/UCC-team/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/UCC-team/subscriptions", "organizations_url": "https://api.github.com/users/UCC-team/orgs", "repos_url": "https://api.github.com/users/UCC-team/repos", "events_url": "https://api.github.com/users/UCC-team/events{/privacy}", "received_events_url": "https://api.github.com/users/UCC-team/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
[ "cc", "Yes I have the same issue. It's a confusingly named function. See [here](https://github.com/huggingface/datasets/blob/main/src/datasets/fingerprint.py#L115-L130)\n\n```\n...\nIf disabled, the library will no longer reload cached datasets files when applying transforms to the datasets.\n More precisely, if the caching is disabled:\n - cache files are always recreated\n - cache files are written to a temporary directory that is deleted when session closes\n - cache files are named using a random hash instead of the dataset fingerprint\n```\n\nAlso, unfortunately the member variable `ds.cache_files` is not populated either.\n\nI'll let you know if I find a solution." ]
1,741,848,012,000
1,742,618,227,000
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
When I use `Dataset.from_generator(my_gen)` to load my dataset, it simply skips my changes to the generator function. I tried `datasets.disable_caching`, but it doesn't work!
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7448/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7448/timeline
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/7447
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7447/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7447/comments
https://api.github.com/repos/huggingface/datasets/issues/7447/events
https://github.com/huggingface/datasets/issues/7447
2,915,233,248
I_kwDODunzps6twu3g
7,447
Epochs shortened after resuming mid-epoch with Iterable dataset+StatefulDataloader(persistent_workers=True)
{ "login": "dhruvdcoder", "id": 4356534, "node_id": "MDQ6VXNlcjQzNTY1MzQ=", "avatar_url": "https://avatars.githubusercontent.com/u/4356534?v=4", "gravatar_id": "", "url": "https://api.github.com/users/dhruvdcoder", "html_url": "https://github.com/dhruvdcoder", "followers_url": "https://api.github.com/users/dhruvdcoder/followers", "following_url": "https://api.github.com/users/dhruvdcoder/following{/other_user}", "gists_url": "https://api.github.com/users/dhruvdcoder/gists{/gist_id}", "starred_url": "https://api.github.com/users/dhruvdcoder/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/dhruvdcoder/subscriptions", "organizations_url": "https://api.github.com/users/dhruvdcoder/orgs", "repos_url": "https://api.github.com/users/dhruvdcoder/repos", "events_url": "https://api.github.com/users/dhruvdcoder/events{/privacy}", "received_events_url": "https://api.github.com/users/dhruvdcoder/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
[ "Thanks for reporting ! Maybe we should store the epoch in the state_dict, and then when the dataset is iterated on again after setting a new epoch it should restart from scratch instead of resuming ? wdyt ?", "But why does this only happen when `persistent_workers=True`? I would expect it to work correctly even without storing the epoch number in the state_dict of the iterable dataset. ", "I think persistent_workers=False simply ignores the dataset state_dict when it starts a new epoch, that's why the issue doesn't appear in that case", "I opened https://github.com/huggingface/datasets/pull/7451 to fix the issue, let me know if it works for you", "I just released `datasets` 3.4 that includes the fix :)\n\nPS: in your script you probably want to set the epoch like this, otherwise it's still set to 0 after the first epoch:\n\n```diff\n if state_dict is None:\n- ds.set_epoch(epoch)\n epoch += 1\n+ ds.set_epoch(epoch)\n```" ]
1,741,815,665,000
1,741,973,219,000
1,741,949,410,000
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
### Describe the bug When `torchdata.stateful_dataloader.StatefulDataloader(persistent_workers=True)` the epochs after resuming only iterate through the examples that were left in the epoch when the training was interrupted. For example, in the script below training is interrupted on step 124 (epoch 1) when 3 batches are left. Then after resuming, the rest of epochs (2 and 3) only iterate through these 3 batches. ### Steps to reproduce the bug Run the following script with and with PERSISTENT_WORKERS=true. ```python # !/usr/bin/env python3 # torch==2.5.1 # datasets==3.3.2 # torchdata>=0.9.0 import datasets import pprint from torchdata.stateful_dataloader import StatefulDataLoader import os PERSISTENT_WORKERS = ( os.environ.get("PERSISTENT_WORKERS", "False").lower() == "true" ) # PERSISTENT_WORKERS = True # Incorrect resume # ds = datasets.load_from_disk("dataset").to_iterable_dataset(num_shards=4) def generator(): for i in range(128): yield {"x": i} ds = datasets.Dataset.from_generator( generator, features=datasets.Features({"x": datasets.Value("int32")}) ).to_iterable_dataset(num_shards=4) dl = StatefulDataLoader( ds, batch_size=2, num_workers=2, persistent_workers=PERSISTENT_WORKERS ) global_step = 0 epoch = 0 ds_state_dict = None state_dict = None resumed = False while True: if epoch >= 3: break if state_dict is not None: dl.load_state_dict(state_dict) state_dict = None ds_state_dict = None resumed = True print("resumed") for i, batch in enumerate(dl): print(f"epoch: {epoch}, global_step: {global_step}, batch: {batch}") global_step += 1 # consume datapoint # simulate error if global_step == 124 and not resumed: ds_state_dict = ds.state_dict() state_dict = dl.state_dict() print("checkpoint") print("ds_state_dict") pprint.pprint(ds_state_dict) print("dl_state_dict") pprint.pprint(state_dict) break if state_dict is None: ds.set_epoch(epoch) epoch += 1 ``` The script checkpoints when there are three batches left in the second epoch. After resuming, only the last three batches are repeated in the rest of the epochs. If it helps, following are the two state_dicts for the dataloader save at the same step with the two settings. The left one is for `PERSISTENT_WORKERS=False` ![Image](https://github.com/user-attachments/assets/c97d6502-d7bd-4ef4-ae2d-66fe1a9732b1) ### Expected behavior All the elements in the dataset should be iterated through in the epochs following the one where we resumed. The expected behavior can be seen by setting `PERSISTENT_WORKERS=False`. ### Environment info torch==2.5.1 datasets==3.3.2 torchdata>=0.9.0
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7447/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7447/timeline
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/7446
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7446/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7446/comments
https://api.github.com/repos/huggingface/datasets/issues/7446/events
https://github.com/huggingface/datasets/issues/7446
2,913,050,552
I_kwDODunzps6toZ-4
7,446
pyarrow.lib.ArrowTypeError: Expected dict key of type str or bytes, got 'int'
{ "login": "rangehow", "id": 88258534, "node_id": "MDQ6VXNlcjg4MjU4NTM0", "avatar_url": "https://avatars.githubusercontent.com/u/88258534?v=4", "gravatar_id": "", "url": "https://api.github.com/users/rangehow", "html_url": "https://github.com/rangehow", "followers_url": "https://api.github.com/users/rangehow/followers", "following_url": "https://api.github.com/users/rangehow/following{/other_user}", "gists_url": "https://api.github.com/users/rangehow/gists{/gist_id}", "starred_url": "https://api.github.com/users/rangehow/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/rangehow/subscriptions", "organizations_url": "https://api.github.com/users/rangehow/orgs", "repos_url": "https://api.github.com/users/rangehow/repos", "events_url": "https://api.github.com/users/rangehow/events{/privacy}", "received_events_url": "https://api.github.com/users/rangehow/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
[]
1,741,765,717,000
1,741,765,717,000
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
### Describe the bug A dict with its keys are all str but get following error ```python test_data=[{'input_ids':[1,2,3],'labels':[[Counter({2:1})]]}] dataset = datasets.Dataset.from_list(test_data) ``` ```bash pyarrow.lib.ArrowTypeError: Expected dict key of type str or bytes, got 'int' ``` ### Steps to reproduce the bug . ### Expected behavior . ### Environment info datasets 3.3.2
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7446/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7446/timeline
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/7445
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7445/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7445/comments
https://api.github.com/repos/huggingface/datasets/issues/7445/events
https://github.com/huggingface/datasets/pull/7445
2,911,507,923
PR_kwDODunzps6ONygU
7,445
Fix small bugs with async map
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7445). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update." ]
1,741,717,857,000
1,741,862,283,000
1,741,862,278,000
MEMBER
{ "total": 0, "completed": 0, "percent_completed": 0 }
helpful for the next PR to enable parallel image/audio/video decoding and make multimodal datasets go brr (e.g. for lerobot) - fix with_indices - fix resuming with save_state_dict() / load_state_dict() - omg that wasn't easy - remove unnecessary decoding in map() to enable parallelism in FormattedExampleIterable later small bonus: keeping features in batch()
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7445/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7445/timeline
null
0
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7445", "html_url": "https://github.com/huggingface/datasets/pull/7445", "diff_url": "https://github.com/huggingface/datasets/pull/7445.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7445.patch", "merged_at": "2025-03-13T10:37:58" }
https://api.github.com/repos/huggingface/datasets/issues/7444
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7444/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7444/comments
https://api.github.com/repos/huggingface/datasets/issues/7444/events
https://github.com/huggingface/datasets/issues/7444
2,911,202,445
I_kwDODunzps6thWyN
7,444
Excessive warnings when resuming an IterableDataset+buffered shuffle+DDP.
{ "login": "dhruvdcoder", "id": 4356534, "node_id": "MDQ6VXNlcjQzNTY1MzQ=", "avatar_url": "https://avatars.githubusercontent.com/u/4356534?v=4", "gravatar_id": "", "url": "https://api.github.com/users/dhruvdcoder", "html_url": "https://github.com/dhruvdcoder", "followers_url": "https://api.github.com/users/dhruvdcoder/followers", "following_url": "https://api.github.com/users/dhruvdcoder/following{/other_user}", "gists_url": "https://api.github.com/users/dhruvdcoder/gists{/gist_id}", "starred_url": "https://api.github.com/users/dhruvdcoder/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/dhruvdcoder/subscriptions", "organizations_url": "https://api.github.com/users/dhruvdcoder/orgs", "repos_url": "https://api.github.com/users/dhruvdcoder/repos", "events_url": "https://api.github.com/users/dhruvdcoder/events{/privacy}", "received_events_url": "https://api.github.com/users/dhruvdcoder/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
[]
1,741,710,879,000
1,741,710,961,000
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
### Describe the bug I have a large dataset that I shared into 1024 shards and save on the disk during pre-processing. During training, I load the dataset using load_from_disk() and convert it into an iterable dataset, shuffle it and split the shards to different DDP nodes using the recommended method. However, when the training is resumed mid-epoch, I get thousands of identical warning messages: ``` Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. ``` ### Steps to reproduce the bug 1. Run a multi-node training job using the following python script and interrupt the training after a few seconds to save a mid-epoch checkpoint. ```python #!/usr/bin/env python import os import time from typing import Dict, List import torch import lightning as pl from torch.utils.data import DataLoader from datasets import Dataset from datasets.distributed import split_dataset_by_node import datasets from transformers import AutoTokenizer from more_itertools import flatten, chunked from torchdata.stateful_dataloader import StatefulDataLoader from lightning.pytorch.callbacks.on_exception_checkpoint import ( OnExceptionCheckpoint, ) datasets.logging.set_verbosity_debug() def dummy_generator(): # Generate 60 examples: integers from $0$ to $59$ # 64 sequences of different lengths dataset = [ list(range(3, 10)), list(range(10, 15)), list(range(15, 21)), list(range(21, 27)), list(range(27, 31)), list(range(31, 36)), list(range(36, 45)), list(range(45, 50)), ] for i in range(8): for j, ids in enumerate(dataset): yield {"token_ids": [idx + i * 50 for idx in ids]} def group_texts( examples: Dict[str, List[List[int]]], block_size: int, eos_token_id: int, bos_token_id: int, pad_token_id: int, ) -> Dict[str, List[List[int]]]: real_block_size = block_size - 2 # make space for bos and eos # colapse the sequences into a single list of tokens and then create blocks of real_block_size input_ids = [] attention_mask = [] for block in chunked(flatten(examples["token_ids"]), real_block_size): s = [bos_token_id] + list(block) + [eos_token_id] ls = len(s) attn = [True] * ls s += [pad_token_id] * (block_size - ls) attn += [False] * (block_size - ls) input_ids.append(s) attention_mask.append(attn) return {"input_ids": input_ids, "attention_mask": attention_mask} def collate_fn(batch): return { "input_ids": torch.tensor( [item["input_ids"] for item in batch], dtype=torch.long ), "attention_mask": torch.tensor( [item["attention_mask"] for item in batch], dtype=torch.long ), } class DummyModule(pl.LightningModule): def __init__(self): super().__init__() # A dummy linear layer (not used for actual computation) self.layer = torch.nn.Linear(1, 1) self.ds = None self.prepare_data_per_node = False def on_train_start(self): # This hook is called once training begins on each process. print(f"[Rank {self.global_rank}] Training started.", flush=True) self.data_file = open(f"data_{self.global_rank}.txt", "w") def on_train_end(self): self.data_file.close() def training_step(self, batch, batch_idx): # Print batch information to verify data loading. time.sleep(5) # print("batch", batch, flush=True) print( f"\n[Rank {self.global_rank}] Training step, epoch {self.trainer.current_epoch}, batch {batch_idx}: {batch['input_ids']}", flush=True, ) self.data_file.write( f"[Rank {self.global_rank}] Training step, epoch {self.trainer.current_epoch}, batch {batch_idx}: {batch['input_ids']}\n" ) # Compute a dummy loss (here, simply a constant tensor) loss = torch.tensor(0.0, requires_grad=True) return loss def on_train_epoch_start(self): epoch = self.trainer.current_epoch print( f"[Rank {self.global_rank}] Training epoch {epoch} started.", flush=True, ) self.data_file.write( f"[Rank {self.global_rank}] Training epoch {epoch} started.\n" ) def configure_optimizers(self): # Return a dummy optimizer. return torch.optim.SGD(self.parameters(), lr=0.001) class DM(pl.LightningDataModule): def __init__(self): super().__init__() self.ds = None self.prepare_data_per_node = False def set_epoch(self, epoch: int): self.ds.set_epoch(epoch) def prepare_data(self): # download the dataset dataset = Dataset.from_generator(dummy_generator) # save the dataset dataset.save_to_disk("dataset", num_shards=4) def setup(self, stage: str): # load the dataset ds = datasets.load_from_disk("dataset").to_iterable_dataset( num_shards=4 ) ds = ds.map( group_texts, batched=True, batch_size=5, fn_kwargs={ "block_size": 5, "eos_token_id": 1, "bos_token_id": 0, "pad_token_id": 2, }, remove_columns=["token_ids"], ).shuffle(seed=42, buffer_size=8) ds = split_dataset_by_node( ds, rank=self.trainer.global_rank, world_size=self.trainer.world_size, ) self.ds = ds def train_dataloader(self): print( f"[Rank {self.trainer.global_rank}] Preparing train_dataloader...", flush=True, ) rank = self.trainer.global_rank print( f"[Rank {rank}] Global rank: {self.trainer.global_rank}", flush=True, ) world_size = self.trainer.world_size print(f"[Rank {rank}] World size: {world_size}", flush=True) return StatefulDataLoader( self.ds, batch_size=2, num_workers=2, collate_fn=collate_fn, drop_last=True, persistent_workers=True, ) if __name__ == "__main__": print("Starting Lightning training", flush=True) # Optionally, print some SLURM environment info for debugging. print(f"SLURM_NNODES: {os.environ.get('SLURM_NNODES', '1')}", flush=True) # Determine the number of nodes from SLURM (defaulting to 1 if not set) num_nodes = int(os.environ.get("SLURM_NNODES", "1")) model = DummyModule() dm = DM() on_exception = OnExceptionCheckpoint( dirpath="checkpoints", filename="on_exception", ) # Configure the Trainer to use distributed data parallel (DDP). trainer = pl.Trainer( accelerator="gpu" if torch.cuda.is_available() else "cpu", devices=1, strategy=( "ddp" if num_nodes > 1 else "auto" ), # Use DDP strategy for multi-node training. num_nodes=num_nodes, max_epochs=2, logger=False, enable_checkpointing=True, num_sanity_val_steps=0, enable_progress_bar=False, callbacks=[on_exception], ) # resume (uncomment to resume) # trainer.fit(model, datamodule=dm, ckpt_path="checkpoints/on_exception.ckpt") # train trainer.fit(model, datamodule=dm) ``` ```bash #!/bin/bash #SBATCH --job-name=pl_ddp_test #SBATCH --nodes=2 # Adjust number of nodes as needed #SBATCH --ntasks-per-node=1 # One GPU (process) per node #SBATCH --cpus-per-task=3 # At least as many dataloader workers as required #SBATCH --gres=gpu:1 # Request one GPU per node #SBATCH --time=00:10:00 # Job runtime (adjust as needed) #SBATCH --partition=gpu-preempt # Partition or queue name #SBATCH -o script.out # Disable Python output buffering. export PYTHONUNBUFFERED=1 echo "SLURM job starting on $(date)" echo "Running on nodes: $SLURM_NODELIST" echo "Current directory: $(pwd)" ls -l # Launch the script using srun so that each process starts the Lightning module. srun script.py ``` 2. Uncomment the "resume" line (second to last) and comment the original `trainer.fit` call (last line). It will produce the following log. ``` [Rank 0] Preparing train_dataloader... [Rank 0] Global rank: 0 [Rank 0] World size: 2 [Rank 1] Preparing train_dataloader... [Rank 1] Global rank: 1 [Rank 1] World size: 2 Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. Assigning 2 shards (or data sources) of the dataset to each node. Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. node#0 dataloader worker#1, ': Starting to iterate over 1/2 shards. Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. node#0 dataloader worker#0, ': Starting to iterate over 1/2 shards. Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. Set __getitem__(key) output type to arrow for no columns (when key is int or slice) and don't output other (un-formatted) columns. Set __getitem__(key) output type to arrow for no columns (when key is int or slice) and don't output other (un-formatted) columns. node#0 dataloader worker#1, ': Finished iterating over 1/1 shards. node#0 dataloader worker#0, ': Finished iterating over 1/1 shards. Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. [Rank 0] Training started. [Rank 0] Training epoch 0 started. [Rank 0] Training epoch 1 started. Assigning 2 shards (or data sources) of the dataset to each node. Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. node#0 dataloader worker#1, ': Starting to iterate over 1/2 shards. node#0 dataloader worker#0, ': Starting to iterate over 1/2 shards. Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. node#1 dataloader worker#1, ': Starting to iterate over 1/2 shards. Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. node#1 dataloader worker#0, ': Starting to iterate over 1/2 shards. Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. Set __getitem__(key) output type to arrow for no columns (when key is int or slice) and don't output other (un-formatted) columns. Set __getitem__(key) output type to arrow for no columns (when key is int or slice) and don't output other (un-formatted) columns. node#0 dataloader worker#1, ': Finished iterating over 1/1 shards. node#0 dataloader worker#0, ': Finished iterating over 1/1 shards. `Trainer.fit` stopped: `max_epochs=2` reached. Set __getitem__(key) output type to arrow for no columns (when key is int or slice) and don't output other (un-formatted) columns. Set __getitem__(key) output type to arrow for no columns (when key is int or slice) and don't output other (un-formatted) columns. node#1 dataloader worker#1, ': Finished iterating over 1/1 shards. node#1 dataloader worker#0, ': Finished iterating over 1/1 shards. [Rank 1] Training started. [Rank 1] Training epoch 0 started. [Rank 1] Training epoch 1 started. Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. node#1 dataloader worker#1, ': Starting to iterate over 1/2 shards. node#1 dataloader worker#0, ': Starting to iterate over 1/2 shards. Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. Set __getitem__(key) output type to arrow for no columns (when key is int or slice) and don't output other (un-formatted) columns. Set __getitem__(key) output type to arrow for no columns (when key is int or slice) and don't output other (un-formatted) columns. node#1 dataloader worker#0, ': Finished iterating over 1/1 shards. node#1 dataloader worker#1, ': Finished iterating over 1/1 shards. ``` I'm also attaching the relevant state_dict to make sure that the state is being checkpointed as expected. ``` {'_iterator_finished': True, '_snapshot': {'_last_yielded_worker_id': 1, '_main_snapshot': {'_IterableDataset_len_called': None, '_base_seed': 3992758080362545099, '_index_sampler_state': {'samples_yielded': 64}, '_num_workers': 2, '_sampler_iter_state': None, '_sampler_iter_yielded': 32, '_shared_seed': None}, '_snapshot_step': 32, '_worker_snapshots': {'worker_0': {'dataset_state': {'ex_iterable': {'shard_example_idx': 0, 'shard_idx': 1}, 'num_examples_since_previous_state': 0, 'previous_state': {'shard_example_idx': 0, 'shard_idx': 1}, 'previous_state_example_idx': 33}, 'fetcher_state': {'dataset_iter_state': None, 'fetcher_ended': False}, 'worker_id': 0}, 'worker_1': {'dataset_state': {'ex_iterable': {'shard_example_idx': 0, 'shard_idx': 1}, 'num_examples_since_previous_state': 0, 'previous_state': {'shard_example_idx': 0, 'shard_idx': 1}, 'previous_state_example_idx': 33}, 'fetcher_state': {'dataset_iter_state': None, 'fetcher_ended': False}, 'worker_id': 1}}}, '_steps_since_snapshot': 0} ``` ### Expected behavior Since I'm following all the recommended steps, I don't expect to see any warning when resuming. Am I doing something wrong? Also, can someone explain why I'm seeing 20 identical messages in the log in this reproduction setting? I'm trying to understand why I see thousands of these messages with the actual dataset. One more surprising thing I noticed in the logs is the change in a number of shards per worker. In the following messages, the denominator changes from 2 to 1. ``` node#1 dataloader worker#1, ': Starting to iterate over 1/2 shards. ... node#1 dataloader worker#1, ': Finished iterating over 1/1 shards. ``` ### Environment info python: 3.11.10 datasets: 3.3.2 lightning: 2.3.1
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7444/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7444/timeline
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/7443
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7443/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7443/comments
https://api.github.com/repos/huggingface/datasets/issues/7443/events
https://github.com/huggingface/datasets/issues/7443
2,908,585,656
I_kwDODunzps6tXX64
7,443
index error when num_shards > len(dataset)
{ "login": "eminorhan", "id": 17934496, "node_id": "MDQ6VXNlcjE3OTM0NDk2", "avatar_url": "https://avatars.githubusercontent.com/u/17934496?v=4", "gravatar_id": "", "url": "https://api.github.com/users/eminorhan", "html_url": "https://github.com/eminorhan", "followers_url": "https://api.github.com/users/eminorhan/followers", "following_url": "https://api.github.com/users/eminorhan/following{/other_user}", "gists_url": "https://api.github.com/users/eminorhan/gists{/gist_id}", "starred_url": "https://api.github.com/users/eminorhan/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/eminorhan/subscriptions", "organizations_url": "https://api.github.com/users/eminorhan/orgs", "repos_url": "https://api.github.com/users/eminorhan/repos", "events_url": "https://api.github.com/users/eminorhan/events{/privacy}", "received_events_url": "https://api.github.com/users/eminorhan/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
[ "Actually, looking at the code a bit more carefully, maybe an even better solution is to explicitly set `num_shards=len(self)` somewhere inside both `push_to_hub()` and `save_to_disk()` when these functions are invoked with `num_shards > len(dataset)`." ]
1,741,646,459,000
1,741,650,188,000
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
In `ds.push_to_hub()` and `ds.save_to_disk()`, `num_shards` must be smaller than or equal to the number of rows in the dataset, but currently this is not checked anywhere inside these functions. Attempting to invoke these functions with `num_shards > len(dataset)` should raise an informative `ValueError`. I frequently work with datasets with a small number of rows where each row is pretty large, so I often encounter this issue, where the function runs until the shard index in `ds.shard(num_shards, indx)` goes out of bounds. Ideally, a `ValueError` should be raised before reaching this point (i.e. as soon as `ds.push_to_hub()` or `ds.save_to_disk()` is invoked with `num_shards > len(dataset)`). It seems that adding something like: ```python if len(self) < num_shards: raise ValueError(f"num_shards ({num_shards}) must be smaller than or equal to the number of rows in the dataset ({len(self)}). Please either reduce num_shards or increase max_shard_size to make sure num_shards <= len(dataset).") ``` to the beginning of the definition of the `ds.shard()` function [here](https://github.com/huggingface/datasets/blob/f693f4e93aabafa878470c80fd42ddb10ec550d6/src/datasets/arrow_dataset.py#L4728) would deal with this issue for both `ds.push_to_hub()` and `ds.save_to_disk()`, but I'm not exactly sure if this is the best place to raise the `ValueError` (it seems that a more correct way to do it would be to write separate checks for `ds.push_to_hub()` and `ds.save_to_disk()`). I'd be happy to submit a PR if you think something along these lines would be acceptable.
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7443/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7443/timeline
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/7442
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7442/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7442/comments
https://api.github.com/repos/huggingface/datasets/issues/7442/events
https://github.com/huggingface/datasets/issues/7442
2,905,543,017
I_kwDODunzps6tLxFp
7,442
Flexible Loader
{ "login": "dipta007", "id": 13894030, "node_id": "MDQ6VXNlcjEzODk0MDMw", "avatar_url": "https://avatars.githubusercontent.com/u/13894030?v=4", "gravatar_id": "", "url": "https://api.github.com/users/dipta007", "html_url": "https://github.com/dipta007", "followers_url": "https://api.github.com/users/dipta007/followers", "following_url": "https://api.github.com/users/dipta007/following{/other_user}", "gists_url": "https://api.github.com/users/dipta007/gists{/gist_id}", "starred_url": "https://api.github.com/users/dipta007/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/dipta007/subscriptions", "organizations_url": "https://api.github.com/users/dipta007/orgs", "repos_url": "https://api.github.com/users/dipta007/repos", "events_url": "https://api.github.com/users/dipta007/events{/privacy}", "received_events_url": "https://api.github.com/users/dipta007/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[ { "id": 1935892871, "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement", "name": "enhancement", "color": "a2eeef", "default": true, "description": "New feature or request" } ]
open
false
null
[]
[ "Ideally `save_to_disk` should save in a format compatible with load_dataset, wdyt ?", "> Ideally `save_to_disk` should save in a format compatible with load_dataset, wdyt ?\n\nThat would be perfect if not at least a flexible loader.", "@lhoestq For now, you can use this small utility library: [nanoml](https://pypi.org/project/nanoml/)\n```python\nfrom nanoml.data import load_dataset_flexible\n```\n\nI actively develop and maintain this utility library. Open to contributors. Please open issues, PR, or feature requests." ]
1,741,539,303,000
1,743,119,897,000
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
### Feature request Can we have a utility function that will use `load_from_disk` when given the local path and `load_dataset` if given an HF dataset? It can be something as simple as this one: ``` def load_hf_dataset(path_or_name): if os.path.exists(path_or_name): return load_from_disk(path_or_name) else: return load_dataset(path_or_name) ``` ### Motivation This can be done inside the user codebase, too, but in my experience, it becomes repetitive code. ### Your contribution I can open a pull request.
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7442/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7442/timeline
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/7441
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7441/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7441/comments
https://api.github.com/repos/huggingface/datasets/issues/7441/events
https://github.com/huggingface/datasets/issues/7441
2,904,702,329
I_kwDODunzps6tIj15
7,441
`drop_last_batch` does not drop the last batch using IterableDataset + interleave_datasets + multi_worker
{ "login": "memray", "id": 4197249, "node_id": "MDQ6VXNlcjQxOTcyNDk=", "avatar_url": "https://avatars.githubusercontent.com/u/4197249?v=4", "gravatar_id": "", "url": "https://api.github.com/users/memray", "html_url": "https://github.com/memray", "followers_url": "https://api.github.com/users/memray/followers", "following_url": "https://api.github.com/users/memray/following{/other_user}", "gists_url": "https://api.github.com/users/memray/gists{/gist_id}", "starred_url": "https://api.github.com/users/memray/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/memray/subscriptions", "organizations_url": "https://api.github.com/users/memray/orgs", "repos_url": "https://api.github.com/users/memray/repos", "events_url": "https://api.github.com/users/memray/events{/privacy}", "received_events_url": "https://api.github.com/users/memray/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
[ "Hi @memray, I’d like to help fix the issue with `drop_last_batch` not working when `num_workers > 1`. I’ll investigate and propose a solution. Thanks!\n", "Thank you very much for offering to help! I also noticed a problem related to a previous issue and left a comment [here](https://github.com/huggingface/datasets/issues/6565#issuecomment-2708169303) (the code checks the validity before certain columns removed). Can you take a look as well?" ]
1,741,429,724,000
1,741,555,653,000
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
### Describe the bug See the script below `drop_last_batch=True` is defined using map() for each dataset. The last batch for each dataset is expected to be dropped, id 21-25. The code behaves as expected when num_workers=0 or 1. When using num_workers>1, 'a-11', 'b-11', 'a-12', 'b-12' are gone and instead 21 and 22 are sampled. ### Steps to reproduce the bug ``` from datasets import Dataset from datasets import interleave_datasets from torch.utils.data import DataLoader def convert_to_str(batch, dataset_name): batch['a'] = [f"{dataset_name}-{e}" for e in batch['a']] return batch def gen1(): for ii in range(1, 25): yield {"a": ii} def gen2(): for ii in range(1, 25): yield {"a": ii} # https://github.com/huggingface/datasets/issues/6565 if __name__ == '__main__': dataset1 = Dataset.from_generator(gen1).to_iterable_dataset(num_shards=2) dataset2 = Dataset.from_generator(gen2).to_iterable_dataset(num_shards=2) dataset1 = dataset1.map(lambda x: convert_to_str(x, dataset_name="a"), batched=True, batch_size=10, drop_last_batch=True) dataset2 = dataset2.map(lambda x: convert_to_str(x, dataset_name="b"), batched=True, batch_size=10, drop_last_batch=True) interleaved = interleave_datasets([dataset1, dataset2], stopping_strategy="all_exhausted") print(f"num_workers=0") loader = DataLoader(interleaved, batch_size=5, num_workers=0) i = 0 for b in loader: print(i, b['a']) i += 1 print('=-' * 20) print(f"num_workers=1") loader = DataLoader(interleaved, batch_size=5, num_workers=1) i = 0 for b in loader: print(i, b['a']) i += 1 print('=-' * 20) print(f"num_workers=2") loader = DataLoader(interleaved, batch_size=5, num_workers=2) i = 0 for b in loader: print(i, b['a']) i += 1 print('=-' * 20) print(f"num_workers=3") loader = DataLoader(interleaved, batch_size=5, num_workers=3) i = 0 for b in loader: print(i, b['a']) i += 1 ``` output is: ``` num_workers=0 0 ['a-1', 'b-1', 'a-2', 'b-2', 'a-3'] 1 ['b-3', 'a-4', 'b-4', 'a-5', 'b-5'] 2 ['a-6', 'b-6', 'a-7', 'b-7', 'a-8'] 3 ['b-8', 'a-9', 'b-9', 'a-10', 'b-10'] 4 ['a-11', 'b-11', 'a-12', 'b-12', 'a-13'] 5 ['b-13', 'a-14', 'b-14', 'a-15', 'b-15'] 6 ['a-16', 'b-16', 'a-17', 'b-17', 'a-18'] 7 ['b-18', 'a-19', 'b-19', 'a-20', 'b-20'] =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- num_workers=1 0 ['a-1', 'b-1', 'a-2', 'b-2', 'a-3'] 1 ['b-3', 'a-4', 'b-4', 'a-5', 'b-5'] 2 ['a-6', 'b-6', 'a-7', 'b-7', 'a-8'] 3 ['b-8', 'a-9', 'b-9', 'a-10', 'b-10'] 4 ['a-11', 'b-11', 'a-12', 'b-12', 'a-13'] 5 ['b-13', 'a-14', 'b-14', 'a-15', 'b-15'] 6 ['a-16', 'b-16', 'a-17', 'b-17', 'a-18'] 7 ['b-18', 'a-19', 'b-19', 'a-20', 'b-20'] =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- num_workers=2 0 ['a-1', 'b-1', 'a-2', 'b-2', 'a-3'] 1 ['a-13', 'b-13', 'a-14', 'b-14', 'a-15'] 2 ['b-3', 'a-4', 'b-4', 'a-5', 'b-5'] 3 ['b-15', 'a-16', 'b-16', 'a-17', 'b-17'] 4 ['a-6', 'b-6', 'a-7', 'b-7', 'a-8'] 5 ['a-18', 'b-18', 'a-19', 'b-19', 'a-20'] 6 ['b-8', 'a-9', 'b-9', 'a-10', 'b-10'] 7 ['b-20', 'a-21', 'b-21', 'a-22', 'b-22'] =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- num_workers=3 Too many dataloader workers: 3 (max is dataset.num_shards=2). Stopping 1 dataloader workers. 0 ['a-1', 'b-1', 'a-2', 'b-2', 'a-3'] 1 ['a-13', 'b-13', 'a-14', 'b-14', 'a-15'] 2 ['b-3', 'a-4', 'b-4', 'a-5', 'b-5'] 3 ['b-15', 'a-16', 'b-16', 'a-17', 'b-17'] 4 ['a-6', 'b-6', 'a-7', 'b-7', 'a-8'] 5 ['a-18', 'b-18', 'a-19', 'b-19', 'a-20'] 6 ['b-8', 'a-9', 'b-9', 'a-10', 'b-10'] 7 ['b-20', 'a-21', 'b-21', 'a-22', 'b-22'] ``` ### Expected behavior `'a-21', 'b-21', 'a-22', 'b-22'` should be dropped ### Environment info - `datasets` version: 3.3.2 - Platform: Linux-5.15.0-1056-aws-x86_64-with-glibc2.31 - Python version: 3.10.16 - `huggingface_hub` version: 0.28.0 - PyArrow version: 19.0.0 - Pandas version: 2.2.3 - `fsspec` version: 2024.6.1
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7441/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7441/timeline
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/7440
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7440/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7440/comments
https://api.github.com/repos/huggingface/datasets/issues/7440/events
https://github.com/huggingface/datasets/issues/7440
2,903,740,662
I_kwDODunzps6tE5D2
7,440
IterableDataset raises FileNotFoundError instead of retrying
{ "login": "bauwenst", "id": 145220868, "node_id": "U_kgDOCKflBA", "avatar_url": "https://avatars.githubusercontent.com/u/145220868?v=4", "gravatar_id": "", "url": "https://api.github.com/users/bauwenst", "html_url": "https://github.com/bauwenst", "followers_url": "https://api.github.com/users/bauwenst/followers", "following_url": "https://api.github.com/users/bauwenst/following{/other_user}", "gists_url": "https://api.github.com/users/bauwenst/gists{/gist_id}", "starred_url": "https://api.github.com/users/bauwenst/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/bauwenst/subscriptions", "organizations_url": "https://api.github.com/users/bauwenst/orgs", "repos_url": "https://api.github.com/users/bauwenst/repos", "events_url": "https://api.github.com/users/bauwenst/events{/privacy}", "received_events_url": "https://api.github.com/users/bauwenst/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
[ "I have since been training more models with identical architectures over the same dataset, and it is completely unstable. One has now failed at chunk9/1215, whilst others have gotten past that.\n```python\nFileNotFoundError: zstd://example_train_1215.jsonl::hf://datasets/cerebras/SlimPajama-627B@2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/train/chunk9/example_train_1215.jsonl.zst\n```\nBelow is the full training log, where you can clearly see the intermittent dataset issues. Note again that this model only got to epoch 0.11, whereas I have other models training on the exact same dataset right now that have gotten way beyond that. This is quickly turning into a highly expensive bug which I didn't have issues with in the past half year of using the same setup.\n<details>\n<summary>Training log of failed run</summary>\n\n```python\n 1%| | 64/8192 [56:27<87:25:33, 38.72s/it]'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 5ef28452-e903-4bd8-946d-f0c77f558a2a)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk5/example_holdout_4799.jsonl.zst\n 1%| | 64/8192 [56:51<87:25:33, 38.72s/it]Retrying in 1s [Retry 1/5].\n 2%|▏ | 192/8192 [2:40:14<85:29:44, 38.47s/it]'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: ba6e4c51-f4a4-407e-9934-3772550b7ce9)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk1/example_holdout_2770.jsonl.zst\n 2%|▏ | 192/8192 [2:40:53<85:29:44, 38.47s/it]Retrying in 1s [Retry 1/5].\n 2%|▏ | 192/8192 [2:40:53<85:29:44, 38.47s/it]'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: bdf2cfaa-7e0b-46a0-bec1-b1e573fa7998)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk4/example_holdout_4386.jsonl.zst\n 2%|▏ | 192/8192 [2:42:16<85:29:44, 38.47s/it]Retrying in 1s [Retry 1/5].\n 2%|▏ | 192/8192 [2:42:16<85:29:44, 38.47s/it]'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 1dc5e455-8042-4c7b-9b97-5ded33dfea34)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk1/example_holdout_1763.jsonl.zst\n 2%|▏ | 192/8192 [2:42:30<85:29:44, 38.47s/it]Retrying in 1s [Retry 1/5].\n 2%|▏ | 192/8192 [2:42:30<85:29:44, 38.47s/it]'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 9cf29917-8111-41fe-80aa-953df65c5803)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk4/example_holdout_5509.jsonl.zst\n 2%|▏ | 192/8192 [2:44:31<85:29:44, 38.47s/it]Retrying in 1s [Retry 1/5].\n 2%|▏ | 192/8192 [2:44:31<85:29:44, 38.47s/it]'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 2515a0b0-3d81-409f-940c-e78ed5e2dbf8)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk4/example_holdout_3093.jsonl.zst\n 2%|▏ | 192/8192 [2:45:13<85:29:44, 38.47s/it]Retrying in 1s [Retry 1/5].\n 2%|▏ | 192/8192 [2:45:13<85:29:44, 38.47s/it]'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: a4c1e0c7-1c7a-4377-bc7e-6f076473072b)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk4/example_holdout_3422.jsonl.zst\n 2%|▏ | 192/8192 [2:46:26<85:29:44, 38.47s/it]Retrying in 1s [Retry 1/5].\n 2%|▏ | 192/8192 [2:46:26<85:29:44, 38.47s/it]'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: c7b0d366-db86-4d0c-a4e0-be251d26519e)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk3/example_holdout_2250.jsonl.zst\n 2%|▏ | 192/8192 [2:47:24<85:29:44, 38.47s/it]Retrying in 1s [Retry 1/5].\n 2%|▏ | 192/8192 [2:47:24<85:29:44, 38.47s/it]'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: b0df5a1a-4836-46cf-8e45-58a7c1553309)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk3/example_holdout_6161.jsonl.zst\n 2%|▏ | 192/8192 [2:49:10<85:29:44, 38.47s/it]Retrying in 1s [Retry 1/5].\n 2%|▏ | 192/8192 [2:49:10<85:29:44, 38.47s/it]'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: c1d97368-c0ae-45bb-ae10-5559b3ebc4e4)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk3/example_holdout_5782.jsonl.zst\n 2%|▏ | 192/8192 [2:49:30<85:29:44, 38.47s/it]Retrying in 1s [Retry 1/5].\n{'eval_loss': 10.482319831848145, 'eval_runtime': 902.7516, 'eval_samples_per_second': 18.149, 'eval_steps_per_second': 0.142, 'epoch': 0, 'num_input_tokens_seen': 0}\n{'loss': 10.4895, 'grad_norm': 2.9147818088531494, 'learning_rate': 3.90625e-06, 'epoch': 0.0, 'num_input_tokens_seen': 1048576}\n{'loss': 10.4832, 'grad_norm': 2.8206892013549805, 'learning_rate': 7.8125e-06, 'epoch': 0.0, 'num_input_tokens_seen': 2097152}\n{'loss': 10.4851, 'grad_norm': 2.910552978515625, 'learning_rate': 1.171875e-05, 'epoch': 0.0, 'num_input_tokens_seen': 3145728}\n{'loss': 10.486, 'grad_norm': 2.8042073249816895, 'learning_rate': 1.5625e-05, 'epoch': 0.0, 'num_input_tokens_seen': 4194304}\n{'loss': 10.4719, 'grad_norm': 2.83260440826416, 'learning_rate': 1.953125e-05, 'epoch': 0.0, 'num_input_tokens_seen': 5242880}\n{'loss': 10.4482, 'grad_norm': 2.916527032852173, 'learning_rate': 2.34375e-05, 'epoch': 0.0, 'num_input_tokens_seen': 6291456}\n{'loss': 10.4113, 'grad_norm': 2.911870241165161, 'learning_rate': 2.734375e-05, 'epoch': 0.0, 'num_input_tokens_seen': 7340032}\n{'loss': 10.3863, 'grad_norm': 2.8873367309570312, 'learning_rate': 3.125e-05, 'epoch': 0.0, 'num_input_tokens_seen': 8388608}\n{'loss': 10.3557, 'grad_norm': 2.7183432579040527, 'learning_rate': 3.5156250000000004e-05, 'epoch': 0.0, 'num_input_tokens_seen': 9437184}\n{'loss': 10.2795, 'grad_norm': 2.6743927001953125, 'learning_rate': 3.90625e-05, 'epoch': 0.0, 'num_input_tokens_seen': 10485760}\n{'loss': 10.2148, 'grad_norm': 2.3173940181732178, 'learning_rate': 4.296875e-05, 'epoch': 0.0, 'num_input_tokens_seen': 11534336}\n{'loss': 10.1482, 'grad_norm': 2.09787917137146, 'learning_rate': 4.6875e-05, 'epoch': 0.0, 'num_input_tokens_seen': 12582912}\n{'loss': 10.1024, 'grad_norm': 1.889390468597412, 'learning_rate': 5.0781250000000004e-05, 'epoch': 0.0, 'num_input_tokens_seen': 13631488}\n{'loss': 10.0418, 'grad_norm': 1.8319090604782104, 'learning_rate': 5.46875e-05, 'epoch': 0.0, 'num_input_tokens_seen': 14680064}\n{'loss': 10.0081, 'grad_norm': 1.7302652597427368, 'learning_rate': 5.859375e-05, 'epoch': 0.0, 'num_input_tokens_seen': 15728640}\n{'loss': 9.9525, 'grad_norm': 1.767600417137146, 'learning_rate': 6.25e-05, 'epoch': 0.0, 'num_input_tokens_seen': 16777216}\n{'loss': 9.9326, 'grad_norm': 2.1608240604400635, 'learning_rate': 6.640625e-05, 'epoch': 0.0, 'num_input_tokens_seen': 17825792}\n{'loss': 9.8478, 'grad_norm': 1.7399269342422485, 'learning_rate': 7.031250000000001e-05, 'epoch': 0.0, 'num_input_tokens_seen': 18874368}\n{'loss': 9.8215, 'grad_norm': 1.6564425230026245, 'learning_rate': 7.421875e-05, 'epoch': 0.0, 'num_input_tokens_seen': 19922944}\n{'loss': 9.7732, 'grad_norm': 1.6452653408050537, 'learning_rate': 7.8125e-05, 'epoch': 0.0, 'num_input_tokens_seen': 20971520}\n{'loss': 9.6896, 'grad_norm': 1.7053238153457642, 'learning_rate': 8.203125e-05, 'epoch': 0.0, 'num_input_tokens_seen': 22020096}\n{'loss': 9.6356, 'grad_norm': 1.7050201892852783, 'learning_rate': 8.59375e-05, 'epoch': 0.0, 'num_input_tokens_seen': 23068672}\n{'loss': 9.5781, 'grad_norm': 1.7155998945236206, 'learning_rate': 8.984375e-05, 'epoch': 0.0, 'num_input_tokens_seen': 24117248}\n{'loss': 9.5355, 'grad_norm': 1.697864294052124, 'learning_rate': 9.375e-05, 'epoch': 0.0, 'num_input_tokens_seen': 25165824}\n{'loss': 9.4718, 'grad_norm': 1.7598071098327637, 'learning_rate': 9.765625e-05, 'epoch': 0.0, 'num_input_tokens_seen': 26214400}\n{'loss': 9.3972, 'grad_norm': 1.7407673597335815, 'learning_rate': 0.00010156250000000001, 'epoch': 0.0, 'num_input_tokens_seen': 27262976}\n{'loss': 9.3303, 'grad_norm': 1.7710134983062744, 'learning_rate': 0.00010546875, 'epoch': 0.0, 'num_input_tokens_seen': 28311552}\n{'loss': 9.2973, 'grad_norm': 1.716180682182312, 'learning_rate': 0.000109375, 'epoch': 0.0, 'num_input_tokens_seen': 29360128}\n{'loss': 9.2049, 'grad_norm': 1.7579947710037231, 'learning_rate': 0.00011328125, 'epoch': 0.0, 'num_input_tokens_seen': 30408704}\n{'loss': 9.1656, 'grad_norm': 1.6988558769226074, 'learning_rate': 0.0001171875, 'epoch': 0.0, 'num_input_tokens_seen': 31457280}\n{'loss': 9.0966, 'grad_norm': 1.7036350965499878, 'learning_rate': 0.00012109375, 'epoch': 0.0, 'num_input_tokens_seen': 32505856}\n{'loss': 9.0107, 'grad_norm': 1.752451777458191, 'learning_rate': 0.000125, 'epoch': 0.0, 'num_input_tokens_seen': 33554432}\n{'loss': 8.9788, 'grad_norm': 1.6769776344299316, 'learning_rate': 0.00012890625, 'epoch': 0.0, 'num_input_tokens_seen': 34603008}\n{'loss': 8.9155, 'grad_norm': 1.6497987508773804, 'learning_rate': 0.0001328125, 'epoch': 0.0, 'num_input_tokens_seen': 35651584}\n{'loss': 8.8008, 'grad_norm': 1.722798466682434, 'learning_rate': 0.00013671875, 'epoch': 0.0, 'num_input_tokens_seen': 36700160}\n{'loss': 8.7727, 'grad_norm': 1.6046854257583618, 'learning_rate': 0.00014062500000000002, 'epoch': 0.0, 'num_input_tokens_seen': 37748736}\n{'loss': 8.682, 'grad_norm': 1.6132164001464844, 'learning_rate': 0.00014453125, 'epoch': 0.0, 'num_input_tokens_seen': 38797312}\n{'loss': 8.6516, 'grad_norm': 1.558968424797058, 'learning_rate': 0.0001484375, 'epoch': 0.0, 'num_input_tokens_seen': 39845888}\n{'loss': 8.5935, 'grad_norm': 1.6083673238754272, 'learning_rate': 0.00015234375, 'epoch': 0.0, 'num_input_tokens_seen': 40894464}\n{'loss': 8.4852, 'grad_norm': 1.5469273328781128, 'learning_rate': 0.00015625, 'epoch': 0.0, 'num_input_tokens_seen': 41943040}\n{'loss': 8.4342, 'grad_norm': 1.46219801902771, 'learning_rate': 0.00016015625, 'epoch': 0.01, 'num_input_tokens_seen': 42991616}\n{'loss': 8.3213, 'grad_norm': 1.473191261291504, 'learning_rate': 0.0001640625, 'epoch': 0.01, 'num_input_tokens_seen': 44040192}\n{'loss': 8.3193, 'grad_norm': 1.4024137258529663, 'learning_rate': 0.00016796875000000001, 'epoch': 0.01, 'num_input_tokens_seen': 45088768}\n{'loss': 8.1853, 'grad_norm': 1.3591463565826416, 'learning_rate': 0.000171875, 'epoch': 0.01, 'num_input_tokens_seen': 46137344}\n{'loss': 8.1109, 'grad_norm': 1.3547109365463257, 'learning_rate': 0.00017578125, 'epoch': 0.01, 'num_input_tokens_seen': 47185920}\n{'loss': 8.0741, 'grad_norm': 1.268977403640747, 'learning_rate': 0.0001796875, 'epoch': 0.01, 'num_input_tokens_seen': 48234496}\n{'loss': 8.0032, 'grad_norm': 1.222671389579773, 'learning_rate': 0.00018359375, 'epoch': 0.01, 'num_input_tokens_seen': 49283072}\n{'loss': 7.9346, 'grad_norm': 1.154278039932251, 'learning_rate': 0.0001875, 'epoch': 0.01, 'num_input_tokens_seen': 50331648}\n{'loss': 7.8823, 'grad_norm': 1.1396397352218628, 'learning_rate': 0.00019140625, 'epoch': 0.01, 'num_input_tokens_seen': 51380224}\n{'loss': 7.8444, 'grad_norm': 1.0608373880386353, 'learning_rate': 0.0001953125, 'epoch': 0.01, 'num_input_tokens_seen': 52428800}\n{'loss': 7.7794, 'grad_norm': 1.0165436267852783, 'learning_rate': 0.00019921875000000001, 'epoch': 0.01, 'num_input_tokens_seen': 53477376}\n{'loss': 7.7567, 'grad_norm': 0.8742461204528809, 'learning_rate': 0.00020312500000000002, 'epoch': 0.01, 'num_input_tokens_seen': 54525952}\n{'loss': 7.6489, 'grad_norm': 0.8699902296066284, 'learning_rate': 0.00020703125, 'epoch': 0.01, 'num_input_tokens_seen': 55574528}\n{'loss': 7.6062, 'grad_norm': 0.809831440448761, 'learning_rate': 0.0002109375, 'epoch': 0.01, 'num_input_tokens_seen': 56623104}\n{'loss': 7.5511, 'grad_norm': 0.7423847317695618, 'learning_rate': 0.00021484375, 'epoch': 0.01, 'num_input_tokens_seen': 57671680}\n{'loss': 7.4435, 'grad_norm': 0.7614696025848389, 'learning_rate': 0.00021875, 'epoch': 0.01, 'num_input_tokens_seen': 58720256}\n{'loss': 7.564, 'grad_norm': 0.5147746801376343, 'learning_rate': 0.00022265625, 'epoch': 0.01, 'num_input_tokens_seen': 59768832}\n{'loss': 7.5278, 'grad_norm': 0.4705545902252197, 'learning_rate': 0.0002265625, 'epoch': 0.01, 'num_input_tokens_seen': 60817408}\n{'loss': 7.5479, 'grad_norm': 0.3745419979095459, 'learning_rate': 0.00023046875000000001, 'epoch': 0.01, 'num_input_tokens_seen': 61865984}\n{'loss': 7.4759, 'grad_norm': 0.3893500566482544, 'learning_rate': 0.000234375, 'epoch': 0.01, 'num_input_tokens_seen': 62914560}\n{'loss': 7.5032, 'grad_norm': 0.31959569454193115, 'learning_rate': 0.00023828125, 'epoch': 0.01, 'num_input_tokens_seen': 63963136}\n{'loss': 7.421, 'grad_norm': 0.3203206956386566, 'learning_rate': 0.0002421875, 'epoch': 0.01, 'num_input_tokens_seen': 65011712}\n{'loss': 7.4998, 'grad_norm': 0.2730390429496765, 'learning_rate': 0.00024609375, 'epoch': 0.01, 'num_input_tokens_seen': 66060288}\n{'loss': 7.4157, 'grad_norm': 0.34872403740882874, 'learning_rate': 0.00025, 'epoch': 0.01, 'num_input_tokens_seen': 67108864}\n[2025-03-10 16:17:04 WARNING] '(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 5ef28452-e903-4bd8-946d-f0c77f558a2a)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk5/example_holdout_4799.jsonl.zst\n[2025-03-10 16:17:04 WARNING] Retrying in 1s [Retry 1/5].\n{'eval_loss': 7.471163749694824, 'eval_runtime': 651.4801, 'eval_samples_per_second': 25.149, 'eval_steps_per_second': 0.196, 'epoch': 0.01, 'num_input_tokens_seen': 67108864}\n{'loss': 7.5083, 'grad_norm': 0.339502215385437, 'learning_rate': 0.00025390625, 'epoch': 0.01, 'num_input_tokens_seen': 68157440}\n{'loss': 7.7083, 'grad_norm': 0.6426190137863159, 'learning_rate': 0.0002578125, 'epoch': 0.01, 'num_input_tokens_seen': 69206016}\n{'loss': 7.446, 'grad_norm': 0.9138129353523254, 'learning_rate': 0.00026171875, 'epoch': 0.01, 'num_input_tokens_seen': 70254592}\n{'loss': 7.3747, 'grad_norm': 1.2179911136627197, 'learning_rate': 0.000265625, 'epoch': 0.01, 'num_input_tokens_seen': 71303168}\n{'loss': 7.367, 'grad_norm': 0.7108445167541504, 'learning_rate': 0.00026953125, 'epoch': 0.01, 'num_input_tokens_seen': 72351744}\n{'loss': 7.4751, 'grad_norm': 0.7580183744430542, 'learning_rate': 0.0002734375, 'epoch': 0.01, 'num_input_tokens_seen': 73400320}\n{'loss': 7.3405, 'grad_norm': 0.7545790076255798, 'learning_rate': 0.00027734375000000003, 'epoch': 0.01, 'num_input_tokens_seen': 74448896}\n{'loss': 7.4194, 'grad_norm': 0.4764443039894104, 'learning_rate': 0.00028125000000000003, 'epoch': 0.01, 'num_input_tokens_seen': 75497472}\n{'loss': 7.2826, 'grad_norm': 0.5942808985710144, 'learning_rate': 0.00028515625, 'epoch': 0.01, 'num_input_tokens_seen': 76546048}\n{'loss': 7.3945, 'grad_norm': 0.5272891521453857, 'learning_rate': 0.0002890625, 'epoch': 0.01, 'num_input_tokens_seen': 77594624}\n{'loss': 7.3492, 'grad_norm': 0.465085506439209, 'learning_rate': 0.00029296875, 'epoch': 0.01, 'num_input_tokens_seen': 78643200}\n{'loss': 7.3658, 'grad_norm': 0.6932719349861145, 'learning_rate': 0.000296875, 'epoch': 0.01, 'num_input_tokens_seen': 79691776}\n{'loss': 7.3554, 'grad_norm': 0.49396172165870667, 'learning_rate': 0.00030078125, 'epoch': 0.01, 'num_input_tokens_seen': 80740352}\n{'loss': 7.2916, 'grad_norm': 0.3178255558013916, 'learning_rate': 0.0003046875, 'epoch': 0.01, 'num_input_tokens_seen': 81788928}\n{'loss': 7.2871, 'grad_norm': 0.5465154647827148, 'learning_rate': 0.00030859375, 'epoch': 0.01, 'num_input_tokens_seen': 82837504}\n{'loss': 7.262, 'grad_norm': 0.4718130826950073, 'learning_rate': 0.0003125, 'epoch': 0.01, 'num_input_tokens_seen': 83886080}\n{'loss': 7.2845, 'grad_norm': 0.5033366680145264, 'learning_rate': 0.00031640625, 'epoch': 0.01, 'num_input_tokens_seen': 84934656}\n{'loss': 7.2525, 'grad_norm': 0.5601146817207336, 'learning_rate': 0.0003203125, 'epoch': 0.01, 'num_input_tokens_seen': 85983232}\n{'loss': 7.1971, 'grad_norm': 0.5764456987380981, 'learning_rate': 0.00032421875, 'epoch': 0.01, 'num_input_tokens_seen': 87031808}\n{'loss': 7.1988, 'grad_norm': 0.6154745817184448, 'learning_rate': 0.000328125, 'epoch': 0.01, 'num_input_tokens_seen': 88080384}\n{'loss': 7.1987, 'grad_norm': 0.6701765656471252, 'learning_rate': 0.00033203125, 'epoch': 0.01, 'num_input_tokens_seen': 89128960}\n{'loss': 7.3324, 'grad_norm': 0.5648972988128662, 'learning_rate': 0.00033593750000000003, 'epoch': 0.01, 'num_input_tokens_seen': 90177536}\n{'loss': 7.2233, 'grad_norm': 0.5782461166381836, 'learning_rate': 0.00033984375000000003, 'epoch': 0.01, 'num_input_tokens_seen': 91226112}\n{'loss': 7.1995, 'grad_norm': 0.540762722492218, 'learning_rate': 0.00034375, 'epoch': 0.01, 'num_input_tokens_seen': 92274688}\n{'loss': 7.1214, 'grad_norm': 0.9524508118629456, 'learning_rate': 0.00034765625, 'epoch': 0.01, 'num_input_tokens_seen': 93323264}\n{'loss': 7.1603, 'grad_norm': 1.4820659160614014, 'learning_rate': 0.0003515625, 'epoch': 0.01, 'num_input_tokens_seen': 94371840}\n{'loss': 7.2364, 'grad_norm': 0.6124428510665894, 'learning_rate': 0.00035546875, 'epoch': 0.01, 'num_input_tokens_seen': 95420416}\n{'loss': 7.0258, 'grad_norm': 0.8897235989570618, 'learning_rate': 0.000359375, 'epoch': 0.01, 'num_input_tokens_seen': 96468992}\n{'loss': 7.1182, 'grad_norm': 0.9263321757316589, 'learning_rate': 0.00036328125, 'epoch': 0.01, 'num_input_tokens_seen': 97517568}\n{'loss': 7.109, 'grad_norm': 0.5800505876541138, 'learning_rate': 0.0003671875, 'epoch': 0.01, 'num_input_tokens_seen': 98566144}\n{'loss': 7.0449, 'grad_norm': 0.6776424050331116, 'learning_rate': 0.00037109375, 'epoch': 0.01, 'num_input_tokens_seen': 99614720}\n{'loss': 7.1272, 'grad_norm': 0.7616431713104248, 'learning_rate': 0.000375, 'epoch': 0.01, 'num_input_tokens_seen': 100663296}\n{'loss': 7.046, 'grad_norm': 0.5346249938011169, 'learning_rate': 0.00037890625, 'epoch': 0.01, 'num_input_tokens_seen': 101711872}\n{'loss': 7.0713, 'grad_norm': 0.6108944416046143, 'learning_rate': 0.0003828125, 'epoch': 0.01, 'num_input_tokens_seen': 102760448}\n{'loss': 7.1459, 'grad_norm': 0.4430749714374542, 'learning_rate': 0.00038671875, 'epoch': 0.01, 'num_input_tokens_seen': 103809024}\n{'loss': 7.0709, 'grad_norm': 0.6020255088806152, 'learning_rate': 0.000390625, 'epoch': 0.01, 'num_input_tokens_seen': 104857600}\n{'loss': 7.0144, 'grad_norm': 0.5525627732276917, 'learning_rate': 0.00039453125, 'epoch': 0.01, 'num_input_tokens_seen': 105906176}\n{'loss': 7.0926, 'grad_norm': 0.6909684538841248, 'learning_rate': 0.00039843750000000003, 'epoch': 0.01, 'num_input_tokens_seen': 106954752}\n{'loss': 7.0289, 'grad_norm': 0.5576740503311157, 'learning_rate': 0.00040234375000000003, 'epoch': 0.01, 'num_input_tokens_seen': 108003328}\n{'loss': 6.9173, 'grad_norm': 0.48874178528785706, 'learning_rate': 0.00040625000000000004, 'epoch': 0.01, 'num_input_tokens_seen': 109051904}\n{'loss': 6.9777, 'grad_norm': 0.3904782831668854, 'learning_rate': 0.00041015625, 'epoch': 0.01, 'num_input_tokens_seen': 110100480}\n{'loss': 6.9473, 'grad_norm': 0.3953755795955658, 'learning_rate': 0.0004140625, 'epoch': 0.01, 'num_input_tokens_seen': 111149056}\n{'loss': 6.9071, 'grad_norm': 0.43107134103775024, 'learning_rate': 0.00041796875, 'epoch': 0.01, 'num_input_tokens_seen': 112197632}\n{'loss': 6.9277, 'grad_norm': 0.33989447355270386, 'learning_rate': 0.000421875, 'epoch': 0.01, 'num_input_tokens_seen': 113246208}\n{'loss': 6.914, 'grad_norm': 0.3267095983028412, 'learning_rate': 0.00042578125, 'epoch': 0.01, 'num_input_tokens_seen': 114294784}\n{'loss': 6.6865, 'grad_norm': 0.4201946556568146, 'learning_rate': 0.0004296875, 'epoch': 0.01, 'num_input_tokens_seen': 115343360}\n{'loss': 6.8229, 'grad_norm': 0.345426082611084, 'learning_rate': 0.00043359375, 'epoch': 0.01, 'num_input_tokens_seen': 116391936}\n{'loss': 6.8599, 'grad_norm': 0.4104400873184204, 'learning_rate': 0.0004375, 'epoch': 0.01, 'num_input_tokens_seen': 117440512}\n{'loss': 6.7656, 'grad_norm': 0.6487549543380737, 'learning_rate': 0.00044140625, 'epoch': 0.01, 'num_input_tokens_seen': 118489088}\n{'loss': 6.8654, 'grad_norm': 1.5497283935546875, 'learning_rate': 0.0004453125, 'epoch': 0.01, 'num_input_tokens_seen': 119537664}\n{'loss': 6.8207, 'grad_norm': 1.9772824048995972, 'learning_rate': 0.00044921875, 'epoch': 0.01, 'num_input_tokens_seen': 120586240}\n{'loss': 6.7802, 'grad_norm': 0.9341455101966858, 'learning_rate': 0.000453125, 'epoch': 0.01, 'num_input_tokens_seen': 121634816}\n{'loss': 6.8017, 'grad_norm': 1.3528856039047241, 'learning_rate': 0.00045703125, 'epoch': 0.01, 'num_input_tokens_seen': 122683392}\n{'loss': 6.8344, 'grad_norm': 0.5852281451225281, 'learning_rate': 0.00046093750000000003, 'epoch': 0.01, 'num_input_tokens_seen': 123731968}\n{'loss': 6.8259, 'grad_norm': 0.9776580929756165, 'learning_rate': 0.00046484375000000003, 'epoch': 0.01, 'num_input_tokens_seen': 124780544}\n{'loss': 6.7581, 'grad_norm': 1.0398296117782593, 'learning_rate': 0.00046875, 'epoch': 0.01, 'num_input_tokens_seen': 125829120}\n{'loss': 6.7795, 'grad_norm': 1.1206268072128296, 'learning_rate': 0.00047265625, 'epoch': 0.01, 'num_input_tokens_seen': 126877696}\n{'loss': 6.5667, 'grad_norm': 0.6790318489074707, 'learning_rate': 0.0004765625, 'epoch': 0.01, 'num_input_tokens_seen': 127926272}\n{'loss': 6.7297, 'grad_norm': 1.2275055646896362, 'learning_rate': 0.00048046875, 'epoch': 0.02, 'num_input_tokens_seen': 128974848}\n{'loss': 6.7104, 'grad_norm': 1.1354466676712036, 'learning_rate': 0.000484375, 'epoch': 0.02, 'num_input_tokens_seen': 130023424}\n{'loss': 6.7025, 'grad_norm': 0.9035728573799133, 'learning_rate': 0.00048828125, 'epoch': 0.02, 'num_input_tokens_seen': 131072000}\n{'loss': 6.6391, 'grad_norm': 1.3942680358886719, 'learning_rate': 0.0004921875, 'epoch': 0.02, 'num_input_tokens_seen': 132120576}\n{'loss': 6.6011, 'grad_norm': 0.7435236573219299, 'learning_rate': 0.00049609375, 'epoch': 0.02, 'num_input_tokens_seen': 133169152}\n{'loss': 6.5135, 'grad_norm': 0.5970368385314941, 'learning_rate': 0.0005, 'epoch': 0.02, 'num_input_tokens_seen': 134217728}\n{'eval_loss': 6.573822021484375, 'eval_runtime': 629.9441, 'eval_samples_per_second': 26.009, 'eval_steps_per_second': 0.203, 'epoch': 0.02, 'num_input_tokens_seen': 134217728}\n{'loss': 6.5509, 'grad_norm': 0.7936264276504517, 'learning_rate': 0.00050390625, 'epoch': 0.02, 'num_input_tokens_seen': 135266304}\n{'loss': 6.6008, 'grad_norm': 0.6225885152816772, 'learning_rate': 0.0005078125, 'epoch': 0.02, 'num_input_tokens_seen': 136314880}\n{'loss': 6.4821, 'grad_norm': 0.5519376993179321, 'learning_rate': 0.00051171875, 'epoch': 0.02, 'num_input_tokens_seen': 137363456}\n{'loss': 6.3411, 'grad_norm': 0.5908603668212891, 'learning_rate': 0.000515625, 'epoch': 0.02, 'num_input_tokens_seen': 138412032}\n{'loss': 6.3464, 'grad_norm': 0.5101401209831238, 'learning_rate': 0.00051953125, 'epoch': 0.02, 'num_input_tokens_seen': 139460608}\n{'loss': 6.3638, 'grad_norm': 0.7352246046066284, 'learning_rate': 0.0005234375, 'epoch': 0.02, 'num_input_tokens_seen': 140509184}\n{'loss': 6.3429, 'grad_norm': 0.49651673436164856, 'learning_rate': 0.00052734375, 'epoch': 0.02, 'num_input_tokens_seen': 141557760}\n{'loss': 6.2987, 'grad_norm': 0.4835755527019501, 'learning_rate': 0.00053125, 'epoch': 0.02, 'num_input_tokens_seen': 142606336}\n{'loss': 6.2982, 'grad_norm': 0.5940163731575012, 'learning_rate': 0.00053515625, 'epoch': 0.02, 'num_input_tokens_seen': 143654912}\n{'loss': 6.267, 'grad_norm': 0.7658674120903015, 'learning_rate': 0.0005390625, 'epoch': 0.02, 'num_input_tokens_seen': 144703488}\n{'loss': 6.2102, 'grad_norm': 0.6704416275024414, 'learning_rate': 0.00054296875, 'epoch': 0.02, 'num_input_tokens_seen': 145752064}\n{'loss': 6.1956, 'grad_norm': 0.6615312099456787, 'learning_rate': 0.000546875, 'epoch': 0.02, 'num_input_tokens_seen': 146800640}\n{'loss': 6.286, 'grad_norm': 0.7957404255867004, 'learning_rate': 0.0005507812500000001, 'epoch': 0.02, 'num_input_tokens_seen': 147849216}\n{'loss': 6.2483, 'grad_norm': 0.6477276682853699, 'learning_rate': 0.0005546875000000001, 'epoch': 0.02, 'num_input_tokens_seen': 148897792}\n{'loss': 6.0944, 'grad_norm': 0.5753227472305298, 'learning_rate': 0.0005585937500000001, 'epoch': 0.02, 'num_input_tokens_seen': 149946368}\n{'loss': 6.0995, 'grad_norm': 0.5871054530143738, 'learning_rate': 0.0005625000000000001, 'epoch': 0.02, 'num_input_tokens_seen': 150994944}\n{'loss': 6.112, 'grad_norm': 0.7046136856079102, 'learning_rate': 0.00056640625, 'epoch': 0.02, 'num_input_tokens_seen': 152043520}\n{'loss': 6.102, 'grad_norm': 0.9357424378395081, 'learning_rate': 0.0005703125, 'epoch': 0.02, 'num_input_tokens_seen': 153092096}\n{'loss': 6.1407, 'grad_norm': 1.0577837228775024, 'learning_rate': 0.00057421875, 'epoch': 0.02, 'num_input_tokens_seen': 154140672}\n{'loss': 5.9836, 'grad_norm': 0.7795257568359375, 'learning_rate': 0.000578125, 'epoch': 0.02, 'num_input_tokens_seen': 155189248}\n{'loss': 6.1041, 'grad_norm': 0.8117634057998657, 'learning_rate': 0.00058203125, 'epoch': 0.02, 'num_input_tokens_seen': 156237824}\n{'loss': 5.9474, 'grad_norm': 0.8311094045639038, 'learning_rate': 0.0005859375, 'epoch': 0.02, 'num_input_tokens_seen': 157286400}\n{'loss': 5.9365, 'grad_norm': 0.8269851803779602, 'learning_rate': 0.00058984375, 'epoch': 0.02, 'num_input_tokens_seen': 158334976}\n{'loss': 5.9668, 'grad_norm': 0.701510488986969, 'learning_rate': 0.00059375, 'epoch': 0.02, 'num_input_tokens_seen': 159383552}\n{'loss': 5.9874, 'grad_norm': 0.49938252568244934, 'learning_rate': 0.00059765625, 'epoch': 0.02, 'num_input_tokens_seen': 160432128}\n{'loss': 5.8505, 'grad_norm': 0.6981683969497681, 'learning_rate': 0.0006015625, 'epoch': 0.02, 'num_input_tokens_seen': 161480704}\n{'loss': 6.0156, 'grad_norm': 0.5023297071456909, 'learning_rate': 0.00060546875, 'epoch': 0.02, 'num_input_tokens_seen': 162529280}\n{'loss': 5.8299, 'grad_norm': 0.6075630187988281, 'learning_rate': 0.000609375, 'epoch': 0.02, 'num_input_tokens_seen': 163577856}\n{'loss': 5.8203, 'grad_norm': 0.6051607728004456, 'learning_rate': 0.00061328125, 'epoch': 0.02, 'num_input_tokens_seen': 164626432}\n{'loss': 5.7705, 'grad_norm': 0.6384783983230591, 'learning_rate': 0.0006171875, 'epoch': 0.02, 'num_input_tokens_seen': 165675008}\n{'loss': 5.791, 'grad_norm': 0.5084705948829651, 'learning_rate': 0.00062109375, 'epoch': 0.02, 'num_input_tokens_seen': 166723584}\n{'loss': 5.6743, 'grad_norm': 0.4278322160243988, 'learning_rate': 0.000625, 'epoch': 0.02, 'num_input_tokens_seen': 167772160}\n{'loss': 5.7112, 'grad_norm': 0.5151192545890808, 'learning_rate': 0.00062890625, 'epoch': 0.02, 'num_input_tokens_seen': 168820736}\n{'loss': 5.5128, 'grad_norm': 0.6542677283287048, 'learning_rate': 0.0006328125, 'epoch': 0.02, 'num_input_tokens_seen': 169869312}\n{'loss': 5.6735, 'grad_norm': 0.6016008257865906, 'learning_rate': 0.00063671875, 'epoch': 0.02, 'num_input_tokens_seen': 170917888}\n{'loss': 5.6525, 'grad_norm': 0.48695647716522217, 'learning_rate': 0.000640625, 'epoch': 0.02, 'num_input_tokens_seen': 171966464}\n{'loss': 5.6051, 'grad_norm': 0.5894989371299744, 'learning_rate': 0.00064453125, 'epoch': 0.02, 'num_input_tokens_seen': 173015040}\n{'loss': 5.6377, 'grad_norm': 0.7626883387565613, 'learning_rate': 0.0006484375, 'epoch': 0.02, 'num_input_tokens_seen': 174063616}\n{'loss': 5.6038, 'grad_norm': 0.745198130607605, 'learning_rate': 0.00065234375, 'epoch': 0.02, 'num_input_tokens_seen': 175112192}\n{'loss': 5.5465, 'grad_norm': 0.7876908779144287, 'learning_rate': 0.00065625, 'epoch': 0.02, 'num_input_tokens_seen': 176160768}\n{'loss': 5.5903, 'grad_norm': 0.7416785359382629, 'learning_rate': 0.00066015625, 'epoch': 0.02, 'num_input_tokens_seen': 177209344}\n{'loss': 5.4993, 'grad_norm': 0.4493878185749054, 'learning_rate': 0.0006640625, 'epoch': 0.02, 'num_input_tokens_seen': 178257920}\n{'loss': 5.5612, 'grad_norm': 0.5095419883728027, 'learning_rate': 0.00066796875, 'epoch': 0.02, 'num_input_tokens_seen': 179306496}\n{'loss': 5.378, 'grad_norm': 0.6330733895301819, 'learning_rate': 0.0006718750000000001, 'epoch': 0.02, 'num_input_tokens_seen': 180355072}\n{'loss': 5.4875, 'grad_norm': 0.4710595905780792, 'learning_rate': 0.0006757812500000001, 'epoch': 0.02, 'num_input_tokens_seen': 181403648}\n{'loss': 5.4221, 'grad_norm': 0.5276287198066711, 'learning_rate': 0.0006796875000000001, 'epoch': 0.02, 'num_input_tokens_seen': 182452224}\n{'loss': 5.308, 'grad_norm': 0.6985499858856201, 'learning_rate': 0.0006835937500000001, 'epoch': 0.02, 'num_input_tokens_seen': 183500800}\n{'loss': 5.4455, 'grad_norm': 0.4874110519886017, 'learning_rate': 0.0006875, 'epoch': 0.02, 'num_input_tokens_seen': 184549376}\n{'loss': 5.476, 'grad_norm': 0.5807638764381409, 'learning_rate': 0.00069140625, 'epoch': 0.02, 'num_input_tokens_seen': 185597952}\n{'loss': 5.2876, 'grad_norm': 0.5431288480758667, 'learning_rate': 0.0006953125, 'epoch': 0.02, 'num_input_tokens_seen': 186646528}\n{'loss': 5.3881, 'grad_norm': 0.7681945562362671, 'learning_rate': 0.00069921875, 'epoch': 0.02, 'num_input_tokens_seen': 187695104}\n{'loss': 5.4006, 'grad_norm': 0.7372023463249207, 'learning_rate': 0.000703125, 'epoch': 0.02, 'num_input_tokens_seen': 188743680}\n{'loss': 5.3813, 'grad_norm': 0.7354347109794617, 'learning_rate': 0.00070703125, 'epoch': 0.02, 'num_input_tokens_seen': 189792256}\n{'loss': 5.3393, 'grad_norm': 0.5908933281898499, 'learning_rate': 0.0007109375, 'epoch': 0.02, 'num_input_tokens_seen': 190840832}\n{'loss': 5.3024, 'grad_norm': 0.5665153861045837, 'learning_rate': 0.00071484375, 'epoch': 0.02, 'num_input_tokens_seen': 191889408}\n{'loss': 5.2782, 'grad_norm': 0.5930947661399841, 'learning_rate': 0.00071875, 'epoch': 0.02, 'num_input_tokens_seen': 192937984}\n{'loss': 5.3199, 'grad_norm': 0.5926457643508911, 'learning_rate': 0.00072265625, 'epoch': 0.02, 'num_input_tokens_seen': 193986560}\n{'loss': 5.2949, 'grad_norm': 0.548610270023346, 'learning_rate': 0.0007265625, 'epoch': 0.02, 'num_input_tokens_seen': 195035136}\n{'loss': 5.3143, 'grad_norm': 0.6023995280265808, 'learning_rate': 0.00073046875, 'epoch': 0.02, 'num_input_tokens_seen': 196083712}\n{'loss': 5.2982, 'grad_norm': 1.0335254669189453, 'learning_rate': 0.000734375, 'epoch': 0.02, 'num_input_tokens_seen': 197132288}\n{'loss': 5.2933, 'grad_norm': 1.2596269845962524, 'learning_rate': 0.00073828125, 'epoch': 0.02, 'num_input_tokens_seen': 198180864}\n{'loss': 5.2524, 'grad_norm': 0.6956535577774048, 'learning_rate': 0.0007421875, 'epoch': 0.02, 'num_input_tokens_seen': 199229440}\n{'loss': 5.3543, 'grad_norm': 0.946761429309845, 'learning_rate': 0.00074609375, 'epoch': 0.02, 'num_input_tokens_seen': 200278016}\n{'loss': 5.1616, 'grad_norm': 0.9568974375724792, 'learning_rate': 0.00075, 'epoch': 0.02, 'num_input_tokens_seen': 201326592}\n[2025-03-10 18:01:06 WARNING] '(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: ba6e4c51-f4a4-407e-9934-3772550b7ce9)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk1/example_holdout_2770.jsonl.zst\n[2025-03-10 18:01:06 WARNING] Retrying in 1s [Retry 1/5].\n[2025-03-10 18:02:30 WARNING] '(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: bdf2cfaa-7e0b-46a0-bec1-b1e573fa7998)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk4/example_holdout_4386.jsonl.zst\n[2025-03-10 18:02:30 WARNING] Retrying in 1s [Retry 1/5].\n[2025-03-10 18:02:44 WARNING] '(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 1dc5e455-8042-4c7b-9b97-5ded33dfea34)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk1/example_holdout_1763.jsonl.zst\n[2025-03-10 18:02:44 WARNING] Retrying in 1s [Retry 1/5].\n[2025-03-10 18:04:45 WARNING] '(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 9cf29917-8111-41fe-80aa-953df65c5803)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk4/example_holdout_5509.jsonl.zst\n[2025-03-10 18:04:45 WARNING] Retrying in 1s [Retry 1/5].\n[2025-03-10 18:05:26 WARNING] '(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 2515a0b0-3d81-409f-940c-e78ed5e2dbf8)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk4/example_holdout_3093.jsonl.zst\n[2025-03-10 18:05:26 WARNING] Retrying in 1s [Retry 1/5].\n[2025-03-10 18:06:39 WARNING] '(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: a4c1e0c7-1c7a-4377-bc7e-6f076473072b)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk4/example_holdout_3422.jsonl.zst\n[2025-03-10 18:06:39 WARNING] Retrying in 1s [Retry 1/5].\n[2025-03-10 18:07:37 WARNING] '(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: c7b0d366-db86-4d0c-a4e0-be251d26519e)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk3/example_holdout_2250.jsonl.zst\n[2025-03-10 18:07:37 WARNING] Retrying in 1s [Retry 1/5].\n[2025-03-10 18:09:23 WARNING] '(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: b0df5a1a-4836-46cf-8e45-58a7c1553309)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk3/example_holdout_6161.jsonl.zst\n[2025-03-10 18:09:23 WARNING] Retrying in 1s [Retry 1/5].\n[2025-03-10 18:09:44 WARNING] '(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: c1d97368-c0ae-45bb-ae10-5559b3ebc4e4)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk3/example_holdout_5782.jsonl.zst\n[2025-03-10 18:09:44 WARNING] Retrying in 1s [Retry 1/5].\n{'eval_loss': 5.276012420654297, 'eval_runtime': 754.8295, 'eval_samples_per_second': 21.706, 'eval_steps_per_second': 0.17, 'epoch': 0.02, 'num_input_tokens_seen': 201326592}\n{'loss': 5.2363, 'grad_norm': 0.8435476422309875, 'learning_rate': 0.00075390625, 'epoch': 0.02, 'num_input_tokens_seen': 202375168}\n{'loss': 5.1035, 'grad_norm': 1.1267820596694946, 'learning_rate': 0.0007578125, 'epoch': 0.02, 'num_input_tokens_seen': 203423744}\n{'loss': 5.3017, 'grad_norm': 0.8555666208267212, 'learning_rate': 0.00076171875, 'epoch': 0.02, 'num_input_tokens_seen': 204472320}\n{'loss': 5.1679, 'grad_norm': 0.7608171105384827, 'learning_rate': 0.000765625, 'epoch': 0.02, 'num_input_tokens_seen': 205520896}\n{'loss': 5.2326, 'grad_norm': 0.6787221431732178, 'learning_rate': 0.00076953125, 'epoch': 0.02, 'num_input_tokens_seen': 206569472}\n{'loss': 5.144, 'grad_norm': 0.6404955983161926, 'learning_rate': 0.0007734375, 'epoch': 0.02, 'num_input_tokens_seen': 207618048}\n{'loss': 5.1933, 'grad_norm': 0.6099393367767334, 'learning_rate': 0.00077734375, 'epoch': 0.02, 'num_input_tokens_seen': 208666624}\n{'loss': 5.0498, 'grad_norm': 0.5971768498420715, 'learning_rate': 0.00078125, 'epoch': 0.02, 'num_input_tokens_seen': 209715200}\n{'loss': 5.1443, 'grad_norm': 0.642633318901062, 'learning_rate': 0.00078515625, 'epoch': 0.02, 'num_input_tokens_seen': 210763776}\n{'loss': 5.2125, 'grad_norm': 0.706398606300354, 'learning_rate': 0.0007890625, 'epoch': 0.02, 'num_input_tokens_seen': 211812352}\n{'loss': 5.1882, 'grad_norm': 0.817449688911438, 'learning_rate': 0.00079296875, 'epoch': 0.02, 'num_input_tokens_seen': 212860928}\n{'loss': 5.0905, 'grad_norm': 0.9392185807228088, 'learning_rate': 0.0007968750000000001, 'epoch': 0.02, 'num_input_tokens_seen': 213909504}\n{'loss': 5.059, 'grad_norm': 0.5305852890014648, 'learning_rate': 0.0008007812500000001, 'epoch': 0.03, 'num_input_tokens_seen': 214958080}\n{'loss': 5.0838, 'grad_norm': 0.7662672996520996, 'learning_rate': 0.0008046875000000001, 'epoch': 0.03, 'num_input_tokens_seen': 216006656}\n{'loss': 5.0112, 'grad_norm': 0.5768160223960876, 'learning_rate': 0.0008085937500000001, 'epoch': 0.03, 'num_input_tokens_seen': 217055232}\n{'loss': 4.9684, 'grad_norm': 0.5972586870193481, 'learning_rate': 0.0008125000000000001, 'epoch': 0.03, 'num_input_tokens_seen': 218103808}\n{'loss': 5.0764, 'grad_norm': 0.559498131275177, 'learning_rate': 0.00081640625, 'epoch': 0.03, 'num_input_tokens_seen': 219152384}\n{'loss': 5.0117, 'grad_norm': 0.555585503578186, 'learning_rate': 0.0008203125, 'epoch': 0.03, 'num_input_tokens_seen': 220200960}\n{'loss': 5.1955, 'grad_norm': 0.6180793046951294, 'learning_rate': 0.00082421875, 'epoch': 0.03, 'num_input_tokens_seen': 221249536}\n{'loss': 5.1265, 'grad_norm': 0.5784006118774414, 'learning_rate': 0.000828125, 'epoch': 0.03, 'num_input_tokens_seen': 222298112}\n{'loss': 5.03, 'grad_norm': 0.5200456380844116, 'learning_rate': 0.00083203125, 'epoch': 0.03, 'num_input_tokens_seen': 223346688}\n{'loss': 5.051, 'grad_norm': 0.5112505555152893, 'learning_rate': 0.0008359375, 'epoch': 0.03, 'num_input_tokens_seen': 224395264}\n{'loss': 5.0994, 'grad_norm': 0.44979697465896606, 'learning_rate': 0.00083984375, 'epoch': 0.03, 'num_input_tokens_seen': 225443840}\n{'loss': 4.94, 'grad_norm': 0.46642380952835083, 'learning_rate': 0.00084375, 'epoch': 0.03, 'num_input_tokens_seen': 226492416}\n{'loss': 5.0562, 'grad_norm': 0.49667519330978394, 'learning_rate': 0.00084765625, 'epoch': 0.03, 'num_input_tokens_seen': 227540992}\n{'loss': 4.9217, 'grad_norm': 0.4302496314048767, 'learning_rate': 0.0008515625, 'epoch': 0.03, 'num_input_tokens_seen': 228589568}\n{'loss': 4.8588, 'grad_norm': 0.5326887369155884, 'learning_rate': 0.00085546875, 'epoch': 0.03, 'num_input_tokens_seen': 229638144}\n{'loss': 4.8501, 'grad_norm': 0.45604026317596436, 'learning_rate': 0.000859375, 'epoch': 0.03, 'num_input_tokens_seen': 230686720}\n{'loss': 4.8774, 'grad_norm': 0.4497997462749481, 'learning_rate': 0.00086328125, 'epoch': 0.03, 'num_input_tokens_seen': 231735296}\n{'loss': 5.0143, 'grad_norm': 0.526670515537262, 'learning_rate': 0.0008671875, 'epoch': 0.03, 'num_input_tokens_seen': 232783872}\n{'loss': 4.9512, 'grad_norm': 0.5823948979377747, 'learning_rate': 0.00087109375, 'epoch': 0.03, 'num_input_tokens_seen': 233832448}\n{'loss': 4.915, 'grad_norm': 0.6516634821891785, 'learning_rate': 0.000875, 'epoch': 0.03, 'num_input_tokens_seen': 234881024}\n{'loss': 4.9318, 'grad_norm': 0.7564677596092224, 'learning_rate': 0.00087890625, 'epoch': 0.03, 'num_input_tokens_seen': 235929600}\n{'loss': 4.9041, 'grad_norm': 0.7170491814613342, 'learning_rate': 0.0008828125, 'epoch': 0.03, 'num_input_tokens_seen': 236978176}\n{'loss': 4.9727, 'grad_norm': 0.7671059966087341, 'learning_rate': 0.00088671875, 'epoch': 0.03, 'num_input_tokens_seen': 238026752}\n{'loss': 4.7895, 'grad_norm': 0.8752806782722473, 'learning_rate': 0.000890625, 'epoch': 0.03, 'num_input_tokens_seen': 239075328}\n{'loss': 4.8845, 'grad_norm': 0.8313667178153992, 'learning_rate': 0.00089453125, 'epoch': 0.03, 'num_input_tokens_seen': 240123904}\n{'loss': 4.8325, 'grad_norm': 0.9223323464393616, 'learning_rate': 0.0008984375, 'epoch': 0.03, 'num_input_tokens_seen': 241172480}\n{'loss': 4.8991, 'grad_norm': 0.7362072467803955, 'learning_rate': 0.00090234375, 'epoch': 0.03, 'num_input_tokens_seen': 242221056}\n{'loss': 4.7443, 'grad_norm': 0.6667400598526001, 'learning_rate': 0.00090625, 'epoch': 0.03, 'num_input_tokens_seen': 243269632}\n{'loss': 4.8913, 'grad_norm': 0.5431771874427795, 'learning_rate': 0.00091015625, 'epoch': 0.03, 'num_input_tokens_seen': 244318208}\n{'loss': 4.8997, 'grad_norm': 0.5542160272598267, 'learning_rate': 0.0009140625, 'epoch': 0.03, 'num_input_tokens_seen': 245366784}\n{'loss': 4.8448, 'grad_norm': 0.6110911965370178, 'learning_rate': 0.0009179687500000001, 'epoch': 0.03, 'num_input_tokens_seen': 246415360}\n{'loss': 4.7975, 'grad_norm': 0.5550041794776917, 'learning_rate': 0.0009218750000000001, 'epoch': 0.03, 'num_input_tokens_seen': 247463936}\n{'loss': 4.87, 'grad_norm': 0.4778221547603607, 'learning_rate': 0.0009257812500000001, 'epoch': 0.03, 'num_input_tokens_seen': 248512512}\n{'loss': 4.7594, 'grad_norm': 0.35899603366851807, 'learning_rate': 0.0009296875000000001, 'epoch': 0.03, 'num_input_tokens_seen': 249561088}\n{'loss': 4.8338, 'grad_norm': 0.494094580411911, 'learning_rate': 0.0009335937500000001, 'epoch': 0.03, 'num_input_tokens_seen': 250609664}\n{'loss': 4.7424, 'grad_norm': 0.4671477675437927, 'learning_rate': 0.0009375, 'epoch': 0.03, 'num_input_tokens_seen': 251658240}\n{'loss': 4.7593, 'grad_norm': 0.4691649079322815, 'learning_rate': 0.00094140625, 'epoch': 0.03, 'num_input_tokens_seen': 252706816}\n{'loss': 4.7869, 'grad_norm': 0.6212939023971558, 'learning_rate': 0.0009453125, 'epoch': 0.03, 'num_input_tokens_seen': 253755392}\n{'loss': 4.7925, 'grad_norm': 0.621306300163269, 'learning_rate': 0.00094921875, 'epoch': 0.03, 'num_input_tokens_seen': 254803968}\n{'loss': 4.7714, 'grad_norm': 0.6991429328918457, 'learning_rate': 0.000953125, 'epoch': 0.03, 'num_input_tokens_seen': 255852544}\n{'loss': 5.2726, 'grad_norm': 1.016664743423462, 'learning_rate': 0.00095703125, 'epoch': 0.03, 'num_input_tokens_seen': 256901120}\n{'loss': 4.9125, 'grad_norm': 1.3091747760772705, 'learning_rate': 0.0009609375, 'epoch': 0.03, 'num_input_tokens_seen': 257949696}\n{'loss': 4.839, 'grad_norm': 1.2617076635360718, 'learning_rate': 0.00096484375, 'epoch': 0.03, 'num_input_tokens_seen': 258998272}\n{'loss': 4.8412, 'grad_norm': 0.9403041005134583, 'learning_rate': 0.00096875, 'epoch': 0.03, 'num_input_tokens_seen': 260046848}\n{'loss': 5.0193, 'grad_norm': 0.9802642464637756, 'learning_rate': 0.00097265625, 'epoch': 0.03, 'num_input_tokens_seen': 261095424}\n{'loss': 4.7372, 'grad_norm': 0.9636861085891724, 'learning_rate': 0.0009765625, 'epoch': 0.03, 'num_input_tokens_seen': 262144000}\n{'loss': 4.7878, 'grad_norm': 0.7803710699081421, 'learning_rate': 0.00098046875, 'epoch': 0.03, 'num_input_tokens_seen': 263192576}\n{'loss': 4.8126, 'grad_norm': 0.7087182402610779, 'learning_rate': 0.000984375, 'epoch': 0.03, 'num_input_tokens_seen': 264241152}\n{'loss': 4.7252, 'grad_norm': 0.7220279574394226, 'learning_rate': 0.00098828125, 'epoch': 0.03, 'num_input_tokens_seen': 265289728}\n{'loss': 4.7419, 'grad_norm': 0.6956494450569153, 'learning_rate': 0.0009921875, 'epoch': 0.03, 'num_input_tokens_seen': 266338304}\n{'loss': 4.8041, 'grad_norm': 0.8009976148605347, 'learning_rate': 0.00099609375, 'epoch': 0.03, 'num_input_tokens_seen': 267386880}\n{'loss': 4.7016, 'grad_norm': 0.6665300130844116, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 268435456}\n{'eval_loss': 4.753816604614258, 'eval_runtime': 661.8529, 'eval_samples_per_second': 24.755, 'eval_steps_per_second': 0.193, 'epoch': 0.03, 'num_input_tokens_seen': 268435456}\n{'loss': 4.6762, 'grad_norm': 0.5311985611915588, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 269484032}\n{'loss': 4.6296, 'grad_norm': 0.5160760879516602, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 270532608}\n{'loss': 4.7422, 'grad_norm': 0.5964047312736511, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 271581184}\n{'loss': 4.7396, 'grad_norm': 0.4793979227542877, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 272629760}\n{'loss': 4.733, 'grad_norm': 0.5280688405036926, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 273678336}\n{'loss': 4.9591, 'grad_norm': 0.8669152855873108, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 274726912}\n{'loss': 4.7953, 'grad_norm': 0.8417720198631287, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 275775488}\n{'loss': 4.7972, 'grad_norm': 0.9349585175514221, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 276824064}\n{'loss': 4.7233, 'grad_norm': 0.8441230654716492, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 277872640}\n{'loss': 4.8032, 'grad_norm': 0.7163352370262146, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 278921216}\n{'loss': 4.4369, 'grad_norm': 1.0364480018615723, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 279969792}\n{'loss': 4.557, 'grad_norm': 1.012042760848999, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 281018368}\n{'loss': 4.7696, 'grad_norm': 1.1818541288375854, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 282066944}\n{'loss': 4.7835, 'grad_norm': 0.8296499848365784, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 283115520}\n{'loss': 4.761, 'grad_norm': 0.6920194625854492, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 284164096}\n{'loss': 4.6239, 'grad_norm': 0.8495435118675232, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 285212672}\n{'loss': 4.6914, 'grad_norm': 0.6536931991577148, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 286261248}\n{'loss': 4.776, 'grad_norm': 0.7161967754364014, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 287309824}\n{'loss': 4.7096, 'grad_norm': 0.5441194176673889, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 288358400}\n{'loss': 4.7278, 'grad_norm': 0.5437328219413757, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 289406976}\n{'loss': 4.6126, 'grad_norm': 0.49404028058052063, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 290455552}\n{'loss': 4.6594, 'grad_norm': 0.4274217188358307, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 291504128}\n{'loss': 4.6365, 'grad_norm': 0.48871853947639465, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 292552704}\n{'loss': 4.5999, 'grad_norm': 0.5101707577705383, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 293601280}\n{'loss': 4.5869, 'grad_norm': 0.4579870104789734, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 294649856}\n{'loss': 4.5993, 'grad_norm': 0.44694098830223083, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 295698432}\n{'loss': 4.6369, 'grad_norm': 0.42955130338668823, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 296747008}\n{'loss': 4.5973, 'grad_norm': 0.532283365726471, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 297795584}\n{'loss': 4.3953, 'grad_norm': 0.5553389191627502, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 298844160}\n{'loss': 4.5501, 'grad_norm': 0.4733176529407501, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 299892736}\n{'loss': 4.4896, 'grad_norm': 0.5510519742965698, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 300941312}\n{'loss': 4.348, 'grad_norm': 0.5312983393669128, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 301989888}\n{'loss': 4.4, 'grad_norm': 0.4173823297023773, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 303038464}\n{'loss': 4.4971, 'grad_norm': 0.4799824357032776, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 304087040}\n{'loss': 4.5507, 'grad_norm': 0.4494017958641052, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 305135616}\n{'loss': 4.5655, 'grad_norm': 0.36501485109329224, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 306184192}\n{'loss': 4.5189, 'grad_norm': 0.4833853840827942, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 307232768}\n{'loss': 4.5387, 'grad_norm': 0.5214531421661377, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 308281344}\n{'loss': 4.5509, 'grad_norm': 0.5383253693580627, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 309329920}\n{'loss': 4.4112, 'grad_norm': 0.5364778637886047, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 310378496}\n{'loss': 4.568, 'grad_norm': 0.3624066114425659, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 311427072}\n{'loss': 4.5289, 'grad_norm': 0.5469081401824951, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 312475648}\n{'loss': 4.4953, 'grad_norm': 0.5212593674659729, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 313524224}\n{'loss': 4.4614, 'grad_norm': 0.36742305755615234, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 314572800}\n{'loss': 4.4757, 'grad_norm': 0.43591663241386414, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 315621376}\n{'loss': 4.5321, 'grad_norm': 0.483548104763031, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 316669952}\n{'loss': 4.449, 'grad_norm': 0.3971082866191864, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 317718528}\n{'loss': 4.4539, 'grad_norm': 0.3416251540184021, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 318767104}\n{'loss': 4.3456, 'grad_norm': 0.45731472969055176, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 319815680}\n{'loss': 4.4179, 'grad_norm': 0.4462226331233978, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 320864256}\n{'loss': 4.3691, 'grad_norm': 0.3393065631389618, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 321912832}\n{'loss': 4.4361, 'grad_norm': 0.39659640192985535, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 322961408}\n{'loss': 4.4166, 'grad_norm': 0.42212849855422974, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 324009984}\n{'loss': 4.3931, 'grad_norm': 0.3403238356113434, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 325058560}\n{'loss': 4.3003, 'grad_norm': 0.3405858278274536, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 326107136}\n{'loss': 4.4339, 'grad_norm': 0.42516669631004333, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 327155712}\n{'loss': 4.4258, 'grad_norm': 0.4387160539627075, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 328204288}\n{'loss': 4.3774, 'grad_norm': 0.3546140193939209, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 329252864}\n{'loss': 4.3261, 'grad_norm': 0.3842155933380127, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 330301440}\n{'loss': 4.2843, 'grad_norm': 0.32807183265686035, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 331350016}\n{'loss': 4.3627, 'grad_norm': 0.3635430932044983, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 332398592}\n{'loss': 4.3304, 'grad_norm': 0.32113364338874817, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 333447168}\n{'loss': 4.258, 'grad_norm': 0.3261938989162445, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 334495744}\n{'loss': 4.392, 'grad_norm': 0.35287028551101685, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 335544320}\n{'eval_loss': 4.340233325958252, 'eval_runtime': 641.4064, 'eval_samples_per_second': 25.544, 'eval_steps_per_second': 0.2, 'epoch': 0.04, 'num_input_tokens_seen': 335544320}\n{'loss': 4.4095, 'grad_norm': 0.30875736474990845, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 336592896}\n{'loss': 3.8896, 'grad_norm': 0.6334038972854614, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 337641472}\n{'loss': 4.449, 'grad_norm': 0.5519331693649292, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 338690048}\n{'loss': 4.4388, 'grad_norm': 0.4262654185295105, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 339738624}\n{'loss': 4.3918, 'grad_norm': 0.4348645508289337, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 340787200}\n{'loss': 4.3677, 'grad_norm': 0.3858915865421295, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 341835776}\n{'loss': 4.3343, 'grad_norm': 0.4542510509490967, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 342884352}\n{'loss': 4.3196, 'grad_norm': 0.4413583278656006, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 343932928}\n{'loss': 4.322, 'grad_norm': 0.5200892686843872, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 344981504}\n{'loss': 4.2409, 'grad_norm': 0.4969848692417145, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 346030080}\n{'loss': 4.2263, 'grad_norm': 0.43436068296432495, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 347078656}\n{'loss': 4.2271, 'grad_norm': 0.4760046899318695, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 348127232}\n{'loss': 4.3567, 'grad_norm': 0.43881112337112427, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 349175808}\n{'loss': 4.2606, 'grad_norm': 0.5361112952232361, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 350224384}\n{'loss': 4.3831, 'grad_norm': 0.5959597229957581, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 351272960}\n{'loss': 4.2899, 'grad_norm': 0.6709368824958801, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 352321536}\n{'loss': 4.2263, 'grad_norm': 0.6585149168968201, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 353370112}\n{'loss': 4.3428, 'grad_norm': 0.5447191596031189, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 354418688}\n{'loss': 4.3642, 'grad_norm': 0.576545238494873, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 355467264}\n{'loss': 4.025, 'grad_norm': 0.7567218542098999, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 356515840}\n{'loss': 4.2593, 'grad_norm': 0.6053742170333862, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 357564416}\n{'loss': 4.2864, 'grad_norm': 0.54949551820755, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 358612992}\n{'loss': 4.3183, 'grad_norm': 0.4792100489139557, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 359661568}\n{'loss': 4.2957, 'grad_norm': 0.4366244077682495, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 360710144}\n{'loss': 4.3502, 'grad_norm': 0.5610309839248657, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 361758720}\n{'loss': 4.2673, 'grad_norm': 0.42132946848869324, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 362807296}\n{'loss': 4.2565, 'grad_norm': 0.45927727222442627, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 363855872}\n{'loss': 4.3009, 'grad_norm': 0.40793168544769287, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 364904448}\n{'loss': 4.2584, 'grad_norm': 0.3818293511867523, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 365953024}\n{'loss': 4.3187, 'grad_norm': 0.4942944645881653, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 367001600}\n{'loss': 4.2056, 'grad_norm': 0.5316190719604492, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 368050176}\n{'loss': 4.2403, 'grad_norm': 0.4738222658634186, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 369098752}\n{'loss': 4.244, 'grad_norm': 0.41153445839881897, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 370147328}\n{'loss': 4.2876, 'grad_norm': 0.35864201188087463, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 371195904}\n{'loss': 4.2457, 'grad_norm': 0.4317127466201782, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 372244480}\n{'loss': 4.2138, 'grad_norm': 0.4922076165676117, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 373293056}\n{'loss': 4.1875, 'grad_norm': 0.5150508880615234, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 374341632}\n{'loss': 4.1485, 'grad_norm': 0.40701162815093994, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 375390208}\n{'loss': 4.1062, 'grad_norm': 0.40378910303115845, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 376438784}\n{'loss': 4.226, 'grad_norm': 0.4435281753540039, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 377487360}\n{'loss': 4.2034, 'grad_norm': 0.37908127903938293, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 378535936}\n{'loss': 4.1502, 'grad_norm': 0.408202588558197, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 379584512}\n{'loss': 4.1623, 'grad_norm': 0.4542413651943207, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 380633088}\n{'loss': 4.206, 'grad_norm': 0.5084658861160278, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 381681664}\n{'loss': 4.1867, 'grad_norm': 0.432908833026886, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 382730240}\n{'loss': 4.2377, 'grad_norm': 0.38273656368255615, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 383778816}\n{'loss': 4.1443, 'grad_norm': 0.39886555075645447, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 384827392}\n{'loss': 4.16, 'grad_norm': 0.4073260724544525, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 385875968}\n{'loss': 4.0871, 'grad_norm': 0.46062660217285156, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 386924544}\n{'loss': 4.1655, 'grad_norm': 0.3555128574371338, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 387973120}\n{'loss': 4.1993, 'grad_norm': 0.35318323969841003, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 389021696}\n{'loss': 4.0745, 'grad_norm': 0.3469637632369995, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 390070272}\n{'loss': 4.1844, 'grad_norm': 0.3650517761707306, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 391118848}\n{'loss': 4.1744, 'grad_norm': 0.4310692846775055, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 392167424}\n{'loss': 4.1896, 'grad_norm': 0.465585857629776, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 393216000}\n{'loss': 4.0568, 'grad_norm': 0.5539769530296326, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 394264576}\n{'loss': 4.2642, 'grad_norm': 0.5437971949577332, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 395313152}\n{'loss': 4.1705, 'grad_norm': 0.6534202694892883, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 396361728}\n{'loss': 3.9844, 'grad_norm': 0.7271204590797424, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 397410304}\n{'loss': 4.105, 'grad_norm': 0.7395262122154236, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 398458880}\n{'loss': 4.2332, 'grad_norm': 0.9734097719192505, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 399507456}\n{'loss': 4.1501, 'grad_norm': 1.1519765853881836, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 400556032}\n{'loss': 4.0756, 'grad_norm': 0.7837873697280884, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 401604608}\n{'loss': 4.013, 'grad_norm': 0.8097010850906372, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 402653184}\n{'eval_loss': 4.120734214782715, 'eval_runtime': 626.8806, 'eval_samples_per_second': 26.136, 'eval_steps_per_second': 0.204, 'epoch': 0.05, 'num_input_tokens_seen': 402653184}\n{'loss': 4.0955, 'grad_norm': 0.6811020970344543, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 403701760}\n{'loss': 4.0917, 'grad_norm': 0.5382081270217896, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 404750336}\n{'loss': 4.0414, 'grad_norm': 0.4250117242336273, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 405798912}\n{'loss': 4.1051, 'grad_norm': 0.4233124256134033, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 406847488}\n{'loss': 4.1475, 'grad_norm': 0.41960859298706055, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 407896064}\n{'loss': 4.0322, 'grad_norm': 0.4991297423839569, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 408944640}\n{'loss': 4.0664, 'grad_norm': 0.43890711665153503, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 409993216}\n{'loss': 4.1126, 'grad_norm': 0.38538315892219543, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 411041792}\n{'loss': 4.0591, 'grad_norm': 0.41170960664749146, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 412090368}\n{'loss': 4.1145, 'grad_norm': 0.42465972900390625, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 413138944}\n{'loss': 4.0393, 'grad_norm': 0.4215935468673706, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 414187520}\n{'loss': 3.9509, 'grad_norm': 0.5031537413597107, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 415236096}\n{'loss': 3.9314, 'grad_norm': 0.5212794542312622, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 416284672}\n{'loss': 4.062, 'grad_norm': 0.5779813528060913, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 417333248}\n{'loss': 4.0264, 'grad_norm': 0.5523960590362549, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 418381824}\n{'loss': 4.0366, 'grad_norm': 0.501869797706604, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 419430400}\n{'loss': 4.016, 'grad_norm': 0.390077143907547, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 420478976}\n{'loss': 3.9438, 'grad_norm': 0.39393457770347595, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 421527552}\n{'loss': 3.9882, 'grad_norm': 0.3395244777202606, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 422576128}\n{'loss': 3.95, 'grad_norm': 0.3985426425933838, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 423624704}\n{'loss': 3.9708, 'grad_norm': 0.4353885352611542, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 424673280}\n{'loss': 3.9959, 'grad_norm': 0.39546582102775574, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 425721856}\n{'loss': 3.9475, 'grad_norm': 0.3725046217441559, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 426770432}\n{'loss': 3.8599, 'grad_norm': 0.5391167998313904, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 427819008}\n{'loss': 3.9765, 'grad_norm': 0.5383077263832092, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 428867584}\n{'loss': 3.8999, 'grad_norm': 0.4455236494541168, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 429916160}\n{'loss': 4.0357, 'grad_norm': 0.4489726722240448, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 430964736}\n{'loss': 3.992, 'grad_norm': 0.45914894342422485, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 432013312}\n{'loss': 3.9556, 'grad_norm': 0.5718650817871094, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 433061888}\n{'loss': 3.9797, 'grad_norm': 0.5529163479804993, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 434110464}\n{'loss': 3.9479, 'grad_norm': 0.4689369201660156, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 435159040}\n{'loss': 3.9358, 'grad_norm': 0.448303759098053, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 436207616}\n{'loss': 3.9699, 'grad_norm': 0.4203392565250397, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 437256192}\n{'loss': 3.8173, 'grad_norm': 0.4046834707260132, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 438304768}\n{'loss': 3.8183, 'grad_norm': 0.3998134136199951, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 439353344}\n{'loss': 3.8477, 'grad_norm': 0.4120945632457733, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 440401920}\n{'loss': 3.8486, 'grad_norm': 0.39726078510284424, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 441450496}\n{'loss': 3.942, 'grad_norm': 0.399142861366272, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 442499072}\n{'loss': 3.9038, 'grad_norm': 0.41262856125831604, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 443547648}\n{'loss': 3.8447, 'grad_norm': 0.4645870327949524, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 444596224}\n{'loss': 3.9215, 'grad_norm': 0.49330976605415344, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 445644800}\n{'loss': 4.5329, 'grad_norm': 4.813076972961426, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 446693376}\n{'loss': 3.763, 'grad_norm': 1.0100675821304321, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 447741952}\n{'loss': 3.9888, 'grad_norm': 1.2422761917114258, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 448790528}\n{'loss': 3.9209, 'grad_norm': 1.1251254081726074, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 449839104}\n{'loss': 4.1438, 'grad_norm': 1.926529049873352, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 450887680}\n{'loss': 4.0952, 'grad_norm': 1.2948275804519653, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 451936256}\n{'loss': 3.9411, 'grad_norm': 1.1000643968582153, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 452984832}\n{'loss': 3.988, 'grad_norm': 1.3160468339920044, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 454033408}\n{'loss': 4.0241, 'grad_norm': 1.0201517343521118, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 455081984}\n{'loss': 3.9875, 'grad_norm': 0.9689710140228271, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 456130560}\n{'loss': 3.8684, 'grad_norm': 1.045577049255371, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 457179136}\n{'loss': 3.865, 'grad_norm': 0.931566059589386, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 458227712}\n{'loss': 3.728, 'grad_norm': 0.945274293422699, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 459276288}\n{'loss': 3.955, 'grad_norm': 0.7679930925369263, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 460324864}\n{'loss': 4.4113, 'grad_norm': 0.889451801776886, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 461373440}\n{'loss': 3.8928, 'grad_norm': 0.9069199562072754, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 462422016}\n{'loss': 3.9624, 'grad_norm': 0.8945743441581726, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 463470592}\n{'loss': 3.9698, 'grad_norm': 0.7373656630516052, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 464519168}\n{'loss': 3.921, 'grad_norm': 0.6688440442085266, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 465567744}\n{'loss': 3.8908, 'grad_norm': 0.5442579984664917, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 466616320}\n{'loss': 3.9138, 'grad_norm': 0.5583804845809937, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 467664896}\n{'loss': 3.8731, 'grad_norm': 0.504666268825531, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 468713472}\n{'loss': 3.7961, 'grad_norm': 0.4965992867946625, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 469762048}\n{'eval_loss': 3.7728981971740723, 'eval_runtime': 616.374, 'eval_samples_per_second': 26.581, 'eval_steps_per_second': 0.208, 'epoch': 0.05, 'num_input_tokens_seen': 469762048}\n{'loss': 3.8829, 'grad_norm': 0.44414225220680237, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 470810624}\n{'loss': 3.6939, 'grad_norm': 0.5276159644126892, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 471859200}\n{'loss': 3.8173, 'grad_norm': 0.4666613042354584, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 472907776}\n{'loss': 3.6884, 'grad_norm': 0.4581243097782135, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 473956352}\n{'loss': 3.789, 'grad_norm': 0.4697781205177307, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 475004928}\n{'loss': 3.8791, 'grad_norm': 0.5336131453514099, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 476053504}\n{'loss': 3.8077, 'grad_norm': 0.5709654092788696, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 477102080}\n{'loss': 3.8421, 'grad_norm': 0.5592761039733887, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 478150656}\n{'loss': 3.8135, 'grad_norm': 0.4490680694580078, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 479199232}\n{'loss': 3.7535, 'grad_norm': 0.3931736648082733, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 480247808}\n{'loss': 3.7885, 'grad_norm': 0.41578060388565063, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 481296384}\n{'loss': 3.6255, 'grad_norm': 0.429817795753479, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 482344960}\n{'loss': 3.7202, 'grad_norm': 0.49616578221321106, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 483393536}\n 9%|▊ | 704/8192 [9:33:48<79:08:04, 38.05s/it]'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 0faae356-e828-4cff-9a49-42b397431927)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk4/example_holdout_185.jsonl.zst\n 9%|▊ | 704/8192 [9:38:28<79:08:04, 38.05s/it]Retrying in 1s [Retry 1/5].\n 9%|▊ | 704/8192 [9:38:28<79:08:04, 38.05s/it]'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 9557423f-6937-4f70-b50f-05b0c01f5bf3)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk4/example_holdout_4035.jsonl.zst\n 9%|▊ | 704/8192 [9:44:58<79:08:04, 38.05s/it]Retrying in 1s [Retry 1/5].\n 10%|█ | 832/8192 [11:28:20<80:32:25, 39.39s/it]'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 939d1d36-c607-4d3c-a0a0-8e447579340b)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk3/example_holdout_165.jsonl.zst\n 10%|█ | 832/8192 [11:30:25<80:32:25, 39.39s/it]Retrying in 1s [Retry 1/5].\n 10%|█ | 832/8192 [11:30:25<80:32:25, 39.39s/it]'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 0b99bfd1-07ae-46db-81fa-fc6ef0eabdbc)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk3/example_holdout_1529.jsonl.zst\n 10%|█ | 832/8192 [11:38:24<80:32:25, 39.39s/it]Retrying in 1s [Retry 1/5].\n 10%|█ | 832/8192 [11:38:24<80:32:25, 39.39s/it]'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: c208d1bb-5d13-45d2-9a01-1d5a2defa598)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk5/example_holdout_4562.jsonl.zst\n 10%|█ | 832/8192 [11:39:58<80:32:25, 39.39s/it]Retrying in 1s [Retry 1/5].\n 10%|█ | 832/8192 [11:39:58<80:32:25, 39.39s/it]'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 2bf98b5c-473b-4e00-aca2-b152efddb992)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk3/example_holdout_4414.jsonl.zst\n 10%|█ | 832/8192 [11:41:00<80:32:25, 39.39s/it]Retrying in 1s [Retry 1/5].\n 11%|█ | 896/8192 [12:24:54<77:09:28, 38.07s/it]'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 3b8321b9-2d88-4bfa-9eca-b201c444cba3)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk5/example_holdout_405.jsonl.zst\n 11%|█ | 896/8192 [12:25:55<77:09:28, 38.07s/it]Retrying in 1s [Retry 1/5].\n 11%|█ | 896/8192 [12:25:55<77:09:28, 38.07s/it]'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: a98a238a-c0a4-4295-8502-316a89a7ae29)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk1/example_holdout_2524.jsonl.zst\n 11%|█ | 896/8192 [12:33:14<77:09:28, 38.07s/it]Retrying in 1s [Retry 1/5].\n 11%|█▏ | 922/8192 [12:52:49<76:09:46, 37.71s/it]'(ProtocolError('Connection aborted.', RemoteDisconnected('Remote end closed connection without response')), '(Request ID: 36a7cc72-4605-416a-8742-59488d719150)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/train/chunk1/example_train_5267.jsonl.zst\n 11%|█▏ | 922/8192 [12:52:59<76:09:46, 37.71s/it]Retrying in 1s [Retry 1/5].\n 12%|█▏ | 943/8192 [13:06:07<76:15:57, 37.88s/it]\n{'loss': 3.7796, 'grad_norm': 0.4774172008037567, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 484442112}\n{'loss': 3.7779, 'grad_norm': 0.45830512046813965, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 485490688}\n{'loss': 3.6516, 'grad_norm': 0.4130597710609436, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 486539264}\n{'loss': 3.7018, 'grad_norm': 0.3804127275943756, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 487587840}\n{'loss': 3.6893, 'grad_norm': 0.36560356616973877, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 488636416}\n{'loss': 3.6362, 'grad_norm': 0.3827981948852539, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 489684992}\n{'loss': 3.5987, 'grad_norm': 0.37492236495018005, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 490733568}\n{'loss': 3.7165, 'grad_norm': 0.46995237469673157, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 491782144}\n{'loss': 3.6097, 'grad_norm': 0.4908960461616516, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 492830720}\n{'loss': 3.6035, 'grad_norm': 0.5318525433540344, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 493879296}\n{'loss': 3.6643, 'grad_norm': 0.4848596453666687, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 494927872}\n{'loss': 3.6586, 'grad_norm': 0.4421922266483307, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 495976448}\n{'loss': 3.5902, 'grad_norm': 0.4107126295566559, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 497025024}\n{'loss': 3.6937, 'grad_norm': 0.3975088894367218, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 498073600}\n{'loss': 3.6496, 'grad_norm': 0.4559416174888611, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 499122176}\n{'loss': 3.66, 'grad_norm': 0.41401296854019165, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 500170752}\n{'loss': 3.5551, 'grad_norm': 0.45235902070999146, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 501219328}\n{'loss': 3.4794, 'grad_norm': 0.427593857049942, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 502267904}\n{'loss': 3.5345, 'grad_norm': 0.4024144411087036, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 503316480}\n{'loss': 3.5784, 'grad_norm': 0.410284161567688, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 504365056}\n{'loss': 3.6177, 'grad_norm': 0.37683290243148804, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 505413632}\n{'loss': 3.5883, 'grad_norm': 0.417323499917984, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 506462208}\n{'loss': 3.5888, 'grad_norm': 0.4327872693538666, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 507510784}\n{'loss': 3.5891, 'grad_norm': 0.5366392731666565, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 508559360}\n{'loss': 3.3725, 'grad_norm': 0.45735156536102295, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 509607936}\n{'loss': 3.5674, 'grad_norm': 0.4255360960960388, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 510656512}\n{'loss': 3.3523, 'grad_norm': 0.6517689824104309, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 511705088}\n{'loss': 3.5901, 'grad_norm': 0.5713740587234497, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 512753664}\n{'loss': 3.542, 'grad_norm': 0.5570502281188965, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 513802240}\n{'loss': 3.4246, 'grad_norm': 0.6477808356285095, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 514850816}\n{'loss': 3.4954, 'grad_norm': 0.5195346474647522, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 515899392}\n{'loss': 3.6516, 'grad_norm': 0.5446246862411499, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 516947968}\n{'loss': 3.5955, 'grad_norm': 0.5475099086761475, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 517996544}\n{'loss': 3.5516, 'grad_norm': 0.4719395041465759, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 519045120}\n{'loss': 3.5439, 'grad_norm': 0.43647533655166626, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 520093696}\n{'loss': 3.579, 'grad_norm': 0.5048384070396423, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 521142272}\n{'loss': 3.4742, 'grad_norm': 0.4902295172214508, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 522190848}\n{'loss': 3.4363, 'grad_norm': 0.525496244430542, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 523239424}\n{'loss': 3.3658, 'grad_norm': 0.5224571824073792, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 524288000}\n{'loss': 3.4816, 'grad_norm': 0.45781856775283813, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 525336576}\n{'loss': 3.4612, 'grad_norm': 0.3764704763889313, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 526385152}\n{'loss': 3.5172, 'grad_norm': 0.3994409143924713, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 527433728}\n{'loss': 3.5462, 'grad_norm': 0.45144984126091003, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 528482304}\n{'loss': 3.5079, 'grad_norm': 0.4901409149169922, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 529530880}\n{'loss': 3.5187, 'grad_norm': 0.45689818263053894, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 530579456}\n{'loss': 3.4408, 'grad_norm': 0.4650699198246002, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 531628032}\n{'loss': 3.4019, 'grad_norm': 0.40419647097587585, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 532676608}\n{'loss': 3.5255, 'grad_norm': 0.3895981013774872, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 533725184}\n{'loss': 3.312, 'grad_norm': 0.46533191204071045, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 534773760}\n{'loss': 3.4233, 'grad_norm': 0.5021492838859558, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 535822336}\n{'loss': 3.4211, 'grad_norm': 0.6763796806335449, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 536870912}\n{'eval_loss': 3.38647198677063, 'eval_runtime': 681.5531, 'eval_samples_per_second': 24.039, 'eval_steps_per_second': 0.188, 'epoch': 0.06, 'num_input_tokens_seen': 536870912}\n{'loss': 3.2825, 'grad_norm': 0.75739586353302, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 537919488}\n{'loss': 3.4758, 'grad_norm': 0.49962809681892395, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 538968064}\n{'loss': 3.4105, 'grad_norm': 0.47640085220336914, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 540016640}\n{'loss': 3.4393, 'grad_norm': 0.4722411632537842, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 541065216}\n{'loss': 3.4254, 'grad_norm': 0.4715781807899475, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 542113792}\n{'loss': 3.3992, 'grad_norm': 0.474001407623291, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 543162368}\n{'loss': 3.4274, 'grad_norm': 0.48976385593414307, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 544210944}\n{'loss': 3.3255, 'grad_norm': 0.4819697141647339, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 545259520}\n{'loss': 3.3679, 'grad_norm': 0.37490880489349365, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 546308096}\n{'loss': 3.377, 'grad_norm': 0.4356544315814972, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 547356672}\n{'loss': 3.4294, 'grad_norm': 0.3786229193210602, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 548405248}\n{'loss': 3.2323, 'grad_norm': 0.4364008605480194, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 549453824}\n{'loss': 3.4615, 'grad_norm': 0.39242950081825256, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 550502400}\n{'loss': 3.3589, 'grad_norm': 0.4270903766155243, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 551550976}\n{'loss': 3.4366, 'grad_norm': 0.4204763174057007, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 552599552}\n{'loss': 3.3859, 'grad_norm': 0.554025411605835, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 553648128}\n{'loss': 3.2353, 'grad_norm': 0.5719075798988342, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 554696704}\n{'loss': 3.3798, 'grad_norm': 0.4803822338581085, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 555745280}\n{'loss': 3.1191, 'grad_norm': 0.5494056344032288, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 556793856}\n{'loss': 3.424, 'grad_norm': 0.4569101333618164, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 557842432}\n{'loss': 3.4299, 'grad_norm': 0.48103874921798706, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 558891008}\n{'loss': 3.3483, 'grad_norm': 0.44187718629837036, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 559939584}\n{'loss': 3.3196, 'grad_norm': 0.4359618127346039, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 560988160}\n{'loss': 3.4479, 'grad_norm': 0.37653473019599915, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 562036736}\n{'loss': 3.2509, 'grad_norm': 0.4397211968898773, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 563085312}\n{'loss': 3.4193, 'grad_norm': 0.5013746619224548, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 564133888}\n{'loss': 3.3391, 'grad_norm': 0.5044407844543457, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 565182464}\n{'loss': 3.3223, 'grad_norm': 0.45118412375450134, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 566231040}\n{'loss': 3.3041, 'grad_norm': 0.5617747902870178, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 567279616}\n{'loss': 3.3436, 'grad_norm': 0.5154598355293274, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 568328192}\n{'loss': 3.3739, 'grad_norm': 0.4647876024246216, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 569376768}\n{'loss': 3.3366, 'grad_norm': 0.3766598701477051, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 570425344}\n{'loss': 3.3098, 'grad_norm': 0.40857356786727905, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 571473920}\n{'loss': 3.0331, 'grad_norm': 0.4163903594017029, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 572522496}\n{'loss': 3.3184, 'grad_norm': 0.38519713282585144, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 573571072}\n{'loss': 3.3886, 'grad_norm': 0.38155344128608704, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 574619648}\n{'loss': 3.2855, 'grad_norm': 0.3684964179992676, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 575668224}\n{'loss': 3.0484, 'grad_norm': 0.3504279553890228, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 576716800}\n{'loss': 3.2702, 'grad_norm': 0.42653048038482666, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 577765376}\n{'loss': 3.312, 'grad_norm': 0.4263192415237427, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 578813952}\n{'loss': 3.3355, 'grad_norm': 0.4272316098213196, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 579862528}\n{'loss': 3.2806, 'grad_norm': 0.40996676683425903, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 580911104}\n{'loss': 3.2504, 'grad_norm': 0.403242826461792, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 581959680}\n{'loss': 3.2924, 'grad_norm': 0.46690869331359863, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 583008256}\n{'loss': 3.1466, 'grad_norm': 0.515250027179718, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 584056832}\n{'loss': 3.2898, 'grad_norm': 0.4872475266456604, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 585105408}\n{'loss': 3.3699, 'grad_norm': 0.43510228395462036, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 586153984}\n{'loss': 3.1568, 'grad_norm': 0.4732394814491272, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 587202560}\n{'loss': 3.2145, 'grad_norm': 0.49767330288887024, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 588251136}\n{'loss': 3.2966, 'grad_norm': 0.4968816936016083, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 589299712}\n{'loss': 3.2249, 'grad_norm': 0.4123048782348633, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 590348288}\n{'loss': 3.3819, 'grad_norm': 0.4349605143070221, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 591396864}\n{'loss': 3.3477, 'grad_norm': 0.47485488653182983, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 592445440}\n{'loss': 3.3202, 'grad_norm': 0.46784669160842896, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 593494016}\n{'loss': 3.2231, 'grad_norm': 0.42318931221961975, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 594542592}\n{'loss': 3.2901, 'grad_norm': 0.40393564105033875, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 595591168}\n{'loss': 3.2065, 'grad_norm': 0.4144214391708374, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 596639744}\n{'loss': 2.8698, 'grad_norm': 0.40921372175216675, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 597688320}\n{'loss': 3.2242, 'grad_norm': 0.35226207971572876, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 598736896}\n{'loss': 3.2125, 'grad_norm': 0.43364742398262024, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 599785472}\n{'loss': 3.2296, 'grad_norm': 0.4272080361843109, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 600834048}\n{'loss': 2.9346, 'grad_norm': 0.4155097007751465, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 601882624}\n{'loss': 3.2706, 'grad_norm': 0.4263918697834015, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 602931200}\n{'loss': 3.3124, 'grad_norm': 0.43336594104766846, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 603979776}\n{'eval_loss': 3.1686322689056396, 'eval_runtime': 664.0006, 'eval_samples_per_second': 24.675, 'eval_steps_per_second': 0.193, 'epoch': 0.07, 'num_input_tokens_seen': 603979776}\n{'loss': 3.349, 'grad_norm': 0.4504219889640808, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 605028352}\n{'loss': 3.3015, 'grad_norm': 0.5899333953857422, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 606076928}\n{'loss': 3.2036, 'grad_norm': 0.5814825892448425, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 607125504}\n{'loss': 3.2786, 'grad_norm': 0.3971703350543976, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 608174080}\n{'loss': 3.0979, 'grad_norm': 0.5669280290603638, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 609222656}\n{'loss': 3.0683, 'grad_norm': 0.4786263406276703, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 610271232}\n{'loss': 3.1731, 'grad_norm': 0.46415817737579346, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 611319808}\n{'loss': 3.2282, 'grad_norm': 0.4295870363712311, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 612368384}\n{'loss': 3.2196, 'grad_norm': 0.4184265732765198, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 613416960}\n{'loss': 3.2445, 'grad_norm': 0.4624122381210327, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 614465536}\n{'loss': 3.1135, 'grad_norm': 0.3681364059448242, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 615514112}\n{'loss': 3.1877, 'grad_norm': 0.3612712621688843, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 616562688}\n{'loss': 3.308, 'grad_norm': 0.34696292877197266, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 617611264}\n{'loss': 3.4995, 'grad_norm': 0.5025363564491272, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 618659840}\n{'loss': 3.1853, 'grad_norm': 0.6652331352233887, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 619708416}\n{'loss': 3.1844, 'grad_norm': 0.7156277894973755, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 620756992}\n{'loss': 3.2325, 'grad_norm': 0.5241081118583679, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 621805568}\n{'loss': 2.972, 'grad_norm': 0.5001779198646545, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 622854144}\n{'loss': 3.1742, 'grad_norm': 0.4062795341014862, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 623902720}\n{'loss': 3.2539, 'grad_norm': 0.4671201705932617, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 624951296}\n{'loss': 3.1948, 'grad_norm': 0.3894169330596924, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 625999872}\n{'loss': 3.2469, 'grad_norm': 0.4665684998035431, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 627048448}\n{'loss': 3.2742, 'grad_norm': 0.43211206793785095, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 628097024}\n{'loss': 3.1195, 'grad_norm': 0.4476025700569153, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 629145600}\n{'loss': 3.2127, 'grad_norm': 0.3596750795841217, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 630194176}\n{'loss': 3.1741, 'grad_norm': 0.40869519114494324, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 631242752}\n{'loss': 3.1708, 'grad_norm': 0.36658936738967896, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 632291328}\n{'loss': 3.0925, 'grad_norm': 0.35227081179618835, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 633339904}\n{'loss': 3.171, 'grad_norm': 0.3942136764526367, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 634388480}\n{'loss': 3.1729, 'grad_norm': 0.3163004219532013, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 635437056}\n{'loss': 3.1683, 'grad_norm': 0.35835322737693787, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 636485632}\n{'loss': 3.1118, 'grad_norm': 0.3395129144191742, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 637534208}\n{'loss': 3.2123, 'grad_norm': 0.38003110885620117, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 638582784}\n{'loss': 3.167, 'grad_norm': 0.4000258445739746, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 639631360}\n{'loss': 3.0668, 'grad_norm': 0.38393035531044006, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 640679936}\n{'loss': 2.9125, 'grad_norm': 0.38961607217788696, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 641728512}\n{'loss': 3.1024, 'grad_norm': 0.3406165540218353, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 642777088}\n{'loss': 3.1262, 'grad_norm': 0.4859096109867096, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 643825664}\n{'loss': 3.1155, 'grad_norm': 0.5454179048538208, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 644874240}\n{'loss': 3.1594, 'grad_norm': 0.46631914377212524, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 645922816}\n{'loss': 3.1164, 'grad_norm': 0.4049534797668457, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 646971392}\n{'loss': 2.9272, 'grad_norm': 0.32954707741737366, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 648019968}\n{'loss': 3.0888, 'grad_norm': 0.409853458404541, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 649068544}\n{'loss': 3.2185, 'grad_norm': 0.43080267310142517, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 650117120}\n{'loss': 3.1871, 'grad_norm': 0.4323279857635498, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 651165696}\n{'loss': 2.9759, 'grad_norm': 0.3696155846118927, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 652214272}\n{'loss': 3.1058, 'grad_norm': 0.3963398337364197, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 653262848}\n{'loss': 3.1214, 'grad_norm': 0.4020082652568817, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 654311424}\n{'loss': 3.0678, 'grad_norm': 0.4210987091064453, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 655360000}\n{'loss': 2.9177, 'grad_norm': 0.44535601139068604, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 656408576}\n{'loss': 3.1005, 'grad_norm': 0.363700807094574, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 657457152}\n{'loss': 3.0285, 'grad_norm': 0.393673837184906, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 658505728}\n{'loss': 3.031, 'grad_norm': 0.3472498059272766, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 659554304}\n{'loss': 3.1837, 'grad_norm': 0.45663976669311523, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 660602880}\n{'loss': 3.1636, 'grad_norm': 0.44765880703926086, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 661651456}\n{'loss': 3.0421, 'grad_norm': 0.5289708375930786, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 662700032}\n{'loss': 2.9394, 'grad_norm': 0.5272406339645386, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 663748608}\n{'loss': 3.2419, 'grad_norm': 0.5471237301826477, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 664797184}\n{'loss': 3.1506, 'grad_norm': 0.5762659311294556, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 665845760}\n{'loss': 3.1258, 'grad_norm': 0.5486758351325989, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 666894336}\n{'loss': 3.1686, 'grad_norm': 0.4877275228500366, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 667942912}\n{'loss': 3.1062, 'grad_norm': 0.35992035269737244, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 668991488}\n{'loss': 3.1655, 'grad_norm': 0.39184319972991943, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 670040064}\n{'loss': 3.1455, 'grad_norm': 0.46003854274749756, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 671088640}\n{'eval_loss': 3.036459445953369, 'eval_runtime': 676.6057, 'eval_samples_per_second': 24.215, 'eval_steps_per_second': 0.189, 'epoch': 0.08, 'num_input_tokens_seen': 671088640}\n{'loss': 3.1058, 'grad_norm': 0.45958808064460754, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 672137216}\n{'loss': 3.0861, 'grad_norm': 0.41562288999557495, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 673185792}\n{'loss': 3.1135, 'grad_norm': 0.38576263189315796, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 674234368}\n{'loss': 2.9998, 'grad_norm': 0.3936232924461365, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 675282944}\n{'loss': 3.1349, 'grad_norm': 0.3888678252696991, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 676331520}\n{'loss': 2.9192, 'grad_norm': 0.31759846210479736, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 677380096}\n{'loss': 3.1324, 'grad_norm': 0.3801535964012146, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 678428672}\n{'loss': 3.1064, 'grad_norm': 0.36299699544906616, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 679477248}\n{'loss': 3.2258, 'grad_norm': 0.36732324957847595, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 680525824}\n{'loss': 3.2162, 'grad_norm': 0.42108356952667236, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 681574400}\n{'loss': 3.2189, 'grad_norm': 0.4113474190235138, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 682622976}\n{'loss': 3.0585, 'grad_norm': 0.39936116337776184, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 683671552}\n{'loss': 3.0693, 'grad_norm': 0.35424771904945374, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 684720128}\n{'loss': 3.1134, 'grad_norm': 0.3333597183227539, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 685768704}\n{'loss': 3.0536, 'grad_norm': 0.37569180130958557, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 686817280}\n{'loss': 3.1396, 'grad_norm': 0.33836638927459717, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 687865856}\n{'loss': 3.1353, 'grad_norm': 0.31407052278518677, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 688914432}\n{'loss': 2.9977, 'grad_norm': 0.34316036105155945, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 689963008}\n{'loss': 3.1683, 'grad_norm': 0.3779186010360718, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 691011584}\n{'loss': 2.9567, 'grad_norm': 0.3414095342159271, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 692060160}\n{'loss': 3.0806, 'grad_norm': 0.31614938378334045, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 693108736}\n{'loss': 3.0975, 'grad_norm': 0.35552725195884705, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 694157312}\n{'loss': 3.0241, 'grad_norm': 0.38724133372306824, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 695205888}\n{'loss': 3.0701, 'grad_norm': 0.3581823408603668, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 696254464}\n{'loss': 3.0222, 'grad_norm': 0.3632317781448364, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 697303040}\n{'loss': 3.0188, 'grad_norm': 0.40560677647590637, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 698351616}\n{'loss': 3.106, 'grad_norm': 0.3953804075717926, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 699400192}\n{'loss': 3.1552, 'grad_norm': 0.40652376413345337, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 700448768}\n{'loss': 2.8893, 'grad_norm': 0.3625616133213043, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 701497344}\n{'loss': 2.9183, 'grad_norm': 0.3450768291950226, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 702545920}\n{'loss': 2.9828, 'grad_norm': 0.36742398142814636, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 703594496}\n{'loss': 3.0327, 'grad_norm': 0.3611394762992859, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 704643072}\n{'loss': 3.1466, 'grad_norm': 0.3593210279941559, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 705691648}\n{'loss': 3.0163, 'grad_norm': 0.3994838297367096, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 706740224}\n{'loss': 3.0563, 'grad_norm': 0.41202738881111145, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 707788800}\n{'loss': 3.0912, 'grad_norm': 0.3404449224472046, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 708837376}\n{'loss': 3.0108, 'grad_norm': 0.3745224177837372, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 709885952}\n{'loss': 3.0864, 'grad_norm': 0.4320204555988312, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 710934528}\n{'loss': 3.0387, 'grad_norm': 0.34649956226348877, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 711983104}\n{'loss': 3.013, 'grad_norm': 0.34744057059288025, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 713031680}\n{'loss': 3.0985, 'grad_norm': 0.3638330101966858, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 714080256}\n{'loss': 3.1498, 'grad_norm': 0.43823716044425964, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 715128832}\n{'loss': 3.0366, 'grad_norm': 0.6364668011665344, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 716177408}\n{'loss': 2.9614, 'grad_norm': 0.6294976472854614, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 717225984}\n{'loss': 3.0619, 'grad_norm': 0.5871465802192688, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 718274560}\n{'loss': 3.1489, 'grad_norm': 0.7779986262321472, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 719323136}\n{'loss': 3.1331, 'grad_norm': 1.102079153060913, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 720371712}\n{'loss': 3.1423, 'grad_norm': 0.6352481245994568, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 721420288}\n{'loss': 3.1509, 'grad_norm': 0.5698557496070862, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 722468864}\n{'loss': 2.6683, 'grad_norm': 0.501290500164032, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 723517440}\n{'loss': 3.0334, 'grad_norm': 0.4512772560119629, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 724566016}\n{'loss': 3.0485, 'grad_norm': 0.4409146308898926, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 725614592}\n{'loss': 3.0154, 'grad_norm': 0.3902524411678314, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 726663168}\n{'loss': 3.0742, 'grad_norm': 0.3692473769187927, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 727711744}\n{'loss': 2.8306, 'grad_norm': 0.385005384683609, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 728760320}\n{'loss': 2.9258, 'grad_norm': 0.37514418363571167, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 729808896}\n{'loss': 3.0061, 'grad_norm': 0.42038342356681824, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 730857472}\n{'loss': 3.0588, 'grad_norm': 0.40415653586387634, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 731906048}\n{'loss': 2.9542, 'grad_norm': 0.38514354825019836, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 732954624}\n{'loss': 2.9252, 'grad_norm': 0.3861909806728363, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 734003200}\n{'loss': 2.8432, 'grad_norm': 0.40519189834594727, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 735051776}\n{'loss': 2.9779, 'grad_norm': 0.37011685967445374, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 736100352}\n{'loss': 2.9908, 'grad_norm': 0.34850460290908813, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 737148928}\n{'loss': 2.9589, 'grad_norm': 0.371500700712204, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 738197504}\n[2025-03-11 00:58:41 WARNING] '(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 0faae356-e828-4cff-9a49-42b397431927)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk4/example_holdout_185.jsonl.zst\n[2025-03-11 00:58:41 WARNING] Retrying in 1s [Retry 1/5].\n[2025-03-11 01:05:12 WARNING] '(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 9557423f-6937-4f70-b50f-05b0c01f5bf3)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk4/example_holdout_4035.jsonl.zst\n[2025-03-11 01:05:12 WARNING] Retrying in 1s [Retry 1/5].\n{'eval_loss': 2.9496541023254395, 'eval_runtime': 714.5105, 'eval_samples_per_second': 22.93, 'eval_steps_per_second': 0.179, 'epoch': 0.09, 'num_input_tokens_seen': 738197504}\n{'loss': 2.9029, 'grad_norm': 0.3044391870498657, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 739246080}\n{'loss': 2.8536, 'grad_norm': 0.34875407814979553, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 740294656}\n{'loss': 2.8478, 'grad_norm': 0.4568244516849518, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 741343232}\n{'loss': 3.1164, 'grad_norm': 0.44005003571510315, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 742391808}\n{'loss': 2.8584, 'grad_norm': 0.39490336179733276, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 743440384}\n{'loss': 3.0681, 'grad_norm': 0.4427798092365265, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 744488960}\n{'loss': 3.0315, 'grad_norm': 0.4771106243133545, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 745537536}\n{'loss': 2.8794, 'grad_norm': 0.4624035656452179, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 746586112}\n{'loss': 2.9624, 'grad_norm': 0.4244724214076996, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 747634688}\n{'loss': 2.9925, 'grad_norm': 0.39176708459854126, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 748683264}\n{'loss': 2.9753, 'grad_norm': 0.43686383962631226, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 749731840}\n{'loss': 3.0718, 'grad_norm': 0.4536241590976715, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 750780416}\n{'loss': 3.0065, 'grad_norm': 0.3421417772769928, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 751828992}\n{'loss': 2.8965, 'grad_norm': 0.30937010049819946, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 752877568}\n{'loss': 3.0347, 'grad_norm': 0.33371758460998535, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 753926144}\n{'loss': 3.0133, 'grad_norm': 0.3285418450832367, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 754974720}\n{'loss': 3.1219, 'grad_norm': 0.33177846670150757, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 756023296}\n{'loss': 2.9354, 'grad_norm': 0.36487525701522827, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 757071872}\n{'loss': 3.133, 'grad_norm': 0.35576146841049194, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 758120448}\n{'loss': 2.9771, 'grad_norm': 0.4217855930328369, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 759169024}\n{'loss': 2.9906, 'grad_norm': 0.4007001519203186, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 760217600}\n{'loss': 3.0219, 'grad_norm': 0.36323100328445435, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 761266176}\n{'loss': 2.89, 'grad_norm': 0.323297381401062, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 762314752}\n{'loss': 2.8566, 'grad_norm': 0.3450233042240143, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 763363328}\n{'loss': 3.0536, 'grad_norm': 0.36228489875793457, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 764411904}\n{'loss': 2.9259, 'grad_norm': 0.3553276062011719, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 765460480}\n{'loss': 2.8431, 'grad_norm': 0.37074941396713257, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 766509056}\n{'loss': 3.0549, 'grad_norm': 0.4105451703071594, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 767557632}\n{'loss': 2.8431, 'grad_norm': 0.4433744549751282, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 768606208}\n{'loss': 2.9545, 'grad_norm': 0.4024113416671753, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 769654784}\n{'loss': 2.9237, 'grad_norm': 0.3534025549888611, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 770703360}\n{'loss': 2.9306, 'grad_norm': 0.3788505792617798, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 771751936}\n{'loss': 2.9218, 'grad_norm': 0.3302527666091919, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 772800512}\n{'loss': 3.0647, 'grad_norm': 0.36651748418807983, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 773849088}\n{'loss': 3.0289, 'grad_norm': 0.35838624835014343, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 774897664}\n{'loss': 2.9157, 'grad_norm': 0.34652525186538696, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 775946240}\n{'loss': 2.9358, 'grad_norm': 0.37369009852409363, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 776994816}\n{'loss': 3.0725, 'grad_norm': 0.37748783826828003, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 778043392}\n{'loss': 2.8444, 'grad_norm': 0.339287132024765, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 779091968}\n{'loss': 2.859, 'grad_norm': 0.3415367305278778, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 780140544}\n{'loss': 2.9334, 'grad_norm': 0.3661401569843292, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 781189120}\n{'loss': 3.0287, 'grad_norm': 0.3512025773525238, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 782237696}\n{'loss': 2.8093, 'grad_norm': 0.3412944972515106, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 783286272}\n{'loss': 2.9112, 'grad_norm': 0.35280412435531616, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 784334848}\n{'loss': 2.8939, 'grad_norm': 0.3652521073818207, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 785383424}\n{'loss': 2.961, 'grad_norm': 0.3336659371852875, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 786432000}\n{'loss': 2.9547, 'grad_norm': 0.3242711126804352, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 787480576}\n{'loss': 2.8035, 'grad_norm': 0.3276830017566681, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 788529152}\n{'loss': 2.9639, 'grad_norm': 0.32558611035346985, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 789577728}\n{'loss': 2.9981, 'grad_norm': 0.32141759991645813, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 790626304}\n{'loss': 2.8053, 'grad_norm': 0.33697575330734253, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 791674880}\n{'loss': 2.9265, 'grad_norm': 0.3305177092552185, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 792723456}\n{'loss': 2.9357, 'grad_norm': 0.3303467035293579, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 793772032}\n{'loss': 2.9209, 'grad_norm': 0.33826348185539246, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 794820608}\n{'loss': 3.0134, 'grad_norm': 0.3682444393634796, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 795869184}\n{'loss': 2.8786, 'grad_norm': 0.364545613527298, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 796917760}\n{'loss': 3.0202, 'grad_norm': 0.4031524360179901, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 797966336}\n{'loss': 2.4912, 'grad_norm': 0.40752920508384705, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 799014912}\n{'loss': 2.9311, 'grad_norm': 0.36912065744400024, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 800063488}\n{'loss': 2.8768, 'grad_norm': 0.3906254172325134, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 801112064}\n{'loss': 2.8677, 'grad_norm': 0.3680756092071533, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 802160640}\n{'loss': 2.967, 'grad_norm': 0.42479801177978516, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 803209216}\n{'loss': 3.0138, 'grad_norm': 0.4966808259487152, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 804257792}\n{'loss': 2.9186, 'grad_norm': 0.413562536239624, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 805306368}\n{'eval_loss': 2.8718671798706055, 'eval_runtime': 1149.5487, 'eval_samples_per_second': 14.253, 'eval_steps_per_second': 0.111, 'epoch': 0.09, 'num_input_tokens_seen': 805306368}\n{'loss': 2.8717, 'grad_norm': 0.3343268632888794, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 806354944}\n{'loss': 3.0123, 'grad_norm': 0.42326104640960693, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 807403520}\n{'loss': 2.9691, 'grad_norm': 0.35408785939216614, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 808452096}\n{'loss': 2.8862, 'grad_norm': 0.35168665647506714, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 809500672}\n{'loss': 2.9754, 'grad_norm': 0.3385300934314728, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 810549248}\n{'loss': 2.751, 'grad_norm': 0.36974239349365234, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 811597824}\n{'loss': 2.8481, 'grad_norm': 0.3535187244415283, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 812646400}\n{'loss': 2.9605, 'grad_norm': 0.39851564168930054, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 813694976}\n{'loss': 2.9251, 'grad_norm': 0.35983574390411377, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 814743552}\n{'loss': 2.8766, 'grad_norm': 0.34153202176094055, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 815792128}\n{'loss': 2.9205, 'grad_norm': 0.3700859546661377, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 816840704}\n{'loss': 2.7621, 'grad_norm': 0.3954067528247833, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 817889280}\n{'loss': 2.886, 'grad_norm': 0.4191531538963318, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 818937856}\n{'loss': 2.9203, 'grad_norm': 0.3315434157848358, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 819986432}\n{'loss': 2.9563, 'grad_norm': 0.3308311700820923, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 821035008}\n{'loss': 2.9391, 'grad_norm': 0.3073643445968628, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 822083584}\n{'loss': 2.7197, 'grad_norm': 0.3343094289302826, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 823132160}\n{'loss': 2.909, 'grad_norm': 0.31464704871177673, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 824180736}\n{'loss': 2.8581, 'grad_norm': 0.40213140845298767, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 825229312}\n{'loss': 2.9224, 'grad_norm': 0.36158621311187744, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 826277888}\n{'loss': 2.985, 'grad_norm': 0.3831183910369873, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 827326464}\n{'loss': 2.8964, 'grad_norm': 0.3219353258609772, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 828375040}\n{'loss': 3.0832, 'grad_norm': 0.31743234395980835, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 829423616}\n{'loss': 2.9602, 'grad_norm': 0.3629371225833893, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 830472192}\n{'loss': 2.8327, 'grad_norm': 0.3800980746746063, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 831520768}\n{'loss': 2.8298, 'grad_norm': 0.3349006772041321, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 832569344}\n{'loss': 2.9633, 'grad_norm': 0.3282972276210785, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 833617920}\n{'loss': 2.9234, 'grad_norm': 0.3283899128437042, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 834666496}\n{'loss': 2.9754, 'grad_norm': 0.33885031938552856, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 835715072}\n{'loss': 2.8825, 'grad_norm': 0.3113347589969635, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 836763648}\n{'loss': 2.9483, 'grad_norm': 0.3759271204471588, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 837812224}\n{'loss': 2.8577, 'grad_norm': 0.38608986139297485, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 838860800}\n{'loss': 2.6639, 'grad_norm': 0.3253604471683502, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 839909376}\n{'loss': 2.8295, 'grad_norm': 0.31234994530677795, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 840957952}\n{'loss': 2.9323, 'grad_norm': 0.37187162041664124, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 842006528}\n{'loss': 3.2357, 'grad_norm': 0.5417175889015198, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 843055104}\n{'loss': 2.8982, 'grad_norm': 0.6133915781974792, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 844103680}\n{'loss': 2.928, 'grad_norm': 0.7637872099876404, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 845152256}\n{'loss': 2.9283, 'grad_norm': 0.7322977781295776, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 846200832}\n{'loss': 2.8209, 'grad_norm': 0.5112255215644836, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 847249408}\n{'loss': 2.8696, 'grad_norm': 0.49990609288215637, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 848297984}\n{'loss': 2.9193, 'grad_norm': 0.4511178135871887, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 849346560}\n{'loss': 2.9658, 'grad_norm': 0.4653412997722626, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 850395136}\n{'loss': 2.889, 'grad_norm': 0.3913695812225342, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 851443712}\n{'loss': 2.9534, 'grad_norm': 0.39285045862197876, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 852492288}\n{'loss': 2.8341, 'grad_norm': 0.5052099227905273, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 853540864}\n{'loss': 3.0436, 'grad_norm': 0.5978823900222778, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 854589440}\n{'loss': 2.9484, 'grad_norm': 0.4584784507751465, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 855638016}\n{'loss': 2.8786, 'grad_norm': 0.40823692083358765, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 856686592}\n{'loss': 2.942, 'grad_norm': 0.4448293447494507, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 857735168}\n{'loss': 2.9347, 'grad_norm': 0.4112764596939087, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 858783744}\n{'loss': 2.8359, 'grad_norm': 0.3826068341732025, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 859832320}\n{'loss': 2.9277, 'grad_norm': 0.37165558338165283, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 860880896}\n{'loss': 2.6527, 'grad_norm': 0.4285834729671478, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 861929472}\n{'loss': 2.8451, 'grad_norm': 0.36497727036476135, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 862978048}\n{'loss': 2.9039, 'grad_norm': 0.35966625809669495, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 864026624}\n{'loss': 2.9268, 'grad_norm': 0.3529391586780548, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 865075200}\n{'loss': 2.9953, 'grad_norm': 0.3455546498298645, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 866123776}\n{'loss': 2.9307, 'grad_norm': 0.3788530230522156, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 867172352}\n{'loss': 2.9448, 'grad_norm': 0.35837656259536743, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 868220928}\n{'loss': 2.9937, 'grad_norm': 0.3842633366584778, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 869269504}\n{'loss': 2.8324, 'grad_norm': 0.32774215936660767, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 870318080}\n{'loss': 2.8613, 'grad_norm': 0.327158659696579, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 871366656}\n{'loss': 2.7653, 'grad_norm': 0.3515920639038086, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 872415232}\n[2025-03-11 02:50:38 WARNING] '(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 939d1d36-c607-4d3c-a0a0-8e447579340b)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk3/example_holdout_165.jsonl.zst\n[2025-03-11 02:50:39 WARNING] Retrying in 1s [Retry 1/5].\n[2025-03-11 02:58:37 WARNING] '(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 0b99bfd1-07ae-46db-81fa-fc6ef0eabdbc)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk3/example_holdout_1529.jsonl.zst\n[2025-03-11 02:58:37 WARNING] Retrying in 1s [Retry 1/5].\n[2025-03-11 03:00:11 WARNING] '(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: c208d1bb-5d13-45d2-9a01-1d5a2defa598)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk5/example_holdout_4562.jsonl.zst\n[2025-03-11 03:00:11 WARNING] Retrying in 1s [Retry 1/5].\n[2025-03-11 03:01:14 WARNING] '(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 2bf98b5c-473b-4e00-aca2-b152efddb992)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk3/example_holdout_4414.jsonl.zst\n[2025-03-11 03:01:14 WARNING] Retrying in 1s [Retry 1/5].\n{'eval_loss': 2.816462278366089, 'eval_runtime': 954.8041, 'eval_samples_per_second': 17.16, 'eval_steps_per_second': 0.134, 'epoch': 0.1, 'num_input_tokens_seen': 872415232}\n{'loss': 2.867, 'grad_norm': 0.3173666000366211, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 873463808}\n{'loss': 2.8701, 'grad_norm': 0.3399354815483093, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 874512384}\n{'loss': 2.8575, 'grad_norm': 0.36704689264297485, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 875560960}\n{'loss': 2.9582, 'grad_norm': 0.33231136202812195, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 876609536}\n{'loss': 2.7719, 'grad_norm': 0.34316956996917725, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 877658112}\n{'loss': 2.8915, 'grad_norm': 0.3483976423740387, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 878706688}\n{'loss': 2.7566, 'grad_norm': 0.3104913532733917, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 879755264}\n{'loss': 3.0013, 'grad_norm': 0.38844239711761475, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 880803840}\n{'loss': 2.5568, 'grad_norm': 0.40875244140625, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 881852416}\n{'loss': 2.8336, 'grad_norm': 0.3538399934768677, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 882900992}\n{'loss': 2.9391, 'grad_norm': 0.3494492471218109, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 883949568}\n{'loss': 2.8535, 'grad_norm': 0.3472343981266022, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 884998144}\n{'loss': 2.9836, 'grad_norm': 0.34867390990257263, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 886046720}\n{'loss': 2.8416, 'grad_norm': 0.3527415096759796, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 887095296}\n{'loss': 2.8756, 'grad_norm': 0.3338777422904968, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 888143872}\n{'loss': 2.8428, 'grad_norm': 0.3345812261104584, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 889192448}\n{'loss': 2.8977, 'grad_norm': 0.31487980484962463, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 890241024}\n{'loss': 2.9543, 'grad_norm': 0.3655254542827606, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 891289600}\n{'loss': 2.9423, 'grad_norm': 0.33075806498527527, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 892338176}\n{'loss': 2.9001, 'grad_norm': 0.34644609689712524, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 893386752}\n{'loss': 2.9029, 'grad_norm': 0.39070528745651245, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 894435328}\n{'loss': 2.9101, 'grad_norm': 0.39556533098220825, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 895483904}\n{'loss': 2.8119, 'grad_norm': 0.39002978801727295, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 896532480}\n{'loss': 3.0102, 'grad_norm': 0.37797507643699646, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 897581056}\n{'loss': 2.666, 'grad_norm': 0.4306756258010864, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 898629632}\n{'loss': 2.9257, 'grad_norm': 0.4526049494743347, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 899678208}\n{'loss': 2.8196, 'grad_norm': 0.3978416621685028, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 900726784}\n{'loss': 2.9057, 'grad_norm': 0.3925896883010864, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 901775360}\n{'loss': 3.0017, 'grad_norm': 0.45828214287757874, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 902823936}\n{'loss': 2.89, 'grad_norm': 0.4745008647441864, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 903872512}\n{'loss': 2.7335, 'grad_norm': 0.4270082116127014, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 904921088}\n{'loss': 2.8234, 'grad_norm': 0.38832950592041016, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 905969664}\n{'loss': 2.8618, 'grad_norm': 0.3907729387283325, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 907018240}\n{'loss': 2.8703, 'grad_norm': 0.368655264377594, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 908066816}\n{'loss': 2.8321, 'grad_norm': 0.41538506746292114, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 909115392}\n{'loss': 2.886, 'grad_norm': 0.41877180337905884, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 910163968}\n{'loss': 2.6224, 'grad_norm': 0.33238673210144043, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 911212544}\n{'loss': 2.8617, 'grad_norm': 0.4095931351184845, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 912261120}\n{'loss': 2.8172, 'grad_norm': 0.41708603501319885, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 913309696}\n{'loss': 2.7658, 'grad_norm': 0.37449270486831665, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 914358272}\n{'loss': 2.9042, 'grad_norm': 0.3935737609863281, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 915406848}\n{'loss': 2.7612, 'grad_norm': 0.3586251735687256, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 916455424}\n{'loss': 2.8785, 'grad_norm': 0.3712047338485718, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 917504000}\n{'loss': 2.739, 'grad_norm': 0.37707045674324036, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 918552576}\n{'loss': 2.8372, 'grad_norm': 0.3432702422142029, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 919601152}\n{'loss': 2.5638, 'grad_norm': 0.3493041396141052, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 920649728}\n{'loss': 2.8759, 'grad_norm': 0.3401539623737335, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 921698304}\n{'loss': 3.0048, 'grad_norm': 0.4632040858268738, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 922746880}\n{'loss': 2.9394, 'grad_norm': 0.4968065023422241, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 923795456}\n{'loss': 2.8441, 'grad_norm': 0.5426673889160156, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 924844032}\n{'loss': 2.9975, 'grad_norm': 0.4630672037601471, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 925892608}\n{'loss': 2.9584, 'grad_norm': 0.38806748390197754, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 926941184}\n{'loss': 2.8904, 'grad_norm': 0.39797642827033997, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 927989760}\n{'loss': 2.5774, 'grad_norm': 0.4063512980937958, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 929038336}\n{'loss': 2.812, 'grad_norm': 0.3161136209964752, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 930086912}\n{'loss': 2.7483, 'grad_norm': 0.3628361225128174, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 931135488}\n{'loss': 2.7916, 'grad_norm': 0.37376269698143005, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 932184064}\n{'loss': 2.7985, 'grad_norm': 0.3399117887020111, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 933232640}\n{'loss': 2.7107, 'grad_norm': 0.3453179597854614, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 934281216}\n{'loss': 2.9254, 'grad_norm': 0.39461833238601685, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 935329792}\n{'loss': 2.8487, 'grad_norm': 0.3668413460254669, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 936378368}\n{'loss': 2.7928, 'grad_norm': 0.28304487466812134, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 937426944}\n{'loss': 2.8503, 'grad_norm': 0.35816267132759094, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 938475520}\n{'loss': 3.0328, 'grad_norm': 0.3540339469909668, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 939524096}\n[2025-03-11 03:46:08 WARNING] '(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 3b8321b9-2d88-4bfa-9eca-b201c444cba3)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk5/example_holdout_405.jsonl.zst\n[2025-03-11 03:46:08 WARNING] Retrying in 1s [Retry 1/5].\n[2025-03-11 03:53:27 WARNING] '(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: a98a238a-c0a4-4295-8502-316a89a7ae29)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk1/example_holdout_2524.jsonl.zst\n[2025-03-11 03:53:27 WARNING] Retrying in 1s [Retry 1/5].\n{'eval_loss': 2.7651162147521973, 'eval_runtime': 687.962, 'eval_samples_per_second': 23.815, 'eval_steps_per_second': 0.186, 'epoch': 0.11, 'num_input_tokens_seen': 939524096}\n{'loss': 2.9368, 'grad_norm': 0.34962671995162964, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 940572672}\n{'loss': 2.3627, 'grad_norm': 0.37516310811042786, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 941621248}\n{'loss': 2.8854, 'grad_norm': 0.3487492501735687, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 942669824}\n{'loss': 2.7892, 'grad_norm': 0.37180987000465393, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 943718400}\n{'loss': 2.8067, 'grad_norm': 0.3387952744960785, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 944766976}\n{'loss': 2.841, 'grad_norm': 0.32076528668403625, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 945815552}\n{'loss': 2.7965, 'grad_norm': 0.3348572552204132, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 946864128}\n{'loss': 2.6788, 'grad_norm': 0.3531329929828644, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 947912704}\n{'loss': 2.7276, 'grad_norm': 0.300353467464447, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 948961280}\n{'loss': 2.8189, 'grad_norm': 0.3258875012397766, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 950009856}\n{'loss': 2.8388, 'grad_norm': 0.3434987962245941, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 951058432}\n{'loss': 2.856, 'grad_norm': 0.33045029640197754, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 952107008}\n{'loss': 2.658, 'grad_norm': 0.34896957874298096, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 953155584}\n{'loss': 2.8484, 'grad_norm': 0.3819083273410797, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 954204160}\n{'loss': 2.8402, 'grad_norm': 0.39541998505592346, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 955252736}\n{'loss': 2.8281, 'grad_norm': 0.3843367397785187, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 956301312}\n{'loss': 2.8339, 'grad_norm': 0.4067714214324951, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 957349888}\n{'loss': 2.8693, 'grad_norm': 0.3071018159389496, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 958398464}\n{'loss': 2.6747, 'grad_norm': 0.3676702380180359, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 959447040}\n{'loss': 2.6961, 'grad_norm': 0.357799232006073, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 960495616}\n{'loss': 2.7944, 'grad_norm': 0.318391352891922, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 961544192}\n{'loss': 2.8084, 'grad_norm': 0.32000190019607544, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 962592768}\n{'loss': 2.8024, 'grad_norm': 0.3250137269496918, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 963641344}\n{'loss': 2.7951, 'grad_norm': 0.33021438121795654, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 964689920}\n{'loss': 2.8069, 'grad_norm': 0.3257495164871216, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 965738496}\n{'loss': 2.8148, 'grad_norm': 0.3608018159866333, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 966787072}\n[2025-03-11 04:13:12 WARNING] '(ProtocolError('Connection aborted.', RemoteDisconnected('Remote end closed connection without response')), '(Request ID: 36a7cc72-4605-416a-8742-59488d719150)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/train/chunk1/example_train_5267.jsonl.zst\n[2025-03-11 04:13:12 WARNING] Retrying in 1s [Retry 1/5].\n{'loss': 2.8089, 'grad_norm': 0.3657573163509369, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 967835648}\n{'loss': 2.8243, 'grad_norm': 0.3791966736316681, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 968884224}\n{'loss': 2.6837, 'grad_norm': 0.4036826193332672, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 969932800}\n{'loss': 2.6694, 'grad_norm': 0.34643635153770447, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 970981376}\n{'loss': 2.8455, 'grad_norm': 0.35321497917175293, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 972029952}\n{'loss': 2.5156, 'grad_norm': 0.3488744795322418, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 973078528}\n{'loss': 2.7185, 'grad_norm': 0.33396172523498535, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 974127104}\n{'loss': 2.856, 'grad_norm': 0.36425134539604187, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 975175680}\n{'loss': 2.7639, 'grad_norm': 0.34361588954925537, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 976224256}\n{'loss': 2.7777, 'grad_norm': 0.45501893758773804, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 977272832}\n{'loss': 2.8692, 'grad_norm': 0.4391760230064392, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 978321408}\n{'loss': 2.7885, 'grad_norm': 0.385729044675827, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 979369984}\n{'loss': 2.8622, 'grad_norm': 0.4122815728187561, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 980418560}\n{'loss': 2.674, 'grad_norm': 0.3223947584629059, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 981467136}\n{'loss': 2.7148, 'grad_norm': 0.39820024371147156, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 982515712}\n{'loss': 2.6975, 'grad_norm': 0.38311144709587097, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 983564288}\n{'loss': 2.8515, 'grad_norm': 0.4324709177017212, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 984612864}\n{'loss': 2.5684, 'grad_norm': 0.3579341471195221, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 985661440}\n{'loss': 2.9478, 'grad_norm': 0.4081536531448364, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 986710016}\n{'loss': 2.7375, 'grad_norm': 0.4332145154476166, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 987758592}\n{'loss': 2.7773, 'grad_norm': 0.43510711193084717, 'learning_rate': 0.001, 'epoch': 0.12, 'num_input_tokens_seen': 988807168}\n...\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/utils/file_utils.py\", line 1378, in _iter_from_urlpaths\n raise FileNotFoundError(urlpath)\nFileNotFoundError: zstd://example_train_1215.jsonl::hf://datasets/cerebras/SlimPajama-627B@2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/train/chunk9/example_train_1215.jsonl.zst\n```\n\n</details>", "Two more today:\n```python\nFileNotFoundError: zstd://example_holdout_5012.jsonl::hf://datasets/cerebras/SlimPajama-627B@2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk4/example_holdout_5012.jsonl.zst\n```\nand\n```python\nFileNotFoundError: zstd://example_holdout_3073.jsonl::hf://datasets/cerebras/SlimPajama-627B@2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk2/example_holdout_3073.jsonl.zst\n```\nboth of which exist on the hub ([here](https://huggingface.co/datasets/cerebras/SlimPajama-627B/blob/main/validation/chunk4/example_holdout_5012.jsonl.zst) and [here](https://huggingface.co/datasets/cerebras/SlimPajama-627B/blob/main/validation/chunk2/example_holdout_3073.jsonl.zst)).", "I also observe the same thing when using streaming with DCLM dataset with 64 GPUs. I have tried ```export HF_DATASETS_STREAMING_PARALLELISM=1``` but doesn't help.", "Another error today, this time a 504 gateway timeout `HfHubHTTPError`. I have no idea if this is related, but I suspect that it is considering the setup is identical. Notably though, the two errors I posted yesterday were for evaluation (hence the `holdout` in the URLs) whereas today there was no problem doing that first evaluation, but now the `train` split failed.\n```python\n...\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/iterable_dataset.py\", line 2226, in __iter__\n for key, example in ex_iterable:\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/iterable_dataset.py\", line 1499, in __iter__\n for x in self.ex_iterable:\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/iterable_dataset.py\", line 1067, in __iter__\n yield from self._iter()\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/iterable_dataset.py\", line 1231, in _iter\n for key, transformed_example in iter_outputs():\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/iterable_dataset.py\", line 1207, in iter_outputs\n for i, key_example in inputs_iterator:\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/iterable_dataset.py\", line 1111, in iter_inputs\n for key, example in iterator:\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/iterable_dataset.py\", line 371, in __iter__\n for key, pa_table in self.generate_tables_fn(**gen_kwags):\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/packaged_modules/json/json.py\", line 114, in _generate_tables\n with open(file, \"rb\") as f:\n ^^^^^^^^^^^^^^^^\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/streaming.py\", line 75, in wrapper\n return function(*args, download_config=download_config, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/utils/file_utils.py\", line 948, in xopen\n file_obj = fsspec.open(file, mode=mode, *args, **kwargs).open()\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/fsspec/core.py\", line 147, in open\n return self.__enter__()\n ^^^^^^^^^^^^^^^^\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/fsspec/core.py\", line 105, in __enter__\n f = self.fs.open(self.path, mode=mode)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/fsspec/spec.py\", line 1301, in open\n f = self._open(\n ^^^^^^^^^^^\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/filesystems/compression.py\", line 85, in _open\n return self._open_with_fsspec().open()\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/fsspec/core.py\", line 147, in open\n return self.__enter__()\n ^^^^^^^^^^^^^^^^\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/fsspec/core.py\", line 105, in __enter__\n f = self.fs.open(self.path, mode=mode)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/fsspec/spec.py\", line 1301, in open\n f = self._open(\n ^^^^^^^^^^^\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/huggingface_hub/hf_file_system.py\", line 234, in _open\n return HfFileSystemFile(self, path, mode=mode, revision=revision, block_size=block_size, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/huggingface_hub/hf_file_system.py\", line 691, in __init__\n self.details = fs.info(self.resolved_path.unresolve(), expand_info=False)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/huggingface_hub/hf_file_system.py\", line 524, in info\n self.ls(parent_path, expand_info=False)\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/huggingface_hub/hf_file_system.py\", line 284, in ls\n out = self._ls_tree(path, refresh=refresh, revision=revision, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/huggingface_hub/hf_file_system.py\", line 375, in _ls_tree\n for path_info in tree:\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/huggingface_hub/hf_api.py\", line 3080, in list_repo_tree\n for path_info in paginate(path=tree_url, headers=headers, params={\"recursive\": recursive, \"expand\": expand}):\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/huggingface_hub/utils/_pagination.py\", line 46, in paginate\n hf_raise_for_status(r)\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/huggingface_hub/utils/_http.py\", line 477, in hf_raise_for_status\n raise _format(HfHubHTTPError, str(e), response) from e\nhuggingface_hub.errors.HfHubHTTPError: 504 Server Error: Gateway Time-out for url: https://huggingface.co/api/datasets/cerebras/SlimPajama-627B/tree/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/train%2Fchunk8?recursive=False&expand=False&cursor=ZXlKbWFXeGxYMjVoYldVaU9pSjBjbUZwYmk5amFIVnVhemd2WlhoaGJYQnNaVjkwY21GcGJsOHpOams0TG1wemIyNXNMbnB6ZENKOTozMDAw\n```", "Another one today:\n```python\nFileNotFoundError: zstd://example_train_4985.jsonl::hf://datasets/cerebras/SlimPajama-627B@2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/train/chunk5/example_train_4985.jsonl.zst\n```" ]
1,741,374,858,000
1,742,680,082,000
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
### Describe the bug In https://github.com/huggingface/datasets/issues/6843 it was noted that the streaming feature of `datasets` is highly susceptible to outages and doesn't back off for long (or even *at all*). I was training a model while streaming SlimPajama and training crashed with a `FileNotFoundError`. I can only assume that this was due to a momentary outage considering the file in question, `train/chunk9/example_train_3889.jsonl.zst`, [exists like all other files in SlimPajama](https://huggingface.co/datasets/cerebras/SlimPajama-627B/blob/main/train/chunk9/example_train_3889.jsonl.zst). ```python ... File "/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/iterable_dataset.py", line 2226, in __iter__ for key, example in ex_iterable: File "/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/iterable_dataset.py", line 1499, in __iter__ for x in self.ex_iterable: File "/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/iterable_dataset.py", line 1067, in __iter__ yield from self._iter() File "/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/iterable_dataset.py", line 1231, in _iter for key, transformed_example in iter_outputs(): File "/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/iterable_dataset.py", line 1207, in iter_outputs for i, key_example in inputs_iterator: File "/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/iterable_dataset.py", line 1111, in iter_inputs for key, example in iterator: File "/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/iterable_dataset.py", line 371, in __iter__ for key, pa_table in self.generate_tables_fn(**gen_kwags): File "/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/packaged_modules/json/json.py", line 99, in _generate_tables for file_idx, file in enumerate(itertools.chain.from_iterable(files)): File "/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/utils/track.py", line 50, in __iter__ for x in self.generator(*self.args): File "/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/utils/file_utils.py", line 1378, in _iter_from_urlpaths raise FileNotFoundError(urlpath) FileNotFoundError: zstd://example_train_3889.jsonl::hf://datasets/cerebras/SlimPajama-627B@2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/train/chunk9/example_train_3889.jsonl.zst ``` That final `raise` is at the bottom of the following snippet: https://github.com/huggingface/datasets/blob/f693f4e93aabafa878470c80fd42ddb10ec550d6/src/datasets/utils/file_utils.py#L1354-L1379 So clearly, something choked up in `xisfile`. ### Steps to reproduce the bug This happens when streaming a dataset and iterating over it. In my case, that iteration is done in Trainer's `inner_training_loop`, but this is not relevant to the iterator. ```python File "/miniconda3/envs/draft/lib/python3.11/site-packages/accelerate/data_loader.py", line 835, in __iter__ next_batch, next_batch_info = self._fetch_batches(main_iterator) ``` ### Expected behavior This bug and the linked issue have one thing in common: *when streaming fails to retrieve an example, the entire program gives up and crashes*. As users, we cannot even protect ourselves from this: when we are iterating over a dataset, we can't make `datasets` skip over a bad example or wait a little longer to retry the iteration, because when a Python generator/iterator raises an error, it loses all its context. In other words: if you have something that looks like `for b in a: for c in b: for d in c:`, errors in the innermost loop can only be caught by a `try ... except` in `c.__iter__()`. There should be such exception handling in `datasets` and it should have a **configurable exponential back-off**: first wait and retry after 1 minute, then 2 minutes, then 4 minutes, then 8 minutes, ... and after a given amount of retries, **skip the bad example**, and **only after** skipping a given amount of examples, give up and crash. This was requested in https://github.com/huggingface/datasets/issues/6843 too, since currently there is only linear backoff *and* it is clearly not applied to `xisfile`. ### Environment info - `datasets` version: 3.3.2 *(the latest version)* - Platform: Linux-4.18.0-513.24.1.el8_9.x86_64-x86_64-with-glibc2.28 - Python version: 3.11.7 - `huggingface_hub` version: 0.26.5 - PyArrow version: 15.0.0 - Pandas version: 2.2.0 - `fsspec` version: 2024.10.0
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7440/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7440/timeline
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/7439
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7439/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7439/comments
https://api.github.com/repos/huggingface/datasets/issues/7439/events
https://github.com/huggingface/datasets/pull/7439
2,900,143,289
PR_kwDODunzps6NoCdD
7,439
Fix multi gpu process example
{ "login": "SwayStar123", "id": 46050679, "node_id": "MDQ6VXNlcjQ2MDUwNjc5", "avatar_url": "https://avatars.githubusercontent.com/u/46050679?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SwayStar123", "html_url": "https://github.com/SwayStar123", "followers_url": "https://api.github.com/users/SwayStar123/followers", "following_url": "https://api.github.com/users/SwayStar123/following{/other_user}", "gists_url": "https://api.github.com/users/SwayStar123/gists{/gist_id}", "starred_url": "https://api.github.com/users/SwayStar123/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SwayStar123/subscriptions", "organizations_url": "https://api.github.com/users/SwayStar123/orgs", "repos_url": "https://api.github.com/users/SwayStar123/repos", "events_url": "https://api.github.com/users/SwayStar123/events{/privacy}", "received_events_url": "https://api.github.com/users/SwayStar123/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
[ "Okay nevermind looks like to works both ways for models. but my doubt still remains, isnt this changing the device of the model every batch?" ]
1,741,260,559,000
1,741,280,848,000
1,741,280,798,000
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
to is not an inplace function. But i am not sure about this code anyway, i think this is modifying the global variable `model` everytime the function is called? Which is on every batch? So it is juggling the same model on every gpu right? Isnt that very inefficient?
{ "login": "SwayStar123", "id": 46050679, "node_id": "MDQ6VXNlcjQ2MDUwNjc5", "avatar_url": "https://avatars.githubusercontent.com/u/46050679?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SwayStar123", "html_url": "https://github.com/SwayStar123", "followers_url": "https://api.github.com/users/SwayStar123/followers", "following_url": "https://api.github.com/users/SwayStar123/following{/other_user}", "gists_url": "https://api.github.com/users/SwayStar123/gists{/gist_id}", "starred_url": "https://api.github.com/users/SwayStar123/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SwayStar123/subscriptions", "organizations_url": "https://api.github.com/users/SwayStar123/orgs", "repos_url": "https://api.github.com/users/SwayStar123/repos", "events_url": "https://api.github.com/users/SwayStar123/events{/privacy}", "received_events_url": "https://api.github.com/users/SwayStar123/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7439/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7439/timeline
null
0
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7439", "html_url": "https://github.com/huggingface/datasets/pull/7439", "diff_url": "https://github.com/huggingface/datasets/pull/7439.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7439.patch", "merged_at": null }
https://api.github.com/repos/huggingface/datasets/issues/7438
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7438/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7438/comments
https://api.github.com/repos/huggingface/datasets/issues/7438/events
https://github.com/huggingface/datasets/pull/7438
2,899,209,484
PR_kwDODunzps6Nk37h
7,438
Allow dataset row indexing with np.int types (#7423)
{ "login": "DavidRConnell", "id": 35470740, "node_id": "MDQ6VXNlcjM1NDcwNzQw", "avatar_url": "https://avatars.githubusercontent.com/u/35470740?v=4", "gravatar_id": "", "url": "https://api.github.com/users/DavidRConnell", "html_url": "https://github.com/DavidRConnell", "followers_url": "https://api.github.com/users/DavidRConnell/followers", "following_url": "https://api.github.com/users/DavidRConnell/following{/other_user}", "gists_url": "https://api.github.com/users/DavidRConnell/gists{/gist_id}", "starred_url": "https://api.github.com/users/DavidRConnell/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/DavidRConnell/subscriptions", "organizations_url": "https://api.github.com/users/DavidRConnell/orgs", "repos_url": "https://api.github.com/users/DavidRConnell/repos", "events_url": "https://api.github.com/users/DavidRConnell/events{/privacy}", "received_events_url": "https://api.github.com/users/DavidRConnell/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
[]
1,741,230,643,000
1,741,230,643,000
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
@lhoestq Proposed fix for #7423. Added a couple simple tests as requested. I had some test failures related to Java and pyspark even when installing with dev but these don't seem to be related to the changes here and fail for me even on clean main. The typeerror raised when using the wrong type is: "Wrong key type: '{key}' of type '{type(key)}'. Expected one of int, slice, range, str or Iterable." I think that is fine. But I could modify the int part to something more generic (although I'm not sure what) if wanted.
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7438/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7438/timeline
null
0
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7438", "html_url": "https://github.com/huggingface/datasets/pull/7438", "diff_url": "https://github.com/huggingface/datasets/pull/7438.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7438.patch", "merged_at": null }
https://api.github.com/repos/huggingface/datasets/issues/7437
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7437/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7437/comments
https://api.github.com/repos/huggingface/datasets/issues/7437/events
https://github.com/huggingface/datasets/pull/7437
2,899,104,679
PR_kwDODunzps6Nkhla
7,437
Use pyupgrade --py39-plus for remaining files
{ "login": "cyyever", "id": 17618148, "node_id": "MDQ6VXNlcjE3NjE4MTQ4", "avatar_url": "https://avatars.githubusercontent.com/u/17618148?v=4", "gravatar_id": "", "url": "https://api.github.com/users/cyyever", "html_url": "https://github.com/cyyever", "followers_url": "https://api.github.com/users/cyyever/followers", "following_url": "https://api.github.com/users/cyyever/following{/other_user}", "gists_url": "https://api.github.com/users/cyyever/gists{/gist_id}", "starred_url": "https://api.github.com/users/cyyever/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/cyyever/subscriptions", "organizations_url": "https://api.github.com/users/cyyever/orgs", "repos_url": "https://api.github.com/users/cyyever/repos", "events_url": "https://api.github.com/users/cyyever/events{/privacy}", "received_events_url": "https://api.github.com/users/cyyever/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
[]
1,741,227,145,000
1,742,440,310,000
null
CONTRIBUTOR
{ "total": 0, "completed": 0, "percent_completed": 0 }
This work follows #7428. And "requires-python" is set in pyproject.toml
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7437/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7437/timeline
null
0
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7437", "html_url": "https://github.com/huggingface/datasets/pull/7437", "diff_url": "https://github.com/huggingface/datasets/pull/7437.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7437.patch", "merged_at": null }
https://api.github.com/repos/huggingface/datasets/issues/7436
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7436/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7436/comments
https://api.github.com/repos/huggingface/datasets/issues/7436/events
https://github.com/huggingface/datasets/pull/7436
2,898,385,725
PR_kwDODunzps6NiArv
7,436
chore: fix typos
{ "login": "afuetterer", "id": 35225576, "node_id": "MDQ6VXNlcjM1MjI1NTc2", "avatar_url": "https://avatars.githubusercontent.com/u/35225576?v=4", "gravatar_id": "", "url": "https://api.github.com/users/afuetterer", "html_url": "https://github.com/afuetterer", "followers_url": "https://api.github.com/users/afuetterer/followers", "following_url": "https://api.github.com/users/afuetterer/following{/other_user}", "gists_url": "https://api.github.com/users/afuetterer/gists{/gist_id}", "starred_url": "https://api.github.com/users/afuetterer/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/afuetterer/subscriptions", "organizations_url": "https://api.github.com/users/afuetterer/orgs", "repos_url": "https://api.github.com/users/afuetterer/repos", "events_url": "https://api.github.com/users/afuetterer/events{/privacy}", "received_events_url": "https://api.github.com/users/afuetterer/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
[]
1,741,205,874,000
1,741,205,874,000
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7436/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7436/timeline
null
0
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7436", "html_url": "https://github.com/huggingface/datasets/pull/7436", "diff_url": "https://github.com/huggingface/datasets/pull/7436.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7436.patch", "merged_at": null }
https://api.github.com/repos/huggingface/datasets/issues/7435
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7435/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7435/comments
https://api.github.com/repos/huggingface/datasets/issues/7435/events
https://github.com/huggingface/datasets/pull/7435
2,895,536,956
PR_kwDODunzps6NYUnr
7,435
Refactor `string_to_dict` to return `None` if there is no match instead of raising `ValueError`
{ "login": "ringohoffman", "id": 27844407, "node_id": "MDQ6VXNlcjI3ODQ0NDA3", "avatar_url": "https://avatars.githubusercontent.com/u/27844407?v=4", "gravatar_id": "", "url": "https://api.github.com/users/ringohoffman", "html_url": "https://github.com/ringohoffman", "followers_url": "https://api.github.com/users/ringohoffman/followers", "following_url": "https://api.github.com/users/ringohoffman/following{/other_user}", "gists_url": "https://api.github.com/users/ringohoffman/gists{/gist_id}", "starred_url": "https://api.github.com/users/ringohoffman/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ringohoffman/subscriptions", "organizations_url": "https://api.github.com/users/ringohoffman/orgs", "repos_url": "https://api.github.com/users/ringohoffman/repos", "events_url": "https://api.github.com/users/ringohoffman/events{/privacy}", "received_events_url": "https://api.github.com/users/ringohoffman/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
[ "cc: @lhoestq ", "I am going to rebase #7434 onto this branch. Then we can merge this one first if you approve, and then #7434.", "@lhoestq any thoughts here?", "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7435). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "It looks like I was unsafely asserting that `source_url_fields is not None` in `image.py`, `video.py` and `audio.py` (which did not correspond to the `except ValueError` like was there previously). I've changed it to handle `source_url_fields is None`.", "Can we re-run CI on this one?", "Sweet! These failures are looking spurious due to connectivity issues. Can the failing run be retried?", "@lhoestq Sorry to double ping, but can this PR be reviewed? I think it is ready!\n" ]
1,741,125,680,000
1,741,798,320,000
1,741,798,320,000
CONTRIBUTOR
{ "total": 0, "completed": 0, "percent_completed": 0 }
Making this change, as encouraged here: * https://github.com/huggingface/datasets/pull/7434#discussion_r1979933054 instead of having the pattern of using `try`-`except` to handle when there is no match, we can instead check if the return value is `None`; we can also assert that the return value should not be `None` if we know that should be true
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7435/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7435/timeline
null
0
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7435", "html_url": "https://github.com/huggingface/datasets/pull/7435", "diff_url": "https://github.com/huggingface/datasets/pull/7435.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7435.patch", "merged_at": "2025-03-12T16:51:59" }
https://api.github.com/repos/huggingface/datasets/issues/7434
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7434/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7434/comments
https://api.github.com/repos/huggingface/datasets/issues/7434/events
https://github.com/huggingface/datasets/pull/7434
2,893,075,908
PR_kwDODunzps6NP-vn
7,434
Refactor `Dataset.map` to reuse cache files mapped with different `num_proc`
{ "login": "ringohoffman", "id": 27844407, "node_id": "MDQ6VXNlcjI3ODQ0NDA3", "avatar_url": "https://avatars.githubusercontent.com/u/27844407?v=4", "gravatar_id": "", "url": "https://api.github.com/users/ringohoffman", "html_url": "https://github.com/ringohoffman", "followers_url": "https://api.github.com/users/ringohoffman/followers", "following_url": "https://api.github.com/users/ringohoffman/following{/other_user}", "gists_url": "https://api.github.com/users/ringohoffman/gists{/gist_id}", "starred_url": "https://api.github.com/users/ringohoffman/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ringohoffman/subscriptions", "organizations_url": "https://api.github.com/users/ringohoffman/orgs", "repos_url": "https://api.github.com/users/ringohoffman/repos", "events_url": "https://api.github.com/users/ringohoffman/events{/privacy}", "received_events_url": "https://api.github.com/users/ringohoffman/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
[ "@lhoestq please let me know what you think about this.", "It looks like I can't change the merge target to #7435, so it will look like there is a bunch of extra stuff until #7435 is in main.", "@lhoestq Thanks so much for reviewing #7435! Now that that's merged, I think this PR is ready!! Can you kick off CI when you get the chance?", "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7434). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "Do you mind kicking off CI again?", "The change I made to support windows paths in 637c1600fe7dd601eff571fda446937bd96c5c84 ended up breaking causing these tests in [tests/test_data_files.py](https://github.com/huggingface/datasets/actions/runs/13858546629/job/38781008643#step:10:6991). When I removed `glob_pattern_to_regex` in 583c28e7560b9d6db2e13048731f41ec8fa11361, none of the tests failed. So I'm thinking the `unicode_escape` may be handling the what `glob_pattern_to_regex` was doing.\r\n", "@lhoestq will you have a chance to review this today?" ]
1,741,068,757,000
1,742,560,636,000
null
CONTRIBUTOR
{ "total": 0, "completed": 0, "percent_completed": 0 }
Fixes #7433 This refactor unifies `num_proc is None or num_proc == 1` and `num_proc > 1`; instead of handling them completely separately where one uses a list of kwargs and shards and the other just uses a single set of kwargs and `self`, by wrapping the `num_proc == 1` case in a list and making the difference just whether or not you use a pool, you set up either case to be able to load each other's cache files just by changing `num_shards`; `num_proc == 1` can sequentially load the shards of a dataset mapped `num_shards > 1` and map any missing shards Other than the structural refactor, the main contribution of this PR is `existing_cache_file_map`, which uses a regex of `cache_file_name` and `suffix_template` to find existing cache files, grouped by their `num_shards`; using this data structure, we can reset `num_shards` to an existing set of cache files, and load them accordingly
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7434/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7434/timeline
null
0
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7434", "html_url": "https://github.com/huggingface/datasets/pull/7434", "diff_url": "https://github.com/huggingface/datasets/pull/7434.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7434.patch", "merged_at": null }
https://api.github.com/repos/huggingface/datasets/issues/7433
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7433/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7433/comments
https://api.github.com/repos/huggingface/datasets/issues/7433/events
https://github.com/huggingface/datasets/issues/7433
2,890,240,400
I_kwDODunzps6sRZGQ
7,433
`Dataset.map` ignores existing caches and remaps when ran with different `num_proc`
{ "login": "ringohoffman", "id": 27844407, "node_id": "MDQ6VXNlcjI3ODQ0NDA3", "avatar_url": "https://avatars.githubusercontent.com/u/27844407?v=4", "gravatar_id": "", "url": "https://api.github.com/users/ringohoffman", "html_url": "https://github.com/ringohoffman", "followers_url": "https://api.github.com/users/ringohoffman/followers", "following_url": "https://api.github.com/users/ringohoffman/following{/other_user}", "gists_url": "https://api.github.com/users/ringohoffman/gists{/gist_id}", "starred_url": "https://api.github.com/users/ringohoffman/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ringohoffman/subscriptions", "organizations_url": "https://api.github.com/users/ringohoffman/orgs", "repos_url": "https://api.github.com/users/ringohoffman/repos", "events_url": "https://api.github.com/users/ringohoffman/events{/privacy}", "received_events_url": "https://api.github.com/users/ringohoffman/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
[ "This feels related: https://github.com/huggingface/datasets/issues/3044", "@lhoestq This comment specifically, I agree:\n\n* https://github.com/huggingface/datasets/issues/3044#issuecomment-1239877570\n\n> Almost a year later and I'm in a similar boat. Using custom fingerprints and when using multiprocessing the cached datasets are saved with a template at the end of the filename (something like \"000001_of_000008\" for every process of num_proc). So if in the next time you run the script you set num_proc to a different number, the cache cannot be used.\n> \n> Is there any way to get around this? I am processing a huge dataset so I do the processing on one machine and then transfer the processed data to another in its cache dir but currently that's not possible due to num_proc mismatch.\n\n" ]
1,740,981,086,000
1,741,067,708,000
null
CONTRIBUTOR
{ "total": 0, "completed": 0, "percent_completed": 0 }
### Describe the bug If you `map` a dataset and save it to a specific `cache_file_name` with a specific `num_proc`, and then call map again with that same existing `cache_file_name` but a different `num_proc`, the dataset will be re-mapped. ### Steps to reproduce the bug 1. Download a dataset ```python import datasets dataset = datasets.load_dataset("ylecun/mnist") ``` ``` Generating train split: 100%|██████████| 60000/60000 [00:00<00:00, 116429.85 examples/s] Generating test split: 100%|██████████| 10000/10000 [00:00<00:00, 103310.27 examples/s] ``` 2. `map` and cache it with a specific `num_proc` ```python cache_file_name="./cache/train.map" dataset["train"].map(lambda x: x, cache_file_name=cache_file_name, num_proc=2) ``` ``` Map (num_proc=2): 100%|██████████| 60000/60000 [00:01<00:00, 53764.03 examples/s] ``` 3. `map` it with a different `num_proc` and the same `cache_file_name` as before ```python dataset["train"].map(lambda x: x, cache_file_name=cache_file_name, num_proc=3) ``` ``` Map (num_proc=3): 100%|██████████| 60000/60000 [00:00<00:00, 65377.12 examples/s] ``` ### Expected behavior If I specify an existing `cache_file_name`, I don't expect using a different `num_proc` than the one that was used to generate it to cause the dataset to have be be re-mapped. ### Environment info ```console $ datasets-cli env - `datasets` version: 3.3.2 - Platform: Linux-5.15.0-131-generic-x86_64-with-glibc2.35 - Python version: 3.10.16 - `huggingface_hub` version: 0.29.1 - PyArrow version: 19.0.1 - Pandas version: 2.2.3 - `fsspec` version: 2024.12.0 ```
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7433/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7433/timeline
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/7432
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7432/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7432/comments
https://api.github.com/repos/huggingface/datasets/issues/7432/events
https://github.com/huggingface/datasets/pull/7432
2,887,717,289
PR_kwDODunzps6M-DI0
7,432
Fix type annotation
{ "login": "NeilGirdhar", "id": 730137, "node_id": "MDQ6VXNlcjczMDEzNw==", "avatar_url": "https://avatars.githubusercontent.com/u/730137?v=4", "gravatar_id": "", "url": "https://api.github.com/users/NeilGirdhar", "html_url": "https://github.com/NeilGirdhar", "followers_url": "https://api.github.com/users/NeilGirdhar/followers", "following_url": "https://api.github.com/users/NeilGirdhar/following{/other_user}", "gists_url": "https://api.github.com/users/NeilGirdhar/gists{/gist_id}", "starred_url": "https://api.github.com/users/NeilGirdhar/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/NeilGirdhar/subscriptions", "organizations_url": "https://api.github.com/users/NeilGirdhar/orgs", "repos_url": "https://api.github.com/users/NeilGirdhar/repos", "events_url": "https://api.github.com/users/NeilGirdhar/events{/privacy}", "received_events_url": "https://api.github.com/users/NeilGirdhar/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
[ "Thanks ! There is https://github.com/huggingface/datasets/pull/7426 already that fixes the issue, I'm closing your PR if you don't mind" ]
1,740,763,700,000
1,741,103,583,000
1,741,103,583,000
CONTRIBUTOR
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7432/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7432/timeline
null
0
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7432", "html_url": "https://github.com/huggingface/datasets/pull/7432", "diff_url": "https://github.com/huggingface/datasets/pull/7432.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7432.patch", "merged_at": null }
https://api.github.com/repos/huggingface/datasets/issues/7431
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7431/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7431/comments
https://api.github.com/repos/huggingface/datasets/issues/7431/events
https://github.com/huggingface/datasets/issues/7431
2,887,244,074
I_kwDODunzps6sF9kq
7,431
Issues with large Datasets
{ "login": "nikitabelooussovbtis", "id": 106806889, "node_id": "U_kgDOBl2-aQ", "avatar_url": "https://avatars.githubusercontent.com/u/106806889?v=4", "gravatar_id": "", "url": "https://api.github.com/users/nikitabelooussovbtis", "html_url": "https://github.com/nikitabelooussovbtis", "followers_url": "https://api.github.com/users/nikitabelooussovbtis/followers", "following_url": "https://api.github.com/users/nikitabelooussovbtis/following{/other_user}", "gists_url": "https://api.github.com/users/nikitabelooussovbtis/gists{/gist_id}", "starred_url": "https://api.github.com/users/nikitabelooussovbtis/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/nikitabelooussovbtis/subscriptions", "organizations_url": "https://api.github.com/users/nikitabelooussovbtis/orgs", "repos_url": "https://api.github.com/users/nikitabelooussovbtis/repos", "events_url": "https://api.github.com/users/nikitabelooussovbtis/events{/privacy}", "received_events_url": "https://api.github.com/users/nikitabelooussovbtis/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
[ "what's the error message ?", "This was the final error message that it was giving pyarrow.lib.ArrowInvalid: JSON parse error: Column() changed from object to string in row 0", "Here is the list of errors:\n\nTraceback (most recent call last):\n File \".venv/lib/python3.12/site-packages/datasets/packaged_modules/json/json.py\", line 160, in _generate_tables\n df = pandas_read_json(f)\n ^^^^^^^^^^^^^^^^^^^\n File \".venv/lib/python3.12/site-packages/datasets/packaged_modules/json/json.py\", line 38, in pandas_read_json\n return pd.read_json(path_or_buf, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \".venv/lib/python3.12/site-packages/pandas/io/json/_json.py\", line 815, in read_json\n return json_reader.read()\n ^^^^^^^^^^^^^^^^^^\n File \".venv/lib/python3.12/site-packages/pandas/io/json/_json.py\", line 1025, in read\n obj = self._get_object_parser(self.data)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \".venv/lib/python3.12/site-packages/pandas/io/json/_json.py\", line 1051, in _get_object_parser\n obj = FrameParser(json, **kwargs).parse()\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \".venv/lib/python3.12/site-packages/pandas/io/json/_json.py\", line 1187, in parse\n self._parse()\n File \".venv/lib/python3.12/site-packages/pandas/io/json/_json.py\", line 1402, in _parse\n self.obj = DataFrame(\n ^^^^^^^^^^\n File \".venv/lib/python3.12/site-packages/pandas/core/frame.py\", line 778, in __init__\n mgr = dict_to_mgr(data, index, columns, dtype=dtype, copy=copy, typ=manager)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \".venv/lib/python3.12/site-packages/pandas/core/internals/construction.py\", line 503, in dict_to_mgr\n return arrays_to_mgr(arrays, columns, index, dtype=dtype, typ=typ, consolidate=copy)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \".venv/lib/python3.12/site-packages/pandas/core/internals/construction.py\", line 114, in arrays_to_mgr\n index = _extract_index(arrays)\n ^^^^^^^^^^^^^^^^^^^^^^\n File \".venv/lib/python3.12/site-packages/pandas/core/internals/construction.py\", line 677, in _extract_index\n raise ValueError(\"All arrays must be of the same length\")\nValueError: All arrays must be of the same length\n\nDuring handling of the above exception, another exception occurred:\n\nTraceback (most recent call last):\n File \".venv/lib/python3.12/site-packages/datasets/builder.py\", line 1854, in _prepare_split_single\n for _, table in generator:\n File \".venv/lib/python3.12/site-packages/datasets/packaged_modules/json/json.py\", line 163, in _generate_tables\n raise e\n File \".venv/lib/python3.12/site-packages/datasets/packaged_modules/json/json.py\", line 137, in _generate_tables\n pa_table = paj.read_json(\n ^^^^^^^^^^^^^^\n File \"pyarrow/_json.pyx\", line 308, in pyarrow._json.read_json\n File \"pyarrow/error.pxi\", line 155, in pyarrow.lib.pyarrow_internal_check_status\n File \"pyarrow/error.pxi\", line 92, in pyarrow.lib.check_status\npyarrow.lib.ArrowInvalid: JSON parse error: Column() changed from object to number in row 0\n\nThe above exception was the direct cause of the following exception:\n\nTraceback (most recent call last):\n File \"run_object_detection.py\", line 582, in <module>\n main()\n File \"run_object_detection.py\", line 407, in main\n dataset = load_dataset(\n ^^^^^^^^^^^^^\n File \"venv/lib/python3.12/site-packages/datasets/load.py\", line 2151, in load_dataset\n builder_instance.download_and_prepare(\n File \".venv/lib/python3.12/site-packages/datasets/builder.py\", line 924, in download_and_prepare\n self._download_and_prepare(\n File \".venv/lib/python3.12/site-packages/datasets/builder.py\", line 1000, in _download_and_prepare\n self._prepare_split(split_generator, **prepare_split_kwargs)\n File \".venv/lib/python3.12/site-packages/datasets/builder.py\", line 1741, in _prepare_split\n for job_id, done, content in self._prepare_split_single(\n File \".venv/lib/python3.12/site-packages/datasets/builder.py\", line 1897, in _prepare_split_single\n raise DatasetGenerationError(\"An error occurred while generating the dataset\") from e\ndatasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset", "`datasets` is based on Arrow which expects all the lists inside the data to be of fixed type. Arrow can't load lists that contain a mix of integers and strings for example. In your case it looks like one of the lists contains numbers and JSON objects.\n\nI'd suggest you to reformat the data to end up with list of fixed types, otherwise you won't be able to load the data in `datasets`" ]
1,740,751,522,000
1,741,100,546,000
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
### Describe the bug If the coco annotation file is too large the dataset will not be able to load it, not entirely sure were the issue is but I am guessing it is due to the code trying to load it all as one line into a dataframe. This was for object detections. My current work around is the following code but would be nice to be able to do it without worrying about it also probably there is a better way of doing it: ` dataset_dict = json.load(open("./local_data/annotations/train.json")) df = pd.DataFrame(columns=['images', 'annotations', 'categories']) df = df._append({'images': dataset_dict['images'], 'annotations': dataset_dict['annotations'], 'categories': dataset_dict['categories']}, ignore_index=True) train=Dataset.from_pandas(df) dataset_dict = json.load(open("./local_data/annotations/validation.json")) df = pd.DataFrame(columns=['images', 'annotations', 'categories']) df = df._append({'images': dataset_dict['images'], 'annotations': dataset_dict['annotations'], 'categories': dataset_dict['categories']}, ignore_index=True) val = Dataset.from_pandas(df) dataset_dict = json.load(open("./local_data/annotations/test.json")) df = pd.DataFrame(columns=['images', 'annotations', 'categories']) df = df._append({'images': dataset_dict['images'], 'annotations': dataset_dict['annotations'], 'categories': dataset_dict['categories']}, ignore_index=True) test = Dataset.from_pandas(df) dataset = DatasetDict({'train': train, 'validation': val, 'test': test}) ` ### Steps to reproduce the bug 1) step up directory in and have the json files in coco format -local_data |-images |---1.jpg |---2.jpg |---.... |---n.jpg |-annotations |---test.json |---train.json |---validation.json 2) try to load local_data into a dataset if the file is larger than about 300kb it will cause an error. ### Expected behavior That it loads the jsons preferably in the same format as it has done with a smaller size. ### Environment info - `datasets` version: 3.3.3.dev0 - Platform: Linux-6.11.0-17-generic-x86_64-with-glibc2.39 - Python version: 3.12.3 - `huggingface_hub` version: 0.29.0 - PyArrow version: 19.0.1 - Pandas version: 2.2.3 - `fsspec` version: 2024.12.0
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7431/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7431/timeline
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/7430
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7430/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7430/comments
https://api.github.com/repos/huggingface/datasets/issues/7430/events
https://github.com/huggingface/datasets/issues/7430
2,886,922,573
I_kwDODunzps6sEvFN
7,430
Error in code "Time to slice and dice" from course "NLP Course"
{ "login": "Yurkmez", "id": 122965300, "node_id": "U_kgDOB1RNNA", "avatar_url": "https://avatars.githubusercontent.com/u/122965300?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Yurkmez", "html_url": "https://github.com/Yurkmez", "followers_url": "https://api.github.com/users/Yurkmez/followers", "following_url": "https://api.github.com/users/Yurkmez/following{/other_user}", "gists_url": "https://api.github.com/users/Yurkmez/gists{/gist_id}", "starred_url": "https://api.github.com/users/Yurkmez/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Yurkmez/subscriptions", "organizations_url": "https://api.github.com/users/Yurkmez/orgs", "repos_url": "https://api.github.com/users/Yurkmez/repos", "events_url": "https://api.github.com/users/Yurkmez/events{/privacy}", "received_events_url": "https://api.github.com/users/Yurkmez/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
[ "You should open an issue in the NLP course website / github page. I'm closing this issue if you don't mind", "ok, i don't mind, i'll mark the error there" ]
1,740,742,570,000
1,741,174,367,000
1,741,024,335,000
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
### Describe the bug When we execute code ``` frequencies = ( train_df["condition"] .value_counts() .to_frame() .reset_index() .rename(columns={"index": "condition", "condition": "frequency"}) ) frequencies.head() ``` answer should be like this condition | frequency birth control | 27655 depression | 8023 acne | 5209 anxiety | 4991 pain | 4744 but he is different frequency | count birth control | 27655 depression | 8023 acne | 5209 anxiety | 4991 pain | 4744 this is not correct, correct code ``` frequencies = ( train_df["condition"] .value_counts() .to_frame() .reset_index() .rename(columns={"index": "condition", "count": "frequency"}) ) ```` ### Steps to reproduce the bug ``` frequencies = ( train_df["condition"] .value_counts() .to_frame() .reset_index() .rename(columns={"index": "condition", "condition": "frequency"}) ) frequencies.head() ``` ### Expected behavior condition | frequency birth control | 27655 depression | 8023 acne | 5209 anxiety | 4991 pain | 4744 ### Environment info Google Colab
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7430/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7430/timeline
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/7429
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7429/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7429/comments
https://api.github.com/repos/huggingface/datasets/issues/7429/events
https://github.com/huggingface/datasets/pull/7429
2,886,806,513
PR_kwDODunzps6M67Jd
7,429
Improved type annotation
{ "login": "saiden89", "id": 45285915, "node_id": "MDQ6VXNlcjQ1Mjg1OTE1", "avatar_url": "https://avatars.githubusercontent.com/u/45285915?v=4", "gravatar_id": "", "url": "https://api.github.com/users/saiden89", "html_url": "https://github.com/saiden89", "followers_url": "https://api.github.com/users/saiden89/followers", "following_url": "https://api.github.com/users/saiden89/following{/other_user}", "gists_url": "https://api.github.com/users/saiden89/gists{/gist_id}", "starred_url": "https://api.github.com/users/saiden89/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/saiden89/subscriptions", "organizations_url": "https://api.github.com/users/saiden89/orgs", "repos_url": "https://api.github.com/users/saiden89/repos", "events_url": "https://api.github.com/users/saiden89/events{/privacy}", "received_events_url": "https://api.github.com/users/saiden89/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
[]
1,740,739,150,000
1,741,688,009,000
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
I've refined several type annotations throughout the codebase to align with current best practices and enhance overall clarity. Given the complexity of the code, there may still be areas that need further attention. I welcome any feedback or suggestions to make these improvements even better. - Fixes #7202
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7429/reactions", "total_count": 2, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 2, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7429/timeline
null
0
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7429", "html_url": "https://github.com/huggingface/datasets/pull/7429", "diff_url": "https://github.com/huggingface/datasets/pull/7429.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7429.patch", "merged_at": null }
https://api.github.com/repos/huggingface/datasets/issues/7428
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7428/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7428/comments
https://api.github.com/repos/huggingface/datasets/issues/7428/events
https://github.com/huggingface/datasets/pull/7428
2,886,111,651
PR_kwDODunzps6M4kW8
7,428
Use pyupgrade --py39-plus
{ "login": "cyyever", "id": 17618148, "node_id": "MDQ6VXNlcjE3NjE4MTQ4", "avatar_url": "https://avatars.githubusercontent.com/u/17618148?v=4", "gravatar_id": "", "url": "https://api.github.com/users/cyyever", "html_url": "https://github.com/cyyever", "followers_url": "https://api.github.com/users/cyyever/followers", "following_url": "https://api.github.com/users/cyyever/following{/other_user}", "gists_url": "https://api.github.com/users/cyyever/gists{/gist_id}", "starred_url": "https://api.github.com/users/cyyever/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/cyyever/subscriptions", "organizations_url": "https://api.github.com/users/cyyever/orgs", "repos_url": "https://api.github.com/users/cyyever/repos", "events_url": "https://api.github.com/users/cyyever/events{/privacy}", "received_events_url": "https://api.github.com/users/cyyever/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
[ "Hi ! can you run `make style` to fix code formatting ?", "@lhoestq Fixed", "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7428). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update." ]
1,740,713,984,000
1,742,604,680,000
1,741,187,056,000
CONTRIBUTOR
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7428/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7428/timeline
null
0
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7428", "html_url": "https://github.com/huggingface/datasets/pull/7428", "diff_url": "https://github.com/huggingface/datasets/pull/7428.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7428.patch", "merged_at": "2025-03-05T15:04:16" }
https://api.github.com/repos/huggingface/datasets/issues/7427
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7427/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7427/comments
https://api.github.com/repos/huggingface/datasets/issues/7427/events
https://github.com/huggingface/datasets/issues/7427
2,886,032,571
I_kwDODunzps6sBVy7
7,427
Error splitting the input into NAL units.
{ "login": "MengHao666", "id": 47114466, "node_id": "MDQ6VXNlcjQ3MTE0NDY2", "avatar_url": "https://avatars.githubusercontent.com/u/47114466?v=4", "gravatar_id": "", "url": "https://api.github.com/users/MengHao666", "html_url": "https://github.com/MengHao666", "followers_url": "https://api.github.com/users/MengHao666/followers", "following_url": "https://api.github.com/users/MengHao666/following{/other_user}", "gists_url": "https://api.github.com/users/MengHao666/gists{/gist_id}", "starred_url": "https://api.github.com/users/MengHao666/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/MengHao666/subscriptions", "organizations_url": "https://api.github.com/users/MengHao666/orgs", "repos_url": "https://api.github.com/users/MengHao666/repos", "events_url": "https://api.github.com/users/MengHao666/events{/privacy}", "received_events_url": "https://api.github.com/users/MengHao666/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
[ "First time I see this error :/ maybe it's an issue with your version of `multiprocess` and `dill` ? Make sure they are compatible with `datasets`", "> First time I see this error :/ maybe it's an issue with your version of `multiprocess` and `dill` ? Make sure they are compatible with `datasets`\n\nany recommendation for `multiprocess` and `dill`" ]
1,740,709,815,000
1,741,052,428,000
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
### Describe the bug I am trying to finetune qwen2.5-vl on 16 * 80G GPUS, and I use `LLaMA-Factory` and set `preprocessing_num_workers=16`. However, I met the following error and the program seem to got crush. It seems that the error come from `datasets` library The error logging is like following: ```text Converting format of dataset (num_proc=16): 100%|█████████▉| 19265/19267 [11:44<00:00, 5.88 examples/s] Converting format of dataset (num_proc=16): 100%|█████████▉| 19266/19267 [11:44<00:00, 5.02 examples/s] Converting format of dataset (num_proc=16): 100%|██████████| 19267/19267 [11:44<00:00, 5.44 examples/s] Converting format of dataset (num_proc=16): 100%|██████████| 19267/19267 [11:44<00:00, 27.34 examples/s] Running tokenizer on dataset (num_proc=16): 0%| | 0/19267 [00:00<?, ? examples/s] Invalid NAL unit size (45405 > 35540). Invalid NAL unit size (86720 > 54856). Invalid NAL unit size (7131 > 3225). missing picture in access unit with size 54860 Invalid NAL unit size (48042 > 33645). missing picture in access unit with size 3229 missing picture in access unit with size 33649 Invalid NAL unit size (86720 > 54856). Invalid NAL unit size (48042 > 33645). Error splitting the input into NAL units. missing picture in access unit with size 35544 Invalid NAL unit size (45405 > 35540). Error splitting the input into NAL units. Error splitting the input into NAL units. Invalid NAL unit size (8187 > 7069). missing picture in access unit with size 7073 Invalid NAL unit size (8187 > 7069). Error splitting the input into NAL units. Invalid NAL unit size (7131 > 3225). Error splitting the input into NAL units. Invalid NAL unit size (14013 > 5998). missing picture in access unit with size 6002 Invalid NAL unit size (14013 > 5998). Error splitting the input into NAL units. Invalid NAL unit size (17173 > 7231). missing picture in access unit with size 7235 Invalid NAL unit size (17173 > 7231). Error splitting the input into NAL units. Invalid NAL unit size (16964 > 6055). missing picture in access unit with size 6059 Invalid NAL unit size (16964 > 6055). Exception in thread Thread-9 (accepter)Error splitting the input into NAL units. : Traceback (most recent call last): File "/opt/conda/envs/python3.10.13/lib/python3.10/threading.py", line 1016, in _bootstrap_inner Running tokenizer on dataset (num_proc=16): 0%| | 0/19267 [13:22<?, ? examples/s] self.run() File "/opt/conda/envs/python3.10.13/lib/python3.10/threading.py", line 953, in run Invalid NAL unit size (7032 > 2927). missing picture in access unit with size 2931 self._target(*self._args, **self._kwargs) File "/opt/conda/envs/python3.10.13/lib/python3.10/site-packages/multiprocess/managers.py", line 194, in accepter Invalid NAL unit size (7032 > 2927). Error splitting the input into NAL units. t.start() File "/opt/conda/envs/python3.10.13/lib/python3.10/threading.py", line 935, in start Invalid NAL unit size (28973 > 6121). missing picture in access unit with size 6125 _start_new_thread(self._bootstrap, ())Invalid NAL unit size (28973 > 6121). RuntimeError: can't start new threadError splitting the input into NAL units. Invalid NAL unit size (4411 > 296). missing picture in access unit with size 300 Invalid NAL unit size (4411 > 296). Error splitting the input into NAL units. Invalid NAL unit size (14414 > 1471). missing picture in access unit with size 1475 Invalid NAL unit size (14414 > 1471). Error splitting the input into NAL units. Invalid NAL unit size (5283 > 1792). missing picture in access unit with size 1796 Invalid NAL unit size (5283 > 1792). Error splitting the input into NAL units. Invalid NAL unit size (79147 > 10042). missing picture in access unit with size 10046 Invalid NAL unit size (79147 > 10042). Error splitting the input into NAL units. Invalid NAL unit size (45405 > 35540). Invalid NAL unit size (86720 > 54856). Invalid NAL unit size (7131 > 3225). missing picture in access unit with size 54860 Invalid NAL unit size (48042 > 33645). missing picture in access unit with size 3229 missing picture in access unit with size 33649 Invalid NAL unit size (86720 > 54856). Invalid NAL unit size (48042 > 33645). Error splitting the input into NAL units. missing picture in access unit with size 35544 Invalid NAL unit size (45405 > 35540). Error splitting the input into NAL units. Error splitting the input into NAL units. Invalid NAL unit size (8187 > 7069). missing picture in access unit with size 7073 Invalid NAL unit size (8187 > 7069). Error splitting the input into NAL units. Invalid NAL unit size (7131 > 3225). Error splitting the input into NAL units. Invalid NAL unit size (14013 > 5998). missing picture in access unit with size 6002 Invalid NAL unit size (14013 > 5998). Error splitting the input into NAL units. Invalid NAL unit size (17173 > 7231). missing picture in access unit with size 7235 Invalid NAL unit size (17173 > 7231). Error splitting the input into NAL units. Invalid NAL unit size (16964 > 6055). missing picture in access unit with size 6059 Invalid NAL unit size (16964 > 6055). Exception in thread Thread-9 (accepter)Error splitting the input into NAL units. : Traceback (most recent call last): File "/opt/conda/envs/python3.10.13/lib/python3.10/threading.py", line 1016, in _bootstrap_inner Running tokenizer on dataset (num_proc=16): 0%| | 0/19267 [13:22<?, ? examples/s] self.run() File "/opt/conda/envs/python3.10.13/lib/python3.10/threading.py", line 953, in run Invalid NAL unit size (7032 > 2927). missing picture in access unit with size 2931 self._target(*self._args, **self._kwargs) File "/opt/conda/envs/python3.10.13/lib/python3.10/site-packages/multiprocess/managers.py", line 194, in accepter Invalid NAL unit size (7032 > 2927). Error splitting the input into NAL units. t.start() File "/opt/conda/envs/python3.10.13/lib/python3.10/threading.py", line 935, in start Invalid NAL unit size (28973 > 6121). missing picture in access unit with size 6125 _start_new_thread(self._bootstrap, ())Invalid NAL unit size (28973 > 6121). RuntimeError: can't start new threadError splitting the input into NAL units. Invalid NAL unit size (4411 > 296). missing picture in access unit with size 300 Invalid NAL unit size (4411 > 296). Error splitting the input into NAL units. Invalid NAL unit size (14414 > 1471). missing picture in access unit with size 1475 Invalid NAL unit size (14414 > 1471). Error splitting the input into NAL units. Invalid NAL unit size (5283 > 1792). missing picture in access unit with size 1796 Invalid NAL unit size (5283 > 1792). Error splitting the input into NAL units. Invalid NAL unit size (79147 > 10042). missing picture in access unit with size 10046 Invalid NAL unit size (79147 > 10042). Error splitting the input into NAL units. Invalid NAL unit size (45405 > 35540). Invalid NAL unit size (86720 > 54856). Invalid NAL unit size (7131 > 3225). missing picture in access unit with size 54860 Invalid NAL unit size (48042 > 33645). missing picture in access unit with size 3229 missing picture in access unit with size 33649 Invalid NAL unit size (86720 > 54856). Invalid NAL unit size (48042 > 33645). Error splitting the input into NAL units. missing picture in access unit with size 35544 Invalid NAL unit size (45405 > 35540). Error splitting the input into NAL units. Error splitting the input into NAL units. Invalid NAL unit size (8187 > 7069). missing picture in access unit with size 7073 Invalid NAL unit size (8187 > 7069). Error splitting the input into NAL units. Invalid NAL unit size (7131 > 3225). Error splitting the input into NAL units. Invalid NAL unit size (14013 > 5998). missing picture in access unit with size 6002 Invalid NAL unit size (14013 > 5998). Error splitting the input into NAL units. Invalid NAL unit size (17173 > 7231). missing picture in access unit with size 7235 Invalid NAL unit size (17173 > 7231). Error splitting the input into NAL units. Invalid NAL unit size (16964 > 6055). missing picture in access unit with size 6059 Invalid NAL unit size (16964 > 6055). Exception in thread Thread-9 (accepter)Error splitting the input into NAL units. : Traceback (most recent call last): File "/opt/conda/envs/python3.10.13/lib/python3.10/threading.py", line 1016, in _bootstrap_inner Running tokenizer on dataset (num_proc=16): 0%| | 0/19267 [13:22<?, ? examples/s] self.run() File "/opt/conda/envs/python3.10.13/lib/python3.10/threading.py", line 953, in run Invalid NAL unit size (7032 > 2927). missing picture in access unit with size 2931 self._target(*self._args, **self._kwargs) File "/opt/conda/envs/python3.10.13/lib/python3.10/site-packages/multiprocess/managers.py", line 194, in accepter Invalid NAL unit size (7032 > 2927). Error splitting the input into NAL units. t.start() File "/opt/conda/envs/python3.10.13/lib/python3.10/threading.py", line 935, in start Invalid NAL unit size (28973 > 6121). missing picture in access unit with size 6125 _start_new_thread(self._bootstrap, ())Invalid NAL unit size (28973 > 6121). RuntimeError: can't start new threadError splitting the input into NAL units. Invalid NAL unit size (4411 > 296). missing picture in access unit with size 300 Invalid NAL unit size (4411 > 296). Error splitting the input into NAL units. Invalid NAL unit size (14414 > 1471). missing picture in access unit with size 1475 Invalid NAL unit size (14414 > 1471). Error splitting the input into NAL units. Invalid NAL unit size (5283 > 1792). missing picture in access unit with size 1796 Invalid NAL unit size (5283 > 1792). Error splitting the input into NAL units. Invalid NAL unit size (79147 > 10042). missing picture in access unit with size 10046 Invalid NAL unit size (79147 > 10042). Error splitting the input into NAL units. Invalid NAL unit size (45405 > 35540). Invalid NAL unit size (86720 > 54856). Invalid NAL unit size (7131 > 3225). missing picture in access unit with size 54860 Invalid NAL unit size (48042 > 33645). missing picture in access unit with size 3229 missing picture in access unit with size 33649 Invalid NAL unit size (86720 > 54856). Invalid NAL unit size (48042 > 33645). Error splitting the input into NAL units. missing picture in access unit with size 35544 Invalid NAL unit size (45405 > 35540). Error splitting the input into NAL units. Error splitting the input into NAL units. Invalid NAL unit size (8187 > 7069). missing picture in access unit with size 7073 Invalid NAL unit size (8187 > 7069). Error splitting the input into NAL units. Invalid NAL unit size (7131 > 3225). Error splitting the input into NAL units. Invalid NAL unit size (14013 > 5998). missing picture in access unit with size 6002 Invalid NAL unit size (14013 > 5998). Error splitting the input into NAL units. Invalid NAL unit size (17173 > 7231). missing picture in access unit with size 7235 Invalid NAL unit size (17173 > 7231). Error splitting the input into NAL units. Invalid NAL unit size (16964 > 6055). missing picture in access unit with size 6059 Invalid NAL unit size (16964 > 6055). Exception in thread Thread-9 (accepter)Error splitting the input into NAL units. : Traceback (most recent call last): File "/opt/conda/envs/python3.10.13/lib/python3.10/threading.py", line 1016, in _bootstrap_inner Running tokenizer on dataset (num_proc=16): 0%| | 0/19267 [13:22<?, ? examples/s] self.run() File "/opt/conda/envs/python3.10.13/lib/python3.10/threading.py", line 953, in run Invalid NAL unit size (7032 > 2927). missing picture in access unit with size 2931 self._target(*self._args, **self._kwargs) File "/opt/conda/envs/python3.10.13/lib/python3.10/site-packages/multiprocess/managers.py", line 194, in accepter Invalid NAL unit size (7032 > 2927). Error splitting the input into NAL units. t.start() File "/opt/conda/envs/python3.10.13/lib/python3.10/threading.py", line 935, in start Invalid NAL unit size (28973 > 6121). missing picture in access unit with size 6125 _start_new_thread(self._bootstrap, ())Invalid NAL unit size (28973 > 6121). RuntimeError: can't start new threadError splitting the input into NAL units. Invalid NAL unit size (4411 > 296). missing picture in access unit with size 300 Invalid NAL unit size (4411 > 296). Error splitting the input into NAL units. Invalid NAL unit size (14414 > 1471). missing picture in access unit with size 1475 Invalid NAL unit size (14414 > 1471). Error splitting the input into NAL units. Invalid NAL unit size (5283 > 1792). missing picture in access unit with size 1796 Invalid NAL unit size (5283 > 1792). Error splitting the input into NAL units. Invalid NAL unit size (79147 > 10042). missing picture in access unit with size 10046 Invalid NAL unit size (79147 > 10042). Error splitting the input into NAL units. ``` ### Others _No response_ ### Steps to reproduce the bug None ### Expected behavior excpect to run successfully ### Environment info ``` transformers==4.49.0 datasets==3.2.0 accelerate==1.2.1 peft==0.12.0 trl==0.9.6 tokenizers==0.21.0 gradio>=4.38.0,<=5.18.0 pandas>=2.0.0 scipy einops sentencepiece tiktoken protobuf uvicorn pydantic fastapi sse-starlette matplotlib>=3.7.0 fire packaging pyyaml numpy<2.0.0 av librosa tyro<0.9.0 openlm-hub qwen-vl-utils ```
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7427/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7427/timeline
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/7426
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7426/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7426/comments
https://api.github.com/repos/huggingface/datasets/issues/7426/events
https://github.com/huggingface/datasets/pull/7426
2,883,754,507
PR_kwDODunzps6Mwe6B
7,426
fix: None default with bool type on load creates typing error
{ "login": "stephantul", "id": 8882233, "node_id": "MDQ6VXNlcjg4ODIyMzM=", "avatar_url": "https://avatars.githubusercontent.com/u/8882233?v=4", "gravatar_id": "", "url": "https://api.github.com/users/stephantul", "html_url": "https://github.com/stephantul", "followers_url": "https://api.github.com/users/stephantul/followers", "following_url": "https://api.github.com/users/stephantul/following{/other_user}", "gists_url": "https://api.github.com/users/stephantul/gists{/gist_id}", "starred_url": "https://api.github.com/users/stephantul/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/stephantul/subscriptions", "organizations_url": "https://api.github.com/users/stephantul/orgs", "repos_url": "https://api.github.com/users/stephantul/repos", "events_url": "https://api.github.com/users/stephantul/events{/privacy}", "received_events_url": "https://api.github.com/users/stephantul/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
[]
1,740,643,896,000
1,741,103,620,000
1,741,103,620,000
CONTRIBUTOR
{ "total": 0, "completed": 0, "percent_completed": 0 }
Hello! Pyright flags any use of `load_dataset` as an error, because the default for `trust_remote_code` is `None`, but the function is typed as `bool`, not `Optional[bool]`. I changed the type and docstrings to reflect this, but no other code was touched.
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7426/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7426/timeline
null
0
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7426", "html_url": "https://github.com/huggingface/datasets/pull/7426", "diff_url": "https://github.com/huggingface/datasets/pull/7426.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7426.patch", "merged_at": "2025-03-04T15:53:40" }
https://api.github.com/repos/huggingface/datasets/issues/7425
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7425/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7425/comments
https://api.github.com/repos/huggingface/datasets/issues/7425/events
https://github.com/huggingface/datasets/issues/7425
2,883,684,686
I_kwDODunzps6r4YlO
7,425
load_dataset("livecodebench/code_generation_lite", version_tag="release_v2") TypeError: 'NoneType' object is not callable
{ "login": "dshwei", "id": 42167236, "node_id": "MDQ6VXNlcjQyMTY3MjM2", "avatar_url": "https://avatars.githubusercontent.com/u/42167236?v=4", "gravatar_id": "", "url": "https://api.github.com/users/dshwei", "html_url": "https://github.com/dshwei", "followers_url": "https://api.github.com/users/dshwei/followers", "following_url": "https://api.github.com/users/dshwei/following{/other_user}", "gists_url": "https://api.github.com/users/dshwei/gists{/gist_id}", "starred_url": "https://api.github.com/users/dshwei/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/dshwei/subscriptions", "organizations_url": "https://api.github.com/users/dshwei/orgs", "repos_url": "https://api.github.com/users/dshwei/repos", "events_url": "https://api.github.com/users/dshwei/events{/privacy}", "received_events_url": "https://api.github.com/users/dshwei/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
[ "> datasets\n\nHi, have you solved this bug? Today I also met the same problem about `livecodebench/code_generation_lite` when evaluating the `Open-R1` repo. I am looking forward to your reply!\n\n![Image](https://github.com/user-attachments/assets/02e92fbf-da33-41b3-b8d4-f79b293a54f1)", "Hey guys,\nI tried to reproduce the issue and it works fine. I used google colab as enviroment.\n\n![Image](https://github.com/user-attachments/assets/024dd8e1-bd10-470b-9a6d-60759ffdb984)", "> Hey guys, I tried to reproduce the issue and it works fine. I used google colab as enviroment.\n> \n> ![Image](https://github.com/user-attachments/assets/024dd8e1-bd10-470b-9a6d-60759ffdb984)\n\nThanks for your kind reply! I wonder which Python version do you use? My Python version is 3.11.11 and datasets version is 3.3.2 but I still met this bug.\n\n<img width=\"1121\" alt=\"Image\" src=\"https://github.com/user-attachments/assets/7c2c5007-ee55-4030-94b9-01fcdea0bf4a\" />", "@zwxandy It's Python 3.11.11", "@Serzhanov @zwxandy I have met the same problem, have this problem be solved?", "> [@Serzhanov](https://github.com/Serzhanov) [@zwxandy](https://github.com/zwxandy) I have met the same problem, have this problem be solved?\n\nI try to downgrade datasets version to 2.20.0,and it works for me @Serzhanov @dshwei , hope this work for you too :)", "> > datasets\n> \n> Hi, have you solved this bug? Today I also met the same problem about `livecodebench/code_generation_lite` when evaluating the `Open-R1` repo. I am looking forward to your reply!\n> \n> ![Image](https://github.com/user-attachments/assets/02e92fbf-da33-41b3-b8d4-f79b293a54f1)\n\nHi, have you resolved this problem? I meet the same bug when evaluating the ’Open-R1’, too. Looking forward to your reply!", "> > [@Serzhanov](https://github.com/Serzhanov) [@zwxandy](https://github.com/zwxandy) I have met the same problem, have this problem be solved?\n> \n> I try to downgrade datasets version to 2.20.0,and it works for me [@Serzhanov](https://github.com/Serzhanov) [@dshwei](https://github.com/dshwei) , hope this work for you too :)\n\nI still met the same bug after downgrading datasets version to 2.20.0. Moreover, it is not friendly to Open-R1 since there can be another bug: `open-r1 0.1.0.dev0 requires datasets>=3.2.0` with datasets==2.20.0", "> > > datasets\n> > \n> > \n> > Hi, have you solved this bug? Today I also met the same problem about `livecodebench/code_generation_lite` when evaluating the `Open-R1` repo. I am looking forward to your reply!\n> > ![Image](https://github.com/user-attachments/assets/02e92fbf-da33-41b3-b8d4-f79b293a54f1)\n> \n> Hi, have you resolved this problem? I meet the same bug when evaluating the ’Open-R1’, too. Looking forward to your reply!\n\nHi, I still cannot solve this bug introduced from datasets version. Downgrading datasets version to 2.20.0 cannot work for me and it introduces another problem `open-r1 0.1.0.dev0 requires datasets>=3.2.0` in Open-R1.\n\nLuckily, there is a tricky way to enable you to run Open-R1. You can remove or comment the code related to `lcb` in `~/anaconda3/envs/openr1/lib/python3.11/site-packages/lighteval/tasks/extended/__init__.py`. I have reproduce the results of DeepSeek-R1-Distill-Qwen-1.5B and 7B on MATH-500, GPQA, and AIME24.\n\nYou can have a try~", "The issue was resolved .\nbecause the file` livecodebench/code_generation_lite/code_generation_lite.py `was not downloaded. Manually downloading it fixed the problem." ]
1,740,641,762,000
1,743,051,933,000
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
### Describe the bug from datasets import load_dataset lcb_codegen = load_dataset("livecodebench/code_generation_lite", version_tag="release_v2") or configs = get_dataset_config_names("livecodebench/code_generation_lite", trust_remote_code=True) both error: Traceback (most recent call last): File "", line 1, in File "/workspace/miniconda/envs/grpo/lib/python3.10/site-packages/datasets/load.py", line 2131, in load_dataset builder_instance = load_dataset_builder( File "/workspace/miniconda/envs/grpo/lib/python3.10/site-packages/datasets/load.py", line 1888, in load_dataset_builder builder_instance: DatasetBuilder = builder_cls( TypeError: 'NoneType' object is not callable ### Steps to reproduce the bug from datasets import get_dataset_config_names configs = get_dataset_config_names("livecodebench/code_generation_lite", trust_remote_code=True) OR lcb_codegen = load_dataset("livecodebench/code_generation_lite", version_tag="release_v2") ### Expected behavior load datasets livecodebench/code_generation_lite ### Environment info import datasets version '3.3.2'
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7425/reactions", "total_count": 1, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 1 }
https://api.github.com/repos/huggingface/datasets/issues/7425/timeline
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/7424
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7424/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7424/comments
https://api.github.com/repos/huggingface/datasets/issues/7424/events
https://github.com/huggingface/datasets/pull/7424
2,882,663,621
PR_kwDODunzps6Ms1Qx
7,424
Faster folder based builder + parquet support + allow repeated media + use torchvideo
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7424). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update." ]
1,740,599,718,000
1,741,200,660,000
1,741,196,483,000
MEMBER
{ "total": 0, "completed": 0, "percent_completed": 0 }
This will be useful for LeRobotDataset (robotics datasets for [lerobot](https://github.com/huggingface/lerobot) based on videos) Impacted builders: - ImageFolder - AudioFolder - VideoFolder Improvements: - faster to stream (got a 5x speed up on an image dataset) - improved RAM usage - support for metadata.parquet - allow to link to an image/audio/video multiple times - support for pyarrow filters (mostly efficient for parquet) - link to files using fields names `*_file_name` (in addition to the already existing `file_name`) - this allows to have multiple image/audio/video per row - there is also `file_names` and `*_file_names` for lists of image/audio/video Changes: - the builders iterate on the metadata files instead of the media files - the builders iterate on chunks of metadata instead of loading them in RAM completely - metadata files are no longer handled separately in `data_files` - added the `filters` argument to pass to `load_dataset` - either as an [Expression](https://arrow.apache.org/docs/python/generated/pyarrow.dataset.Expression.html) - or as tuples like `filters=[('event_name', '=', 'SomeEvent')]` - small breaking change: you can't add labels to a dataset with`drop_labels=False` if it has a metadata file - small breaking change: you can't use one metadata file for multiple splits anymore Example: `lhoestq/pusht-videofolder` is a video dataset with metadata.parquet where multiple rows can point to the same video ```python In [1]: from datasets import load_dataset In [2]: load_dataset("lhoestq/pusht-videofolder") Resolving data files: 100%|██████████████████████████████| 207/207 [00:00<00:00, 1087.32it/s] Out[2]: DatasetDict({ train: Dataset({ features: ['video', 'observation.state', 'action', 'episode_index', 'frame_index', 'timestamp', 'next.reward', 'next.done', 'next.success', 'index', 'task_index'], num_rows: 25650 }) }) In [3]: load_dataset("lhoestq/pusht-videofolder", filters=[("next.reward", ">", 0.5)]) Resolving data files: 100%|██████████████████████████████| 207/207 [00:01<00:00, 183.03it/s] Out[3]: DatasetDict({ train: Dataset({ features: ['video', 'observation.state', 'action', 'episode_index', 'frame_index', 'timestamp', 'next.reward', 'next.done', 'next.success', 'index', 'task_index'], num_rows: 5773 }) }) ``` Additional change for VideoFolder: - decord can't be installed in many setups, I switched the backend to torchvision instead - I also added streaming capability from HF (you can get video frames without downloading the full video from HF) Example: load a robotics dataset ```python In [1]: from datasets import load_dataset ds In [2]: ds = load_dataset("lhoestq/pusht-videofolder") Resolving data files: 100%|██████████████████████████████| 207/207 [00:00<00:00, 624.81it/s] In [3]: ds["train"][0] Out[3]: {'video': <torchvision.io.video_reader.VideoReader at 0x1145dc290>, 'observation.state': [222.0, 97.0], 'action': [233.0, 71.0], 'episode_index': 0, 'frame_index': 0, 'timestamp': 0.0, 'next.reward': 0.19029748439788818, 'next.done': False, 'next.success': False, 'index': 0, 'task_index': 0} ``` Example: stream frames without downloading full videos ```python In [1]: from datasets import load_dataset In [2]: ds = load_dataset("BrianGuo/Tennis_Data", streaming=True) In [3]: example = next(iter(ds["train"])) In [4]: video = example["video"] In [5]: video.get_metadata() Out[5]: {'audio': {'framerate': [44100.0], 'duration': [2027.35]}, 'video': {'fps': [59.00002712894387], 'duration': [2027.355]}} In [6]: video.seek(1800, keyframes_only=True) # 30min Out[6]: <torchvision.io.video_reader.VideoReader at 0x148d4d010> In [7]: next(video) Out[7]: {'data': tensor([[[ 76, 77, 79, ..., 41, 39, 38], [ 76, 77, 79, ..., 40, 39, 35], [ 76, 77, 79, ..., 34, 30, 26], ..., [127, 127, 127, ..., 125, 125, 125], [125, 126, 126, ..., 125, 125, 125], [122, 124, 126, ..., 125, 125, 125]]], dtype=torch.uint8), 'pts': 1800.0} ``` TODO: - [x] docs - [x] fix tests
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7424/reactions", "total_count": 2, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 2, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7424/timeline
null
0
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7424", "html_url": "https://github.com/huggingface/datasets/pull/7424", "diff_url": "https://github.com/huggingface/datasets/pull/7424.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7424.patch", "merged_at": "2025-03-05T17:41:22" }
https://api.github.com/repos/huggingface/datasets/issues/7423
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7423/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7423/comments
https://api.github.com/repos/huggingface/datasets/issues/7423/events
https://github.com/huggingface/datasets/issues/7423
2,879,271,409
I_kwDODunzps6rnjHx
7,423
Row indexing a dataset with numpy integers
{ "login": "DavidRConnell", "id": 35470740, "node_id": "MDQ6VXNlcjM1NDcwNzQw", "avatar_url": "https://avatars.githubusercontent.com/u/35470740?v=4", "gravatar_id": "", "url": "https://api.github.com/users/DavidRConnell", "html_url": "https://github.com/DavidRConnell", "followers_url": "https://api.github.com/users/DavidRConnell/followers", "following_url": "https://api.github.com/users/DavidRConnell/following{/other_user}", "gists_url": "https://api.github.com/users/DavidRConnell/gists{/gist_id}", "starred_url": "https://api.github.com/users/DavidRConnell/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/DavidRConnell/subscriptions", "organizations_url": "https://api.github.com/users/DavidRConnell/orgs", "repos_url": "https://api.github.com/users/DavidRConnell/repos", "events_url": "https://api.github.com/users/DavidRConnell/events{/privacy}", "received_events_url": "https://api.github.com/users/DavidRConnell/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[ { "id": 1935892871, "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement", "name": "enhancement", "color": "a2eeef", "default": true, "description": "New feature or request" } ]
open
false
null
[]
[ "Would be cool to be consistent when it comes to indexing with numpy objects, if we do accept numpy arrays we should indeed accept numpy integers. Your idea sounds reasonable, I'd also be in favor of adding a simple test as well" ]
1,740,509,085,000
1,741,024,524,000
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
### Feature request Allow indexing datasets with a scalar numpy integer type. ### Motivation Indexing a dataset with a scalar numpy.int* object raises a TypeError. This is due to the test in `datasets/formatting/formatting.py:key_to_query_type` ``` python def key_to_query_type(key: Union[int, slice, range, str, Iterable]) -> str: if isinstance(key, int): return "row" elif isinstance(key, str): return "column" elif isinstance(key, (slice, range, Iterable)): return "batch" _raise_bad_key_type(key) ``` In the row case, it checks if key is an int, which returns false when key is integer like but not a builtin python integer type. This is counterintuitive because a numpy array of np.int64s can be used for the batch case. For example: ``` python import numpy as np import datasets dataset = datasets.Dataset.from_dict({"a": [1, 2, 3, 4], "b": [5, 6, 7, 8]}) # Regular indexing dataset[0] dataset[:2] # Indexing with numpy data types (expect same results) idx = np.asarray([0, 1]) dataset[idx] # Succeeds when using an array of np.int64 values dataset[idx[0]] # Fails with TypeError when using scalar np.int64 ``` For the user, this can be solved by wrapping `idx[0]` in `int` but the test could also be changed in `key_to_query_type` to accept a less strict definition of int. ``` diff +import numbers + def key_to_query_type(key: Union[int, slice, range, str, Iterable]) -> str: + if isinstance(key, numbers.Integral): - if isinstance(key, int): return "row" elif isinstance(key, str): return "column" elif isinstance(key, (slice, range, Iterable)): return "batch" _raise_bad_key_type(key) ``` Looking at how others do it, pandas has an `is_integer` definition that it checks which uses `is_integer_object` defined in `pandas/_libs/utils.pxd`: ``` cython cdef inline bint is_integer_object(object obj) noexcept: """ Cython equivalent of `isinstance(val, (int, np.integer)) and not isinstance(val, (bool, np.timedelta64))` Parameters ---------- val : object Returns ------- is_integer : bool Notes ----- This counts np.timedelta64 objects as integers. """ return (not PyBool_Check(obj) and isinstance(obj, (int, cnp.integer)) and not is_timedelta64_object(obj)) ``` This would be less flexible as it explicitly checks for numpy integer, but worth noting that they had the need to ensure the key is not a bool. ### Your contribution I can submit a pull request with the above changes after checking that indexing succeeds with the numpy integer type. Or if there is a different integer check that would be preferred I could add that. If there is a reason not to want this behavior that is fine too.
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7423/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7423/timeline
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/7421
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7421/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7421/comments
https://api.github.com/repos/huggingface/datasets/issues/7421/events
https://github.com/huggingface/datasets/issues/7421
2,878,369,052
I_kwDODunzps6rkG0c
7,421
DVC integration broken
{ "login": "maxstrobel", "id": 34747372, "node_id": "MDQ6VXNlcjM0NzQ3Mzcy", "avatar_url": "https://avatars.githubusercontent.com/u/34747372?v=4", "gravatar_id": "", "url": "https://api.github.com/users/maxstrobel", "html_url": "https://github.com/maxstrobel", "followers_url": "https://api.github.com/users/maxstrobel/followers", "following_url": "https://api.github.com/users/maxstrobel/following{/other_user}", "gists_url": "https://api.github.com/users/maxstrobel/gists{/gist_id}", "starred_url": "https://api.github.com/users/maxstrobel/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/maxstrobel/subscriptions", "organizations_url": "https://api.github.com/users/maxstrobel/orgs", "repos_url": "https://api.github.com/users/maxstrobel/repos", "events_url": "https://api.github.com/users/maxstrobel/events{/privacy}", "received_events_url": "https://api.github.com/users/maxstrobel/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
[ "Unfortunately `url` is a reserved argument in `fsspec.url_to_fs`, so ideally file system implementations like DVC should use another argument name to avoid this kind of errors" ]
1,740,489,271,000
1,741,023,722,000
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
### Describe the bug The DVC integration seems to be broken. Followed this guide: https://dvc.org/doc/user-guide/integrations/huggingface ### Steps to reproduce the bug #### Script to reproduce ~~~python from datasets import load_dataset dataset = load_dataset( "csv", data_files="dvc://workshop/satellite-data/jan_train.csv", storage_options={"url": "https://github.com/iterative/dataset-registry.git"}, ) print(dataset) ~~~ #### Error log ~~~ Traceback (most recent call last): File "C:\tmp\test\load.py", line 3, in <module> dataset = load_dataset( ^^^^^^^^^^^^^ File "C:\tmp\test\.venv\Lib\site-packages\datasets\load.py", line 2151, in load_dataset builder_instance.download_and_prepare( File "C:\tmp\test\.venv\Lib\site-packages\datasets\builder.py", line 808, in download_and_prepare fs, output_dir = url_to_fs(output_dir, **(storage_options or {})) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ TypeError: url_to_fs() got multiple values for argument 'url' ~~~ ### Expected behavior Integration would work and the indicated file is downloaded and opened. ### Environment info #### Python version ~~~ python --version Python 3.11.10 ~~~ #### Venv (pip install datasets dvc): ~~~ Package Version ---------------------- ----------- aiohappyeyeballs 2.4.6 aiohttp 3.11.13 aiohttp-retry 2.9.1 aiosignal 1.3.2 amqp 5.3.1 annotated-types 0.7.0 antlr4-python3-runtime 4.9.3 appdirs 1.4.4 asyncssh 2.20.0 atpublic 5.1 attrs 25.1.0 billiard 4.2.1 celery 5.4.0 certifi 2025.1.31 cffi 1.17.1 charset-normalizer 3.4.1 click 8.1.8 click-didyoumean 0.3.1 click-plugins 1.1.1 click-repl 0.3.0 colorama 0.4.6 configobj 5.0.9 cryptography 44.0.1 datasets 3.3.2 dictdiffer 0.9.0 dill 0.3.8 diskcache 5.6.3 distro 1.9.0 dpath 2.2.0 dulwich 0.22.7 dvc 3.59.1 dvc-data 3.16.9 dvc-http 2.32.0 dvc-objects 5.1.0 dvc-render 1.0.2 dvc-studio-client 0.21.0 dvc-task 0.40.2 entrypoints 0.4 filelock 3.17.0 flatten-dict 0.4.2 flufl-lock 8.1.0 frozenlist 1.5.0 fsspec 2024.12.0 funcy 2.0 gitdb 4.0.12 gitpython 3.1.44 grandalf 0.8 gto 1.7.2 huggingface-hub 0.29.1 hydra-core 1.3.2 idna 3.10 iterative-telemetry 0.0.10 kombu 5.4.2 markdown-it-py 3.0.0 mdurl 0.1.2 multidict 6.1.0 multiprocess 0.70.16 networkx 3.4.2 numpy 2.2.3 omegaconf 2.3.0 orjson 3.10.15 packaging 24.2 pandas 2.2.3 pathspec 0.12.1 platformdirs 4.3.6 prompt-toolkit 3.0.50 propcache 0.3.0 psutil 7.0.0 pyarrow 19.0.1 pycparser 2.22 pydantic 2.10.6 pydantic-core 2.27.2 pydot 3.0.4 pygit2 1.17.0 pygments 2.19.1 pygtrie 2.5.0 pyparsing 3.2.1 python-dateutil 2.9.0.post0 pytz 2025.1 pywin32 308 pyyaml 6.0.2 requests 2.32.3 rich 13.9.4 ruamel-yaml 0.18.10 ruamel-yaml-clib 0.2.12 scmrepo 3.3.10 semver 3.0.4 setuptools 75.8.0 shellingham 1.5.4 shortuuid 1.0.13 shtab 1.7.1 six 1.17.0 smmap 5.0.2 sqltrie 0.11.2 tabulate 0.9.0 tomlkit 0.13.2 tqdm 4.67.1 typer 0.15.1 typing-extensions 4.12.2 tzdata 2025.1 urllib3 2.3.0 vine 5.1.0 voluptuous 0.15.2 wcwidth 0.2.13 xxhash 3.5.0 yarl 1.18.3 zc-lockfile 3.0.post1 ~~~
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7421/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7421/timeline
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/7420
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7420/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7420/comments
https://api.github.com/repos/huggingface/datasets/issues/7420/events
https://github.com/huggingface/datasets/issues/7420
2,876,281,928
I_kwDODunzps6rcJRI
7,420
better correspondence between cached and saved datasets created using from_generator
{ "login": "vttrifonov", "id": 12157034, "node_id": "MDQ6VXNlcjEyMTU3MDM0", "avatar_url": "https://avatars.githubusercontent.com/u/12157034?v=4", "gravatar_id": "", "url": "https://api.github.com/users/vttrifonov", "html_url": "https://github.com/vttrifonov", "followers_url": "https://api.github.com/users/vttrifonov/followers", "following_url": "https://api.github.com/users/vttrifonov/following{/other_user}", "gists_url": "https://api.github.com/users/vttrifonov/gists{/gist_id}", "starred_url": "https://api.github.com/users/vttrifonov/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/vttrifonov/subscriptions", "organizations_url": "https://api.github.com/users/vttrifonov/orgs", "repos_url": "https://api.github.com/users/vttrifonov/repos", "events_url": "https://api.github.com/users/vttrifonov/events{/privacy}", "received_events_url": "https://api.github.com/users/vttrifonov/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[ { "id": 1935892871, "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement", "name": "enhancement", "color": "a2eeef", "default": true, "description": "New feature or request" } ]
open
false
null
[]
[]
1,740,435,277,000
1,740,539,422,000
null
CONTRIBUTOR
{ "total": 0, "completed": 0, "percent_completed": 0 }
### Feature request At the moment `.from_generator` can only create a dataset that lives in the cache. The cached dataset cannot be loaded with `load_from_disk` because the cache folder is missing `state.json`. So the only way to convert this cached dataset to a regular is to use `save_to_disk` which needs to create a copy of the cached dataset. For large datasets this can end up wasting a lot of space. In my case the saving operation failed so I am stuck with a large cached dataset and no clear way to convert to a `Dataset` that I can use. The requested feature is to provide a way to be able to load a cached dataset using `.load_from_disk`. Alternatively `.from_generator` can create the dataset at a specified location so that it can be loaded from there with `.load_from_disk`. ### Motivation I have the following workflow which has exposed some awkwardness about the Datasets saving/caching. 1. I created a cached dataset using `.from_generator` which was cached in a folder. This dataset is rather large (~600GB) with many shards. 2. I tried to save this dataset using `.save_to_disk` to another location so that I can use later as a `Dataset`. This essentially creates another copy (for a total of 1.2TB!) of what is already in the cache... In my case the saving operation keeps dying for some reason and I am stuck with a cached dataset and no copy. 3. Now I am trying to "save" the existing cached dataset but it is not clear how to access the cached files after `.from_generator` has finished e.g. from a different process. I should not be even looking at the cache but I really do not want to waste another 2hr to generate the set so that if fails agains (I already did this couple of times). - I tried `.load_from_disk` but it does not work with cached files and complains that this is not a `Dataset` (!). - I looked at `.from_file` which takes one file but the cached file has many (shards) so I am not sure how to make this work. - I tried `.load_dataset` but this seems to either try to "download" a copy (of a file which is already in the local file system!) which I will then need to save or I need to use `streaming=False` to create an `IterableDataset `which then I need to convert (using the cache) to `Dataset` so that I can save it. With both options I will end up with 3 copies of the same dataset for a total of ~2TB! I am hoping here is another way to do this... Maybe I am missing something here: I looked at docs and forums but no luck. I have a bunch of arrow files cached by `Dataset.from_generator` and no clean way to make them into a `Dataset` that I can use. This all could be so much easer if `load_from_disk` can recognize the cached files and produce a `Dataset`: after the cache is created I would not have to "save" it again and I can just load it when I need. At the moment `load_from_disk` needs `state.json` which is lacking in the cache folder. So perhaps `.from_generator` could be made to "finalize" (e.g. create `state.json`) the dataset once it is done so that it can be loaded easily. Or provide `.from_generator` with a `save_to_dir` parameter in addition to `cache_dir` which can be used for the whole process including creating the `state.json` at the end. As a proof of concept I just created `state.json` by hand and `load_from_disk` worked using the cache! So it seems to be the missing piece here. ### Your contribution Time permitting I can look into `.from_generator` to see if adding `state.json` is feasible.
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7420/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7420/timeline
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/7419
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7419/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7419/comments
https://api.github.com/repos/huggingface/datasets/issues/7419/events
https://github.com/huggingface/datasets/issues/7419
2,875,635,320
I_kwDODunzps6rZrZ4
7,419
Import order crashes script execution
{ "login": "DamienMatias", "id": 23298479, "node_id": "MDQ6VXNlcjIzMjk4NDc5", "avatar_url": "https://avatars.githubusercontent.com/u/23298479?v=4", "gravatar_id": "", "url": "https://api.github.com/users/DamienMatias", "html_url": "https://github.com/DamienMatias", "followers_url": "https://api.github.com/users/DamienMatias/followers", "following_url": "https://api.github.com/users/DamienMatias/following{/other_user}", "gists_url": "https://api.github.com/users/DamienMatias/gists{/gist_id}", "starred_url": "https://api.github.com/users/DamienMatias/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/DamienMatias/subscriptions", "organizations_url": "https://api.github.com/users/DamienMatias/orgs", "repos_url": "https://api.github.com/users/DamienMatias/repos", "events_url": "https://api.github.com/users/DamienMatias/events{/privacy}", "received_events_url": "https://api.github.com/users/DamienMatias/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
[]
1,740,416,623,000
1,740,416,623,000
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
### Describe the bug Hello, I'm trying to convert an HF dataset into a TFRecord so I'm importing `tensorflow` and `datasets` to do so. Depending in what order I'm importing those librairies, my code hangs forever and is unkillable (CTRL+C doesn't work, I need to kill my shell entirely). Thank you for your help 🙏 ### Steps to reproduce the bug If you run the following script, this will hang forever : ```python import tensorflow as tf import datasets dataset = datasets.load_dataset("imagenet-1k", split="validation", streaming=True) print(next(iter(dataset))) ``` however running the following will work fine (I just changed the order of the imports) : ```python import datasets import tensorflow as tf dataset = datasets.load_dataset("imagenet-1k", split="validation", streaming=True) print(next(iter(dataset))) ``` ### Expected behavior I'm expecting the script to reach the end and my case print the content of the first item in the dataset ``` {'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=408x500 at 0x70C646A03110>, 'label': 91} ``` ### Environment info ``` $ datasets-cli env - `datasets` version: 3.3.2 - Platform: Linux-6.8.0-1017-aws-x86_64-with-glibc2.35 - Python version: 3.11.7 - `huggingface_hub` version: 0.29.1 - PyArrow version: 19.0.1 - Pandas version: 2.2.3 - `fsspec` version: 2024.12.0 ``` I'm also using `tensorflow==2.18.0`.
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7419/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7419/timeline
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/7418
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7418/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7418/comments
https://api.github.com/repos/huggingface/datasets/issues/7418/events
https://github.com/huggingface/datasets/issues/7418
2,868,701,471
I_kwDODunzps6q_Okf
7,418
pyarrow.lib.arrowinvalid: cannot mix list and non-list, non-null values with map function
{ "login": "alexxchen", "id": 15705569, "node_id": "MDQ6VXNlcjE1NzA1NTY5", "avatar_url": "https://avatars.githubusercontent.com/u/15705569?v=4", "gravatar_id": "", "url": "https://api.github.com/users/alexxchen", "html_url": "https://github.com/alexxchen", "followers_url": "https://api.github.com/users/alexxchen/followers", "following_url": "https://api.github.com/users/alexxchen/following{/other_user}", "gists_url": "https://api.github.com/users/alexxchen/gists{/gist_id}", "starred_url": "https://api.github.com/users/alexxchen/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/alexxchen/subscriptions", "organizations_url": "https://api.github.com/users/alexxchen/orgs", "repos_url": "https://api.github.com/users/alexxchen/repos", "events_url": "https://api.github.com/users/alexxchen/events{/privacy}", "received_events_url": "https://api.github.com/users/alexxchen/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
[ "@lhoestq ", "Can you try passing text: None for the image object ? Pyarrow expects all the objects to have the exact same type, in particular the dicttionaries in \"content\" should all have the keys \"type\" and \"text\"", "The following modification on system prompt works, but it is different from the usual way to use it.\n```\ndef make_conversation(example):\n prompt = []\n\n prompt.append({\"role\": \"system\", \"content\": [{\"type\": \"text\", \"text\": system_prompt}]})\n prompt.append(\n {\n \"role\": \"user\", \n \"content\": [\n {\"type\": \"image\"},\n {\"type\": \"text\", \"text\": example[\"problem\"]},\n ]\n }\n )\n return {\"prompt\": prompt}\n```", "Good to know ! But yes Arrow / Parquet have this typing limitation (which is great to ensure data integrity, but constraining at the same time). It's is really blocking you, feel free to ping the arrow team / community if they plan to have a Union type or a JSON type" ]
1,740,135,486,000
1,740,497,206,000
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
### Describe the bug Encounter pyarrow.lib.arrowinvalid error with map function in some example when loading the dataset ### Steps to reproduce the bug ``` from datasets import load_dataset from PIL import Image, PngImagePlugin dataset = load_dataset("leonardPKU/GEOQA_R1V_Train_8K") system_prompt="You are a helpful AI Assistant" def make_conversation(example): prompt = [] prompt.append({"role": "system", "content": system_prompt}) prompt.append( { "role": "user", "content": [ {"type": "image"}, {"type": "text", "text": example["problem"]}, ] } ) return {"prompt": prompt} def check_data_types(example): for key, value in example.items(): if key == 'image': if not isinstance(value, PngImagePlugin.PngImageFile): print(value) if key == "problem" or key == "solution": if not isinstance(value, str): print(value) return example dataset = dataset.map(check_data_types) dataset = dataset.map(make_conversation) ``` ### Expected behavior Successfully process the dataset with map ### Environment info datasets==3.3.1
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7418/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7418/timeline
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/7417
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7417/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7417/comments
https://api.github.com/repos/huggingface/datasets/issues/7417/events
https://github.com/huggingface/datasets/pull/7417
2,866,868,922
PR_kwDODunzps6L78k3
7,417
set dev version
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7417). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update." ]
1,740,073,529,000
1,740,073,670,000
1,740,073,536,000
MEMBER
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7417/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7417/timeline
null
0
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7417", "html_url": "https://github.com/huggingface/datasets/pull/7417", "diff_url": "https://github.com/huggingface/datasets/pull/7417.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7417.patch", "merged_at": "2025-02-20T17:45:36" }
https://api.github.com/repos/huggingface/datasets/issues/7416
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7416/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7416/comments
https://api.github.com/repos/huggingface/datasets/issues/7416/events
https://github.com/huggingface/datasets/pull/7416
2,866,862,143
PR_kwDODunzps6L77G2
7,416
Release: 3.3.2
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7416). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update." ]
1,740,073,331,000
1,740,073,475,000
1,740,073,408,000
MEMBER
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7416/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7416/timeline
null
0
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7416", "html_url": "https://github.com/huggingface/datasets/pull/7416", "diff_url": "https://github.com/huggingface/datasets/pull/7416.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7416.patch", "merged_at": "2025-02-20T17:43:28" }
https://api.github.com/repos/huggingface/datasets/issues/7415
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7415/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7415/comments
https://api.github.com/repos/huggingface/datasets/issues/7415/events
https://github.com/huggingface/datasets/issues/7415
2,865,774,546
I_kwDODunzps6q0D_S
7,415
Shard Dataset at specific indices
{ "login": "nikonikolov", "id": 11044035, "node_id": "MDQ6VXNlcjExMDQ0MDM1", "avatar_url": "https://avatars.githubusercontent.com/u/11044035?v=4", "gravatar_id": "", "url": "https://api.github.com/users/nikonikolov", "html_url": "https://github.com/nikonikolov", "followers_url": "https://api.github.com/users/nikonikolov/followers", "following_url": "https://api.github.com/users/nikonikolov/following{/other_user}", "gists_url": "https://api.github.com/users/nikonikolov/gists{/gist_id}", "starred_url": "https://api.github.com/users/nikonikolov/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/nikonikolov/subscriptions", "organizations_url": "https://api.github.com/users/nikonikolov/orgs", "repos_url": "https://api.github.com/users/nikonikolov/repos", "events_url": "https://api.github.com/users/nikonikolov/events{/privacy}", "received_events_url": "https://api.github.com/users/nikonikolov/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
[ "Hi ! if it's an option I'd suggest to have one sequence per row instead.\n\nOtherwise you'd have to make your own save/load mechanism", "Saving one sequence per row is very difficult and heavy and makes all the optimizations pointless. How would a custom save/load mechanism look like?", "You can use `pyarrow` for example to save/load individual arrow or parquet files and control what they contain" ]
1,740,048,190,000
1,740,395,205,000
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
I have a dataset of sequences, where each example in the sequence is a separate row in the dataset (similar to LeRobotDataset). When running `Dataset.save_to_disk` how can I provide indices where it's possible to shard the dataset such that no episode spans more than 1 shard. Consequently, when I run `Dataset.load_from_disk`, how can I load just a subset of the shards to save memory and time on different ranks? I guess an alternative to this would be, given a loaded `Dataset`, how can I run `Dataset.shard` such that sharding doesn't split any episode across shards?
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7415/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7415/timeline
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/7414
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7414/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7414/comments
https://api.github.com/repos/huggingface/datasets/issues/7414/events
https://github.com/huggingface/datasets/pull/7414
2,863,798,756
PR_kwDODunzps6LxjsH
7,414
Gracefully cancel async tasks
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7414). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update." ]
1,739,981,458,000
1,740,060,746,000
1,740,060,743,000
MEMBER
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7414/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7414/timeline
null
0
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7414", "html_url": "https://github.com/huggingface/datasets/pull/7414", "diff_url": "https://github.com/huggingface/datasets/pull/7414.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7414.patch", "merged_at": "2025-02-20T14:12:23" }
https://api.github.com/repos/huggingface/datasets/issues/7413
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7413/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7413/comments
https://api.github.com/repos/huggingface/datasets/issues/7413/events
https://github.com/huggingface/datasets/issues/7413
2,860,947,582
I_kwDODunzps6qhph-
7,413
Documentation on multiple media files of the same type with WebDataset
{ "login": "DCNemesis", "id": 3616964, "node_id": "MDQ6VXNlcjM2MTY5NjQ=", "avatar_url": "https://avatars.githubusercontent.com/u/3616964?v=4", "gravatar_id": "", "url": "https://api.github.com/users/DCNemesis", "html_url": "https://github.com/DCNemesis", "followers_url": "https://api.github.com/users/DCNemesis/followers", "following_url": "https://api.github.com/users/DCNemesis/following{/other_user}", "gists_url": "https://api.github.com/users/DCNemesis/gists{/gist_id}", "starred_url": "https://api.github.com/users/DCNemesis/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/DCNemesis/subscriptions", "organizations_url": "https://api.github.com/users/DCNemesis/orgs", "repos_url": "https://api.github.com/users/DCNemesis/repos", "events_url": "https://api.github.com/users/DCNemesis/events{/privacy}", "received_events_url": "https://api.github.com/users/DCNemesis/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
[ "Yes this is correct and it works with huggingface datasets as well ! Feel free to include an example here: https://github.com/huggingface/datasets/blob/main/docs/source/video_dataset.mdx" ]
1,739,895,200,000
1,740,061,074,000
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
The [current documentation](https://huggingface.co/docs/datasets/en/video_dataset) on a creating a video dataset includes only examples with one media file and one json. It would be useful to have examples where multiple files of the same type are included. For example, in a sign language dataset, you may have a base video and a video annotation of the extracted pose. According to the WebDataset documentation, this should be able to be done with period separated filenames. For example: ```e39871fd9fd74f55.base.mp4 e39871fd9fd74f55.pose.mp4 e39871fd9fd74f55.json f18b91585c4d3f3e.base.mp4 f18b91585c4d3f3e.pose.mp4 f18b91585c4d3f3e.json ... ``` If you can confirm that this method of including multiple media files works with huggingface datasets and include an example in the documentation, I'd appreciate it.
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7413/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7413/timeline
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/7412
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7412/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7412/comments
https://api.github.com/repos/huggingface/datasets/issues/7412/events
https://github.com/huggingface/datasets/issues/7412
2,859,433,710
I_kwDODunzps6qb37u
7,412
Index Error Invalid Ket is out of bounds for size 0 for code-search-net/code_search_net dataset
{ "login": "harshakhmk", "id": 56113657, "node_id": "MDQ6VXNlcjU2MTEzNjU3", "avatar_url": "https://avatars.githubusercontent.com/u/56113657?v=4", "gravatar_id": "", "url": "https://api.github.com/users/harshakhmk", "html_url": "https://github.com/harshakhmk", "followers_url": "https://api.github.com/users/harshakhmk/followers", "following_url": "https://api.github.com/users/harshakhmk/following{/other_user}", "gists_url": "https://api.github.com/users/harshakhmk/gists{/gist_id}", "starred_url": "https://api.github.com/users/harshakhmk/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/harshakhmk/subscriptions", "organizations_url": "https://api.github.com/users/harshakhmk/orgs", "repos_url": "https://api.github.com/users/harshakhmk/repos", "events_url": "https://api.github.com/users/harshakhmk/events{/privacy}", "received_events_url": "https://api.github.com/users/harshakhmk/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
[]
1,739,858,313,000
1,739,860,927,000
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
### Describe the bug I am trying to do model pruning on sentence-transformers/all-mini-L6-v2 for the code-search-net/code_search_net dataset using INCTrainer class However I am getting below error ``` raise IndexError(f"Invalid Key: {key is our of bounds for size {size}") IndexError: Invalid key: 1840208 is out of bounds for size 0 ``` ### Steps to reproduce the bug Model pruning on the above dataset using the below guide https://huggingface.co/docs/optimum/en/intel/neural_compressor/optimization#pruning ### Expected behavior The modsl should be successfully pruned ### Environment info Torch version: 2.4.1 Python version: 3.8.10
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7412/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7412/timeline
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/7411
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7411/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7411/comments
https://api.github.com/repos/huggingface/datasets/issues/7411/events
https://github.com/huggingface/datasets/pull/7411
2,858,993,390
PR_kwDODunzps6LhV0Z
7,411
Attempt to fix multiprocessing hang by closing and joining the pool before termination
{ "login": "dakinggg", "id": 43149077, "node_id": "MDQ6VXNlcjQzMTQ5MDc3", "avatar_url": "https://avatars.githubusercontent.com/u/43149077?v=4", "gravatar_id": "", "url": "https://api.github.com/users/dakinggg", "html_url": "https://github.com/dakinggg", "followers_url": "https://api.github.com/users/dakinggg/followers", "following_url": "https://api.github.com/users/dakinggg/following{/other_user}", "gists_url": "https://api.github.com/users/dakinggg/gists{/gist_id}", "starred_url": "https://api.github.com/users/dakinggg/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/dakinggg/subscriptions", "organizations_url": "https://api.github.com/users/dakinggg/orgs", "repos_url": "https://api.github.com/users/dakinggg/repos", "events_url": "https://api.github.com/users/dakinggg/events{/privacy}", "received_events_url": "https://api.github.com/users/dakinggg/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7411). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "Thanks for the fix! We have been affected by this a lot when we try to use LLM Foundry with larger multimodal ICL datasets. ", "@lorabit110 are you able to test it out for your case as well? Would be great to get a second validation that it actually fixes the issue. Thanks!" ]
1,739,836,683,000
1,739,999,484,000
1,739,972,432,000
CONTRIBUTOR
{ "total": 0, "completed": 0, "percent_completed": 0 }
https://github.com/huggingface/datasets/issues/6393 has plagued me on and off for a very long time. I have had various workarounds (one time combining two filter calls into one filter call removed the issue, another time making rank 0 go first resolved a cache race condition, one time i think upgrading the version of something resolved it). I don't know hf datasets well enough to fully understand the root cause, but I _think_ this PR fixes it. Evidence: I have an LLM Foundry training yaml/script (datasets version 3.2.0) that results in a hang ~1/10 times (for a baseline for this testing, it was 2/36 runs that hung). I also reran with the latest datasets version (3.3.1) and got 4/36 hung. Installing datasets from this PR, I was able to successful run the script 144 times without a hang occurring. Assuming the base probability is 1/10, this should be more than enough times to have confidence it works. After adding some logging, I could see that the code hung during the __exit__ of the mp pool context manager, after all shards had been processed, and the tqdm context manager had exited. My best explanation: When multiprocessing pool __exit__ is called, it calls pool.terminate, which forcefully exits all the processes (and calls code related to this that I haven't looked at closely). I'm guessing this forceful termination has a bad interaction with some multithreading/multiprocessing that hf datasets does. If we instead call pool.close and pool.join before the pool.terminate happens, perhaps whatever that bad interaction is is able to complete gracefully, and then terminate call proceeds without issue. If this PR seems good to you, I'd be very appreciative if you were able to do a patch release including it. Thank you! @lhoestq
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7411/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7411/timeline
null
0
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7411", "html_url": "https://github.com/huggingface/datasets/pull/7411", "diff_url": "https://github.com/huggingface/datasets/pull/7411.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7411.patch", "merged_at": "2025-02-19T13:40:32" }
https://api.github.com/repos/huggingface/datasets/issues/7410
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7410/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7410/comments
https://api.github.com/repos/huggingface/datasets/issues/7410/events
https://github.com/huggingface/datasets/pull/7410
2,858,085,707
PR_kwDODunzps6LeQBF
7,410
Set dev version
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7410). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update." ]
1,739,804,079,000
1,739,804,218,000
1,739,804,096,000
MEMBER
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7410/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7410/timeline
null
0
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7410", "html_url": "https://github.com/huggingface/datasets/pull/7410", "diff_url": "https://github.com/huggingface/datasets/pull/7410.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7410.patch", "merged_at": "2025-02-17T14:54:56" }
https://api.github.com/repos/huggingface/datasets/issues/7409
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7409/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7409/comments
https://api.github.com/repos/huggingface/datasets/issues/7409/events
https://github.com/huggingface/datasets/pull/7409
2,858,079,508
PR_kwDODunzps6LeOpY
7,409
Release: 3.3.1
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7409). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update." ]
1,739,803,932,000
1,739,804,072,000
1,739,803,993,000
MEMBER
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7409/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7409/timeline
null
0
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7409", "html_url": "https://github.com/huggingface/datasets/pull/7409", "diff_url": "https://github.com/huggingface/datasets/pull/7409.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7409.patch", "merged_at": "2025-02-17T14:53:13" }
https://api.github.com/repos/huggingface/datasets/issues/7408
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7408/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7408/comments
https://api.github.com/repos/huggingface/datasets/issues/7408/events
https://github.com/huggingface/datasets/pull/7408
2,858,012,313
PR_kwDODunzps6Ld_-m
7,408
Fix filter speed regression
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7408). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update." ]
1,739,802,332,000
1,739,802,528,000
1,739,802,526,000
MEMBER
{ "total": 0, "completed": 0, "percent_completed": 0 }
close https://github.com/huggingface/datasets/issues/7404
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7408/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7408/timeline
null
0
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7408", "html_url": "https://github.com/huggingface/datasets/pull/7408", "diff_url": "https://github.com/huggingface/datasets/pull/7408.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7408.patch", "merged_at": "2025-02-17T14:28:46" }
https://api.github.com/repos/huggingface/datasets/issues/7407
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7407/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7407/comments
https://api.github.com/repos/huggingface/datasets/issues/7407/events
https://github.com/huggingface/datasets/pull/7407
2,856,517,442
PR_kwDODunzps6LY7y5
7,407
Update use_with_pandas.mdx: to_pandas() correction in last section
{ "login": "ibarrien", "id": 7552335, "node_id": "MDQ6VXNlcjc1NTIzMzU=", "avatar_url": "https://avatars.githubusercontent.com/u/7552335?v=4", "gravatar_id": "", "url": "https://api.github.com/users/ibarrien", "html_url": "https://github.com/ibarrien", "followers_url": "https://api.github.com/users/ibarrien/followers", "following_url": "https://api.github.com/users/ibarrien/following{/other_user}", "gists_url": "https://api.github.com/users/ibarrien/gists{/gist_id}", "starred_url": "https://api.github.com/users/ibarrien/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ibarrien/subscriptions", "organizations_url": "https://api.github.com/users/ibarrien/orgs", "repos_url": "https://api.github.com/users/ibarrien/repos", "events_url": "https://api.github.com/users/ibarrien/events{/privacy}", "received_events_url": "https://api.github.com/users/ibarrien/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
[]
1,739,757,211,000
1,740,072,484,000
1,740,072,484,000
CONTRIBUTOR
{ "total": 0, "completed": 0, "percent_completed": 0 }
last section ``to_pandas()"
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7407/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7407/timeline
null
0
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7407", "html_url": "https://github.com/huggingface/datasets/pull/7407", "diff_url": "https://github.com/huggingface/datasets/pull/7407.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7407.patch", "merged_at": "2025-02-20T17:28:04" }
https://api.github.com/repos/huggingface/datasets/issues/7406
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7406/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7406/comments
https://api.github.com/repos/huggingface/datasets/issues/7406/events
https://github.com/huggingface/datasets/issues/7406
2,856,441,206
I_kwDODunzps6qQdV2
7,406
Adding Core Maintainer List to CONTRIBUTING.md
{ "login": "jp1924", "id": 93233241, "node_id": "U_kgDOBY6gWQ", "avatar_url": "https://avatars.githubusercontent.com/u/93233241?v=4", "gravatar_id": "", "url": "https://api.github.com/users/jp1924", "html_url": "https://github.com/jp1924", "followers_url": "https://api.github.com/users/jp1924/followers", "following_url": "https://api.github.com/users/jp1924/following{/other_user}", "gists_url": "https://api.github.com/users/jp1924/gists{/gist_id}", "starred_url": "https://api.github.com/users/jp1924/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jp1924/subscriptions", "organizations_url": "https://api.github.com/users/jp1924/orgs", "repos_url": "https://api.github.com/users/jp1924/repos", "events_url": "https://api.github.com/users/jp1924/events{/privacy}", "received_events_url": "https://api.github.com/users/jp1924/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[ { "id": 1935892871, "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement", "name": "enhancement", "color": "a2eeef", "default": true, "description": "New feature or request" } ]
closed
false
null
[]
[ "@lhoestq", "there is no per-module maintainer and the list is me alone nowadays ^^'", "@lhoestq \nOh... I feel for you. \nWhat are your criteria for choosing a core maintainer? \nIt seems like it's too much work for you to manage all this code by yourself.\n\nAlso, if you don't mind, can you check this PR for me?\n#7368 I'd like this to be added as soon as possible because I need it." ]
1,739,752,360,000
1,742,813,874,000
1,742,813,874,000
CONTRIBUTOR
{ "total": 0, "completed": 0, "percent_completed": 0 }
### Feature request I propose adding a core maintainer list to the `CONTRIBUTING.md` file. ### Motivation The Transformers and Liger-Kernel projects maintain lists of core maintainers for each module. However, the Datasets project doesn't have such a list. ### Your contribution I have nothing to add here.
{ "login": "jp1924", "id": 93233241, "node_id": "U_kgDOBY6gWQ", "avatar_url": "https://avatars.githubusercontent.com/u/93233241?v=4", "gravatar_id": "", "url": "https://api.github.com/users/jp1924", "html_url": "https://github.com/jp1924", "followers_url": "https://api.github.com/users/jp1924/followers", "following_url": "https://api.github.com/users/jp1924/following{/other_user}", "gists_url": "https://api.github.com/users/jp1924/gists{/gist_id}", "starred_url": "https://api.github.com/users/jp1924/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jp1924/subscriptions", "organizations_url": "https://api.github.com/users/jp1924/orgs", "repos_url": "https://api.github.com/users/jp1924/repos", "events_url": "https://api.github.com/users/jp1924/events{/privacy}", "received_events_url": "https://api.github.com/users/jp1924/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7406/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7406/timeline
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/7405
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7405/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7405/comments
https://api.github.com/repos/huggingface/datasets/issues/7405/events
https://github.com/huggingface/datasets/issues/7405
2,856,372,814
I_kwDODunzps6qQMpO
7,405
Lazy loading of environment variables
{ "login": "nikvaessen", "id": 7225987, "node_id": "MDQ6VXNlcjcyMjU5ODc=", "avatar_url": "https://avatars.githubusercontent.com/u/7225987?v=4", "gravatar_id": "", "url": "https://api.github.com/users/nikvaessen", "html_url": "https://github.com/nikvaessen", "followers_url": "https://api.github.com/users/nikvaessen/followers", "following_url": "https://api.github.com/users/nikvaessen/following{/other_user}", "gists_url": "https://api.github.com/users/nikvaessen/gists{/gist_id}", "starred_url": "https://api.github.com/users/nikvaessen/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/nikvaessen/subscriptions", "organizations_url": "https://api.github.com/users/nikvaessen/orgs", "repos_url": "https://api.github.com/users/nikvaessen/repos", "events_url": "https://api.github.com/users/nikvaessen/events{/privacy}", "received_events_url": "https://api.github.com/users/nikvaessen/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
[ "Many python packages out there, including `huggingface_hub`, do load the environment variables on import.\nYou should `load_dotenv()` before importing the libraries.\n\nFor example you can move all you imports inside your `main()` function" ]
1,739,745,101,000
1,739,805,438,000
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
### Describe the bug Loading a `.env` file after an `import datasets` call does not correctly use the environment variables. This is due the fact that environment variables are read at import time: https://github.com/huggingface/datasets/blob/de062f0552a810c52077543c1169c38c1f0c53fc/src/datasets/config.py#L155C1-L155C80 ### Steps to reproduce the bug ```bash # make tmp dir mkdir -p /tmp/debug-env # make .env file echo HF_HOME=/tmp/debug-env/data > /tmp/debug-env/.env # first load dotenv, downloads to /tmp/debug-env/data uv run --with datasets,python-dotenv python3 -c \ 'import dotenv; dotenv.load_dotenv("/tmp/debug-env/.env"); import datasets; datasets.load_dataset("Anthropic/hh-rlhf")' # first import datasets, downloads to `~/.cache/huggingface` uv run --with datasets,python-dotenv python3 -c \ 'import datasets; import dotenv; dotenv.load_dotenv("/tmp/debug-env/.env"); datasets.load_dataset("Anthropic/hh-rlhf")' ``` ### Expected behavior I expect that setting environment variables with something like this: ```python3 if __name__ == "__main__": load_dotenv() main() ``` works correctly. ### Environment info "datasets>=3.3.0",
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7405/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7405/timeline
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/7404
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7404/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7404/comments
https://api.github.com/repos/huggingface/datasets/issues/7404/events
https://github.com/huggingface/datasets/issues/7404
2,856,366,207
I_kwDODunzps6qQLB_
7,404
Performance regression in `dataset.filter`
{ "login": "ttim", "id": 82200, "node_id": "MDQ6VXNlcjgyMjAw", "avatar_url": "https://avatars.githubusercontent.com/u/82200?v=4", "gravatar_id": "", "url": "https://api.github.com/users/ttim", "html_url": "https://github.com/ttim", "followers_url": "https://api.github.com/users/ttim/followers", "following_url": "https://api.github.com/users/ttim/following{/other_user}", "gists_url": "https://api.github.com/users/ttim/gists{/gist_id}", "starred_url": "https://api.github.com/users/ttim/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ttim/subscriptions", "organizations_url": "https://api.github.com/users/ttim/orgs", "repos_url": "https://api.github.com/users/ttim/repos", "events_url": "https://api.github.com/users/ttim/events{/privacy}", "received_events_url": "https://api.github.com/users/ttim/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[ { "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "user_view_type": "public", "site_admin": false } ]
[ "Thanks for reporting, I'll fix the regression today", "I just released `datasets` 3.3.1 with a fix, let me know if it's good now :)", "@lhoestq it fixed the issue.\n\nThis was (very) fast, thank you very much!" ]
1,739,744,354,000
1,739,814,366,000
1,739,802,528,000
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
### Describe the bug We're filtering dataset of ~1M (small-ish) records. At some point in the code we do `dataset.filter`, before (including 3.2.0) it was taking couple of seconds, and now it takes 4 hours. We use 16 threads/workers, and stack trace at them look as follows: ``` Traceback (most recent call last): File "/python/lib/python3.12/site-packages/multiprocess/process.py", line 314, in _bootstrap self.run() File "/python/lib/python3.12/site-packages/multiprocess/process.py", line 108, in run self._target(*self._args, **self._kwargs) File "/python/lib/python3.12/site-packages/multiprocess/pool.py", line 125, in worker result = (True, func(*args, **kwds)) ^^^^^^^^^^^^^^^^^^^ File "/python/lib/python3.12/site-packages/datasets/utils/py_utils.py", line 678, in _write_generator_to_queue for i, result in enumerate(func(**kwargs)): File "/python/lib/python3.12/site-packages/datasets/arrow_dataset.py", line 3511, in _map_single for i, batch in iter_outputs(shard_iterable): File "/python/lib/python3.12/site-packages/datasets/arrow_dataset.py", line 3461, in iter_outputs yield i, apply_function(example, i, offset=offset) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/python/lib/python3.12/site-packages/datasets/arrow_dataset.py", line 3390, in apply_function processed_inputs = function(*fn_args, *additional_args, **fn_kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/python/lib/python3.12/site-packages/datasets/arrow_dataset.py", line 6416, in get_indices_from_mask_function indices_array = indices_mapping.column(0).take(indices_array) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "pyarrow/table.pxi", line 1079, in pyarrow.lib.ChunkedArray.take File "/python/lib/python3.12/site-packages/pyarrow/compute.py", line 458, in take def take(data, indices, *, boundscheck=True, memory_pool=None): ``` ### Steps to reproduce the bug 1. Save dataset of 1M records in arrow 2. Filter it with 16 threads 3. Watch it take too long ### Expected behavior Filtering done fast ### Environment info datasets 3.3.0, python 3.12
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7404/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7404/timeline
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/7402
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7402/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7402/comments
https://api.github.com/repos/huggingface/datasets/issues/7402/events
https://github.com/huggingface/datasets/pull/7402
2,855,880,858
PR_kwDODunzps6LW8G3
7,402
Fix a typo in arrow_dataset.py
{ "login": "jingedawang", "id": 7996256, "node_id": "MDQ6VXNlcjc5OTYyNTY=", "avatar_url": "https://avatars.githubusercontent.com/u/7996256?v=4", "gravatar_id": "", "url": "https://api.github.com/users/jingedawang", "html_url": "https://github.com/jingedawang", "followers_url": "https://api.github.com/users/jingedawang/followers", "following_url": "https://api.github.com/users/jingedawang/following{/other_user}", "gists_url": "https://api.github.com/users/jingedawang/gists{/gist_id}", "starred_url": "https://api.github.com/users/jingedawang/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jingedawang/subscriptions", "organizations_url": "https://api.github.com/users/jingedawang/orgs", "repos_url": "https://api.github.com/users/jingedawang/repos", "events_url": "https://api.github.com/users/jingedawang/events{/privacy}", "received_events_url": "https://api.github.com/users/jingedawang/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
[]
1,739,681,522,000
1,740,072,568,000
1,740,072,568,000
CONTRIBUTOR
{ "total": 0, "completed": 0, "percent_completed": 0 }
"in the feature" should be "in the future"
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7402/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7402/timeline
null
0
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7402", "html_url": "https://github.com/huggingface/datasets/pull/7402", "diff_url": "https://github.com/huggingface/datasets/pull/7402.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7402.patch", "merged_at": "2025-02-20T17:29:28" }
https://api.github.com/repos/huggingface/datasets/issues/7401
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7401/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7401/comments
https://api.github.com/repos/huggingface/datasets/issues/7401/events
https://github.com/huggingface/datasets/pull/7401
2,853,260,869
PR_kwDODunzps6LOMSo
7,401
set dev version
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7401). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update." ]
1,739,528,223,000
1,739,528,360,000
1,739,528,233,000
MEMBER
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7401/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7401/timeline
null
0
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7401", "html_url": "https://github.com/huggingface/datasets/pull/7401", "diff_url": "https://github.com/huggingface/datasets/pull/7401.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7401.patch", "merged_at": "2025-02-14T10:17:13" }