admin commited on
Commit
fa99664
·
1 Parent(s): 377cc78
Files changed (3) hide show
  1. .gitignore +5 -0
  2. README.md +128 -0
  3. timbre_range.py +107 -0
.gitignore ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ rename.sh
2
+ test.py
3
+ *.wav
4
+ *.txt
5
+ *.jpg
README.md CHANGED
@@ -1,3 +1,131 @@
1
  ---
2
  license: mit
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
+ task_categories:
4
+ - audio-classification
5
+ language:
6
+ - zh
7
+ - en
8
+ tags:
9
+ - music
10
+ - art
11
+ pretty_name: Timbre and Range Dataset
12
+ size_categories:
13
+ - 1K<n<10K
14
+ viewer: false
15
  ---
16
+
17
+ # Dataset Card for Timbre and Range Dataset
18
+ ## Dataset Summary
19
+ The timbre dataset contains acapella singing audio of 9 singers, as well as cut single-note audio, totaling 775 clips (.wav format)
20
+ The vocal range dataset includes several up and down chromatic scales audio clips of several vocals, as well as the cut single-note audio clips (.wav format).
21
+
22
+ ### Supported Tasks and Leaderboards
23
+ Audio classification
24
+
25
+ ### Languages
26
+ Chinese, English
27
+
28
+ ## Dataset Structure
29
+ <https://www.modelscope.cn/datasets/ccmusic-database/timbre_range/dataPeview>
30
+ ### Data Instances
31
+ .zip(.wav, .jpg), .csv
32
+
33
+ ### Data Fields
34
+ ```txt
35
+ timbre: song1-32
36
+ range: vox1_19-22/26-29/32/33/36-38/41-47/51-55/59-64/69-71/79-81
37
+ ```
38
+
39
+ ### Data Splits
40
+ Train, Validation, Test
41
+
42
+ ## Usage
43
+ ### Timbre subset
44
+ ```python
45
+ from datasets import load_dataset
46
+
47
+ ds = load_dataset("ccmusic-database/timbre_range", name="timbre")
48
+ for item in ds["train"]:
49
+ print(item)
50
+
51
+ for item in ds["validation"]:
52
+ print(item)
53
+
54
+ for item in ds["test"]:
55
+ print(item)
56
+ ```
57
+
58
+ ### Range subset
59
+ ```python
60
+ from datasets import load_dataset
61
+ # default subset
62
+ ds = load_dataset("ccmusic-database/timbre_range", name="range")
63
+ for item in ds["train"]:
64
+ print(item)
65
+
66
+ for item in ds["validation"]:
67
+ print(item)
68
+
69
+ for item in ds["test"]:
70
+ print(item)
71
+ ```
72
+
73
+ ## Maintenance
74
+ ```bash
75
+ git clone [email protected]:datasets/ccmusic-database/timbre_range
76
+ cd timbre_range
77
+ ```
78
+
79
+ ## Dataset Creation
80
+ ### Curation Rationale
81
+ Promoting the development of music AI industry
82
+
83
+ ### Source Data
84
+ #### Initial Data Collection and Normalization
85
+ Zijin Li, Zhaorui Liu, Monan Zhou
86
+
87
+ #### Who are the source language producers?
88
+ Composers of the songs in dataset
89
+
90
+ ### Annotations
91
+ #### Annotation process
92
+ CCMUSIC students collected acapella singing audios of 9 singers, as well as cut single-note audio, totaling 775 clips
93
+
94
+ #### Who are the annotators?
95
+ Students from CCMUSIC
96
+
97
+ ### Personal and Sensitive Information
98
+ Due to copyright issues with the original music, only acapella singing audios are provided in the dataset
99
+
100
+ ## Considerations for Using the Data
101
+ ### Social Impact of Dataset
102
+ Promoting the development of AI in the music industry
103
+
104
+ ### Discussion of Biases
105
+ Most are Chinese songs
106
+
107
+ ### Other Known Limitations
108
+ Samples are not balanced enough
109
+
110
+ ## Mirror
111
+ <https://www.modelscope.cn/datasets/ccmusic-database/timbre_range>
112
+
113
+ ## Additional Information
114
+ ### Dataset Curators
115
+ Zijin Li
116
+
117
+ ### Evaluation
118
+ [1] [Yiliang, J. et al. (2019) ‘Data Augmentation based Convolutional Neural Network for Auscultation’, Journal of Fudan University(Natural Science), pp. 328–334. doi:10.15943/j.cnki.fdxb-jns.2019.03.004.](https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2019&filename=FDXB201903004&uniplatform=NZKPT&v=VAszHDtjPUYMi3JYVrdSGx4fcqlEtgCeKwRGTacCj98CGEQg5CUFHxakrvuaMzm3)
119
+
120
+ ### Citation Information
121
+ ```bibtex
122
+ @article{2019Data,
123
+ title={Data Augmentation based Convolutional Neural Network for Auscultation},
124
+ author={ Yiliang, Jiang and Xulong, Zhang and Jin, Deng and Wenqiang, Zhang and Wei, L. I. },
125
+ journal={Journal of Fudan University(Natural Science)},
126
+ year={2019},
127
+ }
128
+ ```
129
+
130
+ ### Contributions
131
+ Provide a dataset for music timbre and range
timbre_range.py ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import random
3
+ import datasets
4
+ import pandas as pd
5
+ from datasets.tasks import AudioClassification
6
+
7
+
8
+ _NAMES = {
9
+ "timbre": ["Base", "Split", "Short"],
10
+ "range": ["Narrow", "Moderate", "Wide"],
11
+ }
12
+
13
+ _URL = f"https://www.modelscope.cn/datasets/ccmusic-database/{os.path.basename(__file__)[:-3]}/resolve/master/data"
14
+
15
+
16
+ class timbre_range(datasets.GeneratorBasedBuilder):
17
+ def _info(self):
18
+ if self.config.name == "default":
19
+ self.config.name = "range"
20
+
21
+ return datasets.DatasetInfo(
22
+ features=datasets.Features(
23
+ {
24
+ "audio": datasets.Audio(sampling_rate=44_100),
25
+ "mel": datasets.Image(),
26
+ "label": datasets.features.ClassLabel(names=_NAMES["timbre"]),
27
+ "score1": datasets.Value("float64"),
28
+ "score2": datasets.Value("float64"),
29
+ "avg_score": datasets.Value("float64"),
30
+ }
31
+ if self.config.name == "timbre"
32
+ else {
33
+ "audio": datasets.Audio(sampling_rate=44_100),
34
+ "mel": datasets.Image(),
35
+ "label": datasets.features.ClassLabel(names=_NAMES["range"]),
36
+ }
37
+ ),
38
+ supervised_keys=("audio", "label"),
39
+ license="CC-BY-NC-ND",
40
+ version="1.2.0",
41
+ task_templates=[
42
+ AudioClassification(
43
+ task="audio-classification",
44
+ audio_column="audio",
45
+ label_column="label",
46
+ )
47
+ ],
48
+ )
49
+
50
+ def _split_generators(self, dl_manager):
51
+ dataset = []
52
+ data_files = dl_manager.download_and_extract(f"{_URL}/{self.config.name}.zip")
53
+ for fpath in dl_manager.iter_files([data_files]):
54
+ if os.path.basename(fpath).endswith(".wav"):
55
+ dataset.append(fpath)
56
+
57
+ random.shuffle(dataset)
58
+ count = len(dataset)
59
+ p80 = int(0.8 * count)
60
+ p90 = int(0.9 * count)
61
+
62
+ csv_file = dl_manager.download(f"{_URL}/{self.config.name}.csv")
63
+ labels = pd.read_csv(csv_file, index_col="id")
64
+
65
+ return [
66
+ datasets.SplitGenerator(
67
+ name=datasets.Split.TRAIN,
68
+ gen_kwargs={"files": dataset[:p80], "labels": labels},
69
+ ),
70
+ datasets.SplitGenerator(
71
+ name=datasets.Split.VALIDATION,
72
+ gen_kwargs={"files": dataset[p80:p90], "labels": labels},
73
+ ),
74
+ datasets.SplitGenerator(
75
+ name=datasets.Split.TEST,
76
+ gen_kwargs={"files": dataset[p90:], "labels": labels},
77
+ ),
78
+ ]
79
+
80
+ def _generate_examples(self, files, labels):
81
+ if self.config.name == "timbre":
82
+ for i, fpath in enumerate(files):
83
+ id: str = os.path.basename(fpath)[:-4]
84
+ if "-" in id:
85
+ id = id.split("-")[0]
86
+
87
+ yield i, {
88
+ "audio": fpath,
89
+ "mel": fpath.replace("/audios/", "/images/")
90
+ .replace("\\audios\\", "\\images\\")
91
+ .replace(".wav", ".jpg"),
92
+ "label": os.path.basename(os.path.dirname(fpath)).capitalize(),
93
+ "score1": float(labels.loc[id]["score1"]),
94
+ "score2": float(labels.loc[id]["score2"]),
95
+ "avg_score": float(labels.loc[id]["avg_score"]),
96
+ }
97
+
98
+ else:
99
+ for i, fpath in enumerate(files):
100
+ id = os.path.basename(fpath)[:-4]
101
+ yield i, {
102
+ "audio": fpath,
103
+ "mel": fpath.replace("/audios/", "/images/")
104
+ .replace("\\audios\\", "\\images\\")
105
+ .replace(".wav", ".jpg"),
106
+ "label": _NAMES["range"][int(labels.loc[id]["range"])],
107
+ }